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Néel spin-orbit torque in antiferromagnetic
quantum spin and anomalous Hall insulators

Junyu Tang 1, Hantao Zhang2 & Ran Cheng 1,2,3

Interplay between topological electrons andmagnetic ordering enables efficient
electrical control of magnetism. We extend the Kane-Mele model to include the
exchange coupling to a collinear antiferromagnetic (AFM) order, which allows
the system to exhibit the quantum anomalous Hall and quantum spin Hall
effects in the absence of a net magnetization. These topological phases support
a staggered Edelstein effect throughwhich an applied electric field can generate
opposite non-equilibrium spins on the two AFM sublattices, realizing the Néel-
type spin-orbit torque (NSOT). Contrary to known NSOTs in AFMmetals driven
by conduction currents, our NSOT arises frompure adiabatic currents devoid of
Joule heating, while being a bulk effect not carried by the edge currents. By
virtue of the NSOT, the electric field of a microwave can drive the AFM reso-
nance with a remarkably high efficiency, outpacing the magnetic field-induced
AFM resonance by orders of magnitude in terms of power absorption.

Harnessing topological materials to manipulate magnetism and mag-
netic dynamics has opened unique opportunities for energy-efficient
spintronics. Recently, a new twist in this direction is inspired by the
study of intrinsic magnetic topological insulators (iMTIs), in which
topological electrons are highly entangled with the magnetic states1–11.
Thanks to the synergy of electronic andmagnetic degrees of freedom,
an iMTI could be operated simultaneously as an electric actuator and a
magnetic oscillator without the aid of foreign systems12, forming a
mono-structural setup to achieve spintronic functionalities that would
otherwise rely on engineered heterostructures.

Meanwhile, because of the insulating nature of iMTIs, the spin-orbit
torque (SOT) and the associated internal spin-transfer processes are not
driven byOhm’s currents (extrinsic); instead, they arise from the voltage-
induced adiabatic currents carried by topological electrons in the
valence band (intrinsic)13–16. Because adiabatic currents do not incur Joule
heating, they can convert 100%of the input electric power intomagnetic
dynamics17, leveraging an unprecedented boost of energy efficiency
compared to established solutions. While we have recently demon-
strated such lossless intrinsic SOT and its ensuing physical effects in a
widely recognized iMTI–MnBi2Te4 of a few layer thick12, the obtained
results only revealed the tip of an enormous unexplored iceberg.

In particular, we identify five outstanding questions beyond what
could be answered by the iMTI family of materials. First, what non-

trivial topological phases are compatible with a given magnetic order,
especially the compensated antiferromagnetic (AFM) state? Second,
can these topological phases afford the lossless SOT? Third, will the
SOT prevail down to the monolayer limit? Fourth, will a strong Néel-
type SOT (NSOT), i.e., contrasting fields acting on different sublattices,
be supported by symmetry? Finally, what are the dynamical implica-
tions of the NSOT in a chosen material? The known case of MnBi2Te4
only provides us with limited information. For instance, the material
becomes a compensated AFM (ferromagnetic) system only if there are
an even (odd) number of layers, which corresponds to an axion
(quantumanomalousHall) insulator. In either phase, however, the SOT
vanishes identically in themonolayer limit while theNSOT is forbidden
by symmetry12,18 within the linear response regime.

To answer these open questions, we investigate a previously
overlooked scenario of insulating magnets which could potentially
host topological electrons on their own and support intrinsic NSOT.
Transition-metal trichalcogenides (TMTs), in their AFM phase, can be
effectively described by an extended Kane-Mele model19,20 including
the exchange coupling of electrons and the AFM background.
Depending on the spin-orbit coupling (SOC) and a staggered sublattice
potential, such a system can exhibit the quantum anomalous Hall
(QAH) effect21,22 and the quantum spin Hall (QSH) effect23,24 within the
same magnetic phase characterized by a fully compensated collinear
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AFM order. Moreover, we find that both the QAH and QSH phases
support a staggered Edelstein effect, by which an applied electric field
can generate opposite non-equilibrium spins acting on different sub-
lattice magnetic moments, realizing the desired intrinsic NSOT with-
out incurring Joule heating as conduction electrons are eliminated.

In stark contrast to the previously reported extrinsic NSOT driven
by dissipative charge currents25–30, our intrinsic NSOT is dissipationless
and does not incur Ohm’s conduction because only the adiabatic
motions of valence electrons are involved. From the perspective of
topological materials, our findings distinguish from previous studies
by claiming the NSOT, rather than the widely-found SOT, in the
topological nontrivial phases. To demonstrate the physical sig-
nificance, we study the NSOT-induced AFM resonance and benchmark
the result against an ordinary AFM resonance. Remarkably, the NSOT
renders the electric field of a microwave the dominant driving force,
which could overwhelm the direct coupling to themagnetic field, thus
enhancing the AFM resonance amplitude by more than one order of
magnitude. The high efficiency of this counter-intuitive electric field-
driven AFM resonance is quantified by the dynamical susceptibility.
Operational-wise, our findings unravel a unique mechanism to lever-
age the sub-terahertz AFM dynamics devoid of Joule heating by
exploiting magnetic topological materials.

Results and discussion
Formalism
We extend the Kane-Mele model by including a collinear AFM order
which is exchange coupled to the electrons on a 2Dhoneycomb lattice.
As illustrated in Fig. 1, the magnetic moments on the A and B sub-
lattices are oppositely aligned andpointing perpendicular to theplane.
The conceived system is characterized by an effective tight-binding
Hamiltonian

H = t
X
hi, ji

cyi cj + iλsoc
X
hhi, jii

νijc
y
i szcj + iλR

X
hi, ji

cyi ðs× d̂ijÞzcj

+ λv
X
i

cyi ξ ici + λex
X
i

cyi ðmi � sÞci,
ð1Þ

where cyi ðciÞ is the electron creation (annihilation) operator on site i,
with the spin index omitted for succinctness. In Eq. (1), the first term
represents the nearest neighbor hopping. The second term is the
intrinsic SOC which affects the next-nearest neighbor hopping, where
νij =2=

ffiffiffi
3

p
ðd̂1 × d̂2Þz = ± 1 with d̂1 and d̂2 being the two unit vectors

along the 120∘ bonds connecting i and j. The third term is the Rashba
SOC arising from the broken mirror symmetry (with z normal), where
d̂ij is the unit vector connecting the nearest-neighboring sites i and j,
and s is the vector of Paulimatrices for the spin degreeof freedom.The
fourth term is the staggered potential where ξi = ±1 flips sign on the A
and B sublattices as shown in the Fig. 1, breaking the C2 symmetry
about the x axis. The last term represents the exchange coupling
between the electrons and the local magnetic moments, where
mi = ± ẑ is the unit magnetic vector on site i.

Topological phases
If the exchange coupling λex vanishes, the Hamiltonian preserves the
time-reversal symmetry. Then for a sufficiently large λsoc, the system
can exhibit theQSHphase characterized by the Z2 number19. Now,with
a finite λex, the time-reversal symmetry is broken so the Z2 number
becomes ill-defined. Moreover, the QSH phase has a vanishing Chern
number (C =0), so it could only be distinguished from the normal
insulator (NI) phase by the spin Chern number Cs = (C↑ −C↓)/2

31,32.
Wefirst draw thephase diagramsof the Chern numberC in Fig. 2a,

b by navigating λsoc, λv and λR. To ensure a proper quantization of the
topological invariant, we impose an upper limit of 0.1t for the values of
λsoc, λR, λex and λv so as to maintain a global band gap. We find three
distinct phases on these two diagrams. The QSH state only appears at

large λsoc. At λv =0, the threshold of QSH is about λsoc = ±0.03t. Two
observations are in order. First, different from the QSH state, the QAH
state requires a nonzero staggered potential λv. This is because the
staggered potential breaks thePT symmetry (combined inversion and
time reversal), enabling a non-zero Berry curvature33–35. Second, while
the Chern number flips sign when either λv or λsoc flips sign, it remains
the same regardless of λR, because +λR and −λR are related by amirror
reflection z→ −z, whichdoes not change the sign ofC. In Fig. S1, we also
provide the phase diagrams for other combinations of parameters
(e.g., λsoc and λex).We conclude that the sign of the total Chern number
is determined by sign[C] = sign[λsoc]sign[λv]sign[λex].

We next plot the phase diagrams of the spin Chern number Cs in
Fig. 2c, d, corresponding to the results in Fig. 2a, b, respectively. As
expected, Cs in the QSH state is quantized to be ±1. In the QAH state,
however, Cs is quantized to be ±0.5, which indicates that the chiral
edge electrons only carry one spin species (see Fig. S2 for further
details). It is important to note that the spin Chern number near the
phase boundaries is not exactly quantized or half quantized, because
the spin is not a strictly conserved quantity in the presence of a finite
Rashba SOC.Concerning the signflip ofCs, weobserve aquitedifferent
pattern as compared to C. For example, Cs is even in λvwhile being odd
in λsoc. This can be understood from definition of spin currents: if the
spin polarization and the flowingdirection bothflip sign, a spin current
will remain unchanged.

To further confirm the system topology revealed by the phase
diagrams, we plot in Fig. 2e, f the band structures of our Hamiltonian
truncated in the y direction with N = 40 unit cells (i.e., a nanoribbon
periodic only in the x direction). For λsoc = 0.02t, the system is in the
QAH state, where only one pair of chiral edge states with the same spin
polarization but opposite group velocities emerges in the band gap.
For λsoc = 0.05t, the system transitions into the QSH phase, where two
pairs of chiral edge states appear in the bulk gap with opposite spin
polarizations.

Néel-type spin-orbit torque
Having obtained the band topology with broken time-reversal sym-
metry introduced by the AFM order, we are in a good position to
explore the interplay between electron transport and magnetic
dynamics. For insulating systems where the ordinary spin Hall effect is
suppressed, applying an (in-plane) electric field E candirectly generate
non-equilibrium spin accumulation through the Edelstein effect36. The
induced spin accumulation can in turn excite magnetic dynamics
through the SOT37–40. In our context, it is important to discerndifferent
AFM sublattices in the non-equilibrium spin generation. While the
average component δS = (δSA + δSB)/2 (due to the Edelstein effect)
leads to the ordinary SOT, the contrasting component δN = (δSA − δSB)/
2 (due to the staggered Edelstein effect) leads to the NSOT25. As we
consider insulating magnets where the Fermi energy εF lies in the bulk
gap, δS and δN only involve the Fermi-sea contribution. Within the
linear response regime, we can express the contrasting spin accumu-
lation as25,39,41

δN=
eℏ2

2

X
ϵn < εF < ϵm

Z
BZ

dk2

ð2πÞ2
Im nh ∣s� τ3∣mi mh ∣v � E∣ni� � ðϵn � ϵmÞ2 � Γ2

½ðϵn � ϵmÞ2 + Γ2�
2 ,

ð2Þ

where v is the velocity operator and Γ is the energy broadening due to
disorder. The average spin accumulation δS follows a similar formula
with the pseudo-spin Pauli matrix (acting on the sublattices) τ3
replaced by the identity matrix. Unlike the Fermi-level contribution,
here δN does not diverge even in the clean limit Γ→0 where Eq. (2)
reduces to a formula similar to the spin Chern number [see Eq. (8)]. In
the following, we will take representative values for the exchange
interaction λex = 0.1t = 100meV and for the band broadening
Γ = 20meV.
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Without sacrificing generality, we set the E field in the x direction
and calculate the non-equilibrium spin accumulation on each sub-
lattice: δSA = (δS + δN)/2 and δSB = (δS − δN)/2. Figure 3a, b plot δSAx and
δSBx as functions of λsoc and λR, while the y and z components are found
to be zero. Remarkably, we find that δSAx and δSBx are exactly opposite
to each other so long as λv =0, meaning that only the NSOT exists
whereas the SOT vanishes (i.e., δS =0). As a consistency check, the way
δSA(B) varies over the direction of E is shown in Fig. S4, where the
contrasting feature δSAxðyÞ = � δSBxðyÞ persists. Figure 3c, d schematically
show the difference between the SOT and NSOT, driven by δSA = δSB

and δSA = −δSB, respectively. In the clean limit Γ→0, the spin accumu-
lation on each sublattice is directly related to the Berry curvature
residing in the mixed space of crystal momentum and
magnetization13,17:

δSAðBÞν =
eℏ
2λex

Eμ ΩkmAðBÞ
μν

D E
, ð3Þ

where 〈⋯ 〉 =Vuc/(2π)
2∑n∫d

2kf[εn(k)](⋯ ) denotes the average over the
first Brillouin zone with Vuc the unit cell volume (area) and the f the
Fermi distribution. For Γ ≠0, the Berry curvature is dressed by the
broadening Γ, becoming the integrand of Eq. (2). For λv =0, the Berry
curvature assumes a staggered pattern ΩkmA

μν = �ΩkmB

μν , hence
δSA = −δSB. A non-zero λv would render jδSAx j≠jδSBx j owing to the
introduction of staggered potentials on the sublattices (see Fig. S3),
which leads to a finite δS on top of the δN, hence inducing a nonzero
SOT besides the NSOT.

In the phase diagram, the dashed lines mark where the global gap
reduces to 1meV. For a large ∣λR∣ beyond these boundaries, the global
gap will be smaller than 1meV, making it difficult to restrict εF in the
gap and, more seriously, less practical to guarantee the adiabatic
condition (to be clear in the next section). Therefore, we should focus
on the central regionof Fig. 3a, b enclosed by the dashed lines to safely
ignore the Fermi-surface contribution to δSA(B).

The NSOT is known for being able to switch the Néel order
n = (mA −mB)/2 in non-centrosymmetric AFM metals25–30. But previous
experimental studies are limited to current-induced NSOT. By con-
trast, our predictedNSOT is inprinciple free ofdissipation because it is
mediated by the adiabatic motions of valence electrons, incurring no
Ohm’s current as no conduction electrons are involved in the gen-
eration of spin torques. The adiabatic origin of theNSOT, similar to the
SOTpreviously claimed in iMTIs, is also reflectedby its Berry-curvature

origin discussed above. We emphasize that the Berry curvature Ωkm

relevant to the NSOT is physically distinct from the momentum-space
Berry curvature Ωkk that determines the band topology12,16.

To better clarify this subtle point, we plot in Fig. 4a the sublattice
spin accumulations δSA and δSB as functions of λsoc with vanishing
λv =0, i.e., a vertical cut at λR = 0.02t in Fig. 3. As a comparison, we also
plot the results with a non-vanishing staggered potential λv = 0.04t in
Fig. 4b. The NI, QAH andQSH regions are shaded in light green, purple
and orange, respectively. Three key observations are in order. First,
although δSA,B turn out to be slightly larger in the QAH and QSH states,
they remain finite even in the topologically trivial phase, suggesting
that the NSOT cannot be fully characterized by the band topology.
Second, δSA,B exhibit sudden jumps at the QAH-NI and QSH-NI transi-
tions. These jumps would formally diverge in the clean limit Γ→0
due to gap closing; but in our plots, a finite Γ = 20meV is added to
suppress the divergence. Third, the hallmark NSOT signature,
sgnðδSAÞ= � sgnðδSBÞ, is most robust in the QSH phase. While a finite
λv enables a QAHphase interpolating the QSH andNI phases in Fig. 4b,
it also imbalances the potentials on the two sublattices, rendering δSA

and δSB different in magnitude. Specifically, we have δSAx=δS
B
x � �1:28

at λsoc = 0.05t, whereas in Fig. 4a with λv =0 we have exactly
δSAx=δS

B
x = � 1 for all λsoc. The dependencies of δSA,B on λR and λex are

shown in Fig. S3.

Electric field-driven antiferromagnetic resonance
To demonstrate the dynamical consequences of the predicted
NSOT, we now study the AFM resonance driven by an AC electric
field. In terms of the unit vectors of the sublattice magnetic
moments, the governing Landau-Lifshitz-Gilbert (LLG) equations
are:

_mA = γ �HJm
B +Hkðek �mAÞek +H0 +h

A
D

h i
×mA +α0m

A × _mA ð4aÞ

_mB = γ �HJm
A +Hkðek �mBÞek +H0 +h

B
D

h i
×mB +α0m

B × _mB, ð4bÞ

where γ > 0 is the gyromagnetic ratio, HJ is the AFM exchange field
(summed over all nearest neighbors),Hk is the anisotropy field for the
easy axise∥,H0 is the external static field, and α0 is theGilbert damping
constant. For simplicity, let e∥ be the z axis andH0 be applied along e∥,
lifting the degeneracy of the AFM resonance modes.

Under a microwave irradiation, the oscillating driving field hAðBÞ
D

can arise either directly from the magnetic field hrf or indirectly from
the NSOT field

hAðBÞ
NS = � 2λex

ℏms
δSAðBÞ ð5Þ

produced by the electric field Erf, where ms is the sublattice magnetic
moment. According to Eq. (2), δSA/B = (δS ± δN)/2 decreases mono-
tonicallywith an increasing λex because the topological bandgap inour
model is primarily determined by λex. Consequently, the NSOT field
determined by Eq. (5), with a linear dependence on λex in its front
factor, remains insensitive to the change of λex. Of the two mechan-
isms, hrf (hNS) is perpendicular (parallel) to Erf and is the same
(opposite) on each sublattice. Based on Maxwell’s equations, a
microwave with ∣Erf∣ = 1V/μm has a magnetic field ∣hrf∣ = 33 Gauss. The
same electric field can generate a maximum non-equilibrium spin of
0.85 × 10−5 ℏ per sublattice according to Fig. 3, which converts to an
effective NSOT field ∣hNS∣ = 59Gauss forms = 5μB. While we are not able
to locate a specificmaterial on the phase diagramFig. 3, it is instructive
to chose a point where ∣hrf∣ = ∣hNS∣, so we can determine how their
distinct symmetry (uniform hrf versus opposite hNS on the two
sublattices) could lead to dramatically different microwave absorp-
tions with the onset of AFM resonance.

Fig. 1 | Schematic of a honeycomb lattice with G-type AFM order. The wavy
potential well represents the staggered potential on A and B sublattices. The
intrinsic SOC and Rashba SOC introduce extra phases in the nearest neighbor
(white dashed line) and next nearest neighbor hopping (black dashed line),
respectively. The coordinates axis are shown on the left.
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To this end, we focus on the point at λsoc = 0.05t, λR = 0.072t, and
λv =0, which lies in the QSH phase. Here, an electric field of 0.5V/μm
will produce a staggered spin accumulation δSAx = � δSBx = �
2:4× 10�6ℏ per unit cell (about 64% of the maximum capacity on the
phase diagram), which corresponds to hNS = 16.5G, matching the real
magnetic field hrf of the same electromagnetic wave.We then consider
a linearly polarizedmicrowave incident from the ydirectionwith either

hrf or Erf (hence the hNS), but not both, parallel to the x axis, as illu-
strated in Fig. 5a, b, respectively. Such experimental conditions can be
typically realized with the Voigt geometry rather than the Faraday
geometry42. Under the device geometry in Fig. 5a [Fig. 5b], the electric
field Erf (magnetic field hrf) is collinear with the magnetic moments so
that only hrf (Erf) drives the AFM dynamics, separating the NSOT-
induced resonance from the ordinary AFM resonance.

Fig. 2 | Electronic phase diagrams and edge states. Chern number (a, b) and spin
Chern number (c, d) with respect to intrinsic SOC strength λsoc for different stag-
gered potential and Rashba SOC strength λR. In a, c, λR is fixed to be 0.05t. In b, d, λv
is fixed to be 0.05t. Band structure of a finite system, with 40 unit cells in the y

direction, for e λsoc =0.02t and f λsoc = 0.05t. In both e, f, λR =0.025t and λv =0.05t.
The edge states in the bulk band gap are colored blue or red depending on the spin
polarization. a0 is the lattice constant. In all cases, λex = 0.1t.
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Next, we study the time evolution of the Néel vector n(t) by
numerically solving the LLG equations (4), where parameters are given
typical values in 2D honeycomb TMTs (such as MnPS3 and its
variances43,44): ms = 5μB, HJ =35 T and Hk =0:16 T. Figure 5a, b plot
the transverse components nx(t) and ny(t) for the two distinct cases
under the resonance condition of the low-frequency mode:
f = γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HkðHk +2HJÞ

p � γH0
45, where H0 = 1.5 T is applied along the +z

direction, yielding the low-frequency mode left-handed as illustrated
by the inset of Fig. 5d. With our chosen parameters, thisH0 field is well
below the spin-flop threshold while separating the left-handed and
right-handed modes by 84GHz. We emphasize that the vertical axis in
Fig. 5b has a scale 15 times larger than that in Fig. 5a, and the amplitude
of AFM resonance is about 20 times larger in Fig. 5b where the mag-
netic dynamics is activated by the Erf field (through the NSOT). To
further confirm this point, we plot in Fig. S5 the case of a vertically
incident microwave (i.e., the Faraday geometry) where both hrf and Erf
can drive the magnetic dynamics. The result is hardly distinguishable
from Fig. 5b, indicating that the NSOT overwhelms the Zeeman cou-
pling in driving the AFM resonance.

If the driving frequency f (in energy scale 2πℏf) is comparable with
the band gap18,46, Eq. (2) as a Berry phase result will become invalid
because the adiabatic condition is broken and the transitions from the
valence band to the conduction band become substantial. But the
typical AFM resonance frequency we are considering is at most in the
sub-terahertz range, where 2πℏf~0.2meV is much smaller than the band
gap so long as we stay fairly far away from the phase transition point.

Were not the NSOT generation, the electric field Erf is not even
able to drive the spin dynamics, let alone entailing an enhanced

resonance amplitude. To quantify the resonance absorption of the
microwave, we linearlize the LLG equations (4) using the vectorial
phasor representation: mAðBÞ =Re½ ~mAðBÞeiωt � and hAðBÞ

D =Re½~hAðBÞ
D eiωt �,

with either ~h
A
D = ~h

B
D = ~hrf x̂ or ~h

A
D = � ~h

B
D = ~hNSx̂ depending on which

component acts as the driving field. Since we have fixed the
driving field to be polarized along x, the dynamical susceptibility
tensor of the Néel vector reduces to a vector ~χn

?ðωÞ= f~χnx ðωÞ, ~χny ðωÞg
defined by

~nxðyÞ = ~χnxðyÞðωÞγ~hD, ð6Þ

where ~hD = ~hrf for the geometry in Fig. 5a, whereas ~hD = ~hNS for the
geometry in Fig. 5b. For simplicity, we set the initial phase of ~hD zero,
so the phase difference between ~n and ~hD is embedded in the phase of
~χn
?ðωÞ. We numerically plot the amplitude j~χn

?j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~χnx j2 + j~χny j2

q
and

the phase Arg½~χn
?� � Arg½~χnx � � Arg½~χny � (in different colors) as a func-

tion of the frequency for the hrf-driven resonance and the Erf -driven
resonance in Fig. 5c, d, respectively. Similar to the time-domain plots,
here we intentionally adopt very different scales for the ordinates
in Fig. 5c, d, which clearly shows that j~χn

?j (hence the microwave
absorption) is about 20 times larger when Erf activates the resonance
(via the NSOT), as compared with the ordinary hrf-driven mechanism
(via direct Zeeman coupling). Basing on Arg½~χn

?�, we can further
tell that the low-frequency mode indeed exhibits a left-handed
precession of the Néel vector while the high-frequency mode is
right-handed.

For ferromagnetic resonances47, the power absorption rate at the
resonance point is simply proportional to the amplitude of the

Fig. 3 | Non-equilibrium spin accumulations and their ensuing torques.
a, b Phase diagrams of δS per unit cell (in units of ℏ/2) for each sublattice induced
by Ex = 1V/μm for λv =0. The dashed lines mark where the global band gap is

reduced to 1meV with an increasing ∣λR∣. Illustrative comparison between:
c ordinary SOT induced by a uniform spin accumulation δSA = δSB, and d NSOT
induced by a contrasting spin accumulation δSA = −δSB.
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dynamical susceptibility, given a fixed strength of the driving field.
However, the case is subtly different when we turn to AFM resonances
and look into the dynamical susceptibility of the Néel vector ~χn

?ðωÞ.
Even though we have considered a particular case where hrf = hNS, the
actual power absorption rate under the Erf-driven mechanism is not
naïvely proportional to j~χn

?j ascribing to the staggered nature of the

NSOT field (hA
NS = � hB

NS). In “Method” (Sec. B), we rigorously derive
the time-averaged dissipation power for each mechanism, which
allows us to quantify the ratio of themicrowave power absorption rate
under the two mechanisms as �PE=

�PH � 438:5. The significantly
enhanced microwave power absorption rate will greatly facilitate the
detection of spin-torque excited AFM resonance.

Fig. 4 | Non-equilibrium spin accumulations across different phases. δS per unit
cell (in units of ℏ/2) for each sublattice as a function of λsoc with a λv =0 and
b λv =0.04t. For each topological nontrivial regions, the corresponding Chern

number or spin Chern number are labeled in the bottom. In both figures, we adopt
λR =0.02t, λex = 0.1t = 100meV, Ex = 1V/μm.
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Final remarks
To intuitively understand the pronounced difference in microwave
absorption between the two mechanisms, we resort to the symmetry
of NSOT. In contrast to the uniform Zeeman field hrf tending to kick
mA and mB towards opposite directions, the NSOT field is itself
opposite on the two sublattices,hA

NS = � hB
NS [see Fig. 3d], which drives

the two magnetic moments towards the same direction, thus ampli-
fying their non-collinearity. Consequently, the strong exchange inter-
action between mA and mB is leveraged to enhance the efficiency of
magnetic dynamics, resulting in a much stronger absorption of the
microwave.

In summary, we have studied the exotic topological phases, and
the spin-torque generations in these phases, based on a G-type AFM
material with a honeycomb lattice in the presence of the intrinsic SOC,
the Rashba SOC and a staggered potential. We find that the highly non-
trivial Néel-type SOT can not only be induced by an applied electrical
field without producing Joule heating but also be utilized to drive the
AFM resonance at a remarkably high efficiency, which, even under a
conservative estimate, is more than one order of magnitude larger
than the traditional AFM resonance relying on the Zeeman coupling.
Our significant findings open an exciting way for exploiting the unique
spintronic properties of AFM topological phases to achieve sub-
terahertz AFM magnetic dynamics.

Methods
Chern number and spin Chern number
The topological Chern number is calculated by the Kubo formula48,49:

C = � 2ℏ2
X

ϵn < ϵf < ϵm

Im
Z

BZ

dk2

2π

nh ∣v̂x ∣mi mh ∣v̂y∣ni
ðϵn � ϵmÞ2

, ð7Þ

where ℏ is the reduced Planck constant, v̂i =∂Ĥ=ℏ∂ki is the velocity
operator and ∣ni is eigenstate corresponding to ϵn. Similarly, the spin
Chern number Cs = (C↑ −C↓)/2 is31,32:

Cs = � 2ℏ
X

ϵn < ϵf < ϵm

Im
Z

BZ

dk2

2π

nh ∣̂J
s
x ∣mi mh ∣v̂y∣ni
ðϵn � ϵmÞ2

, ð8Þ

where Ĵ
s
x =ℏðszv̂x + v̂xszÞ=4 is the spin-current operator along xwith the

spin polarization along z. The numerical calculation of the band
structure and the spatial distribution of the scattering states are
performed by Kwant50.

Microwave power absorption
When a steady-state dynamics is established, the density ofmicrowave
power absorption PH should be fully balanced by the magnetic dis-
sipation power density

Pm = � ms

Vuc
hD � ð _mA + _mBÞ ð9Þ

upon time averaging, where Vuc is the unit cell volume (area).
Case I. When the driving fieldhD is themagnetic component hrf of

the electromagnetic wave, which is polarized along x [Fig. 5a], our
convention assumes hrf ðtÞ=Re½~hrfe

iωt �=Hx cosðωtÞ, and
mAðBÞðtÞ=Re½ ~mAðBÞeiωt �, where ~mAðBÞ = f ~mAðBÞ

x eiωt , ~mAðBÞ
y eiωt , 1g. By line-

arizing the LLG equations around the equilibrium position of each
magnetic sublattice, we obtain

~mAðBÞ
x = ~χAðBÞx ðωÞγ~hrf , ð10aÞ

Fig. 5 | Antiferromagnetic resonances.Timeevolutionof theNéel ordern(t) at the
resonance of the left-handed mode (with f = 51.9 GHz set by a bias field H0 = 1.5 T)
for a hrf-driven configuration, and b Erf-driven configuration. c, d are the corre-
sponding amplitude (red, left axis) and phase (blue, right axis) of the dynamical

susceptibility ~χn? as a function of driving frequency f, where the low-frequency
mode is left-handed (inset). Parameters: HJ = 35T, H∥ = 0.16 T, α0 = 0.005, and
Erf = 0.5V/μm (corresponding to hrf = 16.5 Gs).
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~mAðBÞ
y = ~χAðBÞy ðωÞγ~hrf : ð10bÞ

Therefore, the instantaneous power density Pm(t) becomes

PmðtÞ= � γms

Vuc
Re½ð~χAx + ~χBx Þiωeiωt � cosðωtÞH2

x

= � γms

Vuc
j~χ +

x jRe½iωeiðωt +ϕ
+ Þ� cosðωtÞH2

x

=
γms

Vuc
j~χ +

x jω sinðωt +ϕ+ Þ cosðωtÞH2
x ,

ð11Þ

where we have defined ~χ +
x � ~χAx + ~χBx = j~χ +

x jeiϕ
+
. Some straightforward

algebra shows that

~χ +
x ðωÞ= ðiωα � ωAÞ

1
D+ ðωÞ +

1
D�ðωÞ

� �
, ð12Þ

where in the denominator,

D± ðωÞ � ðω±ω0Þ2 � ωAðωA +2ωJÞ+2iωðωA +ωJÞα + ðωαÞ2, ð13Þ

with ωA = γHk, ω0 = γH0, and ωJ = γHJ . By averaging over time, we find

PH =Pm =
msγH

2
x

2Vuc
ωj~χ +

x ðωÞj sin½ϕ+ ðωÞ�, ð14Þ

which is maximized for ϕ+ =π/2 (at the resonance peak). Phenomen-
ologically, ϕ+ =π/2 indicates that hrf(t) ⋅mA(B)(t) = 0 so
that hrf ðtÞ k _mAðBÞðtÞ.

Case II. When the driving field hD is the NSOT field hNS generated
by the electric component Erf of the electromagnetic wave, we have
shown in ref. 17 in a generic context that

Pm = �msα½ð _mAÞ2 + ð _mBÞ2�=γVuc, ð15Þ

which, in a steady-state dynamics, balances the electrical power
PE = Jad ⋅ E with Jad being the adiabatic current density pumped
by the magnetic dynamics, while the conduction current (i.e.,
Ohm’s current) vanishes identically inside the insulator. For an
Erf = Ex cos ðωtÞx̂ [Fig. 5b], the time-averaged electrical power density
is

PE = Pm =
1
2
E2
xRe½~σxxðωÞ�, ð16Þ

where ~σxxðωÞ is the effective longitudinal conductivity, ~σxx =~J
ad
x =~Ex .

Microscopically, ~σxxðωÞ is determined by the Berry curvature in the
mixed momentum and magnetization space12:

~σxx = iω
γe2

msVuc
ΩkmA

xx

D E2
~ηA
x ðωÞ � ~ηB

x ðωÞ
h i

, ð17Þ

where the Berry curvatureΩkm is the same as that in Eq. (3) andwehave
invoked the relation hΩkmA

xx i= � hΩkmB

xx i for λv =0. In this case, the
dynamical susceptibility relates the NSOT field to the magnetic
moments as ~mAðBÞ

x = ~ηAðBÞ
x ðωÞγ~hAðBÞ

NS where

~h
A
NS = � ~h

B
NS = � 2λex

ℏms
δ~S

A
x = � e

ms
hΩkmA

xx i~Ex ð18Þ

is polarized along x because Erf is polarized along x. Here we used a
different notation ~η to represent the dynamical susceptibility just to
avoid confusion between Case II and Case I. We then arrive at the final

expression for the power absorption rate

PE =
γe2ωE2

x

2msVuc
ΩkmA

xx

D E2
Re½ið~ηA

x � ~ηB
x Þ�

= � γe2

2msVuc
ΩkmA

xx

D E2
ωj~η�

x ðωÞj sin½φ�ðωÞ�E2
x ,

ð19Þ

where we have defined ~η�
x � ~ηA

x � ~ηB
x = j~η�

x jeiφ
�
, for which we find

~η�
x ðωÞ= ðiωα � ωA � 2ωJÞ

1
D + ðωÞ +

1
D�ðωÞ

� �
, ð20Þ

withD±(ω) defined in Eq. (13). Comparing with ~χ +
x ðωÞ, an extra term 2ωJ

appears in the front factor of ~η�
x ðωÞ, which overwhelms iωα −ωA in

absolute value. Similar to the previous case, PE ismaximized forφ− =π/
2 (at the resonance peak).

We can now compare the ratio of power absorption for the two
cases:

PE

PH

=
e ΩkmA

xx

D E
ms

2
4

3
5
2

Ex

Hx

� �2 j~η�
x j sinϕ�

j~χ +
x j sinϕ+ =

h2
NSj~η�

x j sinφ�

h2
rf j~χ +

x j sinϕ+
, ð21Þ

where we have used j~hrf j=Hx and j~hNSj= jeExhΩkmA

xx i=msj. As we set
hNS = hrf in themain text for comparing the two cases, this ratio can be
evaluated at the resonance point where ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωAðωA +2ωE Þ

p
� ω0 and

φ−(ωr) ≈ϕ+(ωr) ≈π/2:

PE

PH

=
iωrα � ωA � 2ωJ

iωrα � ωA

				
				 � 438:5: ð22Þ

A final remark: even in materials with muchweaker SOC such that
the NSOT field is, for example, an order of magnitude smaller than the
magnetic field (i.e., j~hNSj=j~hrfj=0:1), the above ratio PE=PH is 4.385—
well above unity—indicating the robustness of the NSOT’s enhanced
efficiency in driving the AFM dynamics.

Data availability
The data that support the findings of this study are all included or
generated by the equations in the paper. All data are available from the
corresponding authors upon reasonable request.

Code availability
The source code of Kwant is available at https://kwant-project.org. The
codes used in this study are available at the Github repository.
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