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SpaIM: single-cell spatial transcriptomics
imputation via style transfer

Bo Li 1,6, Ziyang Tang 2,6, Aishwarya Budhkar 3, Xiang Liu3, Tonglin Zhang4,
Baijian Yang 2 , Jing Su 3 & Qianqian Song 5

Spatial transcriptomics (ST) technologies have transformed our under-
standing of cellular organization but are limited by sparse signals and
restricted gene coverage. To address these challenges, we introduce SpaIM, a
style transfer learning model that leverages single-cell RNA sequencing
(scRNA-seq) data to predict unmeasured gene expressions in ST profiles. By
disentangling shared content and modality-specific styles, SpaIM effectively
integrates scRNA-seq’s rich gene expression with the spatial context of ST.
Evaluated across 53 datasets spanning sequencing- and imaging-based spatial
technologies in various tissue types, SpaIM consistently outperforms 12 state-
of-the-art methods in improving gene coverage and expression accuracy.
Furthermore, SpaIM enhances downstream analyses, including ligand-
receptor interaction inference, spatial domain characterization, and differ-
ential gene expression analysis. Released as open-source software, SpaIM
expands accessibility and utility in ST research. Overall, SpaIM represents a
robust and generalizable framework for enriching ST data with single-cell
information, enabling deeper insights into tissue architecture and cellular
function.

Recent advances in spatial transcriptomics (ST) technologies have
emerged to provide deep insights into spatial cellular ecosystems1–3.
Sequencing-based ST technologies4–7, such as 10× Genomics Visium8

and Slide-seq9,10, utilize spatially indexed barcodes to conduct RNA
sequencing on tissue spots. Meanwhile, imaging-based ST platforms
like NanoString’s CosMxTM SMI11 and Vizgen’s MERSCOPE12 employ in
situ hybridization and fluorescence microscopy to provide spatial
transcriptomics data at the single-cell level. Despite these advance-
ments, the gene expressionprofiles fromthese ST technologies exhibit
data sparsity and limited gene coverage. For instance, NanoString’s
CosMxTM SMI11 only assays thousands of genes, and the actual number
of mRNA molecules detected per cell remains low, resulting in poor
gene expressionmeasurement due to limitations inmolecular imaging
and hybridization efficiency. This inherent technological constraint

limits both the comprehensiveness of gene coverage and the density
of count data, posing significant challenges. Addressing these limita-
tions through computational methods is crucial to fully capturing and
interpreting spatial transcriptomics profiles.

Before the advent of spatial transcriptomics, single-cell RNA
sequencing (scRNA-seq) technologies have gained attention for their
ability to elucidate cellular heterogeneity13–16 and trace cell lineages17–19.
Despite such insights, scRNA-seq lacks spatial information, making it
challenging to determine the structural organization of cells within
complex tissues. Nonetheless, as a complement to ST data, scRNA-seq
has become invaluable for enhancing the quality of spatial tran-
scriptomics, facilitating precise analyses of the transcriptome with
spatial resolution in individual tissue sections. To improve spatial
transcriptomics profiles, researchers have been actively developing
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methods20–27 to seamlessly integrate scRNA-seq with ST data. Notable
methods include Tangram20, gimVI22, and spaGE21. Specifically,
Tangram20 uses regularizers to filter an optimal subset of scRNA-seq
profilesmappingwith the spatial data. gimVI22 adopts a deep generative
model to integrate scRNA-seq and ST data for the imputation ofmissing
genes. SpaGE21 utilizes Principal Component Analysis to identify prin-
cipal vectors and align cells from scRNA-seq and ST by k-nearest-
neighbor. novoSpaRc25 leverages the continuity of gene expression
among neighboring cells for predictions. Recent methods such as
stDiff28 and SpatialScope29 use deep generativemodels to impute spatial
gene expressions. TISSUE30 and SPRITE31 use an uncertainty-aware and
meta-approach to achieve spatial gene expression predictions. Other
methods like Seurat23, SpaOTsc24, LIGER26, and stPlus27 utilize different
computational strategies to achieve local alignments between scRNA-
seq and ST data, enabling the prediction of unmeasured gene expres-
sions in ST data. However, these existing methods have inherent lim-
itations as they primarily rely on local alignment to predict unmeasured
gene expressions, which cannot fully unleash the potential of scRNA-
seq and ST data for gene expression prediction.

In this study, we introduce SpaIM, i.e., Spatial transcriptomics
IMputation, a style transfer learning32 framework that leverages scRNA-
seq data to impute unmeasured or missing gene expressions in ST
data. Style transfer learning is a technique borrowed from computer
vision32,33, and it allows SpaIM to apply patterns learned from scRNA-
seq data to enhance the spatial transcriptomics profiles. SpaIM con-
sists of an ST autoencoder and an ST generator, which work together
to decouple scRNA-seq data and ST data into data-agnostic content
and data-specific styles. The data-agnostic content captures the shared
information between scRNA-seq and ST data, while the data-specific
styles reflect the intrinsic differences between scRNA-seq and ST data.
After training with a specifically designed loss function, the ST gen-
erator can independently predict unmeasured gene expressions in ST

data using only scRNA-seq data, ensuring accurate imputation. SpaIM
is available as open-source software on GitHub (https://github.com/
QSong-github/SpaIM), with detailed tutorials demonstrating its cap-
abilities in enhancing the utility of spatial transcriptomics profiles.

Results
Overview of the SpaIM model
To accurately impute gene expressions, including unmeasured ones in
spatial transcriptomics (ST) data, we introduce SpaIM, a style transfer
learningmodel leveraging scRNA-seq (SC) data. As illustrated in Fig. 1a,
SpaIM is a multilayer recursive style transfer (ReST) model with layer-
wise content- and style-based feature extraction and fusion. Specifi-
cally, SpaIM comprises an ST autoencoder (Fig. 1b) and an ST gen-
erator (Fig. 1c) that are constructed with ReST. For a single gene, we
consider the gene expression pattern across the K single cell clusters
as its content, and theuniquegene expressionpatternacross all cells in
STdata,whichdiffers fromSCdata, as its style. The style represents the
intrinsic differences in gene expression between the ST and the SC
platforms. The style-transfer learning of SpaIM involves two simulta-
neous tasks: the ST autoencoder uses the SC data as the reference to
disentangle the ST gene expression patterns into content and style,
and the ST generator extracts the content from the SC data and
transfers the learned style from the ST autoencoder to infer ST gene
expressions. The ST autoencoder and the ST generator share the same
decoder and are co-trained using a joint loss function based on the
common genes between ST and SC data. This allows the ST generator
to capture the gene expression patterns in the ST data as well as the
relation between the ST and SCdata. After training, the ST generator is
used as a stand-alone model to infer the expression patterns of
unmeasured genes in the ST data, using only the SC data as input. In
this way, the well-trained SpaIMmodel enables accurate predictions of
unmeasured gene expressions through leveraging the comprehensive

Fig. 1 | Overviewof the SpaIMmodel. SpaIM comprises an ST autoencoder and an ST generator. Both the ST autoencoder and the STgenerator are built on themultilayer
recursive style transfer (ReST) layers.
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gene expression profiles of scRNA-seq and the optimized ST
generator.

SpaIM accurately imputes spatial gene expression in human
breast cancer tissue slice
To evaluate the spatial gene imputation capabilities of our model, we
conduct the performance comparisons using ST (10× Visium,
‘CID44971’) and scRNA-seq data (10× Chromium, GSE176078) from
breast cancer tissues. Data source and details are listed in Supple-
mentary Data 1. To comprehensively evaluate the performance of
SpaIM, we compare it with 12 existing methods, including Tangram20,
SPRITE31, stDiff28, SpatialScope29, TISSUE30, gimVI22, SpaGE21, Seurat23,
SpaOTsc24, novoSpaRc25, LIGER26, and stPlus27. Evaluation metrics (see
‘Methods’) include the Pearson correlation coefficient (PCC), struc-
tural similarity indexmeasure (SSIM), Jaccard similarity (JS), rootmean
square error (RMSE), and accuracy score (ACC). Higher values of PCC,
SSIM, andACC, aswell as lower values of JS andRMSE, represent better
performance.

The comparison results are shown in Fig. 2, which highlights the
superior performance of SpaIM over othermethods across all metrics.
Specifically, Fig. 2a reveals that SpaIM achieves the best values across
all four metrics (PCC: 0.70 ±0.02), outperforming the second-best
model, Tangram (PCC: 0.62 ±0.02). Of note, the SSIM value of SpaIM
(SSIM: 0.60 ± 0.02) is 10% higher than that of Tangram (SSIM:
0.52 ± 0.02, Fig. 2b), demonstrating that the imputed gene expressions
of SpaIM are much closer to the ground truth. Furthermore, Supple-
mentary Fig. 1a illustrates the other metrics, with SpaIM achieving a
significantly better performance (JS: 0.11 ± 0.01, RMSE: 0.81 ± 0.01)
than other methods. This underscores the exceptional accuracy of
SpaIM in spatial gene expression imputation.

In addition to the comprehensive evaluations of SpaIM,we further
examine the gene expression predictions generated by different
methods. For this breast cancer ST data, Fig. 2c presents the predicted
gene expressions of maker genes for the invasive cancer region
(ERBB2, KRT8, Fig. 2d), with PCC values indicating their correlations
with ground truth. SpaIM consistently outperforms other methods,
surpassing both Tangram and stDiff. Moreover, SpaIM accurately
predicts marker genes in the normal gland region, such as HLA-DRA
and CD52 (Fig. 2d), achieving PCC of 0.63 and 0.62, respectively. In
contrast, Tangram produces misleading predictions for CD52, with a
notably low correlation. Next, to validate the utility of SpaIM-imputed
data for downstream analysis, we curate a combined list of candidate
ligand‒receptor (L–R) pairs34. Among the collected L–R pairs, SpaIM-
imputed data identified 33 strongly associated pairs, compared to only
11 pairs detected in the raw data, with 10 pairs overlapping (Fig. 2e),
suggesting the capability of SpaIM in revealing biological insights. Top
associated pairs such as VEGFA-ITGB135 and LTF-TFRC36,37, well known
for their roles in tumor activities, are exclusivelydetected in the SpaIM-
imputed data. Collectively, these results underscore the reliability and
superiority of SpaIM in gene expression imputation.

SpaIM enhances the detection of differentially expressed genes
As an emerging imaging-based ST technology, NanoString CosMx™
enables the detection of up to a thousand genes per slide38 at sub-
cellular resolution, emphasizing the necessity of using SpaIM to
expand gene coverage. Here we collect CosMx ST datasets from lung
cancer tissues (Supplementary Data 1), with up to 70k to 130k cells per
slide, to evaluate the performance of SpaIM.

Taking the Lung9–rep1 dataset as an example, we assess the gene
expression imputation efficacy of different methods. Figure 3a clearly
shows that SpaIM, with median SSIM and JS values of 0.21 and 0.43,
outperforms other methods such as Tangram (SSIM: 0.15, JS: 0.47),
stDiff (SSIM: 0.12, JS: 0.50), SpatialScope (SSIM: 0.11, JS: 0.50), gimVI
(SSIM: 0.19, JS: 0.66), SpaGE (SSIM: 0.10, JS: 0.62), and Seurat (SSIM:
0.17, JS: 0.82). Moreover, SpaIM consistently achieves superior

performance across additional metrics including PCC and RMSE, than
the other methods such as gimVI and Tangram (Supplementary
Fig. 1b). Notably, in terms of accuracy score (ACC), SpaIM shows sig-
nificantly higher ACC (ACC: 0.96 ±0.05), compared to other methods
including Tangram (ACC: 0.91 ± 0.11), stDiff (ACC: 0.59 ± 0.09), Spa-
tialScope (ACC: 0.55 ± 0.17), gimVI (ACC: 0.82 ±0.27), SpaGE (ACC:
0.64 ± 0.14), and Seurat (ACC: 0.36 ±0.14).

With different cell types in the spatial microenvironment (Fig. 3b),
we then identify the differentially expressed genes (DEGs) for each cell
type using raw data and imputed data from the top-performing meth-
ods, i.e., SpaIM, Tangram, and stDiff (Fig. 3c). As expected, compared to
the 59 lymphocyte-specific DEGs detected in the raw data with an
adjusted P-value of 0.05 and a log2 fold change of 1, the number of
significant genes increases to 92 when using SpaIM imputations. In
contrast, Tangram and stDiff imputations identify 40 and 22 DEGs,
respectively, at the same thresholds. Moreover, to visually illustrate the
predicted spatial gene patterns by different methods, we specifically
select biologically significant DEGs (KRT5, CD63,MMP9,MALAT1, FOXP3)
as examples to evaluate whether SpaIM can accurately recover their
profiles if they are masked (i.e., considered as unmeasured genes). As is
known, those genes play pivotal roles in cancer, participating in various
signaling pathways that regulate tumor biological behaviors, including
epithelial-mesenchymal transition39, immune evasion40, tumor
progression41, and metastasis42,43. The raw and predicted gene expres-
sions are visualized with PCC values labeled (Fig. 3d). For intuitive
comparison, we include the ground truth gene expressions in the top
row. Remarkably, the spatial gene patterns predicted by SpaIM exhibit
higher similarity to the ground truth, as evidenced by a superior PCC
and a closely matched threshold range, underscoring SpaIM’s robust
capacity for imputing biologically significant genes.

SpaIM facilities spatial domain detection and recovers
unmeasured genes
In addition, we evaluate the imputation performance on another
single-cell spatial data (Lung5–rep3). Specifically, Fig. 4a shows that
SpaIM achieves a higher median SSIM of 0.15 in the Lung5–rep3
dataset, outperforming other methods, including Tangram (median
SSIM: 0.14), stDiff (median SSIM: 0.13), and SPRITE (median SSIM:
0.12). SpaIM also exhibits superior performance (JS: 0.36), lower than
Tangram (JS: 0.49) by approximately 13% and stDiff (JS: 52) by about
16%. Other metrics, including PCC, RMSE, and accuracy (Supplemen-
tary Fig. 1c), further demonstrate the outperformance of SpaIM,
establishing it as the most effective method for imputing gene
expressions.

We next evaluate the accuracy of spatial domain detection based
on imputed gene expression data generated by different methods.
Figure 4b shows the adjusted rand index (ARI) scores of all 20 FOVs in
the Lung5–rep3 dataset. Notably, SpaIM achieves the highest accuracy
in identifying spatial domains corresponding to different cell types
(ARI = 0.50), closely approximating the ground truth and raw data
(ARI = 0.56). In contrast, Tangram and gimVI produced significantly
lower ARI scores of 0.16 and 0.25, respectively. Further analysis at the
individual FOV level (Fig. 4c) demonstrates that SpaIM consistently
aligns with the ground truth in distinguishing cellular identities. SpaIM
accurately reveals a continuous tumor region infiltratedwith dispersed
immune cells. Conversely, gimVI andTangramexhibit errors in cellular
structure identification, often generating fragmented or blended cell
type regions. For example, in FOV-1, both gimVI and Tangram mis-
classify tumor cells as epithelial cells. In FOV-2, lymphocytes are
incorrectly identified as neutrophils, and in FOV-3, gimVI fails to dif-
ferentiate lymphocytes, misclassifying them as fibroblasts. These
errors result in poor delineation of spatial heterogeneity. These find-
ings highlight SpaIM’s superior performance in leveraging imputed
gene expression to achieve precise spatial domain identification
compared to alternative methods.
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Fig. 2 | Performance evaluation in the breast cancer dataset. a Comparison
results between SpaIM and existing methods using the Pearson correlation coef-
ficient (PCC). Data are presented as mean values ± 95% confidence intervals across
predicted genes (n = 991). b Comparison results between SpaIM and existing

methods using structural similarity index measure (SSIM) across predicted genes
(n = 991). c Spatial visualization of the ground truth and the predicted gene
expressions. d Spatial visualization of spatial domains. e Scatter plot of associated
ligand‒receptor pairs in the raw data and the SpaIM-imputed data.
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Fig. 3 | Benchmarking performance on the NanoString CosMx SMI dataset.
a Benchmarking results on the Lung9–rep1 dataset, using evaluation metrics
including structural similarity indexmeasure (SSIM) and Jaccard similarity (JS). Data
are presented as mean values ± 95% confidence intervals across predicted genes

(n = 2038). b Spatial visualization of cell types in the Lung9-rep1 dataset.
c Comparisons of the number of differentially expressed genes in each cell type.
d Spatial visualization of ground truth and the predicted expressions of tumor-
related genes.
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SpaIM demonstrates remarkable ability in imputing unmeasured
spatial gene expression data, providing biologically meaningful
insights. As illustrated in the UMAP plots (Fig. 5a), SpaIM effectively
imputes cell-type-specific gene markers, maintaining consistent

expression patterns within their respective cell types (Fig. 5b). For
instance, the endothelial marker gene MME44 exhibits uniform high
expression in endothelial cells and low expression in other cell types
when imputed by SpaIM. In contrast, Tangram’s imputed data shows

Fig. 4 | SpaIM facilities spatial domain detection. a Benchmarking results on the
NanoString CosMx spatial transcriptomics dataset (Lung5–rep3), using evaluation
metrics including structural similarity index measure (SSIM) and Jaccard similarity

(JS). Data are presented asmean values ± 95% confidence intervals across predicted
genes (n = 2,038). b Spatial visualization of cell types in the whole slide. c Spatial
visualization of cell types in specific field of views (FOVs).

Article https://doi.org/10.1038/s41467-025-63185-9

Nature Communications |         (2025) 16:7861 6

www.nature.com/naturecommunications


sporadicMME expression in endothelial cells and pervasive expression
in non-endothelial cell types. Other SpaIM-imputed cell type-specific
markers, CD1C45,46 and DAG147 are enriched in lymphocyte- and
myeloid-dense regions, respectively, while the tumor-specific gene
MYCN48 is strongly and uniformly expressed in tumor regions. These
distinct patterns are not observed in Tangram’s imputed data (Fig. 5c).
These results highlight SpaIM’s reliability in imputing unmeasured
gene expression, enabling more accurate spatial cellular character-
ization. Based on SpaIM’s imputed data, further biological insights
were obtained into the spatial distribution of immune cell infiltration
and the pseudotemporal trajectories of tumor cells across regionswith
varying levels of immune infiltration (Supplementary Note 1; Supple-
mentary Figs. 2 and 3). Downstream analyses using imputed data from
different methods further support the biological reliability of SpaIM in
uncovering complex cellular behaviors within the tissue micro-
environment (Supplementary Note 2; Supplementary Figs. 4–7).

SpaIM accurately imputes spatial gene expression across
diverse ST platforms
To further evaluate SpaIM’s performance, we conduct comprehensive
experiments across multiple spatial transcriptomics (ST) datasets,

profiling both sequencing-based and imaging-based platforms. Speci-
fically, we collect 21 Visium datasets encompassing a range of tissues,
including breast, prostate, kidney, and brain, from humans, mice, and
zebrafish (Supplementary Data 1). Considering the diverse data quality
and characteristics across datasets, we employ ranked performance
for a fair comparison across different methods49. The benchmarking
results of different methods on 10× Visium datasets are shown in
Fig. 6a and Supplementary Fig. 8a. Figure 6a highlights that SpaIM
consistently achieved the highest performance across these datasets,
outperforming the second-best model by more than 13% in ACC.

Moreover, we expand the evaluations to include other
sequencing-based platforms such as Slide-seq, Slide-seq V2, Seq-
scope, and HDST. This expanded sequencing-based ST data collection
includes a total of 28 datasets, with their paired scRNA-seq data from
the same tissue type (Supplementary Data 1). The benchmarking
results on these datasets are illustrated in Fig. 6b and Supplementary
Fig. 8b. Notably, SpaIM continues to exhibit superior performance
across all sequencing-based datasets than other methods. Specifically,
SpaIM has higher PCC (1.0 ± 0.0), JS (0.96 ± 0.16), and ACC (ACC:
0.97 ±0.06) than other methods such as Tangram (PCC: 0.92 ± 0.02,
JS: 0.87 ± 0.05, ACC: 0.87 ± 0.04), gimVI (PCC: 0.51 ± 0.13, JS:

Fig. 5 | SpaIM reliably recovers unmeasured genes. a UMAP visualizations of all cell populations and nontumor populations. b UMAP visualization of the imputation of
unmeasured marker genes by SpaIM. c UMAP visualization of the imputation of unmeasured marker genes by Tangram.
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0.60 ±0.17, ACC: 0.57 ± 0.15), and stDiff (PCC: 0.77 ± 0.06, JS:
0.65 ± 0.07, ACC: 0.77 ± 0.05).

We also showcase the exceptional gene imputation performance
of SpaIM across 25 imaging-based ST datasets, including platforms
such as seqFISH, seqFISH+, MERFISH, STARmap, ISS, and osmFISH
(Supplementary Data 1). These datasets typically exhibit limited gene

coverage and signals. Based on these datasets, we conduct experi-
ments using SpaIM and other methods, with results showing in Fig. 6c
and Supplementary Fig. 8c. SpaIM achieves more accurate predictions
with higher PCC (0.97 ± 0.11), JS (0.95 ± 0.12), and ACC (ACC:
0.92 ± 0.08) than other methods such as Tangram (PCC: 0.86 ±0.10,
JS: 0.77 ± 0.19, ACC: 0.78 ±0.13), gimVI (PCC: 0.47 ± 0.18, JS:

Fig. 6 | Gene imputation performance across diverse spatial transcriptomics
(ST) datasets. aComparison results across 21 Visium STdatasets. Box plots: center
line =median; box limits = upper (75th) and lower (25th) quartiles; whiskers = 1.5×
interquartile range; outliers are points beyond whiskers. b 28 sequencing-based

datasets. c 25 imaging-based ST datasets. d Total 53 datasets profiled by diverse ST
technologies, using ranked Pearson correlation coefficient (PCC), Jaccard similarity
(JS), and accuracy score.
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0.48 ±0.18, ACC: 0.50±0.17), and stDiff (PCC: 0.67 ± 0.16, JS:
0.59 ±0.13, ACC: 0.68 ± 0.14).

A comprehensive evaluation across 53 datasets, spanning both
sequencing- and imaging-based platforms, highlights SpaIM’s excep-
tionalperformance. Thesedatasets, encompassingdiversedataquality
and characteristics, provide a robust benchmark for comparison. As
illustrated in Fig. 6d and Supplementary Fig. 8d, SpaIM consistently
outperforms other methods, achieving an average ACC of 0.95 ± 0.07.
In contrast, Tangram (ACC: 0.81 ± 0.10), gimVI (ACC: 0.50 ±0.15), and
stDiff (ACC: 0.71 ± 0.10) demonstrate comparatively lower perfor-
mance. This extensive assessment underscores SpaIM’s reliability and
robustness, establishing it as a state-of-the-art tool for spatial tran-
scriptomics across diverse datasets.

Discussion
In this paper, we introduce SpaIM, a style transfer learning model
designed to impute unmeasured spatial gene expressions. SpaIM
adopts a strategy that reconceptualizes spatial gene expressions into
dataset-agnostic gene content and dataset-specific styles. The SpaIM
model comprises the recursive style transfer (ReST)-based ST auto-
encoder and the ReST-based ST generator. Central to SpaIM is its dual-
task style-transfer learning approach: the ST autoencoder disentangles
ST gene expression patterns into content and style using scRNA-seq as
a reference, while the ST generator transfers learned style to infer gene
expressions in ST data from scRNA-seq inputs. Both components share
a common decoder and are jointly trained with a loss function based
on overlapping genes between ST and scRNA-seq data, enhancing the
model’s ability to capture and interpolate gene expression relation-
ships. SpaIM effectively integrates spatial data styles with the content
from scRNA-seq data to accurately recover masked gene expressions,
demonstrating its capability in imputing unmeasured genes in ST data,
particularly in imaging-based ST that typically lack comprehensive
measurements.

Compared to existing methods, SpaIM offers superior gene
imputation performance and distinguishes itself from others. We
reason that othermethods generally try to locally align scRNA-seqwith
ST for spatial gene imputation, while overlooking the stylistic differ-
ences between the two types of data. SpaIM innovatively redefines
gene imputation by decoupling both scRNA-seq and ST datasets into
dataset-agnostic content and dataset-specific styles. This strategic
decoupling allows SpaIM to better recognize and utilize both the
commonalities and unique characteristics between scRNA-seq and ST
data. Such clarity in data handling not only leads tomore precise gene
imputation but also improves themodel’s ability to adapt to various ST
data characteristics, thereby boosting SpaIM’s generalization cap-
abilities and applicability across different from various platforms (i.e.,
sequencing-based and imaging-based). Such clarity of the SpaIM
design provides better interpretability in its accurate predictions of
incomplete gene expression data, positioning SpaIM as a leading
method in the field. More importantly, SpaIM greatly enhances
downstream analyses in spatial transcriptomics data, opening avenues
for biological discovery. By accurately imputing missing gene expres-
sions, SpaIM enables the identification of key ligand-receptorpairs and
enhances differential expression analyses, allowing for precise identi-
fication of spatial cell types and the discovery of genes that vary across
them.This powerful tool expands the scopeof spatial data analysis and
enhances biological insight derived from spatial transcriptomics.

In addition to the benchmarkingmethods included in our study, we
also identified another diffusion-based model, SpaDiT50, which inte-
grates scRNA-seq as prior knowledge and leverages shared gene infor-
mation between single-cell and spatial datasets to guide spatial gene
expression prediction through a diffusion transformer architecture. It
has demonstrated promising results across ten spatial transcriptomics
datasets. While SpaDiT contributes meaningfully, its benchmarking was
conducted on a limited number of datasets compared to our

comprehensive evaluation across 53 spatial datasets. Moreover, it is
worth noting that in certain cases, SpaDiT underperforms relative to
established methods, suggesting that its performance advantage is not
universally consistent. Therefore, while SpaDiT is a valuable addition to
this growing field, we do not anticipate it will consistently outperform
the benchmarking methods included in this study.

While both scRNA-seq and spatial transcriptomics (ST) data
exhibit high dropout rates, the dropout patterns differ significantly
between them, with ST showing notably higher dropout for many
genes (Supplementary Fig. 9a). These findings highlight the com-
plementary nature of the twomodalities and support theuse of scRNA-
seq as a reference to improve spatial gene expression imputation in ST
data (Supplementary Note 3). Moreover, we used Shapley values to
interpret the content-related features and style-related features dis-
entangled by SpaIM (Supplementary Note 4). Then we applied
GradientShap51 to estimate gene-level contributions to content and
style on the CID44971 breast cancer dataset. Shapley values were
computed at both the intermediate ReST layer and final layer, and
genes were classified as content-related, style-related, or other based
on interquartile range thresholds. Scatter plots (Supplementary
Fig. 9b) show that content and style features are less distinguishable at
the intermediate layer but become clearly separated at the last layer,
indicating progressive disentanglement. Functional enrichment ana-
lyses (Supplementary Fig. 9c) reveal that content-related genes are
enriched in tumor-intrinsic pathways (e.g., EMT and apoptosis), while
style-related genes map to immune and microenvironmental pro-
cesses, both are crucial for model learning and transfer. These results
validate SpaIM’s capability to hierarchically learn and interpret biolo-
gically meaningful representations.

SpaIMdemonstrates strong performance and technical strengths,
yet there remain several opportunities for future enhancement. First,
SpaIM currently employs straightforward multi-layer perceptron
(MLP) layers, which may potentially benefit from more sophisticated
designs such as graph transformer52 and the cutting-edge Mamba53.
Second, as SpaIM utilizes independent initial input values for the ST
generator, there is potential for improvement by developing custo-
mized styles specifically tailored to distinct datasets. Then the ST
generator can better understand and adapt to the unique character-
istics and nuances of different spatial datasets, thereby enhancing the
accuracy of spatial gene imputation. Third, we anticipate improving
the interpretability of the SpaIMmodel to provide deeper insights into
missing gene expressions and explore the underlying mechanisms in
tissue ecosystems. In summary, SpaIM represents a significant
advancement in spatial gene expression imputation and is anticipated
to facilitate biological discoveries and insights into complex tissues
and diseases.

Methods
Ethical statement
This study complies with all relevant ethical regulations. All data used
were obtained from publicly available sources, and no new experi-
ments involving human participants or animals were conducted.
Approval from an institutional review board or ethics committee was
not required.

Data preprocessing
We include 28 datasets profiled from sequencing-based ST technolo-
gies, including 10× Visium, and 25 datasets from imaging-based ST
technologies, such as seqFISH+,MERFISH, andNanoStringCosMxSMI.
For each ST dataset ofG1 genes and C1 cells, we select a corresponding
scRNA-seq dataset of G2 genes and C2 cells from the same tissue type
as the reference with G2≫G1. For SC data, low-expression genes are
filtered out by retaining only those expressed in at least 10% of the
cells. Raw counts of both SC and ST datasets are preprocessed using
the log 1p transformation54,55, defined as log 1pðxÞ= lnðx + 1Þ. This
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transformation helps reduce data skewness and mitigates the impact
of extreme values. The processed ST and SC gene expression data is
denoted as Xst 2 RG1 ×C1 and Xsc 2 RG2 ×C2 , respectively. The individual
cell-level information in Xsc carries significant noise due to dropouts,
duplets, inaccurate cell segmentation, and RNA degradation. Instead
of representing the gene expression of a gene in all C2 cells, we employ
Leiden clustering to group cells into K clusters and use the median
expression of the gene in each cluster to represent the gene. Thus, we
derive eXsc 2 RG2 ×K from Xsc.

To rigorously evaluatemodel performance,weuse a 10-fold cross-
validation strategy that incorporates random data partitioning and
repeated validation. Specifically, the commongenes shared by both ST
and SC data are randomly split at the 80:20 ratio into the training set
withG genes to train themodel, and the validation set withG0 genes to
evaluate the performance. The trainedmodel will then be used to infer
the spatial gene expression of the genes that are only available in the
SC dataset but not in the ST.

The SpaIM model
The goal of SpaIM is to infer the expressions of genes that are only
available in SC but not in the ST data, while keeping the gene expres-
sion patterns as if they were measured using the ST platform.
1. Recursive style transfer (ReST) layer

The fundamental component of both the ST autoencoder
and the ST generator is the ReST layer with layer-wise fusion. As
shown in Supplementary Fig. 10a, the lth ReST layer consists of
three components: a content encoder C lð Þ, a style encoder S lð Þ,
and a decoderD lð Þ. This layer performs twomain functionalities:
(1) it encodes the content representations (h lð Þ) and style
representations (g lð Þ) into updated latent representations h l + 1ð Þ

and g l + 1ð Þ, respectively; and (2) it fuses these latent content and
style representations to generate a reconstructed output p lð Þ.
The architecture of the ReST layer allows building recursive style
transfermodels through layer-wise feature extraction and fusion
(Fig. 1a). The ReST layer is a general style transfer with versatile
uses. For example, if the same data is used as the input of
content as well as the style, with appropriate loss functions, the
ReST layer becomes an autoencoder to disentangle content and
style. If a virtual style is used,with appropriate loss functions, the
ReST layer becomes a generative model to impose a style on the
content. The ST autoencoder and the ST generator use such
design strategies.

2. Spatial transcriptomics (ST) autoencoder
The ST autoencoder (Fig. 1b) comprises multilayer ReST

encoders. At each layer, the content encoder C lð Þ
st and the style

encoder S lð Þ
st extract representation of the content and the style

and a decoder D lð Þ for layer-wise fusions of the learned content
and style, with l =0, 1, � � � , L representing different layers. Each
encoder layer comprises a linear sub-layer, followed by a
normalization sub-layer, and finally a ReLU sub-layer. The latent
representation of the content in the lth layer is:

h lð Þ
st =C

lð Þ
st h l�1ð Þ

st

� �
=ReLU Norm h l�1ð Þ

st W l
c +b

l
c

� �� �
ð1Þ

and the style representation is:

g lð Þ
st = S

lð Þ
st g l�1ð Þ

st

� �
=ReLU Norm g l�1ð Þ

st W l
S +b

l
S

� �� �
ð2Þ

where h 0ð Þ
st � g 0ð Þ

st � Xst , with Xst 2 RG×C1 denoting the input
spatial transcriptomics, G is the number of genes, and C1 is the
number of cells.

The decoder layers perform cascaded fusion of the latent
representations of content and style, starting from the Lth
layer (e.g., the last layer) till the first layer (i.e., l = 1). The kth

decoded layer is:

p kð Þ
st =D kð Þ h L�k + 1ð Þ

st

O
g L�k + 1ð Þ
st

� �M
p k�1ð Þ
st ð3Þ

where
N

refers to element-wise (Hadamard) multiplication
between the latent content and style representations, meaning
that each corresponding element in the two matrices is
multiplied individually. The symbol

L
denotes element-wise

addition, which adds each element of the current fusion output
to the corresponding element in the previous output layer.
k = 1, 2, � � � , L, and pð0Þ

st � 0. For example, when L=2,

p 1ð Þ
st =D

1ð Þ h 2ð Þ
st

O
g 2ð Þ
st

� �
ð4Þ

and

bXst =p
2ð Þ
st =D 2ð Þ h 1ð Þ

st

O
g

1ð Þ
st

� �M
p 1ð Þ
st ð5Þ

where bXst 2 RG×C1 is the reconstructed ST data. The recursive
architecture allows the latent representations of contents and
styles as well as the reconstruction of the data at different
resolutions, and the layer-wise fusion of the reconstructed data.

3. Spatial transcriptomics (ST) generator
A similar architecture (Fig.1c) is used to generate ST data

from SC data. Briefly, the latent representation of the content in
the l’th layer is:

h lð Þ
sc =C

lð Þ
sc h l�1ð Þ

sc

� �
=ReLU Norm h l�1ð Þ

sc W l
c +b

l
c

� �� �
ð6Þ

and the style representation is:

g lð Þ
sc = S

lð Þ
sc g l�1ð Þ

sc

� �
=ReLU Norm g l�1ð Þ

sc W l
S +b

l
S

� �� �
ð7Þ

The genes in the input data varies in the training, validation, and
inferring. During training, h 0ð Þ

sc � eXsc, g
0ð Þ
st � 1 2 RG× 1.

The ST generator shares the decoder with the ST auto-
encoder. That is, the ST generator does not have its own deco-
der. Therefore, the kth decoded layer is:

p kð Þ
sc =D kð Þ h L�k + 1ð Þ

sc

O
g L�k + 1ð Þ
sc

� �M
p k�1ð Þ
sc ð8Þ

where pð0Þ
st � 0. For example, when L=2,

p 1ð Þ
sc =D

1ð Þ h 2ð Þ
sc

O
gð2Þ
sc

� �
ð9Þ

and

eXst � p 2ð Þ
sc =D 2ð Þ h 1ð Þ

sc

O
g 1ð Þ
sc

� �M
p 1ð Þ
sc ð10Þ

where eXst 2 RG×C1 is the inferred ST data through style transfer
and the final model output.

During testing, h 0ð Þ
sc � X̂ sc 2 RG0×K , g 0ð Þ

st � 1 2 RG0 × 1, andeXst 2 RG0×C1 . During inferring, the SC gene expression of any SC
gene can be used as the input to generate the corresponding
spatial gene expression for each cell in the ST data.

4. Loss function
The loss function is composed of four components: (i) the

content loss, (ii) the style loss, and (iii) two reconstruction losses
for the ST autoencoder and the ST generator, respectively. The
content loss and the style loss are used to disentangle content
and style. The style loss also enables style transfer. The ST
autoencoder reconstruction loss is for learning an enhanced ST
data, which is used by the ST generator reconstruction loss for
accurately inferring spatial gene expressions from SC data.
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Content loss. Content loss is primarily utilized to optimize the simi-
larity between the learned content at each encoding layer, aiding the
model in preserving the essential information of the gene data. By
minimizing the differences between content features, we ensure that
the spatial gene data generated by the ST generator remains func-
tionally consistent with the ST data. For the L layers in the model, the
content loss (Lcontent) of the latent space was the summation of
themean square error (MSE) between the lth content features from the
spatial h lð Þ

st and scRNA dataset h lð Þ
sc :

Lcontent =
XL
l = 1

MSE h lð Þ
st ,h

lð Þ
sc

� �
ð11Þ

Style loss. Gram matrices are used to represent the learned style at
each layer, which is similar to the style representation in neural image
style transfer frameworks56. The Gram matrix for the spatial style
extracted from the ST data and the SC data at the lth layer are:

M lð Þ
st = g

lð Þ
st × g lð Þ

st

� �T ð12Þ

and

M lð Þ
sc = g

lð Þ
sc × g lð Þ

sc

� �T ð13Þ

, and the style loss is:

Lstyle =
XL
l = 1

MSE M lð Þ
st ,M

lð Þ
sc

� �
ð14Þ

Reconstruction loss. The ST data reconstruction by the ST auto-
encoder is optimized by minimizing the difference between the ori-
ginal and the reconstructed ST data using cosine similarity:

LAE = 1� sim Xst , X̂ st

� �
ð15Þ

where the cosine similarity is defined as sim A,Bð Þ= A�B
maxð Aj jj j2 Bj jj j2, ϵÞ, ϵ is a

small positive number for robustness. Similarly, the ST generator
reconstruction loss is defined as:

LSG = 1� sim eXst , X̂ st

� �
ð16Þ

The overall loss

L=Lcontent +Lstyle +LAE +LSG ð17Þ

Thus, it optimizes the model’s training process from the aspects
of feature similarity, style transformation, and data accuracy. The
number of layers and latent dimensions of the SpaIM model are
determined by grid-based fine-tuning across all datasets (Supple-
mentary Fig. 10b, c). Ablation studies evaluating the impact of content
loss, style loss and fusion operation are shown in Supplementary
Note 5 (Supplementary Fig. 10d). The computational efficiency and
robustness of SpaIM are further detailed in Supplementary
Notes 6 and 7 (Supplementary Figs. 11 and 12).

Evaluation metrics
To comprehensively evaluate the performance of differentmodels, we
have employed a set of evaluation metrics: Pearson correlation coef-
ficient (PCC), structural similarity index (SSIM), rootmean square error
(RMSE), Jaccard similarity (JS), and an overall accurate score (ACC).
These metrics collectively assess the similarity and accuracy between
the generated spatial gene expression data and the original data from
different perspectives.

Pearson correlation coefficient (PCC. PCC measures the linear
correlation between the predicted and ground truth gene
expression values. A higher PCC value indicates a stronger linear cor-
relation between the generated and true data. The PCC is calculated as:

PCC xi, bxi� �
=

Pn
i= 1 bxi � bμi

� �
xi � μi

� �
bσi � σi

ð18Þ

where bxi and xi is the predicted and true expression of gene i, andbμ, bσ� �
, ðμ,σÞ are the mean and standard deviation of the predicted and

true values, respectively.

Structural similarity index measure (SSIM). SSIM evaluates the
structural similarity between the predicted and the original data. It
provides amore nuanced comparison between the predicted and true
data. SSIM49 is calculated as:

SSIM xi, bxi� �
=

2bμiμi +C
2
1

� �
2cov x0

i, x̂
0
i

� �
+C2

2

� �
μ2
i + bμ2

i +C
2
1

� �
σ2
i + bσ2

i +C
2
2

� � ð19Þ

x0ij =
xij

max xi1, xi2, . . . , xiM

� �� � ð20Þ

wherexij denotes the ground truth expressionof gene i in cell or spot j,
and M is the total number of cells or spots. x0

i and x̂0
i represent the

vectors of ground truth and predicted gene expression for gene i
across all cells or spots, respectively.

Root mean square error (RMSE). RMSE quantifies the average pre-
diction error by measuring the differences between predicted and
actual values. A lower RMSE indicates higher accuracy. The formula is:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

j = 1
ẑij � zij
� �2r

ð21Þ

where zij and ẑij are the z-score normalized gene expression values of
gene i in cell or spot j. A lower RMSE means a higher accuracy.

Jaccard similarity (JS). JS assesses the similarity, particularly focusing
on the similarity of gene expression patterns, between the predicted
and the original gene expression. First, spatial distribution probability
for each gene is calculated as:

Pij =
xijPM
j = 1 xij

ð22Þ

Then JS is computed using the Jensen–Shannon divergence:

JS=
1
2
KL bpi

		 bpi +Pi

2


 �
+
1
2
KL Pi

		 bpi + Pi

2


 �
ð23Þ

KL aij
		bi

� �
=
XM
j =0

aij × log
aij

bij

 ! !
ð24Þ

whereKL(.) is the Kullback-Leibler divergence between twoprobability
distributions of aij and bij .

Accurate score (ACC). The ACC provides an overall performance
score by combining the relative rankings of the four main metrics
across all models: PCC, SSIM, RMSE, and JS. For each dataset, we
rank PCC and SSIM in ascending order, and RMSE and JS in
descending order. For example, the lowest PCCor SSIM receives a rank
of 1, while the highest RMSE or JS also receives a rank of 1. ACC is then
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calculated as:

ACC=
1
4

RANKPCC +RANKSSIM +RANKRMSE +RANKJS

� � ð25Þ

Ranked metrics. Ranked Jaccard similarity (Ranked JS), Ranked Pear-
son correlation coefficient (Ranked PCC), Ranked structural similarity
index measure (Ranked SSIM), and Ranked root mean square error
(Ranked RMSE). For all these metrics, higher values indicate better
model performance.

Implementation detail. During training, the model utilizes a learning
rate of 0.001, runs for amaximumof 300 epochs. The experiments are
performed on an Ubuntu 20.04 system equipped with 128GB of RAM
and an NVIDIA GeForce RTX 3090 Ti GPU featuring 24GB of memory.

Statistics and reproducibility
Statistical tests were unpaired, unless explicitly stated, and performed
on independent biological replicates (as detailed in each Fig. legend).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available in Zenodo
(https://doi.org/10.5281/zenodo.16684835). Data sources and
details are provided in Supplementary Data 1. Source data are
provided with this paper. Correspondence and requests for
materials should be addressed to B.Y., J.S., or Q.S. Source data
are provided with this paper.

Code availability
All source codes and data in our study have been deposited at https://
github.com/QSong-github/SpaIM.

References
1. Giacomello, S. et al. Spatially resolved transcriptome profiling in

model plant species. Nat. Plants 3, 17061 (2017).
2. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes

reveal an unexplored landscape of heterogeneity.Nat. Commun. 9,
1–13 (2018).

3. Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J.
Spatially resolved transcriptomics enables dissection of genetic
heterogeneity in stage III cutaneous malignant melanoma. Cancer
Res. 78, 5970–5979 (2018).

4. Asp,M. et al. A spatiotemporal organ-widegene expression andcell
atlas of the developing human heart. Cell 179, e1619 (2019).

5. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in
the human dorsolateral prefrontal cortex. bioRxiv https://doi.org/
10.1101/2020.02.28.969931 (2020).

6. Moncada, R. et al. Integrating microarray-based spatial tran-
scriptomics and single-cell RNA-seq reveals tissue architecture in
pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342
(2020).

7. Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology
in amyotrophic lateral sclerosis. Science 364, 89–93 (2019).

8. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue
sections by spatial transcriptomics. Science 353, 78–82 (2016).

9. Stickels, R. R. et al. Sensitive spatial genome wide expression pro-
filing at cellular resolution. bioRxiv https://doi.org/10.1101/2020.
03.12.989806 (2020).

10. Rodriques, S. G. et al. Slide-seq: a scalable technology for mea-
suring genome-wide expression at high spatial resolution. Science
363, 1463–1467 (2019).

11. He, S. et al. High-plex multiomic analysis in FFPE tissue at single-
cellular and subcellular resolution by spatial molecular imaging.
bioRxiv https://doi.org/10.1101/2021.11.03.467020 (2021).

12. Fang, R. et al. Conservation and divergence of cortical cell orga-
nization in human and mouse revealed by MERFISH. Science 377,
56–62 (2022).

13. Song, Q., Su, J., Miller, L. D. & Zhang, W. scLM: automatic detection
of consensus gene clusters across multiple single-cell datasets.
bioRxiv https://doi.org/10.1101/2020.04.22.055822 (2020).

14. Zheng, G. X. Y. et al. Massively parallel digital transcriptional pro-
filing of single cells. Nat. Commun. 8, 14049 (2017).

15. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs
creates a Tabula Muris. Nature 562, 367–372 (2018).

16. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore
immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

17. Song, Q. et al. Dissecting intratumoral myeloid cell plasticity by
single cell RNA‐seq. Cancer Med. 8, 3072–3085 (2019).

18. Bendall, S. C. et al. Single-cell trajectory detection uncovers pro-
gression and regulatory coordination in humanBcell development.
Cell 157, 714–725 (2014).

19. Trapnell, C. et al. The dynamics and regulators of cell fate decisions
are revealed by pseudotemporal ordering of single cells. Nat. Bio-
technol. 32, 381–386 (2014).

20. Biancalani, T. et al. Deep learning and alignment of spatially
resolved single-cell transcriptomeswith Tangram.Nat. Methods 18,
1352–1362 (2021).

21. Abdelaal, T., Mourragui, S. M. C., Mahfouz, A. & Reinders, M. J. T.
SpaGE: spatial gene enhancement using scRNA-seq. Nucleic Acids
Res. 48, e107–e107 (2020).

22. Lopez, R. et al. A joint model of unpaired data from scRNA-seq
and spatial transcriptomics for imputing missing gene expression
measurements. ICML Workshop on Computational Biology
(2019).

23. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, e1821 (2018).

24. Cang, Z. & Nie, Q. Inferring spatial and signaling relationships
between cells from single cell transcriptomic data. Nat. Commun.
11, 2084 (2020).

25. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene
expression cartography. Nature 576, 132–137 (2019).

26. Welch, J. D., Kozareva, V., Ferreira, A.N., Vanderburg, C. &Macosko,
E. Z. Single-cell multi-omic integration compares and contrasts
features of brain cell identity. Cell 177, e1817 (2019).

27. Chen, S., Zhang, B., Chen, X., Zhang, X. & Jiang, R. stPlus: a
reference-based method for the accurate enhancement of spatial
transcriptomics. Bioinformatics 37, i299–i307 (2021).

28. Li, K., Li, J., Tao, Y. & Wang, F. stDiff: a diffusion model for imputing
spatial transcriptomics through single-cell transcriptomics. Brief-
ings Bioinform. 25, 3 (2024).

29. Wan, X. et al. Integrating spatial and single-cell transcriptomics
data using deep generative models with SpatialScope. Nat. Com-
mun. 14, 7848 (2023).

30. Sun, E. D., Ma, R., Navarro Negredo, P., Brunet, A. & Zou, J. TISSUE:
uncertainty-calibrated prediction of single-cell spatial tran-
scriptomics improves downstream analyses. Nat. Methods 21,
444–454 (2024).

31. Sun, E. D., Ma, R. & Zou, J. SPRITE: improving spatial gene expres-
sion imputation with gene and cell networks. Bioinformatics 40,
i521–i528 (2024).

32. Gatys, L. A., Ecker, A. S. & Bethge, M. in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp
2414–2423 (2016).

33. Gatys, L. A., Bethge, M., Hertzmann, A. & Shechtman, E. Preserving
color in neural artistic style transfer. Preprint at arXiv https://doi.
org/10.48550/arXiv.1606.05897 (2016).

Article https://doi.org/10.1038/s41467-025-63185-9

Nature Communications |         (2025) 16:7861 12

https://doi.org/10.5281/zenodo.16684835
https://github.com/QSong-github/SpaIM
https://github.com/QSong-github/SpaIM
https://doi.org/10.1101/2020.02.28.969931
https://doi.org/10.1101/2020.02.28.969931
https://doi.org/10.1101/2020.03.12.989806
https://doi.org/10.1101/2020.03.12.989806
https://doi.org/10.1101/2021.11.03.467020
https://doi.org/10.1101/2020.04.22.055822
https://doi.org/10.48550/arXiv.1606.05897
https://doi.org/10.48550/arXiv.1606.05897
www.nature.com/naturecommunications


34. Tang, Z. et al. SiGra: single-cell spatial elucidation through an
image-augmented graph transformer. Nat. Commun. 14, 5618
(2023).

35. Guinn, S. et al. Transfer learning reveals cancer-associated fibro-
blasts are associated with epithelial–mesenchymal transition and
inflammation in cancer cells in pancreatic ductal adenocarcinoma.
Cancer Res. 84, 1517–1533 (2024).

36. Chen, X., Yu, C., Kang, R. & Tang, D. Iron metabolism in ferroptosis.
Front. Cell Dev. Biol. 8, 590226 (2020).

37. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular
mechanisms and health implications. Cell Res. 31, 107–125 (2021).

38. He, S. et al. High-plex imaging of RNA and proteins at subcellular
resolution in fixed tissue by spatial molecular imaging. Nat. Bio-
technol. 40, 1794–1806 (2022).

39. Guo, C. C. et al. Dysregulation of EMT drives the progression to
clinically aggressive sarcomatoid bladder cancer. Cell Rep. 27,
e1784 (2019).

40. Hinz, S. et al. Foxp3 expression in pancreatic carcinoma cells as a
novel mechanism of immune evasion in cancer. Cancer Res. 67,
8344–8350 (2007).

41. Duch, P. et al. Aberrant TIMP-1 overexpression in tumor-associated
fibroblasts drives tumor progression through CD63 in lung ade-
nocarcinoma. Matrix Biol. 111, 207–225 (2022).

42. Chou, J. et al. MALAT1 induced migration and invasion of human
breast cancer cells by competitively binding miR-1 with cdc42.
Biochem. Biophys. Res. Commun. 472, 262–269 (2016).

43. Itoh, T. et al. Experimental metastasis is suppressed in MMP-9-
deficient mice. Clin. Exp. Metastasis 17, 177–181 (1999).

44. Weiß, E. et al. Maternal overweight downregulatesMME (neprilysin)
in feto-placental endothelial cells and in cord blood. Int. J. Mol. Sci.
21, 834 (2020).

45. Nizzoli, G. et al. Human CD1c+ dendritic cells secrete high levels of
IL-12 and potently prime cytotoxic T-cell responses. Blood 122,
932–942 (2013).

46. Breton, G. et al. Circulating precursors of humanCD1c+ and CD141+
dendritic cells. J. Exp. Med. 212, 401–413 (2015).

47. Thul, P. J. et al. A subcellular map of the human proteome. Science
356, eaal3321 (2017).

48. Combaret, V. R. et al. Circulating MYCN DNA as a tumor-specific
marker in neuroblastoma Patients1. Cancer Res. 62, 3646–3648
(2002).

49. Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat. Methods 19, 662–670 (2022).

50. Li, X., Zhu, F. & Min, W. SpaDiT: diffusion transformer for spatial
gene expression prediction using scRNA-seq. Briefings Bioinform.
25, bbae571 (2024).

51. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting
model predictions. Adv. Neural Inf. Process. Syst. 30, 4766–4777
(2017).

52. Khan, S. et al. Transformers in vision: a survey. ACM Comput. Surv.
54, 1–41 (2022).

53. Gu, A. et al. Mamba: linear-time sequence modeling with selective
state spaces. Proc. Conf. on Language Modeling (COLM) (2025).

54. Bao, F. et al. Integrative spatial analysis of cell morphologies and
transcriptional states with MUSE. Nat. Biotechnol. 40, 1200–1209
(2022).

55. Hu, J. et al. SpaGCN: integrating gene expression, spatial location
and histology to identify spatial domains and spatially variable
genes by graph convolutional network. Nat. Methods 18, 1342–1351
(2021).

56. Gatys, L. A., Ecker, A. S. & Bethge, M. Image style transfer using
convolutional neural networks. Proc. IEEE Conf. Comput. Vis.
2414–2423 (2016).

Acknowledgements
This work partially used Jetstream2 through allocation CIS230237 from
the Advanced Cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program, which is supported by National Science
Foundation grants #2138259, #2138286, #2138307, #2137603, and
#2138296.

Author contributions
Q.S., J.S., and J.Y. supervised the overall project. Q.S. and B.L. drafted
the paper and led the revision process. Z.T. and B.L. were responsible for
data collection, model implementation and optimization, as well as
performance benchmarking. A.B. conducted downstream analyses and
prepared the figures. X.L. and T.Z. contributed to project discussions
and assisted in refining the paper and visualizations. All authors
reviewed and approved the final version of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-63185-9.

Correspondence and requests for materials should be addressed to
Baijian Yang, Jing Su or Qianqian Song.

Peer review information Nature Communications thanks Wenwen Min
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-63185-9

Nature Communications |         (2025) 16:7861 13

https://doi.org/10.1038/s41467-025-63185-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	SpaIM: single-cell spatial transcriptomics imputation via style transfer
	Results
	Overview of the SpaIM model
	SpaIM accurately imputes spatial gene expression in human breast cancer tissue slice
	SpaIM enhances the detection of differentially expressed genes
	SpaIM facilities spatial domain detection and recovers unmeasured genes
	SpaIM accurately imputes spatial gene expression across diverse ST platforms

	Discussion
	Methods
	Ethical statement
	Data preprocessing
	The SpaIM model
	Content loss
	Style loss
	Reconstruction loss

	Evaluation metrics
	Pearson correlation coefficient (PCC
	Structural similarity index measure (SSIM)
	Root mean square error (RMSE)
	Jaccard similarity (JS)
	Accurate score (ACC)
	Ranked metrics
	Implementation detail

	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




