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Lymph nodes molecular subtypes unravel
lymph nodes heterogeneity and clinical
implications in colorectal cancer
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Lymph nodes (LNs) play a pivotal role in colorectal cancer (CRC) progression
and immunity, yet their molecular and functional diversity remains poorly
understood. By analyzing 630 LNs and 88 primary tumors from 200 CRC
patients across four independent cohorts using bulk and single-cell RNA
sequencing, we identify four non-metastatic negative LNs (NLN) subtypes
(NLN_C1-C4) exhibiting obviously different immune function and stromal
expansion. NLN_C3/C4 are characterized by diminished T and B cell activity
and fibroblast-driven fibrosis, with follicular dendritic cell loss contributing to
B cell dysfunction. Immune checkpoint inhibitors partially reverse these
effects, restoring FDC and B cell activity. LNs subtypes demonstrate hetero-
geneity across patients and within individuals, with higher NLN_C3/C4 pro-
portions associated with advanced tumor stages, poorer survival, and
recurrence. Here, we report LNs subtypes as critical manifestations of LN
heterogeneity in CRC, providing a basis for improved clinical stratification and
LN-targeted therapeutic strategies.

Colorectal cancer (CRC) is one of the most prevalent malignancies indicators of metastatic spread, LNs serve as critical sites for antigen
globally, with a leading cause of cancer-related death’. Lymph node presentation and the activation of adaptive immune responses>®.
(LN) status, traditionally evaluated by the presence or absence of These immune hubs facilitate the coordination of T and B cell
metastatic cancer cells, is a key factor in the staging of CRC and has responses against cancer cells. Recent studies have shown that tumor
long been associated with prognosis**. However, beyond their role as  draining LNs exhibit diminished immune function compared to non-
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tumor draining LNs, highlighting their role in immune evasion and
providing a basis for developing novel therapeutic strategies aimed at
reactivating immune responses’"’. In the context of CRC, LNs not only
act as barriers to metastatic spread but also play an active role in
modulating the immune environment'*™"2, Therefore, the simplistic
binary classification of categorizing LNs into “metastatic LNs” and
“non-metastatic LNs” fails to capture the complexity of LN immune
function, which is increasingly critical in clinical practice of tumor
nodal staging.

In 2023, Paulina et al. introduced the concept of LN heterogeneity,
emphasizing that LNs differ not only in their morphology and immune
cell composition but also in their functional states across different
individuals and disease stages”. In the case of tumor draining LNs, this
heterogeneity manifests as progressive immune suppression, driven
by both structural and molecular changes that impair lymphatic
transport and immune surveillance'. However, despite the growing
focus on LNs heterogeneity, the issue of how to reveal the character-
istics of LNs heterogeneity, especially in clinical practice, remains an
urgent topic for exploration. In the era of immunotherapy, this issue
significantly hinders our ability to comprehensively elucidate the
intricate relationship between LNs and tumor dynamics. Molecular
subtypes, as a critical manifestation of heterogeneity, has become a
pivotal framework for characterizing molecular features of cancers,
profoundly influencing therapeutic strategies across various
malignancies'". In contrast, the LNs subtypes, which are an essential
foundation for understanding their interaction with tumors, remain
conspicuously absent from current research and literature.

In this work, we establish a LNs molecular subtypes (LyMoS) in
CRC based on whole-transcriptome sequencing of LNs with patholo-
gical validation, and further characterize these intrinsic subtypes to
better explain LNs heterogeneity, and explore their relationship with
clinical pathological features, patients’ outcomes and immune check-
point inhibitors (ICls) treatment.

Results

The establishment and validation of LNs subtypes

We collected 173 LNs and 85 primary tissues from 78 CRC patients in BJ
cohort (Fig. 1A and Supplementary Data 1). The principal component
analysis (PCA) discovered LNs and tumor tissues exhibited strong
intra-tissue similarities and inter-tissue heterogeneity in gene expres-
sion (Supplementary Fig. 1A). As expected, non-metastatic LNs and
tumor tissues displayed the most significant gene expression differ-
ences. Unsupervised clustering analysis confirmed six distinct gene
expression patterns among metastatic and non-metastatic LNs from BJ
cohort (Fig. 1B), which suggested significant LNs heterogeneity. The
subtypes with a majority of non-metastatic negative LNs (NLNs) were
labeled as NLN_C1, NLN_C2, NLN_C3 and NLN_C4, and the subtypes
with a majority of metastatic positive LNs (PLNs) were defined as
PLN_C1 and PLN_C2 based on different gene expression profiles.
Interestingly, while NLN and PLN subtypes showed general consistency
with histopathological assessments, some pathologically PLNs were
classified as NLN based on transcriptomic features. Distinct distance
measures and agglomeration methods were performed in unsu-
pervised clustering and obtained the same results (Supplementary
Fig. 1B). To validate the LNs subtypes, the TY cohort including 227 LNs
and the HB cohort including 162 LNs were used (Supplementary
Data 2 and 3). Notably, four analogous NLN subtypes were also iden-
tified in two validation cohorts (Fig. 1C, D). Additionally, PCA revealed
significant gene expression heterogeneity among the different LNs
subtypes. Notably, a distinct structured clustering was observed across
the four subtypes, from NLN_C1 to NLN_C4. This finding suggests that
gene expression heterogeneity exists not only between metastatic and
non-metastatic LNs but also within the subtypes of non-metastatic LNs.
This pattern was consistently validated across three independent
cohorts. Based on these findings, we established the LNs subtypes and

confirmed the robustness and stability of these subtypes across all
three cohorts.

The molecular heterogeneity of LNs subtypes

Then, we compared the gene expression differences between different
LNs subtypes, and found the number of up-regulated and down-
regulated differentially expressed genes (DEGs) in NLN_C2, NLN_C3,
and NLN_C4 gradually increased when compared to NLN_C1 (Fig. 2A).
Together with the distinct structured clustering from NLN_C1 to
NLN_C4 in PCA result (Fig. 1IE-G), we preferred that the emergence of
LNs subtypes reflected their distinct molecular heterogeneity. To
validate this hypothesis, we first examined the expression patterns of
DEGs across the four non-metastatic LNs subtypes (Fig. 2B, C). We
observed consistent trends of gradual upregulation or downregulation
in gene expression from NLN_C1 to NLN_C4. Supporting this, we per-
formed an exploratory trajectory analysis, which confirmed a mole-
cular heterogeneity among non-metastatic LNs, shifting from NLN_C1
to NLN_C4 (Supplementary Fig. 2A). To rule out technical confounders,
we performed batch correction and confirmed that the clustering
structure remained robust, thereby minimizing the likelihood of batch-
related artifacts (Supplementary Fig. 2B). In addition, when the data
were re-analyzed within established immune cell state frameworks',
we found that certain cell states—such as tumor-associated fibroblasts,
pro-migratory-like fibroblasts, and normal-like endothelial cells—dif-
fered across LNs subtypes and contributed to the separation in PCA
space (Supplementary Fig. 2C). These findings support a significant
molecular heterogeneity among LNs subtypes, driven by underlying
changes in stromal and endothelial cell states, rather than a strict
developmental or lineage progression.

Functional analysis of LNs subtypes

As expected, in metastatic LNs subtypes, the epithelial cell differ-
entiation and extracellular matrix organization-associated functions
were significantly activated (Supplementary Fig. 3A and Supplemen-
tary Data 5), and the immune response-associated biological processes
were significantly inhibited (Supplementary Fig. 3B and Supplemen-
tary Data 6). Concerning the non-metastatic LNs subtypes, we found
that the DEGs between NLN_C4 and NLN_C1 were more pronounced
than those between metastatic and non-metastatic LNs (Fig. 2A, D,
Supplementary Fig. 3C and Supplementary Data 7 and 8). In an attempt
to further determine the salient and unique features of the NLN_C4, we
found 3,713 up-regulated DEGs in NLN_C4 were significantly enriched
in the extracellular matrix organization and the vascular-associated
functions (Fig. 2E and Supplementary Data 9), and 2,365 down-
regulated DEGs in NLN_C4 were involved in immune response reg-
ulation (Fig. 2F and Supplementary Data 10). Together, the above
results suggested the decline of immune response ability together with
the changes of stromal environment among non-metastatic LNs
subtypes.

Cellular landscape of LNs subtypes

To further decipher the cellular components among LNs subtypes, the
LN-associated cell type-specific molecular characters were defined
using 463,054 high quality cells from a single-cell RNA sequencing
(scRNA-seq) cohort of 68 LNs and 3 tumor tissues (Fig. 1A and Sup-
plementary Data 11). A total of 14 major cell types including epithelial,
fibroblast, endothelial and leukocyte lineages were identified (Sup-
plementary Fig. 4A) using their established markers (Supplementary
Fig. 4B). Depending on this cell type specific molecular features, pre-
defined LNs subtypes associated DEGs (Fig. 3A and Supplementary
Data 8) were mapped to different cell types. Consistent to the over-
representation analysis (Fig. 2E, F and Supplementary Fig. 2B, C), the
up-regulated genes in PLNs and NLN_C3/C4 were found to be enriched
in the stromal lineage including epithelial cells, endothelial cells and
fibroblast cells (Fig. 3A). The down-regulated genes were highly
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Fig. 1| The establishment and validation of LNs subtypes. A The introduction of
patient cohorts and study design. This panel was created in BioRender. «f, fK. (2025)
https://BioRender.com/4tsnyv. Heatmaps showing unsupervised clustering result

of bulk-RNA sequencing data from BJ cohort (n=173) (B), TY cohort (n=227) (C),
and HB cohort (n=162) (D). Dot plot of PCA quantifying the gene expression

PC1 (30.79%)

similarity between samples from BJ cohort (n =173) (E), TY cohort (n =227) (F), and
HB cohort (n=162) (G). CRC colorectal cancer, PT primary tumor, scRNA single-cell
RNA, LNs lymph nodes, ICI immune checkpoint inhibitor, PC principal component,
PCA principal component analysis.

expressed in the immune cells, especially in B cells and MKI67 pro-
genitor cells (Fig. 3A).

To further estimate the cell type specific variation across the LNs
subtypes, we deconvolved the bulk-profiled LNs subtypes to estimate
their relative quantities of cell types by the CIBERSORTX". The similar
cell type compositions differences of immune cells and stromal cells

from NLN_C1 to NLN_C4 were observed in three cohorts (Fig. 3B and
Supplementary Fig. 4C-E). Among which, CD4 T cells, CD8 T cells and
B cells displayed the decreased cell types from NLN_C1 to NLN_C4,
while fibroblasts and endothelial cells as the dominant cell types
occupied the NLN_C3/C4 (Fig. 3C and Supplementary Fig. 4C-E).
Meanwhile, the quantitative immunohistochemistry (IHC) analyses
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Fig. 2 | The molecular heterogeneity and functional analysis of the LNs sub-
types. A Gene expression differences between LNs subtypes from BJ cohort
(n=173). Adjustment p value was obtained using DESeq2 which utilized Wald test.
Gene expression patterns of target DEGs across LNs subtypes (n=173): B up-
regulated DEGs; C down-regulated DEGs. D Venn diagram of DEGs between

different subgroups (n =173). Over-representation enrichment analysis for the
target DEGs based on the Metascape enrichment method (n =173): E up-regulated
DEGs between NLN_C4 and NLN_C1; F down-regulated DEGs between NLN_C4 and
NLN_CL LNs lymph nodes, DEGs differentially expressed genes, Meta metastatic,
Non-meta Non-metastatic.

confirmed the transcriptomic differences between NLN_C1 and
NLN_C4 across multiple LNs (Fig. 3D, E). Specifically, NLN_C1 displayed
significantly higher densities of CD4 and CD8 T cells, as well as
increased CD20 B cell infiltration, compared to NLN_C4. Collectively,
these data confirmed the decline of immune cell types as well as the
expansion of stromal cell types from NLN_C1 to NLN_C4.

Stromal cells are the key cells that determine LNs subtypes

Identifying the key cellular components that determine LNs subtypes
is crucial for understanding the underlying mechanisms of LNs mole-
cular heterogeneity. The scRNA-seq analysis supported our bulk-based
classification by independently identifying NLN_C1 and NLN_C4 sub-
types in non-metastatic LNs. Specifically, two non-metastatic LNs were
classified as NLN_C4, while the remaining were assigned to NLN_C1.
Cell type specific signatures were defined by scRNA-seq with a stricter

cutoff (Supplementary Fig. 5A and Supplementary Data 12) and then
was used to distinguish the LNs subtypes by PCA. Consistent to the
ability of the whole expressed gene list on LNs subtypes identification
(Fig. 1IE-G and Supplementary Fig. 5B), the integration of the whole cell
type specific markers preserves the ability to reproduce the LNs sub-
types (Supplementary Fig. 5C), which further confirmed that the
emergence of LNs subtypes was decided via the cell type composition
alteration.

Unexpectedly, the immune cells, such as NK/T cells, B cells,
macrophages, neutrophils and mast cells-associated signatures, did
not exhibit subtypes differentiation capabilities (Supplementary
Fig. 5D). Interestingly, the highly variable gene sets of fibroblasts and
endothelial cells possess strong abilities to distinguish LNs subtypes
(Fig. 4A, B and Supplementary Fig. 5E). Specifically, there are notable
differences in gene expression among the LNs subtypes for fibroblasts

Nature Communications | (2025)16:7834


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63200-z

A B BJ cohort, 173 LNs
CD4 T cell Normalized
CD8 T cell enrichment score
NK cell ]
Exhausted T cell e o o 2 %
B cell . " o
Germinal center B cell .
Plasma cell 0
MKI67 cell [ ] -1
Mast cell L
Neutrophial — 2
Macrophage ~log, (Py)
Epithelial cell e o o o e 0
Fibroblast cell e 00 o _ 2
Endothelial cell o 0 O o %
D ulated | _Up re ® 200 o
555 £0500 ¢
4 6 6 E 6 6 & E
g 2 2 £ 2 2 £ =
N « < o N o (=}
9 9 9 2 99 9 2
z z z 6 z z z @
S 33 >33 3 >
Z zz g z2z 2z g
1} °
= =

Cell ratio

C Ed pinct B PN G2

LNs subtypes B nNin_c1 B nn_c2 B NN_c3 Bl NLNC4
BJ cohort

NN C3 | NN C4____|P.ci

B cosTeen
B cos Tl
B~k

B exnausted Tcel
M scen

B ccaeen
B Piasma cel
W v cel
B wmastcen
1 Neutrophial
I Macrophage
W Epithetial cel
B Fibroblast cell

W encotheial cen

TR
MR

Fibroblast cell

C04 T ool

COB T el B coll

m B |

B

Cell ratio

HB cohort

Endothalialcell

| .+ﬁﬂ*+é1é,: ﬁéé.#:,ﬁi'”;

CD4

CD4 T ol

CDB T coll & call

506-06 08

Fibrobiast col
04 4. Te- T
8.06:08,

Cell ratio

0807

e D,EE— L '$
b BT

CD8

TY cohort

Fibroblast cell

CD4 T cell C0B T coll B coll.

Endothalial call

03 7.9e-04

i

“ﬂ§¥:

Cell ratio

-.'

cEEE
Qi*ﬁé

CD20

Fig. 3 | Cellular landscape of the LNs subtypes. A Dot plot showing cell types
highly expressed DEGs by the expression of up-regulated and down-regulated DEGs
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setting. B Bar plots illustrating the differences in cell proportions among LNs
subtypes from B) cohort (n=173), HB cohort (n=162) and TY cohort (n=227).

C Box plots illustrating the differences in cell proportions among LNs subtypes,
using LN scRNA-seq data as a reference based on CIBERSORTYX, from the BJ cohort
(n=50, 35, 31, 32, 11, and 14), HB cohort (n=81, 20, 37, 9, and 15), and TY cohort
(n=35,120, 28, 12, and 32). Each data point represents an individual LN (biological
replicates). Box plots represent the median (center line), 25th and 75th percentiles

(bounds of the box), and minimum and maximum values (whiskers). The p value
was obtained using Wilcox test. The IHC staining (D) and quantification results (E)
reveal differential expression of CD4, CD8 and CD20 between NLN_C1 (n =32) and
NLN_C4 (n=11). Each data point represents an individual LN (biological replicates).
Data are presented as mean values + SD. The p value was calculated using a two-
sided Student’s ¢ test. Scale bars indicate 625 um and 1.25 mm respectively. Source
data are provided as a Source Data file. Meta metastatic, Non-meta non-metastatic,
LNs lymph nodes, DEGs differentially expressed genes, GSEA gene set enrichment
analysis, IHC immunohistochemistry, SD standard deviation, AOD average optical
density.

and endothelial cells. For example, the expression levels of fibroblast
marker genes COL1A1, ACTA2 and FNI, endothelial cell marker gene
PECAM]I, and lymphatic endothelial cell marker gene LYVE] increase
progressively from NLN_C1 to NLN_C4 (Fig. 4C). We further performed
multiplex immunofluorescence (mlIF) staining on LNs samples from
NLN_C1 and NLN_C4. The semi-quantitative results confirmed
increased stromal cell proliferation in NLN_C4 compared to NLN_C1
(Fig. 4D, E). Furthermore, by using Sirius Red staining, we found that
fibrosis, representing the terminal stage of stromal proliferation, was
also more pronounced in NLN_C4 subtype (Fig. 4F). These findings
collectively demonstrate that stromal cells play an important role in
regulating LNs subtypes.

The regulation of immune cells by stromal cells across LNs
subtypes

There was a significant reduction in the number of immune cells and
their functional impairment from NLN_C1 to NLN_C4, which represents
a key manifestation of LN immune dysfunction (Fig. 3C-E and

Supplementary Fig. 4C-E). Given the importance of stromal cells in
regulating LN immune function, we hypothesized that certain stromal
cells may be pivotal in the changes observed in immune cells across
different LNs subtypes. To investigate this, we performed dimension-
ality reduction clustering on stromal cells within LNs from scRNA-seq
cohort, identifying six fibroblast subtypes: follicular dendritic cells
(FDC), fibroblastic reticular cell (FRC), smooth muscle cell (SMC), Fib-
ADHIB, Fib-IL7R and Fib-NTRK3, as well as five endothelial cells sub-
types: vein blood endothelial cell (vBEC), artery blood endothelial cell
(aBEC), capillaries blood endothelial cell (cBEC), lymphatic endothelial
cell (LEC) and floor lymphatic endothelial cell (fLEC) according to their
established markers”"®' (Fig. 5A, B).

The LNs subtypes from scRNA-seq cohort were identified by cell
type ratio similarity (Supplementary Fig. 6A). Two non-metastatic LNs
were classified as NLN_C4, characterized by a higher proportion of
endothelial and fibroblast cells and a lower proportion of B cells, while
the remaining 64 non-metastatic LNs were grouped as NLN_C1 (Sup-
plementary Fig. 6A, B). Then, we compared the proportion of stromal
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expression of a-SMA, FN1, COL1A1 (n =20 and 16) (D) and LYVE-1, CD31 (n =24 and
18) (E) between NLN_C1 and NLN_C4. Each data point represents an individual LN
(biological replicates). Data are presented as mean values + SD. The p value was
calculated using a two-sided Student’s ¢ test. Scale bars indicate 100 pum, 500 pm,
and 1000 pm respectively. Source data are provided as a Source Data file. F Sirius
Red staining results of differences in fibrosis levels between NLN_C1 and NLN_C4.
Scale bars indicate 1000 pm. PC principal component, PCA principal component
analysis, mIF multiplex immunofluorescence, SD standard deviation.

cell subtypes across different LNs subtypes (Fig. 5C, D). Strikingly, the
proportions of FRC, FDC and aBEC were significantly decreased in
NLN_C4. To further validate this trend, we compared the expression of
FDC, FRC, and LEC-associated marker genes across LNs subtypes using
bulk-RNA sequencing data (Fig. SE and Supplementary Fig. 7A, B). Only
the trends observed for FDC were corroborated at the bulk-RNA level
and further supported by mlF staining (Fig. 5F, G and Supplementary
Fig. 7C, D). Based on previous literature highlighting the critical reg-
ulatory role of FDC in B cell function?*?, as well as the results of our
study, we confirm that the reduction in FDC numbers is the primary
cause of the B cell immune dysfunction from NLN_C1 to NLN_C4.
Therefore, it is crucial to understand which factors regulate FDCs and,
in turn, influence the immune status of LNs.

To identify the main factors responsible for the reduction in FDC,
we conducted Single Cell Regulatory Network Inference and Cluster-
ing (SCENIC) analysis to identify transcription factors within each cell
subtype (Fig. SH). The ETS family transcription factor SPIB was found
to have the highest transcriptional activity in FDC, regulating the
development and function of FDC, particularly in B cell differentiation
and immune responses to antigen stimulation. Additionally, the NF-kB
family transcription factor RELB was active in FDC regulation, influ-
encing B cell survival, maturation, and lymphoid organ development
and maintenance. Notably, the expression of FDC-associated tran-
scription factors was highly correlated with B cells (Fig. 5I), which
suggested a strong link between FDC and B cells. Then the expression
of the FDC-associated transcription factors was examined across the
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LNs subtypes. As expected, FDC-associated transcription factors
showed continuously down-regulated from NLN_C1 to NLN_C4 (Fig. 5J
and Supplementary Fig. 8). Furthermore, the shift from immune cells
to stromal cells in LNs could be influenced by accumulated cellular
senescence, which is commonly associated with fibrosis®. Specific
details can be found in the Supplementary materials (Supplementary
Fig. 9A-D).

Effects of ICIs on stromal cell across LNs subtypes

The regulation of cellular components of LNs by IClIs is a critical factor
influencing the therapeutic efficacy®>”. Additionally, given the
important role of LNs stromal cells in immune regulation”**%, it is
also crucial to investigate the impact of ICIs on stromal cell within LNs.
The uniform manifold approximation and projection (UMAP) plots
based on ICI treatment status revealed the impact of ICI on the cellular
composition of LNs (Supplementary Fig. 10A). We compared the pro-
portions of fibroblast subtypes (Supplementary Fig. 10B) and endo-
thelial cells (Supplementary Fig. 10C) between the ICI+ and ICI-
groups. Notably, the proportion of FDC in LNs increased in the ICI+
group compared to the ICI- group. Additionally, the DEGs between ICI
+ and ICI- showed significantly up-regulated in FDC (Supplementary
Fig. 10D, E), including the cell type specific markers including CR2,
FDCSP and FCAMR (Supplementary Fig. 10F) and the other types of
fibroblast-associated markers including COL1A1 and PDPN which
increased from NLN_C1 to NLN_C4 decreased after ICI treatment.
Furthermore, we compared the expression of FDC-associated tran-
scription factors between the ICI+ and ICI- groups, finding that RELB
together with its target genes significantly up-regulated (Supplemen-
tary Fig. 10G, H). Pathological validation of these results was con-
ducted by additional mIF staining (Supplementary Fig. 101, J).

To address the potential confounding effects of mismatch repair
(MMR) status on LN immune features, we performed stratified ana-
lyses in both the bulk-RNA sequencing and scRNA-seq cohorts. In the
scRNA-seq cohort, a total of 15 CRC patients were included: 4 patients
were proficient MMR (pMMR) and did not receive ICI therapy, while 11
patients were deficient MMR (dAMMR), of whom 8 received ICI treat-
ment. MMR status and ICI treatment information for each patient and
corresponding LN sample are detailed in Supplementary Data 11.

In the three bulk-RNA cohort, we stratified patients by micro-
satellite instability (MSI)/microsatellite stability (MSS) status and
compared the expression of FDC-related markers (CR1, CR2, FDCSP), B
cell marker (MS4Al), and extracellular matrix marker (COL1Al). No
significant differences were observed (Supplementary Fig. 11A). Simi-
larly, no differences were found in B cell, fibroblast, or endothelial cell
infiltration between MSI and MSS patients (Supplementary Fig. 11B).
After excluding all pMMR patients, the same results were observed
within the dMMR subgroup (Supplementary Fig. 11C). This suggests
that the alterations in FDC and B cells are more likely to be a direct
effect of ICI therapy, independent of MMR status. Further supporting
this, miF staining revealed no significant difference in CD20 or CD35
expression between untreated dMMR and pMMR patients (Supple-
mentary Fig. 11D, E). However, a marked increase in both markers was
observed in dAMMR patients following ICI treatment (Supplementary
Fig. 11D, E).

Together, ICI treatment leads to the expansion of FDC in LNs and
promotes B cell development and function through the up-regulation
of transcription factors. In other words, ICIs can exert antitumor
effects by modulating LNs, providing a significant addition to the
current understanding of ICI antitumor mechanisms.

Clinical significance of LNs subtypes

The distribution of LNs subtypes inter- and intra-patients was pre-
sented in Fig. 6A, B. The total number of resected LNs per patient,
along with the number of metastatic and non-metastatic LNs were
provided in Supplementary Data 1-3. In patients with multiple sampled

LNs, each LN could belong to a distinct molecular subtype, thereby
reflecting intra-patient LN heterogeneity. We further investigate the
association between the clinical characteristics and LNs subtypes
(Fig. 6A and Supplementary Fig. 12A-D). The unsupervised clustering
of LNs subtypes indicated that NLN_C1 and NLN_C2 preferred from the
same patient (Fig. 6A). Consistent to the transcriptomic similarity, we
found that NLN_C3/C4 displayed a significantly higher co-detection
ratio in the patients (Fig. 6B and Supplementary Fig. 12B, D). Accord-
ingly, NLN_C1 and NLN_C2 were combined into one group for sub-
sequent analyses, while NLN_C3 and NLN_C4 were classified as a
separate group.

Furthermore, analysis across these three cohorts revealed that
perineural invasion (PNI), TNM stage, and vascular thrombosis were
more prevalent in the NLN_C3/C4 groups (Fig. 6C, D and Supplemen-
tary Fig. 12E, F).There is no significant difference in LNs subtypes
between different sex (Supplementary Fig. 12G). These clinical features
suggest that a higher proportion of NLN_C3/C4 is associated with
increased tumor progression. However, no clear association was
observed between LNs subtypes and MSI/MSS status (Supplementary
Fig. 13A). Additionally, we did not identify a significant enrichment of
specific LNs subtypes within any individual consensus molecular sub-
types (CMS) classification (Supplementary Fig. 13B-E), suggesting that
individual CMS subtypes could give rise to multiple distinct LN tran-
scriptional phenotypes. These findings highlight the complexity of
tumor-LN interactions.

We also examined LN-specific phenotypes, including LN size and
LN location (Fig. 6E). Interestingly, the results show that LN location
relative to the tumor and LN size did not significantly impact LNs
subtypes classification across the three cohorts (Fig. 6E and Supple-
mentary Fig. 14A). The PCA analyses stratified by LN size did not reveal
clustering driven solely by size, suggesting that LNs subtypes capture
transcriptomic differences beyond physical dimensions (Supplemen-
tary Fig. 14B). Immune and stromal cell infiltration patterns remained
consistent across LN size groups, with a gradual decrease in immune
infiltration and increase in stromal signatures from NLN_C1 to C4
(Supplementary Fig. 14C). These trends were more pronounced
among small LNs, suggesting that transcriptional subtype may evolve
independently of size but with differential biological consequences.

Most notably, the NLN_C1/C2 demonstrated significantly
improved 3-year overall survival (OS) and recurrence-free survival
(RFS) compared to NLN_C3/C4 (Fig. 6F and Supplementary Fig. 15A, B,
all log-rank p < 0.05) Taken together, these findings indicate that LNs
subtypes are strongly associated with tumor progression and patient
outcomes, offering valuable insights for future clinical research.

Discussion

In this study, we initially established LyMoS in CRC by analyzing gene
expression profiles from a comprehensive series of LNs. We then fur-
ther characterized these subtypes to explore the cellular and mole-
cular mechanisms underlying their heterogeneity, while also assessing
the potential impact of ICIs on LNs subtypes. Finally, we examined the
correlation between LNs subtypes and clinical features. Our findings
offer a perspective on the molecular characteristics of LNs, providing
valuable insights into their role in prognostic assessment and clinical
decision-making for CRC patients.

Unlike the traditional classification of metastatic and non-
metastatic LNs, LyMoS present significant heterogeneity among the
four non-metastatic LNs subtypes, even surpassing the heterogeneity
observed between metastatic and non-metastatic LNs. This finding
challenges the conventional dichotomous framework and highlights
the complexity of LN responses in the tumor microenvironment.

Specifically, our results show that NLN_C1/C2 retain a more
immunologically active profile, while NLN_C3/C4 exhibit signs of
immune dysfunction and stromal fibrosis. The heterogeneity between
NLN_C1/C2 and NLN_C3/C4 appeared to reflect a distinct loss of
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immune function, particularly in T cells and B cells, which are critical
for the generation and maintenance of effective antitumor immunity
(Fig. 6G). Furthermore, we carefully evaluated alternative explanations
for the clustering patterns, including batch effects and cell state het-
erogeneity. Batch effects were ruled out through within-cohort cor-
rection and cross-cohort validation. However, cell state PCA using
established frameworks™ identified that certain cell states, such as
tumor-associated fibroblasts, pro-migratory-like fibroblasts, and
normal-like endothelial cells, exhibited distinct distributions across
LNs subtypes. These results indicate that the observed clustering is at
least partially driven by underlying cell state differences among LNs
subtypes. While we cannot entirely exclude the influence of micro-
environmental stimuli, the convergence of evidence of LNs subtypes
suggests that non-metastatic LNs may undergo disruption of the
stromal environment under tumor-derived stimuli before tumor cell
invasion, leading to immune dysfunction.

The functional differences between subtypes were also confirmed
at the cellular level. Immune cells, such as CD4 T cells, CD8 T cells and
B cells, were down-regulated in NLN_C4, while stromal cells such as
fibroblasts and endothelial cells significantly increased. Additionally,
NLN_C4 exhibited prominent stromal fibrosis. This finding is con-
sistent with previous studies highlighting the role of LN stromal cells in
modulating immune responses”'®. LN stromal cells, including FRC,
FDC, HEV and LEC, create a complex microenvironment within LNs
that influences the behavior of immune cells”. For example, FRC
produce chemokines that guide T cell migration, while FDC play a
critical role in maintaining B cell follicles and supporting humoral
immunity*?*?’. The loss of these critical stromal cell functions likely
contributes to a diminished antitumor response, allowing for tumor
progression and metastasis.

The mechanisms driving LN heterogeneity remain complex and
multifaceted. It is commonly believed that the diminished immune
function of LNs is predominantly regulated by tumor-induced immu-
nosuppression. This concept forms the basis of most current studies,
particularly those using animal models, which frequently conclude
that the immune microenvironment of tumor-draining LNs is char-
acterized by immunosuppression”**=. In humans, however, LN
immune function exhibits substantial heterogeneity. This hetero-
geneity is evident not only between individuals but also among dif-
ferent LNs within the same patient. Strikingly, in the same tumor-
draining region, both NLN_C1 and NLN_C4 can coexist. This observa-
tion underscores the significant heterogeneity between LNs, even
within a single patient, which is likely driven by the complex anato-
mical structure of the lymphatic network and variations in the lym-
phatic drainage content among LNs. Therefore, the factors driving LN
heterogeneity at the patient level are highly intricate and extend far
beyond the scope of what can be captured through animal models.
This complexity highlights the need for more nuanced studies that
reflect the diverse immunological landscape of human LNs.

The ICls implications of our findings remain profound. Following
ICIs treatment, there was an up-regulation of the FDC development-
related transcription factor SPIB, along with an increase in FDC and B
cell numbers. Previous studies have demonstrated the critical role of
tumor draining LNs in PD-1/PD-L1 checkpoint therapy”. Our results
further suggest that ICI treatment could partially reverse the immu-
nosuppression and stromal fibrosis in non-metastatic LNs, particularly
by modulating FDC-association upstream transcription factors. Tar-
geting the molecular pathways involved in LN stromal cell regulation
may therefore enhance the effectiveness of ICls, offering a potential
strategy to improve outcomes for CRC patients. For example, thera-
pies that promote the restoration of FDC and B cell function within LNs
could potentially reverse the immune dysfunction. Additionally, our
data suggest that combining ICIs with agents that target stromal cell
proliferation and extracellular matrix (ECM) remodeling could disrupt
the tumor-supportive microenvironment within the LNs, thereby

enhancing the antitumor response. Further studies are necessary to
elucidate the molecular mechanisms underlying LNs subtypes het-
erogeneity and identifying additional biomarkers for predicting
patient response to ICI therapy.

This study has several limitations. First, despite the inclusion of
diverse patient cohorts from multiple centers, LN heterogeneity
remains a major challenge, driven by patient-specific factors, tumor
microenvironmental differences and anatomical variations, which may
influence the characteristics and clinical significance of LyMoS. Sec-
ond, although transcriptomic profiling using bulk-RNA sequencing
and scRNA-seq enabled the identification of distinct LNs subtypes, the
lack of a simple biomarker panel for practical classification has ham-
pered its clinical translation. Third, the current classification is based
primarily on gene expression, which may not fully reflect the biological
complexity of LNs subtypes. Integration of additional omics layers,
such as proteomics or metabolomics, may offer deeper mechanistic
insights. Fourth, the application of Monocle to bulk-RNA sequencing
data has inherent limitations, including the lack of single-cell resolu-
tion and potential confounding due to mixed cell populations.
Nevertheless, previous studies have demonstrated the utility of tra-
jectory inference in bulk datasets to uncover meaningful biological
gradients®™*. Importantly, the LN is a highly heterogeneous micro-
environment comprising immune, stromal and endothelial compo-
nents, and even single-cell approaches may not fully capture its
functional diversity. Bulk transcriptomic profiling thus provides a
complementary, integrated view of LN biology. Moreover, as LNs are
critical immune organs predominantly populated by immune cells, the
limited total number of cells captured in scRNA-seq may result in the
sparse detection of stromal cell subsets, thereby potentially leading to
their underrepresentation in the dataset. It is plausible that LNs sub-
types, such as NLN_C2/C3, were not adequately captured in the single-
cell dataset due to their reliance on stromal cell signatures. Therefore,
the Monocle-based analysis was not intended to infer actual cellular
transitions, but rather to reconstruct transcriptional continua among
LN samples with shared molecular features. Finally, while the study
provides molecular and pathological support for the existence of
LyMosS, clinical validation in larger, real-world cohorts is needed, and
the prognostic and therapeutic implications warrant further investi-
gation in prospective trials.

In summary, we introduce the LyMoS, a framework that cate-
gorizes LNs into distinct molecular subtypes based on gene expression
profiles in CRC. We also delineate the underlying biological mechan-
ism of non-metastatic LNs, characterizing their heterogeneity and its
relationship with clinical features. As our understanding of LN biology
deepens, LyMoS has the potential to play a pivotal role in advancing
personalized therapeutic strategies, ultimately enhancing outcomes
for CRC patients.

Methods

Ethical statements

The clinicopathological data collection for this study was conducted
according to the principles of the Declaration of Helsinki. All tissue
samples, including primary tumor and LNs samples, were obtained in
accordance with national guidelines. These tissues were collected from
surgical specimens by surgeons and pathologists. All LNs were pro-
cessed using a standardized protocol designed to preserve both
research and clinical diagnostic integrity. Fresh LN specimens were
bisected after surgical resection. A measured 1/3 to 1/2 portion was
allocated for research analysis. The remaining 1/2 to 2/3 portion was
used to generate formalin-fixed and paraffin-embedded (FFPE) sam-
ples for routine pathological evaluation. All patients provided signed
informed consent and agreed to be reported and shared individual-
level data. The study was evaluated and approved by the institutional
review board (IRB) of the National Cancer Center/Cancer Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College
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(Approval ID: 24/571-4851), Shanxi Hospital Affiliated to Cancer Hos-
pital, Chinese Academy of Medical Sciences & Peking Union Medical
College (Approval ID: KY2023166) and The Second Affiliated Hospital
of Harbin Medical University (Approval ID: YJSKY2024-269). This study
is fully compliant with the “Guidance of the Ministry of Science and
Technology (MOST) for the Review and Approval of Human Genetic
Resources”, and have obtained all necessary approvals from MOST of
China for the export and use of genetic and sequencing data related to
this work (approval ID: 2025BAT00719).

Patient cohorts

The LNs subtypes were identified on an independent cohort of 78 CRC
patients in the National Cancer Center (BJ cohort), and then were
validated from two independent cohorts from the Shanxi Hospital
Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences &
Peking Union Medical College (TY cohort) and the Second Affiliated
Hospital of Harbin Medical University (HB cohort) (Fig. 1A). All these
tissues were utilized for comprehensive bulk-RNA sequencing analysis.
All included patients who underwent surgery did not receive pre-
operative chemotherapy and/or radiation therapy.

To further interpret the characteristics of the LyMoS, another
scRNA-seq cohort of 15 CRC patients was developed, including a total
of 66 non-metastatic LNs, two metastatic LNs and three primary tissues
(Fig. 1A). Among these CRC patients, seven received no treatment prior
to surgery (ICI- group), eight received treatment with PD-1 inhibitors
either as monotherapy or in combination with CTLA-4 inhibitors (ICI+
group), all of whom achieved a pathological response. The overall
study design is shown in Fig. 1A.

Bulk-RNA sequencing samples preparation and processing

We extracted RNA from Fresh-frozen specimens using TRIzol reagent.
The Bioanalyzer (Agilent Technologies) was employed to check the
quality of the total RNA. The libraries were generated using Epicentre’s
Ribo-Zero rRNA Removal kit to remove rRNA from total RNA. The
Illumina TruSeq™ RNA Sample Prep Kit (Illumina, San Diego, CA, USA)
was used to construct the library, utilizing 30-100 ng of Ribo-Zero
RNA. For quality analysis prior to sequencing, the generated cDNA
libraries were quantified using a Qubit dsDNA HS Assay Kit and a Qubit
3.0 fluorometer (both from Thermo Fisher Scientific, Wilmington, DE,
USA). The RNA libraries were subjected to sequencing as 2 x 150 bp
paired-end reads on Illumina HiSeq2500 sequencers. Reads obtained
from the sequencing were aligned using STAR (version 2.5.2b)*, and
aligned against the human reference genome (Ensemble GRCh38).
Transcripts per kilobase million (TPM) were computed and adopted as
the gene expression levels throughout the study.

Definition of LNs subtypes and metastasis status
Unsupervised clustering analysis was performed using transcriptomic
profiles from the BJ cohort to define LNs subtypes, with the aim of
capturing the intrinsic molecular heterogeneity of LNs irrespective of
their pathological metastasis status. The DEGs distinguishing these
subtypes were identified within B] cohort using pairwise comparisons
between clusters. To independently validate this classification frame-
work, unsupervised clustering was also conducted in the TY and HB
cohorts. Subtype assignment in these external datasets was performed
independently, without reference to the BJ cohort, to assess the
reproducibility of the LN classification. Additionally, we compared gene
expression profiles and cellular compositions of the resulting subtypes
across the three cohorts to evaluate cross-cohort consistency.
Accordingly, LNs were classified into transcriptionally distinct
subtypes—namely, NLN and PLN—based on gene expression patterns
rather than histopathological findings. The subtypes with a majority of
non-metastatic negative LNs were labeled as NLN_C1, NLN_C2, NLN_C3
and NLN_C4, and the subtypes with a majority of metastatic positive
LNs were defined as PLN_C1 and PLN_C2 based on different gene

expression profiles. Each LN was independently classified into a
molecular subtype based solely on its gene expression profile, without
aggregating to patient-level categories.

The metastasis status of each LN was determined separately by
conventional pathological examination. A notable observation in our
study was the partial discordance between transcriptional LNs sub-
types and pathological metastasis status. This discrepancy may stem
from two plausible factors. First, certain metastatic LNs may preserve
an immune microenvironment and cellular architecture that remain
largely intact despite the presence of tumor cells, leading to gene
expression patterns that closely resemble those of non-metastatic LNs.
Second, technical limitations, particularly sampling bias, may have
contributed to misclassification. In cases of micro-metastases (i.e.,
tumor foci <2 mm), it is possible that the tissue section used for RNA
sequencing did not include the metastatic area, whereas the adjacent
section used for histopathological evaluation did capture tumor cells.
These findings underscore the importance of integrating spatial and
single-cell resolution approaches in future studies to better resolve the
heterogeneity of LN at both cellular and spatial levels.

Identification of DEGs and pathway analysis
The raw gene counts were determined and normalized via HTSeq
(version 2.0.5)*°. We set a corrected adjust p value < 0.01 and |log2-fold
change | >1 as the significance criteria to identify the DEGs by the
“DESeq2” package (version 1.36.0). PLN-associated DEGs were defined
by comparing the gene expression between metastatic LNs and all the
other non-metastatic LNs regardless of their subtypes. The LNs
subtypes-associated DEGs were defined by comparing the NLN_C2/C3/
C4 to NLN_C1. The “degpattern” package was used to identify the
expression patterns of target DEGs across LNs subtypes. Over-
representation enrichment analysis for the top3000 protein coding
target genes was performed on Metascape which is a comprehensive
and biologist-oriented resource with default settings. The 20 most
significantly enriched terms were visualized and analyzed as a network.
To assess potential batch effects, PCA was conducted on all
samples stratified by sequencing batches. Batch-specific clustering was
examined visually and quantitatively to determine whether batch
artifacts influenced sample distribution. The lack of batch-driven
segregation in PCA plots suggested that batch effects were negligible.
To evaluate whether the observed transcriptomic heterogeneity
reflected intrinsic cell state variations, we reanalyzed the subtype
clusters within the framework of defined immune cell states as
described in previous studies'. This was done by mapping each clus-
ter’s transcriptomic profile to annotated immune cell state signatures
and assessing the distribution in PCA space.

Cluster trajectory analysis
Due to the transition process from non-metastatic LNs to metastatic
LNs under tumor stimulation, we exploratively applied trajectory
analysis to investigate the LNs subtypes using Monocle 2 (2.10.1)>,
Although Monocle was originally developed for scRNA-seq data, we
applied it to bulk-RNA sequencing profiles by treating each LN sample
as an independent unit, consistent with previously published meth-
odologies that applied Monocle to bulk tumor datasets®* . Never-
theless, as Monocle’s trajectory inference relies on cell-to-cell
variability—which is absent in bulk RNA-seq data—the inferred trajec-
tories may be driven by inter-sample variability. Therefore, this
approach was used in an exploratory manner and cannot confirm a
progressive or sequential nature of the LNs subtypes. In our study,
pseudotime analysis was performed on the set of DEGs distinguishing
LNs subtypes. Principal component-based dimensionality reduction
followed by pseudotime ordering allowed us to reconstruct a con-
tinuum of transcriptional states across LN samples.

Based on bulk-RNA sequencing data from discovery cohort, we
treated each LN sample as “an independent cell” to align with the
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Monocle algorithm framework. Genes for trajectory inference were
selected using the dispersionTable() function to calculate a smooth
function describing how variance in each gene’s expression across
clusters varies according to the mean. Only genes with mean expres-
sion greater than or equal to 0.1 were used for the analysis. The
reduceDimension() function was utilized with the DDRTree* reduction
method and the following parameters modified: max_components =2,
and num_dim=20. Results were visualized using the plot_cell -
trajectory() and plot_complex_cell_trajectory() functions and anno-
tated with LNs subtypes labels and pseudotime.

scRNA-seq samples preparation and processing

These tissues were cut into approximately 1 mm?® pieces in RPMI-1640
medium (Invitrogen) with 10% fetal bovine serum (FBS; ScienCell) and
enzymatically digested for 30 min on a rotor at 37 °C using a MACS
tumor dissociation kit (Miltenyi Biotec), according to the manu-
facturer’s instructions. The suspended cells were centrifuged at
400 x g for 5 min after filtration with a 70 m Cell-Strainer (BD) in RPMI-
1640 media (Invitrogen). The pelleted cells were suspended in red
blood cell lysis buffer (Solarbio) and incubated on ice for 2 min to lyse
red blood cells after the supernatant was removed. After washing twice
with PBS (Invitrogen), the cell pellets were resuspended in sorting
buffer (PBS mixed with 2% FBS). The single cell suspensions were
stained for flow cytometry (FACS) on a BD Aria Ill equipment with
7-AAD Viability Staining Solution (Cat# 00-6993-50, eBioscience). Live
cells were sorted into 1.5 ml tubes with sorting buffer and manually
counted under the microscope based on FACS analysis. The GemCode
Single Cell Platform was then used to process single cells using the 3’
GemCode Gel Bead, Chip, and Library Kits (10 x Genomics) according
to the manufacturer’s methodology. For each sample, the loaded cell
numbers were 10,000. The cells were then partitioned into Emulsion
Gel Beads in the GemCode instrument, where they were lysed and
barcodes were ligated by reverse transcription; the RNA was then
amplified and sheared, and 3’ adapters and sample indexes were liga-
ted. The libraries were sequenced on an Illumina HiSeq 4000 using a
150 bp paired-end approach.

The libraries for scRNA-seq were prepared using the Chromium
Single Cell 3’ v3 according to the manufacturer’s protocol (10x Geno-
mics). A total of 7000 cells were targeted per sample. Libraries were
sequenced on the NextSeq 500 platform (lllumina) with paired-end
sequencing.

scRNA-seq and cell type determination

The raw fast-q files were mapped to the reference genome GRCh38
using Cell Ranger Single Cell (version 4.0.0) software with the default
parameters. The filtered results were used as input for the second
round of quality control and downstream analysis in Seurat (version
4.3.0)*. To exclude potential cell debris and doublets from the dataset,
we filtered out cells with nFeature RNA <100 and >6000 and Dou-
bletFinder (2.0.2). Potential dead cells with high expression of mito-
chondrial genes (225%) were also eliminated from the following
analysis. To reduce the potential effect on the cell clustering results,
we removed genes expressed in fewer than 3 cells, as well as mito-
chondrial genes and ribosome-associated genes. The filtered genes
were projected into principal component space using principal com-
ponent analysis (RunPCA). The top 50 significant dimensions identi-
fied by ElbowPlot were subjected to graph-based clustering.

For validation of the LNs subtypes defined by bulk-RNA sequen-
cing, the scRNA-seq cohort were analyzed. After characterizing each
subtype’s cellular composition and clustering features at the bulk-RNA
level, LNs subtypes labels (C1-C4) in the scRNA-seq cohort were
inferred based on the similarity of cell type proportions and the degree
of clustering proximity to metastatic LNs in unsupervised analyses.

Uniform manifold approximation and projection (UMAP) was
utilized in the dimensionality reduction of cells for visualization, and a

shared nearest neighbor-based clustering algorithm was used to find
the clusters. FindAlIMarkers was used to identify the cell type specific
genes with the parameters logfc.threshold =0.25, only.pos=TRUE,
and min.pct = 0.25. By integrating the cell type-specific markers iden-
tified in previous studies*®*, validated cell markers curated in Cell-
Marker and cell type-specific genes, we assigned a cell type identity to
each cell cluster.

Cell type-specific variations between LNs subtypes

To estimate the cell type expression of positive- and LNs subtypes-
associated DEGs, gene expression in each cell type was estimated using
fast Wilcox functions in presto package and was set as pre-ranked gene
set. And then fgsea package was used to map the DEGs to this pre-
ranked gene set to obtain the cell type specific expression of DEGs. To
estimate the cell type specific variation between LNs subtypes, we
firstly down sampling the largest cell types including T cells, B cells, NK
cells in LNs to 5000 cells to construct a down sampling dataset. The
FindMarker function was used to examine the cell type specific mar-
kers in primary tumors and LNs with min.pct= 0.25, logfc.threshold =
0.25, and test.use = “wilcox”. The output genes were defined as cell
type specific markers. And their expression across the cells were set as
input to CIBERSORTX to generate the signature matrix. The raw count
matrix from bulk-RNA sequencing cohorts was then deconvoluted
with default settings. The S-mode was selected to remove any potential
batch effects.

Key cells identification in the LNs subtypes

Based on each cell type specific gene sets, we performed dimension-
ality reduction using PCA on the bulk-RNA sequencing cohorts. To
obtain the high confident cell type specific signatures, cells marker
with fold change greater than 1 were retained in the PCA analysis. The
ability of cell type-specific signatures in reproducing the LNs subtypes
were used to estimate the cell types in determination of the LNs
subtypes.

Based on the clustering results from PCA, we found that fibro-
blasts and endothelial cells can effectively distinguish different clus-
ters of LNs subtypes. Therefore, we further re-clustered fibroblasts and
endothelial cells using the dimensionality reduction and clustering
methods mentioned earlier. Fibroblasts were classified into six sub-
groups, among which, three subtypes were annotated as FRC, SMC,
FDC by highly expressed PDPN, ACTA2, and CR2, respectively. Another
three clusters were not annotated to any previous reported subtypes
and were labeled as Fib IL7R, Fib ADH1B, and Fib NTRK3 according to
their highly expressed genes. Endothelial cells were similarly classified
into five subgroups: aBEC, VBEC, cBEC, LEC, and fLEC based on the
expression of ACKR1, KDR, RBP7, PROXI, and LYZ. The subtypes-
associated cell proportion variation and gene variation across LNs
subtypes were quantify to estimate the influence of fibroblast and
endothelial cells-associated subtypes on the emergence of LNs
subtypes.

Transcription factors analysis

To identify cell type specific gene regulatory networks, SCENIC
(version 1.1.2)** was performed on fibroblasts and endothelial
cells dataset. SCENIC is a combination of 3 packages (GENIE3,
RcisTarget and AUCell). First, we filtered for genes expressed
in 3% of samples and cells that are expressing >0 UMI and nor-
malized by log2(filteredexpr +1). Filtering criteria was less strin-
gent to prevent exclusion of rare cell types. Genes that are
available in RcisTarget’s human feather databases (hgl9-500bp-
upstream-7species.mc9nr.feather, hgl9-tss-centered-10kb-7spe-
cies.mc9nr.feather) are utilized. These genes are found in a
region of 500 to 10,000 base pairs upstream in the hgl9 human
reference genome. Only the transcription factors highly expres-
sed in any of fibroblast and endothelial cell subtypes were
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retained and further removed if their activate score smaller than
0.01 in any subtypes.

ICI treatment correlative analysis

We divided the LNs from scRNA-seq cohort into ICI- and ICI+ groups.
The DEGs between ICI+ and ICI- were obtained using Findmarkers
using MAST method and set the batches as latent variable. Considering
the limited cells within each subtype of fibroblast cells and endothelial
cells, the target cell types used in FindMarkers was set as fibroblast
cells and endothelial cells rather than subtypes. And then the DEGs
were mapped to subtypes based on their expression level in each
subtype. Furthermore, we compared the changes in FDC marker genes
and transcriptional regulators, which were significantly down-
regulated from NLN_C1 to NLN_C4, between the ICI+ and ICI- groups.

Pathological validation

All LNs tissues used for pathological validation were extracted from
FFPE samples of clinical pathological evaluation. These sections
underwent processing steps, including deparaffinization, rehydration
and endogenous peroxidase inactivation, followed by antigen retrieval
using sodium citrate buffer (10 mM, pH 6.0) with microwave treatment
at 95°C for 20 min. All pathological evaluations were conducted by
two independent pathologists. In cases of disagreement, a final deci-
sion was made by a pathology expert with over 10 years of experience.

Sirius Red staining was used to assess the collagen fiber content,
distribution, and degree of fibrosis in the LNs. For IHC, CD4 antibodies
were purchased from ZSGB-Bio (dilution 1:800, ZA0519, Beijing,
China), CD8 antibodies were purchased from ZSGB-Bio (dilution 1:800,
ZA0508, Beijing, China) and CD20 antibodies from Cell Signaling
Technology (dilution 1:800, #92688, Massachusetts, USA). Positive
controls, human tonsil tissues, were stained with these antibodies,
while isotype-matched antibodies were used as negative controls. The
IHC staining procedure was automated using the BenchMark ULTRA
immunostainer from Ventana Medical Systems, Inc. The CD4, CD 8 and
CD20 expression in LNs was evaluated. All NLN_CI and
NLN_C4 samples were used for semi-quantitative analysis, and the
ImageJ software was utilized to analyses average optical density (AOD)
values of stained areas.

For multiplex IHC (mIHC), fresh samples were fixed in cold acet-
one for 5min, washed with PBS for 5min, and blocked with 3% BSA
solution. Then, the samples were stained with primary antibodies
overnight at 4 °C and with secondary antibodies for 30 min at room
temperature. DAPI (VECTASHIELD, Vector Laboratories) was used to
stain the nuclei. The primary antibodies included rabbit polyclonal
antibody CXCL13/BCA1 (Proteintech, 10927-1-AP); rabbit polyclonal
antibody LYVE1 (Proteintech, 28321-1-AP); mouse monoclonal anti-
body CD20 (Proteintech, 60271-1-Ig); mouse monoclonal antibody FN1
(Proteintech, 66042-1-Ig); mouse monoclonal antibody CD31 (Pro-
teintech, 66065-2-1g); mouse monoclonal antibody COL1A1 (Pro-
teintech, 67288-1-Ig); mouse monoclonal antibody PDPN (Proteintech,
67432-1-1g); mouse monoclonal antibody CD35 (Proteintech, 68033-1-
Ig); rabbit recombinant antibody a-SMA (Proteintech, 80008-1-RR); All
images were captured using an EVOS FL Auto 2 Imaging System
(Thermo Fisher Scientific). DAPI was used to stain the cell nuclei. For
each sample, 5-6 random fields were used for semi-quantitative ana-
lysis, and Image] was used to measure the positively stained area and to
quantify cells.

The correlation between LNs subtypes and clinicopathological
characteristics

We reviewed and collected clinicopathological information of CRC
patients from the bulk-RNA sequencing cohorts (BJ, TY, and HB
cohorts) using the medical record system. This information includes
demographic variables, such as gender, age, body mass index (BMI),
and clinicopathological variables, such as American Joint Committee

on Cancer (AJCC) TNM stage, tumor histology, tumor size, tumor
location, tumor differentiation, and MSI/MSS status.

The CMS and iCMS subtypes were assigned based on the primary
tumor tissues corresponding to the involved LNs, using the CMScaller
algorithms (https://github.com/peterawe/CMScaller). We then asses-
sed the correlation between primary tumor CMS/iCMS and LNs
subtypes.

LN size was dichotomized using a 1cm cutoff, based on pre-
operative imaging and pathology records. LNs were stratified into
“small” (<1cm) and “large” (=1 cm) groups. Subtype frequency dis-
tribution was compared across size categories. PCA and cell-type
deconvolution were performed within each size group to assess whe-
ther transcriptomic variation was primarily driven by size or under-
lying LNs subtypes.

Additionally, since BJ cohort had an adequate median follow-up
time (more than 3 years), survival outcomes including OS and RFS were
collected. Furthermore, the CRC patients were stratified based on
clinicopathological characteristics, and then were used to compare the
changes in LNs subtypes proportions between groups.

Statistical analysis

Categorical variables are presented as numbers with percentages,
while quantitative variables are presented as medians with inter-
quartile ranges (IQRs), unless indicated otherwise. The Student’s ¢ test
and Mann-Whitney U test were used for continuous data. Fisher’s
exact test or Chi-square test were used for categorical data. All the
statistical tests were two-sided, and p <0.05 was considered to indi-
cate statistical significance. A significance level of p<0.05 was
assumed for all the statistical evaluations. All the statistical analyses
and data visualizations were performed using R 4.2.1 software.

To assess the prognostic relevance of LN molecular subtypes, we
performed Kaplan-Meier survival analysis. Each LN was assigned OS
and RFS outcomes based on the prognosis of its corresponding
patient, and survival differences were evaluated using the log-rank test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw sequencing data reported in this paper have been deposited in
the Genome Sequence Archive® in National Genomics Data Center**,
China National Center for Bioinformation/Beijing Institute of Geno-
mics, Chinese Academy of Sciences (GSA-Human: HRA010982) that
are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human/browse/
HRAO010982. The data generated and/or analyzed during the current
study are available under restricted access in accordance with the
“Guidance of the Ministry of Science and Technology (MOST) for the
Review and Approval of Human Genetic Resources” of China. Qualified
researchers can gain access to the data by submitting a formal appli-
cation through the repository platform. Data requests will be reviewed
and approved by the corresponding author within 4 weeks. The access
will be granted only for academic research purposes. Once access has
been granted, the data will remain available to the requestor for
6 months in accordance with institutional and ethical guidelines. All
the data, analytic methods, and study materials that support the
findings of this study are available from the corresponding author
upon reasonable request. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data
are provided with this paper.

Code availability

All original codes for each figure can be found at https://github.com/
DBlab-web/LNSubType. All analyses were carried out using freely
available software and packages.
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