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Species abundances surpass richness effects
in the biodiversity-ecosystem function
relationship across marine fishes

Helen F. Yan 1,2 , Renato A. Morais 3 & David R. Bellwood 1

High biological diversity (or biodiversity) is thought to bolster communities
against disturbances, leading to higher levels of ecosystem functioning. While
the biodiversity-ecosystem function (BEF) relationship is evident in studies
equating diversity to species richness, it is still unclear which ecological
mechanisms can produce different observational BEF effects. Here, we com-
bine 7686 individual growth curves across 1480 species with 2957 local com-
munity surveys to generate a process-based estimate of biomass production to
assess the BEF relationship acrossmarine reef fishes.Wefind that the effects of
Hill diversity emphasising abundances outpace those of species richness and
community evenness on biomass productivity. In high-latitude temperate
regions, species abundances and richness have parallel effects on reef fish
productivity. However, in the tropics, species abundances surpass species
richness in their effects on functioning. These latitudinal disparities can be
explained by trade-offs in the relationship between abundance and per-capita
productivity. As whole-community productivity remains relatively stable
across most of the diversity gradient, these trade-offs are presumably driven
by metabolic constraints on growth and body size imposed by warmer tem-
peratures. It appears that biodiversity can only support ecosystem functioning
to a limited extent and environmental stressors likely limit the biomass pro-
duction of marine fishes globally.

With increasing anthropogenic threats to biodiversity1,2, a pervasive
question that has arisen is whether natural communities possess
internal regulatory mechanisms that can bolster critical ecosystem
functions. Grounded in ecological theory, the biodiversity-ecosystem
function relationship, or BEF, is posited as a positive causal link
between biodiversity and ecosystem functioning through com-
plementary resource use via coexistence and niche partitioning (i.e.,
functional complementarity)3–9. While there is a general consensus
that biodiversity has a positive, albeit saturating, relationship with
ecosystem functioning (e.g., ref. 10), these effects appear to be sensi-
tive to the choice of function (e.g., ref. 11), the choice of diversity

metric (e.g., Simpson Index, Shannon Entropy, or richness12 vs. taxo-
nomic, functional, or evolutionary, e.g., ref. 13), or the choice of ana-
lytical method (e.g., ref. 14). Indeed, scientists scrutinise nearly every
axis of the BEF, yet there is one critical factor that influences com-
munity assembly that is widely overlooked: species abundances15,16

(but see refs. 17–19). In an attempt to isolate the role of biodiversity on
ecosystem functioning in experimental studies, scientists artificially
control for the role of abundance20, which typically do not reflect
naturally occurring abundances in the field. Across observational BEF
studies, abundances are typically consolidated within the “function”
component21, such as the calculation of standing stock biomass (e.g.,
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ref. 22), or standardised against during analyses (e.g., refs. 23,24).
Dominance, which indirectly considers species relative abundances, is
used in observational BEF studies, however, it can have variable effects
across both functions (e.g., ref. 25) and ecosystems (e.g., refs. 17,18,26).
While commonly used biodiversity metrics (e.g., species richness) and
indices (e.g., Shannon, Simpson), and coverage-based sampling can
mitigate differences in rarity and detection biases27,28, they are unable
to eliminate the effects arising from species relative abundances12.
Indeed, experimental studies highlight that relative abundances can
sway the direction of BEF studies14,29,30 with higher abundances typi-
cally translating into higher function delivery (e.g., refs. 31–36). At the
other extreme, no abundance necessarily means no function. Conse-
quently, species’ abundances may provide a valuable mechanistic link
between biodiversity and function delivery.

Here, we use one of the world’s largest standardised global survey
programsonmarinefishes (theReef Life Surveyprogram37,38), to assess
whether species’ abundances would influence the BEF globally. Marine
fishes exhibit extraordinary patterns of taxonomic and life-history trait
diversity35,39, while contributing to a range of ecosystem functions25,40

and providing valuable ecosystem services via fisheries. In particular,
fish biomass production is one of the few key processed-based eco-
system functions40–42, that can be readily estimated by using mechan-
istic relationships (i.e., somatic growth models) with direct
ramifications for fisheries43,44. Here, productivity is defined as the
biomass accumulated via ontogenetic growth of all individuals (with-
out mortality) over the survey area over the course of one day40 (see
Methods). By building predictive models from 7686 growth curves
across 1480 species, we are able to estimate the local per-capita pro-
ductivity of marine fishes from 2957 sites comprising coral and rocky
reefs, spanning tropical to polar locations (Fig. S1). In doing so, we are
able to (1) disentangle the role of species’ abundances on the total
community biomassproductionofmarinefishes and (2) assess the role
of biodiversity both globally and across geographic regions.

Results and discussion
Abundances skew global BEF
Biodiversity encapsulates multiple intrinsic characteristics of biologi-
cal communities, including species richness and abundance45. Here, we
used Hill diversity46,47 as a means to quantify biodiversity and evaluate
different diversity indices in explaining variation in biomass produc-
tion. In short, Hill diversity is a general measure of species diversity,
which can be scaled to calculate common diversity indices (e.g.,
Simpson Index, Shannon Entropy), but allows all measures to be
expressed using the same units (i.e., units of species)12. Unlike other
diversity metrics, changes in Hill diversity values intuitively reflect
changes in the community; for example, the loss of species in a com-
munity would proportionally scale with a decrease in Hill diversity12.
Because Hill diversity is a generalised equation, we can produce
commonly used diversity indices within a single equation by varying
the scaling parameter ℓ within a single equation (see Methods)12,48. By
changing the scaling parameter ℓ, we can specifically emphasise
common species (e.g., Simpson Index, Shannon entropy) or rare spe-
cies (e.g., abundance effects) more than richness, thereby placing
communities along an evenness-rarity continuum12,48.

We explicitly tested four diversity indices by varying ℓ to generate
the inverse Simpson index (which emphasises relative abundances
and, thus, common species; ℓ = −1), the exponentiated Shannon
entropy (ℓ =0), richness effects (which emphasises rare species by
considering all species equally; ℓ = 1), and abundance effects (ℓ = 10,
the maximum value used by ref. 48; see Methods). All models were
similarly structured, but with different specifications of ℓ used to
quantify biodiversity. While all four diversity indices were relatively
correlated and loaded positively on the first axis of a principal com-
ponent analysis (PC1), which explained 68.4% of the total variation of
the data (i.e., a matrix of productivity by sites [rows] and diversity

metrics [columns]; Fig. 1a; Table S1), increasing ℓ from−1 to 10 resulted
in a shift in strength andmagnitude of the BEF relationship (mirroring
those found by ref. 48). BEF relationships varied from negative when
using the inverted Simpson index (ℓ = −1; median coefficient [90%
credible interval]: −0.11 [−0.13 to −0.09]) and the exponentiated
Shannon entropy (ℓ =0; −0.11 [−0.13 to −0.08]), to positive with rich-
ness effects (ℓ = 1; 1.05 [1.01 to 1.08]) and abundance effects (ℓ = 10; 1.10
[1.09 to 1.12]; Fig. 1b). The abundance index was the least correlated
with all other Hill diversity metrics and PC1 (Fig. S2) and, based on
leave-one-out information criterion (i.e., information criterion using a
cross-validation procedure; LOOIC), generated the best-fitting BEF
relationship (Table S2). We therefore used Hill diversity emphasising
abundance effects as the measure of biodiversity in all subsequent
analyses unless otherwise stated (hereon referred to as “diversity”).

We found a decelerating relationship between diversity and log-
scale community-level biomass production (Fig. 2). Despite generally
positive global BEF effects, themagnitude of effects across geographic
regions (i.e., tropical vs temperate regions) differed. Indeed, the BEF
was strongest in the tropics (1.16 [1.12 to 1.19]) and relatively flatter in
temperate regions (1.08 [1.06 to 1.11]; Fig. 2), indicating that species
abundances had a greater impact on community biomass production
in warm-water environments compared to cooler, high-latitude loca-
tions. While the BEF emphasising abundance effects was the best-
fitting model based on LOOIC, we also compared the magnitude of
abundance- versus richness-emphasised BEF effects because species
richness is still a dominant component of biodiversity46,47 and pro-
duced the second-best-fitting model (Table S2).

The impacts of richness and abundance BEF effects varied across
tropical and temperate regions. Regardless of the index used, BEF
effects in temperate regions produced nearly identical results (abun-
dance index: 1.08 [1.06 to 1.11]; richness index: 1.08 [1.04 to 1.12];
Fig. 2), which suggests that species richness and abundancesmay have
analogous impacts on community biomass production in temperate
regions. The impact of species abundances and richness on fish bio-
mass production in tropical regions, however, differed.While bothBEF
effects were positive, richness effects were substantially weaker than
abundance effects (0.96 [0.91 to 1.02] and 1.16 [1.12 to 1.19], respec-
tively; Fig. 2). Namely, increases in abundance-emphasised diversity
correlated with greater increases in productivity than increases in
species richness-emphasised diversity, which suggests that species
abundances, not richness, may be the primary community-level fea-
ture giving rise to/or the consequence of highly productive tropical
fish communities. Indeed, many of the richest tropical communities
are characterised by small-bodied fishes occurring in higher
abundances49, while the disproportionately high abundances of
planktivorous fishes, which capitalise on external pelagic subsidies,
better correlated with higher community productivity than plankti-
vore richness32. Although we cannot discount the role of species
richness as a correlate of productivity, it appears that the iconic pro-
ductivity of high-diversity systems in the tropics are predominantly
driven by species abundances. The saturating effect of diversity on log-
scale community productivity would therefore suggest that the
mechanisms by which fish communities are producing biomass may
differ between temperate and tropical regions.

Mechanistic patterns of community productivity
The decomposition of community-level biomass production may
provide insight into the geographic discrepancies in BEF effects. Spe-
cifically, community productivity is the product of species total
abundances and per-capita biomass production48, which can be inde-
pendently evaluatedagainst abundance-emphasiseddiversity.While in
temperate regions, increasing diversity positively correlated with
increasing abundance (1.42 [1.41 to 1.43; Fig. 3a), this increase was
much steeper in tropical regions (1.56 [1.55 to 1.58]; Fig. 3b). Likewise,
the observed decrease in per-capita productivity with diversity was
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much steeper in the tropics (−0.41 [−0.44 to −0.38]; Fig. 3d) than in
temperate regions (−0.33 [−0.35 to −0.31]; Fig. 3c). Therefore, the shift
in configuration of the relationship between abundance and per-capita
productivity (i.e., high per-capita productivity and low abundances
towards low per-capita productivity and high absolute abundances) is
strongest in the tropics, which suggests that the ecological mechan-
isms underpinning the BEF across marine fish communities (i.e.,
changes inper-capita biomassproduction versus abundance) are likely
physiologically constrained in warm-water environments15,50.

All Hill diversity indices had maximum values that were higher in
the tropics (Fig. S3) and the largest concentration of high-diversity
communities was above ~23 °C (Fig. 4). In warm, high-diversity sys-
tems, species are likely metabolically limited in their capacities to
attain larger sizes51,52. Scaling temperature using the Boltzmann’s-

Arrhenius relationship, a procedure accounting for non-linearities in
how metabolic rates vary with temperature53, changed the units, but
not the shape of the relationship (see Methods; Table S2). Indeed,
conspecifics found across temperature gradients tend to grow faster
to smaller body sizes in warmer waters54–56. Similarly, species abun-
dances scale negatively with body size51,57,58, whereby conspecifics
occurring in higher densities tend to exhibit smaller body sizes15. Taken
together, these two relationships imply challenges with producing
biomass in warm, high-abundance communities, possibly owing to
trade-offs occurring between the increased costs of growth59 and
extrinsic environmental and ecological factors60, such as competition
in resource-limiting contexts. Although energetic constraints on total
community fluxes61 can also be modified by external energy subsidies
(e.g., via pelagic pathways32,62), shifts towards higher abundances and

Fig. 1 | Variation in Hill diversity metrics on ecosystem function. a Principal
component analysis (PCA) ordination displaying Hill diversity values (D) repre-
senting Simpson Index (DSimpson), Shannon Index (DShannon), richness effects
(Drichness), and abundance effects (Dabundance). Principal component axes 1 and 2
(PC1 and PC2, respectively) explain 68.4% and 28.9% of the variation of the data,
respectively. Size of the arrows denote themagnitude and the direction denote the
sign of each eigenvector. Hexagons are coloured based on the number of obser-
vations in a given bin. Note, the outlying red point towards negative PC1 and PC2

values is depicting the surveys that recorded a single species. b Posterior dis-
tributions of estimated biodiversity-ecosystem function (BEF) effects on biomass
production (g 500m−2 day−1) using Simpson Index (blue), Shannon Index (orange),
richness effects (purple), and abundance effects (green) as quantifications of bio-
diversity. Both Simpson and Shannon indices emphasise common species, whereas
richness and abundance effects emphasise rare species. All diversity indices were
logged prior to analysis. Source data are provided as a Source Data file.
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lower per-capita productivity would also allow communities to cir-
cumvent physiological constraints due to warmer temperatures. Indi-
viduals from conspecific populations in warmer conditions may
compensate for the enhanced difficulty in producing biomass via
somatic growth by increasing their reproductive rates, thereby
increasing their populations’ relative abundances compared to their
conspecifics in cold conditions. This involves trade-offs between size-
based growth,mortality, and reproductive output (as suggestedby the
energetic-equivalence rule63). Thus, increased community productivity
could emerge from such shifts. Indeed, declines in fishes’ body sizes
over time have been shown to be similarly matched by increases in
intraspecific abundances, leading to relatively stable levels of com-
munity standing biomass58. While species interactions, such as intras-
pecific competition, can contribute to the trade-off between
abundance and per-capita productivity (e.g., via self-thinning in
resource-limited populations64), the physiological limits placed on
individuals can likely scale to community-level biomass production,
which could be imposedby environmental conditionsworking beyond
resource availability.

The effects of diversity on abundance and per-capita productivity
were dampened, but still distinguishable, across temperate regions,
indicating that the energetic constraints placed on tropical commu-
nitiesmay impact temperate communities aswell, especially given that
reef fishes tend to be larger towards higher latitudes49,65. However,
given that species richness exhibited nearly an identical BEF effect on
total community productivity as species abundances, these con-
straints are unlikely to be due to temperature alone and could be
shaped by species interactions surrounding resource limitations.
Temperate reef fish communities typically exhibit less community

compositional change66 and higher evenness across latitudes35, which
could contribute to the relatively higher biomass production in these
regions compared to the tropics (as denoted by their modelled inter-
cepts, see Table S2). Increasing species richness in temperate regions
had a greater impact on total community biomass production than
tropical communities (Fig. 2), whichmainly conforms to the traditional
BEF paradigm: increasing richness correlates with increasing function
delivery. In species-depauperate systems, such as those most often
found in temperate areas, each additional species in a community
would expand into relatively unoccupied ecological niches3,35. Conse-
quently, with relatively low interspecific competition, each additional
species could theoretically attain larger population sizes and, thus,
deliver higher levels of functions, such as biomass production. Indeed,
while evenness was not as strong of a predictor of functioning across
geographic regions (see Fig. 1b), the dominance of high-performing
species assessed within temperate regions has been shown to be a
mechanistic driver of functioning in local marine communities (e.g.,
refs. 17–19). It is therefore possible that the strong, positive richness-
emphasised BEF expressed in temperate regions across marine reef-
associated fishesmay reflect greater generalisations found throughout
the BEF narrative. If the inherent biases derived fromexperimental BEF
studies in high-latitude locations67 are matched with the possibility
that BEF effects can be stronger in temperate regions, then these
biases could have been responsible for the disproportional emphasis
on the dominant role of species richness, not abundances, on eco-
system functioning across observational BEF studies.

Given our empirical finding that high-diversity tropical commu-
nities are characterised by high abundances and low per-capita pro-
ductivity, it appears that function delivery in hyperdiverse systems,

Fig. 2 | Global biodiversity-ecosystem function relationship (BEF) across mar-
ine reeffishes.Global BEF relationship across temperate (blue; circles) and tropical
regions (red; diamonds). Each point is one survey and the thick black line is the
median fitted trend from 400 randomly sampled draws. Note the y axis is on the
log10 scale and the points have been jittered (i.e., a very small random number has
been added or removed) to improve clarity and interpretability of the figure. Inset:

posterior distributions of modelled BEF relationships in tropical (top row) and
temperate regions (bottom row) using Hill diversity emphasising abundance
effects (green, ℓ = 10) and richness effects (purple, ℓ = 1). The points denote the
median coefficient estimates, while the thick and thin bars denote the 50% and 90%
credible intervals, respectively. Coefficient estimates can be found in Table S2.
Source data are provided as a Source Data file.
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such as coral reefs, is primarily mediated by species’ abundances, a
factor which has largely been overlooked in previous BEF field studies.
Indeed, high-diversity communities would require higher abundances
to maintain steady increases in community-level biomass production
as low-to-moderately high-diversity communities. In other words,
increases in both species’ abundances and biodiversity would need to
be maintained to support continuously increasing levels of ecosystem
functioning in high-diversity systems. Although the communities that
are delivering some of the highest rates of function (in this case, bio-
mass production) are necessarily the communities with the highest
biodiversity, the difference in their observed capacity to provide this
function relative to some communities with much lower biodiversity
may be relatively small. Regardless of the relationship between diver-
sity and biomass production, all tropical communities appear to be
physiologically limited by temperature (Fig. 4; Fig. S4)61. Under future
ocean warming scenarios, it is likely that increased temperature will
further constrain the magnitude of function delivery expressed by
communities that appear to be at their physiological limits, regardless
of their species composition. The thermal tolerance-induced geo-
graphic ranges of cold-water fishes are continuously constrained by

oceanwarming, indicating that cool-water species are likely to bemore
vulnerable than their tropical counterparts68. Therefore, BEF effects in
temperate regions may shift towards tropical strategies, with
increased emphases on abundances instead of species richness. We
can therefore expect that with warming oceans, the temperature-
related metabolic constraints on per-capita biomass production and
the changes in ecological dynamics (e.g., species interactions) will
reshape the productivity of fishes differently across geographic
regions.

Methods
Wedefinedecosystem functions as themovementor storageof energy
or materials through an ecosystem41,42. We therefore adapted and
applied a relatively novel approach for calculating biomass
production40, which is quantified as the rate of biomass produced via
ontogenetic growth of all surveyed individuals over 500m2 over the
course of one day, instead of using a proxy for functioning (e.g.,
standing stock biomass as seen in ref. 22). We first conducted a sys-
tematic literature review on all published von Bertalanffy growth
models on marine teleost fishes from around the world to build a

Fig. 3 | Deconstructing the BEF across geographic regions. The effects of Hill
diversity emphasising abundance effects (i.e., diversity Dℓ=10) on total community
abundance across a temperate and b tropical regions. The effects of Hill diversity
on per-capita biomass production (g indiv−1 500m−2 day−1) across c temperate and
d tropical regions. Hexagons denote thedensityof the rawdata and are colouredby
the number of observations per bin. The thick black lines are the median fitted
trends from 400 randomly sampled draws. The insets in (a, c) show the posterior

distributions of the estimated slope coefficients for tropical and temperate regions
in red and blue, respectively. The points denote themedian estimates and the thick
and thin bars represent the 50% and 90% credible intervals, respectively. Note the
50% credible intervals in (a) are nearly too narrow to be shown. Coefficient esti-
mates for all models can be found in Table S2. Note all y axes are on the log10 scale.
Source data are provided as a Source Data file.
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machine learning model to predict growth coefficients for fishes
without empirically measured growth curves (as in ref. 39). Predictive
models used a combination of ecological and environmental trait data,
while also accounting for the agingmethod used (see below). We then
used predicted growth coefficients to calculate the biomass produc-
tion of reef fishes censused fromone of the largest standardised global
survey programs in the world: the Reef Life Survey program37,38.
Although the Reef Life Survey program specifically censuses relatively
shallow reef habitats, some of the species recorded have lower depth
limits beyond 1000m, hence we included all fishes in our systematic
literature review. We then used Hill numbers to holistically capture
multiple axes of biodiversity and assessed the BEF from the best-fitting
Hill diversity metric. All models accounted for potential sources of
environmental variation (i.e., water visibility, survey depth, tempera-
ture) and spatial heterogeneity (i.e., realm- and site-level effects).

Data collation
We expanded on the framework developed by ref. 69 to generate
standardised species-level estimates of somatic growth across marine
teleost fishes. In short, we used a derivation of the von Bertalanffy
GrowthModel70 known asKmax, which can be interpreted as the rate at
which an individual along a specific growth trajectory would reach its
asymptotic size if it grew to the species’ maximum recorded size69.
Please see ref. 69 for a detailed description of the quantification of
Kmax and its associated equations. Because ref. 69 only considered
coral reef fishes, we expanded on this by (1) first conducting a sys-
tematic literature review of all published Von Bertalanffy growth
curves for all marine fishes, including reef and non-reef habitats; and
(2) generating new predictive models to predict Kmax across all marine
teleost fishes. Although we are estimating growth rates for fishes sur-
veyed in relatively shallow coastal, hard substratum-associated habi-
tats, fishes found in pelagic systems or from deeper waters have been
recorded on Reef Life Survey transects. To ensure accurate growth
estimates for all available fishes, we included observations from all
non-reef habitats in our predictive models.

We collated a list of growth studies from FishBase71 (accessedMay
2022; n = 5770), which we supplemented with a systematic literature
review (completed September 2022; n = 1916). We used the ISI Web of
Science database using the search string fish * AND (growth OR von
Bertalanffy), which resulted in 141649 articles. We filtered articles
based on their titles and abstracts, removed all duplicates between the
two sources, and corrected any typological/rounding errors recorded

from FishBase. We only included studies where species were collected
from marine habitats (we omitted all freshwater species that were
recorded in euryhaline habitats) and those where the discrete geo-
graphic locations were provided (see ref. 69 for a detailed explana-
tion). This yielded 7686 growth curves encompassing 1480 species.
From each study, we extracted the von Bertalanffy growth parameters
L∞ and K, the length measurement type (i.e., total length, standard
length, or fork length), themethodused for aging (i.e.,mark recapture,
growth rings (e.g., otolith, scale, or vertebrae), length frequency, or
unknown), and the geographic location. We then used the length-
length conversion factors from FishBase to transform all estimates of
L∞ to total length in cm.

With the mined growth values from the literature, we generated
predictive Extreme Gradient Boosting models to use a series of traits
and environmental variables to (1) explain variation in Kmax across
fisheswith empiricallymeasuredgrowth values and (2) predictKmax for
fishes lacking data (as in ref. 39). Specifically, we predicted growth
trajectories for all the fishes recorded using a standardised global
underwater visual census program, the Reef Life Survey program
(accessed 16 December 2021). In short, reef fish communities were
censused along 50 m-long transects along coral and rocky reefs
around the world. Trained divers recorded the identity, size class, and
abundance of all fishes across one-to-two 250m2-area blocks along a
transect along relatively shallow depth ranges (<20m). Detailed
explanations of the survey methods can be found online (www.
reeflifesurvey.com). We removed all surveys that were only composed
of a single block from analyses (n = 171). For each species, including
those from themined literature and those recorded from the Reef Life
Survey,we recorded the following trait data:maximumbody size (total
length, cm), trophic level (continuous), maximum depth (m), and
position in the water column (categorical). Most of the trait data came
from FishBase or the primary literature; when data were not available
at the species level, we used estimates at the genus or family level. We
used a 2° buffer around their respective locations and the years that
they were sampled to generate an estimate of sea surface temperature
(°C) using raster data from the National Oceanic and Atmospheric
Administration (https://psl.noaa.gov/data/gridded/data.noaa.oisst.
v2.html).

Predicting growth
We combined the trait data (i.e., maximum body size, maximum
depth, trophic level, and position in the water column) with esti-
mates of sea surface temperature and the aging method (i.e., mark
recapture, otolith rings, scale rings, other rings, length frequency,
and unknown) in an Extreme Gradient Boosting framework72,73 to
explain the variation and predict the growth trajectories (Kmax) of all
the fishes recorded on Reef Life Survey (i.e., all surveyed fishes were
given a predicted growth trajectory). Extreme Gradient Boosting
models are a form of machine learning algorithm that combine
multiple decision trees with a boosting algorithm, exhibit relatively
high predictive accuracy, and are able to handle non-linearities and
complex interactions72,73. We modelled Kmax using a Gamma loss
function and selected hyperparameters using the two-step tuning
method from refs. 39,69, which involved varying the learning rate
(eta; 0.1–0.9), regularising parameter (gamma; 0.1–0.9), maximum
tree depth (max_depth; 5, 10, or 15), and the subsample rate
(0.1–0.9). The final hyperparameters reduced the negative log like-
lihood from 2.88 to 1.70 using the following hyperparameters: eta =
0.098, gamma= 0.89, max_depth = 10, subsample = 0.096.

We used a cross-validation procedure to model and predict Kmax.
The model was built and trained on 80% of the data and assessed
against the remaining 20% test set. We assessed the model’s bias by
subtracting the predicted Kmax value from the test set against the
observed value; a well-fitted model should have a bias close to zero.
Themodel performancewas also assessedby extracting theR2 (i.e., the
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goodness of fit) value from fitting a linear model between log(pre-
dicted) against log(observed) values from the test set. Finally, we
predicted Kmax values for all the species recorded from the Reef Life
Survey program. Due to the stochastic model-building procedure of
Extreme Gradient Boosting models, we bootstrapped the entire pro-
cess for 1000 iterations, using the XGBoost package v.1.4.1.172,73 in R
v.4.1.074. We chose to predict growth using the aforementioned
method because our XGBoost models achieved a low median predic-
tion bias of −0.005 (minimum, maximum: −0.01, 0.0008) and a high
median precision R2 of 0.72 (0.65, 0.76; Fig. S5), whereas phylogenetic
predictive models (e.g., ref. 75) can produce predictions with an
accuracy as low as 51%. As in refs. 39,69, maximum body size was the
best predictor of Kmax (median variable importance: 43.1%), followed
by sea surface temperature (21.1%), maximum depth (14.6%), trophic
level (12.1%), aging method (5.3%), and position in the water column
(3.7%; Fig. S6; Table S3).

Calculating productivity
We calculated productivity following the methods set forth by ref. 40
using our newly estimated values of Kmax. In short, productivity is
measured as the amount of biomass acquired via somatic growth of all
individuals in a community over the course of one day.

Productivity= Expected biomasst �Observed biomasst�1 ð1Þ

Here, the expected biomass is the standing biomass plus the
expected biomass arising via somatic growth, the observed biomass
is the community standing biomass, and t is the day. This generates a
functional, process-based quantification of biomass production41,42,76,
which captures the underlying energetic and elemental fluxes
experienced by the community compared to static proxies, such as
standing stock biomass25,40. To place each individual within their
growth trajectories, we randomly drew Kmax values from a truncated
normal distribution from their 90% predicted quantile range. We
then simulated the growth that would be expressed by each indivi-
dual over the course of one day and used the difference between the
two biomass estimates as the estimate of productivity. The total
productivity was therefore calculated as the sum of the somatic
growth of all individuals over the course of one day over 1000
bootstrapped simulations40.

Quantifying biodiversity
To capture multiple axes of biodiversity, namely abundance and
richness, we used Hill numbers with different scaling parameters.
Common indices used to quantify biodiversity (e.g., species richness)
can be sensitive to rare species occurring in low abundances, whereas
Hill numbersprovide a continuous framework to estimate the effective
number of species present46,47. Following ref. 12,48, we calculated Hill
diversity (D) as:

D =
XS

i= 1

pi
1
pi

� �l
 !ð1=lÞ

ð2Þ

Here, p1, p2, …, pS are species’ relative abundances for species
richness S. This formulation of D allows for the differentiation between
weights via abundance and rarity by controlling values of the scaling
parameter ℓ12,48. Specifically, setting ℓ to different values (or calculating
the limit as ℓ approaches zero) generates different diversity indices
and can drastically influence BEF relationships48. We explicitly tested
the inverse Simpson Index (ℓ = −1), exponentiated Shannon entropy
(ℓ =0), species richness (ℓ = 1), and the maximum abundance-
emphasised value tested by ref. 48 (ℓ = 10). Increasing emphasis on
rarity will mathematically emphasise abundances: because the lowest
possible count for a species is one individual (i.e., a singleton),

increasing rarity can only be achieved by increasing the total abun-
dance of all other species in the community48. Therefore, Hill numbers
that emphasise rarity more than species richness place de facto
emphasis on communities with high total abundances48. We ran indi-
vidual BEF analyses with each metric of biodiversity (i.e., Simpson
Index, exponentiated Shannon entropy, species richness, and abun-
dance index) and compared models by assessing relative effect sizes
and using leave-one-out information criterion (LOOIC).

Analyses
We first conducted a Principal Component Analysis (PCA) to assess the
correlation of all Hill diversity metrics, which were log-transformed
prior to all analyses to reduce the leverage of transects with dis-
proportionally high diversity values. We presented figures with non-
logged values, however, to highlight our hypotheses that each addi-
tional species unit would have the greatest impact in low-diversity
systems, with the effect of each additional species unit having a
saturating effect in log space. To assess the biodiversity-ecosystem
function relationships, we used Bayesian generalised linear mixed-
effects models (GLMMs) using productivity as the response variable.
We individually modelled a global BEF model with productivity as a
function of each Hill diversity metric (i.e., Simpson index, expo-
nentiated Shannon entropy, species richness, and abundance index).
We chose the top model as that which produced the smallest LOOIC
value. All models included an interaction term between Hill diversity
and latitudinal position; latitudinal position was separated into tem-
perate and tropical locations based on their respective geographic
realms. We specified a gamma error distribution for all models by
specifying gamma shape (ϕ) and rate (λi) parameters.

Gamma yijϕ, λi
� � ð3Þ

λi =
ϕ
μi

ð4Þ

log μi

� �
=β0 + βD log xD

� �
+ βtropxtrop +βD*trop log xD

� �
xtrop

+βsst, vis,depthXi +αsite

ð5Þ

αsite � αrealm + εsite ð6Þ

εsite � Normal 0, σsite

� � ð7Þ

β0 � Normal 0, 5ð Þ ð8Þ

βD, trop, D*trop, sst, vis,depth � Normal 0, 1ð Þ ð9Þ

Here, yi is the observed community productivity for transect i, β0
is the overall intercept, βD*trop is the interaction termbetween diversity
and the tropics, βD,trop,sst,vis,depth are the estimated effects for Hill
diversity (D), tropics (trop), sea surface temperate (sst), visibility (vis),
and depth, respectively. We ran an additional model following the top
model structure, but used the Boltzmann-Arrhenius relationship to
convert temperature to inverse temperature (1/temperature x Boltz-
mann’s constant) with temperature in Kelvin53. The term Xi is the
design matrix of covariates. Site- and realm-level grouping factors are
denoted as αsite and αrealm, respectively, following a nested structure of
site within realm. We specified weakly informative priors on all esti-
mated effects. We modelled per-capita productivity following the
same model structure as total community productivity, but we added
log-transformed abundance as an offset in themodel. Adding an offset
in the model allows us to measure productivity on a per-capita basis,
while still following the same underlying gamma error distribution.
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We followed a similarmodel structurewhenmodelling changes in
abundance (yi) with diversity between temperate and tropical regions,
but we specified a negative binomial distribution using the inverse
shape parameter (ω) for overdispersion.

Negative Binomial yi jμi,ω
� � ð10Þ

log μi

� �
=β0 + βD log xD

� �
+βtropxtrop + βD*trop log xD

� �
xtrop

+ βsst, vis,depthXi + αsite

ð11Þ

Var yi
� �

= μi +
μ2
i

ω
ð12Þ

αsite � αrealm + εsite ð13Þ

εsite � Normal 0, σsite

� � ð14Þ

β0 � Normal 0, 5ð Þ ð15Þ

βD, trop, sst, vis,depth � Normal 0, 1ð Þ ð16Þ

For all models, we scaled and centred all continuous fixed effects by
subtracting the mean and dividing by the standard deviation prior to
analysis. All models used four Markov-Chain Monte Carlo chains for
4000 iterations after an initial warmup phase of 2000 iterations using
the brms package v.2.16.477. We assessed model fit using posterior pre-
dictive checks and simulated residuals from theDHARMapackage v.0.4.578

and achieved chain convergence for all estimate parameters (scale
reduction factor Rhat <1.01) and effective sample sizes were all greater
than 1800 (Table S2). Using Moran’s I, we detected no spatial auto-
correlation in the simulated residuals of any of the models. All modelled
coefficients fromGLMMs can be found in Table S2. No statisticalmethod
was used to predetermine sample size. Surveys comprising a single block
were excluded (see above). There were no experiments involved,
therefore blinding and randomisation were not used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data were sourced from publicly available sources, including the
peer-reviewed literature, FishBase (https://www.fishbase.org), and the
Reef Life Survey program (https://reeflifesurvey.com). Data generated
from these sources and used for analyses is available at Figshare
(https://doi.org/10.6084/m9.figshare.26156344)79. Source data are
provided as a Source Data file. Source data are provided with
this paper.

Code availability
The R (v.4.1.0) code used to run analyses and generate figures is
available at Figshare (https://doi.org/10.6084/m9.figshare.26156344)79.
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