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Prevalence of loss-of-function, gain-of-
function and dominant-negative
mechanisms across genetic disease
phenotypes

Mihaly Badonyi & Joseph A. Marsh

Molecular disease mechanisms caused by mutations in protein-coding regions
are diverse, but they can be broadly categorised into loss-of-function, gain-of-
function and dominant-negative effects. Accurately predicting these mechan-
isms is important, since therapeutic strategies can exploit these mechanisms.
Computational predictors tend to perform less well at the identification of
pathogenic gain-of-function and dominant-negative variants. Here, we develop
a protein structure-based missense loss-of-function likelihood score that can
separate recessive loss of function and dominant loss of function from alter-
native diseasemechanisms.Usingmissense loss-of-function scores,we estimate
the prevalence of molecular mechanisms across 2,837 phenotypes in 1,979
Mendelian disease genes, finding that dominant-negative and gain-of-function
mechanisms account for 48% of phenotypes in dominant genes. Applying
missense loss-of-function scores to genes with multiple phenotypes reveals
widespread intragenic mechanistic heterogeneity, with 43% of dominant and
49% ofmixed-inheritance genes harbouring both loss-of-function and non-loss-
of-function mechanisms. Furthermore, we show that combining missense loss-
of-function scores with phenotype semantic similarity enables the prioritisation
of dominant-negative mechanisms in mixed-inheritance genes. Our structure-
based approach, accessible via a Google Colab notebook, offers a scalable tool
for predicting disease mechanisms and advancing personalised medicine.

The vast majority of disease-causing genetic variants identified to date
are located within protein-coding regions of the genome. While many
lead to a loss of protein function (LOF), often through premature stop
codons or missense changes that destabilise protein folding, others
exert their effects via alternative (non-LOF) mechanisms1. Gain-of-
function (GOF) mutations cause disease through a wide range of
molecular mechanisms, including increased activity (hypermorphs),
altered binding specificity, or acquisition of novel functions (neo-
morphs). Dominant-negative (DN)mutations interferewith the activity

of the wild-type protein, either by co-assembling into dysfunctional
complexes2 or by competitively sequestering shared binding partners
or substrates. Understanding these mechanisms usually requires
examining how mutant proteins interact with other molecules. Their
impacts can manifest through various means, including disruption or
creation of novel interactions, altered binding affinity or specificity,
changes to protein complex assembly, and induction of aggregation,
mislocalisation, or phase separation1. The diversity of molecular
mechanisms presents a significant challenge for their identification,
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often necessitating elaborate experimental strategies to validate
them3, which are costly and time-consuming.

Accurate prediction and validation of molecular disease
mechanisms are essential for developing effective targeted therapies.
Diseases resulting from LOF mutations are usually amenable to gene
therapy, where the delivery of functional gene copies compensates for
the defective allele. This approach has successfully treated conditions
such as RPE65-associated retinal dystrophy4 and Duchenne muscular
dystrophy5. In contrast, diseases caused by non-LOF mutations are
more suited to treatment with small molecules that inhibit the altered
or excessive function, as demonstrated by the development of KRAS
degraders for cancer6, or through gene-editing and silencing strate-
gies, as exemplified by a promising treatment for retinitis pigmentosa,
driven by the GOF mutation p.Pro23His in rhodopsin7. Similar allele-
specific targeting approaches offer hope for treating DN conditions,
such as collagen-related dystrophy8 and long QT syndrome9. While
most genes are associated with a single molecular mechanism, some
are known to exhibit multiple mechanisms, requiring distinct ther-
apeutic interventions. For example, sodium channel blockers are
effective for epilepsy associatedwithGOF variants in SCNA110, whereas
gene replacement therapy may soon address SCNA1 haploinsuffi-
ciency in Dravet syndrome11.

Despite the clear clinical need, predicting molecular disease
mechanisms remains difficult. Current computational methods usually
focus on predicting LOF and function-altering mechanisms at the level
of individual genetic variants12–14. However, there are also gene-level
features that tend to be associated with different mechanisms2,15–17. We
recently developed amodel topredict themost likelymechanismwhen
heterozygous disease mutations are found in a gene18. These predic-
tions have now been incorporated into the DECIPHER database19,
assisting clinicians in identifying potential disease mechanisms.

Wepreviously reported two structural properties—specifically, the
energetic impact and clustering ofmissense variants—that discriminate
betweengeneswith LOF andnon-LOFmechanisms exceptionallywell16.
This is because LOF mutations tend to be highly destabilising and
spread throughout protein structures, whereas non-LOF mutations,
which are structurally milder, often exhibit clustering within func-
tionally important regions. We quantify the impacts of variants on
protein stability using changes in Gibbs free energy of folding (ΔΔG)
predicted with FoldX20, while variant clustering is assessed with the
extent of disease clustering (EDC) metric16. While ΔΔG is calculated at
the variant level, EDC operates at an intermediate level, requiring
multiple variants but not necessarily all disease variants within a gene.
This flexibility enables EDC to be applied to a group of variants, par-
ticularly those associated with the same phenotype, as demonstrated
for cancer-associated and Weaver syndrome variants in EZH221.

In this study, by integrating EDC and ΔΔG data from pathogenic
variants, we develop an empirical distribution-basedmethod to derive
amissense LOF (mLOF) likelihood score and demonstrate its utility for
improvingmolecularmechanismpredictions in a Bayesian framework.
By assembling phenotype annotations for over 70% of pathogenic
missense variants in ClinVar22, we show that the mLOF score is parti-
cularly powerful at the phenotype level.Most importantly, we estimate
the prevalence of molecular mechanisms across genetic disease phe-
notypes, revealing widespread mechanistic heterogeneity and high-
lighting its implications for precision medicine. We make our method
available as aGoogleColabnotebook, allowingmLOF score calculation
for variant sets in human protein-coding genes at https://github.com/
badonyi/mechanism-prediction.

Results
Developing the mLOF score for predicting missense variant
molecular mechanisms
Our objectivewas to predict the likelihoodof a set ofmissense variants
being associated with LOF vs. non-LOF molecular mechanisms by

integrating information about their protein structural context. Speci-
fically, we sought to combine clustering in three-dimensional space, as
quantified by EDC, and predicted energetic impacts, as measured by
ΔΔG. To achieve this, we developed an approach based on the
empirical distributions of these metrics in LOF and non-LOF genes16,
i.e., genes with pathogenicmissense variants known to act via LOF and
DN or GOF mechanisms, respectively. Importantly, we use ΔΔGrank in
place of rawΔΔG values. This is a recently introduced rank-normalised
metric that improves interpretability and facilitates comparisons
across different proteins23,24. For a given observation of EDC and
ΔΔGrank in a set of variants, we calculate the marginal probabilities of
these observations being drawn from the LOF rather than non-LOF
distributions (Supplementary Fig. 1). The probabilities are then com-
bined into the mLOF score, which represents the likelihood that the
variants will have a LOF effect given their energetic impact and dis-
persal within the protein structure.

To evaluate the utility of the mLOF score, we treated predictions
from our previously published proteome-scale model (pDN/GOF/LOF)
as informative priors for the likelihood of a disease mechanism
occurring in a gene18. By updating these priorswith themLOF score, we
derived mechanism-specific posterior scores (postDN/GOF/LOF),
which represent adjusted estimates of the likelihood that a gene
exhibits a mechanism, taking into account the structural properties of
its pathogenic missense variants. Figure 1a provides a graphical over-
view of our method.

We first applied this method to pathogenic missense variants in
exclusively autosomal dominant (AD) genes with gene-level molecular
mechanism classifications18, and calculated the area under the receiver
operating characteristic curve (AUROC) for the mLOF score, as well as
the prior and posterior mechanism-specific scores (Fig. 1b). We found
the mLOF score to be predictive across the binary class pairs pre-
viously used to construct the priors (DN vs. LOF, GOF vs. LOF, and LOF
vs. non-LOF), with AUROC ranging from 0.622 to 0.714, indicating
generalisability across the mechanisms.

One possible explanation for the limited performance is that
many genes are associated with multiple molecular disease mechan-
isms, which imposes fundamental limitations on our gene-level
approach. Although we only have gene-level rather than phenotype-
level classifications, one way of addressing this limitation is by con-
sidering those genes with a single disease phenotype, which are thus
more likely to be associated with a unique mechanism. Therefore, we
used variant-level phenotype annotations from the Online Mendelian
Inheritance in Man (OMIM) database25 to identify dominant genes
associated with a single disease phenotype. Notably, AUROC values
weremarkedly increased across all binary class pairs (Fig. 1b). A similar
conclusion is supported by the area under the balanced precision-
recall curve (AUBPRC) analysis26 (Supplementary Fig. 2). We also
derived the optimal threshold for distinguishing between LOF and
non-LOFmechanisms using the single phenotype genes. The resulting
value of 0.508 provides a practical cutoff for assessing whether a
group of variants is likely to exhibit a LOFmechanism and can be used
to compare different variant groups in the same gene. At this thresh-
old, the mLOF score achieves a sensitivity of 0.721, a specificity of
0.702, an accuracy of 0.712, and an F1 measure of 0.719, indicating a
balanced performance.

We assessed the robustness of the model in two ways: first, by
progressively increasing the minimum number of unique residue
positions required for EDC calculation; and second, by restricting the
analysis to ClinVar variants with at least a one-star review status.
AUROC and AUBPRC values under these conditions are summarised in
Table 1. We found that model performance remained stable when
limited to variants with at least a one-star review status. As expected,
performance moderately improved when more pathogenic residue
positions were considered, reflecting increased confidence in the
collective properties of the variants.
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As an additional validation, we applied the mLOF score to pre-
viously published high-throughput functional assay data on six human
disease genes: HRAS27, MC4R28, HMBS29, TP5330, PTPN1131, and
MTHFR32 (Supplementary Fig. 3a–f). In all assays, the mLOF score was
predictive of the assigned classifications, with scores for the different
molecularmechanisms consistently falling above or below the optimal
threshold. For example, a clear difference was observed between GOF
and LOF HRAS variants, with mLOF scores of 0.426 and 0.613,
respectively (Supplementary Fig. 3a). GOF variants were clustered at

key functional sites, whereas LOF variants spread across protein core
residues. For TP53, we found that variants with a LOF mechanism had
the highest mLOF score (0.551; Supplementary Fig. 3d), primarily dri-
ven by the dispersal of variants in the structure. DN variants, in con-
trast, had a lower mLOF score of 0.445 and were concentrated within
the DNA-binding domain. Notably, variants exhibiting both DN and
LOF properties in the assay clustered exclusively in the DNA-binding
domain, showed the highest predicted structural destabilisation, and
had the lowest mLOF score (0.351). We speculate that these variants
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Fig. 1 | Predicting the likelihood of a loss-of-function mechanism based on the
structural properties of pathogenic missense variants. aOverview of the mLOF
score framework. The missense LOF likelihood score mLOF is calculated from
empirical distributions of the metrics EDC (spatial clustering) and ΔΔGrank (ener-
getic impact) in LOF and non-LOF genes. This score is then used to update gene-
level mechanism-specific priors (pDN/GOF/LOF) established in an earlier study18.
The final posterior scores (postDN/GOF/LOF) represent adjusted estimates of the
likelihood that a gene exhibits a specific molecular disease mechanism, given the

structural properties of its pathogenic missense variants. b Receiver operating
characteristic (ROC) curves and area under the curve (AUC) values of the mLOF
score, the prior mechanism probability for the gene, and the posteriormechanism-
specific scores across the binary class pairs used to construct the priors. The ana-
lysis is split into all genes, using all pathogenic missense variants, and a subset of
single-phenotype genes, where only variants linked to the specific OMIM pheno-
types are considered. N is the number of genes in each group. mLOF toptimal shows
the optimal ROC threshold. Source data are provided as a Source Data file.
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are highly destabilising in TP53 knockout assays, but may achieve
partial stabilisation through wild-type binding, thus manifesting a DN
effect in a context-dependent fashion.

Furthermore, we evaluated the mLOF score against GOF predic-
tions by the LoGoFunc method12. Although LoGoFunc provides GOF
probabilities at the variant level, averaging these probabilities for a
phenotype yields ameasure comparable to themLOF score.We tested
the performance of this metric in dominant single-phenotype genes,
using both all available genes and the test set of our gene-level pre-
dictor. As shown in Supplementary Fig. 3g, h, in both cases, when
combined with the prior GOF mechanism likelihood, mLOF yielded
postGOF scores that substantially outperformed the average GOF
probabilities from LoGoFunc. Notably, although updating pGOF with
the average GOF probabilities from LoGoFunc achieved the nominally
highest AUROC on all data, its performance declined when evaluated
on the test set. We also note that LoGoFunc incorporates many fea-
tures overlapping with those used to derive the gene-level priors, and
is therefore not fully independent of the prior, unlike the mLOF score.

Prevalence ofmolecularmechanisms across disease phenotypes
Motivated by these findings, we set out to assess the prevalence of
molecular mechanisms across genetic disease phenotypes. We first
classified disease phenotypes on the basis of their inheritance. Specifi-
cally, genes can show either exclusively autosomal dominant (AD) or
autosomal recessive (AR) inheritance, or they may show mixed inheri-
tance, being associated with both dominant and recessive variants.
Dominant and recessive variants in mixed-inheritance genes may be
associated with distinct phenotypes, in which case we can consider the
dominant ([AD]-AD/ARmixed) or recessive ([AR]-AD/ARmixed) phenotypes
separately. In contrast, as we only have gene-level phenotype:inheritance
associations available from OMIM, for those genes with mixed-
inheritance associated with the same phenotype, we are unable to dis-
tinguishbetweendominantandrecessivevariants, so theyareconsidered
together (AD/ARsame). We also classified AD phenotypes on the basis of
molecular mechanisms, using our previous gene-level LOF, GOF and DN
annotations. These phenotype classifications are summarised in Table 2.

Figure 2a shows the mLOF score distribution for the different
inheritance-based phenotype classifications, ordered by theirmean. The
observed distributions align remarkably well with our expectations: AR,
[AR]-AD/ARmixed and XLR phenotypes display the highest mLOF scores.
AD phenotypes, while shifted to the left side of the optimal threshold by
the mean, are evidently bimodal, suggesting the presence of both LOF
and non-LOF mechanisms. Interestingly, [AD]-AD/ARmixed phenotypes
fall on the left side of the optimal threshold, with a mean of 0.499. This
can be explained by considering that the coexistence of a recessive
disorder provides a level of evidence against dosage sensitivity33, thus
making AD phenotypes in these genes more likely to arise through
alternative mechanisms. In contrast, AD/ARsame phenotypes have a
higher mean mLOF score relative to AD phenotypes, which could result
from the unequal mixing of AD and AR variants—a limitation inherent to
our use of phenotype-level rather than variant-level annotations. Alter-
natively, missense variants in these phenotypes may follow a single

inheritance mode, while other mutation types, such as protein null
variants (e.g., nonsense or frameshift mutations that are presumed to
completely abolish protein function), particularly when homozygous,
correspond to the other mode. This phenomenon has been observed,
for example, in ITPR1, where homozygous null and de novo missense
variants both cause Gillespie syndrome34.

The different mechanism-based phenotype classifications are
shown in Fig. 2b. As expected, dominant LOF phenotypes have the
highest mean mLOF score (0.547), while GOF and DN phenotypes are
strongly left-shifted, with mean mLOF scores of 0.480 and 0.474,
respectively. Unknown phenotypes, those of dominant genes without
reported mechanisms, show a left-skewed distribution with a mean of
0.484. This likely reflects detection bias, as non-LOF variants are more
difficult to experimentally characterise and less well predicted by
computational tools, leading to an apparent enrichment of alternative
mechanisms in these genes.

Next, we classified AD phenotypes based on their highest
mechanism-specific posterior scores into LOF, GOF, andDNcategories
to assess the contribution of different molecular mechanisms. We
focused on three groups in particular: exclusively AD genes with a
single phenotype, those with multiple phenotypes, and AD pheno-
types in mixed-inheritance genes, i.e., genes associated with both AD
and AR disorders. In Fig. 2c, we show the composition of predicted
molecular mechanisms across these groups. Single-phenotype AD
genes exhibited the largest fraction of phenotypes with a LOF
mechanism, at 54.6%. The remaining fraction was attributed to GOF
and DN mechanisms occurring at similar frequencies, at 23.8% and
21.6%, respectively. In multi-phenotype AD genes, the fraction of

Table 1 | Performance of the posterior score postLOF at distinguishing between LOF and non-LOFmechanismsusing dominant
single-phenotype genes

ClinVar P/LP variants Min N of residues N genes AUROC AUBPRC

All, with phenotype 3 172 0.889 0.874

All, with phenotype 5 112 0.927 0.910

All, with phenotype 10 47 0.937 0.911

>= 1-star, with phenotype 3 122 0.909 0.902

The four conditions represent different stringency levels, including the number of unique residue positions (min N of residues) considered for the calculation of the EDC clustering metric or for
ClinVar evidence assertion (star-rating). Area under the receiver operating characteristic curve (AUROC) and balanced precision-recall curve (AUBPRC) are shown. Source data are provided as a
Source Data file.

Table 2 | Inheritance- and mechanism-based classification of
disease phenotypes

Inheritance-based phenotype classification Abbreviation

Phenotypes of exclusively autosomal recessive genes AR

Autosomal recessive phenotypes of mixed-
inheritance genes

[AR]-AD/ARmixed

Autosomal dominant phenotypes of mixed-
inheritance genes

[AD]-AD/ARmixed

Phenotypes of autosomal genes inherited in both domi-
nant and recessive modes

AD/ARsame

Recessive phenotypes of X-linked genes XLR

Phenotypes of exclusively autosomal dominant genes AD

Mechanism-based phenotype classification

Autosomal dominant phenotypes in geneswith a loss-of-
function mechanism

LOF

Autosomal dominant phenotypes in genes with a gain-
of-function mechanism

GOF

Autosomal dominant phenotypes in genes with a
dominant-negative mechanism

DN

Autosomal dominant phenotypes in genes without a
reported molecular mechanism

Unknown
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phenotypes with a LOF mechanism was lower, at 48.1%, followed by
GOF at 32.5% and DN at 19.3%. This differencemay be explained by the
observation that multiple disease phenotypes are unlikely to arise in
haploinsufficient genes,where reduceddosage (a formof LOF) already
causes disease; thus, by exclusion, additional phenotypes are more
likely to involve non-LOF mechanisms. AD phenotypes in mixed-
inheritance genes had the lowest proportion of LOF mechanisms, at
just 9.9%, followed by GOF at 53.6% and DN at 36.5%. As observed with
themLOF scoredistribution of these genes in Fig. 2a, this likely reflects
a reduced likelihood of haploinsufficiency conferred by the presence
of a recessive disorder, whichmakes dominant phenotypesmore likely
to arise through alternative mechanisms.

We next estimated the fraction of multi-phenotype genes with
disease phenotypes involving both LOF and non-LOF molecular
mechanisms. This analysis revealed that 43.1% of multi-phenotype AD
genes accommodate at least one DN or GOF disease mechanism in
addition to LOF. Similarly, in mixed-inheritance genes, we estimated a
frequency of 49.1%, assumingmost recessive disorders involve biallelic
LOF (with rare exceptions35,36), and quantifying the fraction with a
dominant non-LOF mechanism. These findings suggest that, based on
the structural properties of missense variants, mechanistic

heterogeneity is widespread among multi-phenotype genes. To facil-
itate access to these results, we provide a comprehensive list of OMIM
phenotypes (N = 2837) in Supplementary Data 1, including MIM iden-
tifiers, disease names, EDC and ΔΔGrank values, mLOF scores, and the
mechanism-specific posterior scores.

Dominant-negative phenotypes in mixed-inheritance genes
Intriguingly, our results suggest that LOF is very rare as a mechanism
underlying dominant phenotypes in mixed-inheritance genes,
accounting for only 9.9% of cases (Fig. 2c). While this might in part be
explained by considering that mixed-inheritance genes are less likely
to be haploinsufficient, there are many examples where the same
phenotype is associated with both dominant and recessive variants.
One possible explanation is that the recessive variants are hypo-
morphic, causing only a partial LOF in each allele that amount to the
same net wild-type activity level as complete LOF in one allele. To test
this hypothesis, we compared ΔΔGrank distributions of recessive phe-
notypes in mixed-inheritance genes ([AR]-AD/ARmixed) with those in
exclusively AR genes (Fig. 3a). We observed that [AR]-AD/ARmixed

phenotypes exhibit lower ΔΔGrank values compared with those of AR
genes (P = 1.6 × 10-3, Wilcoxon rank-sum test), consistent with the
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Fig. 2 | mLOF scores reveal the prevalence of molecular mechanisms at the
phenotype level. a,bDistributionofmLOFscores for inheritance- andmechanism-
based phenotype classifications (see Table 2 for the description of the abbrevia-
tions). N denotes the number of phenotypes in each group. Red line indicates the
optimal mLOF score threshold. Boxes represent data within the 25th and 75th
percentiles, the middle line is the median, the notches contain the 95% confidence
interval of the median, and the whiskers extend to 1.5× the interquartile range.
c The fractional composition of predicted mechanisms for phenotypes across the

indicated categories. The predictions represent the highest-ranking posterior
mechanism-specific score for each phenotype. N denotes the number of pheno-
types in each group. Bar charts show the fraction of genes with both LOF and non-
LOF (‘hybrid’) mechanisms, with 50/116 and 55/112 for multi-phenotype AD genes
and AD/ARmixed genes, respectively. Error bars are 95% credible intervals calculated
from a posterior distribution of fractions derived using the bootstrap estimates of
the optimal mLOF threshold. Source data are provided as a Source Data file.
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presence of hypomorphic variants. A similar tendency was observed
using raw ΔΔG values (Supplementary Fig. 4). While this trend also
appears in AD/ARsame genes, we do not have variant-level inheritance
classifications in these genes, where the tendency for recessive var-
iants to be hypomorphic may be even stronger, potentially explaining
the identical phenotypes for dominant and recessive variants. None-
theless, the case of PKD1, where recessive hypomorphic variants have
recently been implicated in polycystic kidney disease37—the same
phenotype for which there is sufficient evidence of haploinsufficiency
caused by dominant LOF mutations (ClinGen38 Curation ID: 007675)—
underscores the relevance of these effects.

Another phenomenon that could explain the tendency for domi-
nant and recessive variants in the same gene to be associated with
similar phenotypes is the DN effect, as has been described in cases
where DN variants phenocopy recessive disorders34,39–42. To test whe-
ther AD phenotypes with a predicted non-LOF mechanism have a ten-
dency to phenocopy the recessive disorder, we analysed all non-
redundant AD-AR phenotype pairs within AD/ARmixed genes, repre-
senting 217 phenotype pairs in 103 genes. These were grouped into a
high confidence non-LOF category if the mLOF score for the AD phe-
notype fell below the optimal threshold and was less than that for the
AR phenotype. We then calculated the semantic similarity between AD-
ARphenotypepairs usingHumanPhenotypeOntology43 terms,with the
hypothesis that the non-LOF category should tend to have higher
semantic similarity values due to its enrichment in genuine DN
mechanisms. As shown in Fig. 3b, the non-LOF class displayed sig-
nificantly higher AD-AR phenotype similarity values relative to AD-AR
phenotypepairs in the LOF class (P =9.2 × 10-3,Wilcoxon rank-sum test).

We further refined the analysis by filtering for genes whose DN-
specific prior was greater than that for GOF and selecting the pheno-
type pair with the highest similarity for each gene. Pairs with a
semantic similarity greater than 0.5 are listed in Table 3. Among these,
we highlight CLCN7 (Fig. 3c), with an mLOF score of 0.549 for the
recessive and 0.455 for the dominant forms of osteopetrosis (OPTB4

and OPTA2, respectively). These scores are reflective of the con-
siderably greater clustering of dominant variants, with an EDC of 1.36
vs. 1.03 for the recessive phenotype. The two phenotypes share many
clinical features, as implied by their disease names and semantic
similarity scores. Heterozygous osteopetrosis-associated variants are
known to exert a dominant-negative effect44–46. The p.Gly215Arg var-
iant, for example, disrupts CLCN7 trafficking in a dominant-negative
manner47, and has been used to generate a mouse model of OPTA2,
which recapitulates the characteristic osteopetrosis phenotype with
excessive bone deposition48. These findings highlight the utility of
combiningmLOF scoreswith semantic similarity to identifyDNdisease
phenotypes in mixed-inheritance genes.

Disease phenotypes linked to distinct molecular mechanisms
within the same gene
Given that mLOF score analysis suggested considerable mechanistic
heterogeneity among multi-phenotype genes, we aimed to identify
phenotype pairsmost likely to exhibit distinctmolecularmechanisms.
To this end, we calculated the difference in mLOF scores for all pos-
sible phenotype pairs within multi-phenotype genes, excluding those
with only recessive inheritance. We further refined our analysis by
selecting pairs from beyond the 95th percentile of the distribution,
which we consider particularly interesting, and where one phenotype
scored above and the other below the optimal threshold. Table 4
summarises these genes, listing their phenotypes with higher mLOF
scores (LOF-like) alongside those with lower mLOF scores (non-LOF-
like). For some of the top-ranking genes, discussed in more detail
below, protein structures and missense variant positions linked to the
different phenotypes are shown in Fig. 4.

SMCHD1 (Fig. 4a) is a member of the structural maintenance of
chromosomes protein family, which plays an essential role in epige-
netic silencing. Mutations in the gene are linked to two distinct clinical
phenotypes: the digenic dominant facioscapulohumeral muscular
dystrophy type 2 (FSHD2) and the dominant Bosma arhinia

P = 1.6 × 10−3

N = 392

AR
N = 878

0 0.25 0.5 0.75 1
ΔΔGrank

[AR]-AD/ARmixed

P = 9.2 × 10−3

N = 138

non-LOF
N = 79

0 0.25 0.5 0.75 1
AD-AR phenotype similarity

LOF

b

a
CLCN7

0.549
mLOF

OPTB4
OPTA2 0.455

c

Fig. 3 | mLOF score and phenotype semantic similarity prioritise dominant-
negative phenotypes in AD/ARmixed genes. a ΔΔGrank distributions for disease
phenotypes in exclusively recessive genes (AR) and recessive phenotypes in AD/
ARmixed genes ([AR]- AD/ARmixed). Boxes represent data within the 25th and 75th
percentiles, the middle line is the median, the notches contain the 95% confidence
interval of the median, and the whiskers extend to 1.5× the interquartile range. The
P-value represents a two-sided Wilcoxon rank-sum test. b Comparison of AD-AR
phenotype semantic similaritywithin [AR]- AD/ARmixed genes, split intowhether the
variants of the AD phenotype are predicted to have a non-LOF effect. The P-value

represents a two-sided Wilcoxon rank-sum test. c CLCN7, which encodes the H(+)/
Cl(-) exchange transporter 7, is an example of an AD/ARmixed gene with a reported
DN mechanism of pathogenesis. Its structure represents the AlphaFold-predicted
model (P51798 [https://alphafold.ebi.ac.uk/files/AF-P51798-F1-model_v1.pdb]).
Missense variant positions are shown for the dominant (OPTA2) and recessive
(OPTB4) forms of osteopetrosis, with their corresponding mLOF scores displayed
below. Regions below a pLDDTof 70 are shown in purple. Source data are provided
as a Source Data file.
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microphthalmia syndrome (BAMS). In FSHD2,missense LOFmutations
in SMCHD1, combined with a permissive D4Z4 haplotype on chro-
mosome 4, lead to ectopic expression of DUX4, which is toxic to
skeletal muscle cells49. Conversely, BAMS, characterised by the
absence of the nose and accompanied by ocular and reproductive
defects, is thought to result from GOF mutations50. Structural model-
ling revealed that BAMS-specific mutations cluster on the protein
surface, pinpointing a cryptic interface51, a finding later confirmed by
the crystal structure of the ATPase domain52. These observations are
borne out by the highmLOF score of BAMS (0.656) and the lowmLOF
score of FSHD2 (0.274).

KRAS (Fig. 4b) is a signalling protein and established oncogene
with GTPase activity. The two phenotypes identified through mLOF
analysis are cardiofaciocutaneous syndrome 2 (CFC2) and multiple
myeloma. CFC2 is characterised by a distinctive facial appearance,
heart defects, and intellectual disability53. Heterozygous missense
variants underlying the phenotype are dispersed in the protein and
have a highly structurally damaging effect, reflected by anmLOF score
of 0.623. Supporting this, functional studies on the CFC2-associated
variant p.Lys147Glu revealed weak GTP binding, falling short of the
oncogenic threshold54. In contrast, multiple myeloma variants, which
are typically highly recurrent somatic variants55, cluster around the
GTP-binding site and are structurally mild, with an mLOF score of
0.296. Consistent with this, multiple myeloma is strongly linked to
KRAS GOF variants56.

TP63 (Fig. 4c) is a transcription factor required for limb formation
from the apical ectodermal ridge57, linked to two dominant pheno-
types: Rapp-Hodgkin syndrome (RHS) and split-hand/foot malforma-
tion 4 (SHFM4). RHS is characterised by anhidrotic ectodermal
dysplasia and cleft lip and/or palate, and it is associated with LOF
mutations in the sterile alpha motif domain (SAM)58,59. SHFM4, attrib-
uted to GOF mutations58, presents with clefts in the hands and feet,
webbed fingers and toes, underdeveloped bones, and sometimes
involves cognitive impairment. In agreement with their reported
mechanisms, we found RHS to have a high mLOF score (0.653) due to
stronglydamagingmutations in theSAMdomain, andSHFM4 tohave a
low mLOF score (0.329) as a result of much milder mutations at
solvent-exposed residues. Because TP63 forms tetramers via its oli-
gomerisation domain60, and may form extended polymeric structures

mediated by its SAM domain61, these structural features could suggest
an assembly-mediated GOF (dominant-positive1) effect underlying
SHFM4. For example, one SHFM4-associatedmutation, p.Ala354Glu, is
located in a region responsible for interacting with HIPK262, which
phosphorylates TP63 in response to DNA damage63.

BRAF (Fig. 4d) is a serine/threonine-protein kinase and an estab-
lished oncogene in human cancer64. Mutations in BRAF are linked to
several clinical phenotypes, notably Noonan syndrome 1 (NS1) and
multiplemyeloma. Missense variants associated with NS1 have anmLOF
score of 0.632, suggesting a LOF mechanism. These variants tend to be
less clustered but more structurally damaging, and present with cardiac
defects, facial dysmorphia, and reduced growth65. In contrast, missense
mutations linked to multiple myeloma exhibit more activating effects,
exemplified by the highly recurrent cancer-driver p.Val600Glu65,66.
Multiple myeloma variants show a lower mLOF score of 0.321, likely
reflective of an underlying GOF mechanism. These variants tend to be
milder and localised exclusively within the kinase domain, a region cri-
tical for activating downstream signalling in the RAS-MAPK pathway.

MTOR (Fig. 4e) is a serine/threonineproteinkinase and themaster
regulator of cellular metabolism. mLOF score analysis has identified
renal carcinoma and CEBALID syndrome (an acronym for craniofacial
defects, dysmorphic ears, structural brain abnormalities, expressive
language delay, and impaired intellectual development) to have mis-
sense variants with dissimilar effects on protein structure. Variants
linked to renal carcinoma are dispersed across protein domains and
are energetically impactful, yielding an mLOF score of 0.619. In con-
trast, CEBALID syndrome variants tend to be structurally milder and
cluster near the ATP-binding site in the FATC domain, with an mLOF
score of 0.32. GOF variants in MTOR have been previously linked to
conditions such as Smith-Kingsmore syndrome67 and there is a grow-
ing body of evidence further implicating MTOR in developmental
disorders68–71, with a recent de novo enrichment analysis detecting a
significant missense burden in a cohort of in 31,058 parent-offspring
trios72. Given that two MTOR subunits co-assemble into the mTORC1
complex, these mutations may exert DN or dominant-positive effects,
potentially contributing to the observed phenotypic spectrum in
MTOR-associated disorders.

AARS1 (Fig. 4f) is the cytoplasmic alanine-tRNA ligase.mLOF score
analysis revealed two distinct disease phenotypes: the recessive

Table 3 | Top AR-AD phenotype pairs with high semantic similarity, where the dominant phenotype is likely to involve a
dominant-negative effect

Gene Recessive phenotype Dominant phenotype Similarity

POLG Progressive external ophthalmoplegia with mitochondrial DNA
deletions, autosomal recessive

Progressive external ophthalmoplegia with mitochondrial DNA
deletions, autosomal dominant 1

0.775

AFG3L2 Spastic ataxia 5, autosomal recessive Spinocerebellar ataxia 28 0.775

ACTA1 Congenital myopathy 2B, severe infantile,
autosomal recessive

Congenital myopathy 2C, severe infantile,
autosomal dominant

0.763

ALDH18A1 Spastic paraplegia 9B, autosomal recessive Spastic paraplegia 9 A, autosomal dominant 0.740

TTN Muscular dystrophy, limb-girdle, autosomal recessive 10 Myopathy, myofibrillar, 9, with early respiratory failure 0.708

POLR3B Leukodystrophy, hypomyelinating, 8, with or without oligodontia
and/or hypogonadotropic hypogonadism

Charcot-Marie-Tooth disease, demyelinating, type 1I 0.700

HTRA1 Autosomal recessive cerebral arteriopathy with subcortical infarcts
and leukoencephalopathy (CARASIL)

Cerebral arteriopathy, autosomal dominant, with subcortical
infarcts and leukoencephalopathy, type 2

0.669

DEAF1 Dyskinesia, seizures, and intellectual developmental disorder Vulto-van Silfout-de Vries syndrome 0.668

TWNK Mitochondrial DNA depletion syndrome 7 (hepatocerebral type) Progressive external ophthalmoplegia with mitochondrial DNA
deletions, autosomal dominant 3

0.638

CLCN7 Osteopetrosis, autosomal recessive 4 Osteopetrosis, autosomal dominant 2 0.569

GHR Laron syndrome Growth hormone insensitivity, partial 0.521

LMNA Mandibuloacral dysplasia Restrictive dermopathy 2 0.511

SAMD9L Myelodysplasia and leukaemia syndrome with monosomy 7 Ataxia-pancytopenia syndrome 0.510

Source data are provided as a Source Data file.
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developmental and epileptic encephalopathy 29 (DEE29) and the
dominant Charcot-Marie-Tooth disease, axonal, type 2N (CMT2N).
Variants associatedwithDEE29predominantlymap to theATP-binding
site or the acceptor site recognition domain, consistent with its
established biallelic LOF mechanism73. This is further supported by an
mLOF score of 0.644, reflecting the severe structural impact of DEE29-
associated mutations. By contrast, CMT2N variants are primarily
located in the anticodon-binding domain and in a region homologous
to the dimerisation interface observed in a remote paralogue74. These
variants are associatedwith a lowermLOF score of 0.366, in agreement
with their milder structural effects. Supporting this further, recent
studies employing a humanised yeast assay suggest that missense
variants linked to CMT2N exert a DN effect75.

Mechanism prediction Google Colab notebook
To facilitate mLOF score calculation, we created a Google Colab
notebook, available at https://github.com/badonyi/mechanism-
prediction, allowing users to input a gene name or UniProt76 acces-
sion number along with a list of variants. The variants should map to
the UniProt reference sequence—any mismatch between the variant
and the reference amino acid sequence will be flagged with a warning.
When only genomic variants are available, we recommend using the
ProtVar76 web server to map these directly to the UniProt canonical
isoform. We employ precomputed ΔΔGrank values for the proteome
and structures from the AlphaFold database77 to calculate EDC for the
input variants. Although the latter limits proteins to <2700 amino
acids, only about 1% of human proteins exceed this length. The results

Table 4 | The most different phenotype pairs within multi-phenotype disease genes by the mLOF score

Gene LOF-like phenotype mLOF non-LOF-like phenotype mLOF

SMCHD1 Facioscapulohumeral muscular dystrophy 2 0.656 Bosma Arhinia Microphthalmia Syndrome 0.274

KRAS Cardiofaciocutaneous syndrome 2 0.623 Multiple myeloma 0.296

TP63 Rapp-Hodgkin syndrome 0.653 Split-Hand/foot malformation 4 0.329

PRPF8 Retinitis pigmentosa 0.656 Retinitis pigmentosa 13 0.339

SMARCB1 Schwannomatosis 0.63 Coffin-Siris syndrome 3 0.318

GNAS Pseudopseudohypoparathyroidism 0.659 Pituitary adenoma 3, multiple types, somatic 0.346

BRAF Noonan syndrome 1 0.632 Multiple myeloma 0.321

ABCB11 Cholestasis, progressive familial intrahepatic 2 0.638 Cholestasis, intrahepatic, of pregnancy 3 0.33

CAV3 Long QT syndrome 9 0.598 Rippling muscle disease 0.294

MTOR Renal cell carcinoma, papillary, 1, familial and somatic 0.619 CEBALID syndrome 0.32

ADCY5 Dyskinesia with orofacial involvement, autosomal recessive 0.645 Dyskinesia, familial, with facial myokymia 0.364

AARS1 Epileptic encephalopathy, early infantile, 29 0.644 Charcot-Marie-Tooth disease, axonal, type 2N 0.366

LRP6 Tooth agenesis, selective, 7 0.656 Coronary artery disease, autosomal dominant 2 0.378

AIFM1 Deafness, X-linked 5 0.585 Spondyloepimetaphyseal dysplasia, X-linked, with
mental deterioration

0.311

ARX Mental retardation, X-linked, with or without seizures, ARX-
related

0.637 Corpus callosum, agenesis of, with abnormal
genitalia

0.368

LHCGR Hypergonadotropic hypogonadism 0.567 Precocious puberty, male 0.301

TWNK Perrault syndrome 5 0.61 Progressive external ophthalmoplegia with mito-
chondrial DNA deletions, autosomal dominant 3

0.346

ACTA1 Congenital myopathy 2B, severe infantile, autosomal recessive 0.656 Congenital myopathy 2C, severe infantile, auto-
somal dominant

0.395

TP53 Breast cancer 0.648 Medulloblastoma 0.394

IMPG2 Macular dystrophy, vitelliform, 5 0.648 Macular dystrophy, vitelliform, 2 0.395

HBA2 Heinz body anemias 0.651 Methemoglobinemia, Alpha type 0.406

SLC32A1 Generalised epilepsy with febrile seizures plus, type 12 0.641 Developmental and epileptic encephalopathy 114 0.397

SCN4A Congenital myopathy 22 A, classic 0.62 Paramyotonia congenita 0.376

EXT2 Exostoses, multiple, type II 0.633 Ovarian cancer 0.395

RECQL4 RAPADILINO syndrome 0.656 Ovarian cancer 0.422

POLR3B Leukodystrophy, hypomyelinating, 8, with or without oligo-
dontia and/or hypogonadotropic hypogonadism

0.607 Charcot-Marie-Tooth disease, demyelinating, type 1I 0.385

APOE Lipoprotein glomerulopathy 0.539 Hyperlipoproteinemia, type III 0.316

NPR2 Acromesomelic dysplasia, Maroteaux type 0.616 Short stature with nonspecific skeletal
abnormalities

0.395

PRNP Gerstmann-Straussler disease 0.552 Creutzfeldt-Jakob disease 0.331

FLNA Cardiac valvular dysplasia, X-linked 0.652 Otopalatodigital syndrome, type I 0.432

TTN Cardiomyopathy, dilated, 1 G 0.584 Myopathy, myofibrillar, 9, with early respiratory
failure

0.365

SDHD Mitochondrial complex II deficiency, nuclear type 3 0.634 Pheochromocytoma 0.417

BEST1 Bestrophinopathy, autosomal recessive 0.598 Vitreoretinochoroidopathy 0.382

MECP2 Rett syndrome 0.615 Mental retardation, X-linked, syndromic 13 0.399

TSHR Hypothyroidism, congenital, nongoitrous, 1 0.594 Ovarian cancer 0.379

TRPV4 Metatropic dysplasia 0.568 Hereditary motor and sensory neuropathy, type IIC 0.355

Source data are provided as a Source Data file.
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include all intermediary metrics, such as EDC and ΔΔGrank values, the
mLOF and themechanism-specific posterior scores, as shown in Fig. 5.
A brief summary of the results is also provided to assist users in
interpreting and reporting their findings.

Discussion
Here, we developed an empirical distribution-based approach to calcu-
late themissense LOF score, mLOF, which represents the likelihood that
a group of pathogenic missense mutations will act via a simple LOF
mechanism. We achieved this by leveraging fundamental protein struc-
tural properties of missense variants, their energetic impact (ΔΔG) and
spatial clustering (EDC), both of which have an established and robust
relationship to molecular disease mechanisms16,18,21,24,78. This approach
offers two advantages. First, the use of a non-parametric kernel density
estimationmethod preserves data interpretability at each step, allowing
the use of intermediary results for hypothesis testing. Second, the
applicability of ΔΔG and EDC to any combination of missense variants
provides an optimal metric for assessing the missense LOF likelihood at
the phenotype level. Variants within the same gene contributing to the
same phenotype aremore likely to be causally and functionally coupled,
enhancing the precision of molecular mechanism predictions.

In our data, a quarter of genes whose disease phenotypes are
linked to missense mutations have more than one associated pheno-
type. Although this proportion may be skewed by study bias, in that
multi-phenotype genes are overrepresented in disease genes that have

historically attracted more attention (e.g., TP53, KRAS, and BRCA2),
mLOF score analysis indicates that 43% of dominant and 49%ofmixed-
inheritancemulti-phenotype genes exhibit phenotypes driven by both
LOFandnon-LOFmechanisms. Thisfindinghas important implications
for the design of clinical trials and the development of therapeutic
interventions, suggesting that in many cases, different disease phe-
notypes of the same gene may require distinct treatment strategies
tailored to the underlying mechanism.

Many dominant phenotypes in mixed-inheritance (AD/ARmixed)
genes are likely attributable to DN effects rather than simple LOF.
While this is expected—given that thepresenceof recessive inheritance
reduces the likelihoodof haploinsufficiency33, and aGOFmechanism is
unlikely to mimic a recessive disorder1—it is nonetheless valuable
information from a clinical point of view. By combining mLOF scores
with phenotype semantic similarity, we could prioritise phenotypes
resembling the recessive disorder in the same gene, identifying cases
that may result from DN mechanisms. However, this analysis was not
feasible for genes where the same phenotype is inherited in both
dominant and recessive patterns (AD/ARsame). In such cases, chal-
lenges remain in determiningwhich variants arepathogenic only in the
homozygous state andwhether dominant variants are as likely to exert
DN effects as those in AD/ARmixed genes.

In many mixed-inheritance genes, the distinction between domi-
nant and recessivemodesof action is clear:missenseDNvariants in ITPR1
are associated with Gillespie syndrome34, whereas only recessive null

BRAF
0.321mLOF 0.632

SMCHD1
0.274mLOF 0.656

MTOR
0.32mLOF 0.619

TP63
0.329mLOF 0.653

KRAS
0.296mLOF 0.623

AARS1
0.366mLOF 0.644

a b c

d e f

Fig. 4 | Examples of proteins having two disease phenotypes withmLOF scores
indicating both loss-of-function and alternative mechanisms. Phenotype pairs
in top-ranking genes; see main text for a discussion on these and Table 4 for their
phenotype definitions. Structures are predicted models from the AlphaFold data-
base. Red and blue spheres represent missense variants associated with the LOF-
like and non-LOF-like phenotypes, respectively. Regions below a pLDDT of 70 are
shown in purple. aAlphaFoldmodel of SMCHD1 (A6NHR9 [https://alphafold.ebi.ac.
uk/files/AF-A6NHR9-F1-model_v1.pdb]) b AlphaFold model of KRAS (P01116

[https://alphafold.ebi.ac.uk/files/AF-P01116-F1-model_v1.pdb]). c AlphaFold model
of TP53 (P04637 [https://alphafold.ebi.ac.uk/files/AF-P04637-F1-model_v1.pdb])
superimposed onto the DNA-bound TP63 complex (3USO [https://doi.org/10.2210/
pdb3USO/pdb])122. d AlphaFold model of BRAF (P15056 [https://alphafold.ebi.ac.
uk/files/AF-P15056-F1-model_v1.pdb]) e AlphaFold model of MTOR (P42345
[https://alphafold.ebi.ac.uk/files/AF-P42345-F1-model_v1.pdb]). f AlphaFold model
of AARS1 (P49588 [https://alphafold.ebi.ac.uk/files/AF-P49588-F1-model_v1.pdb]).
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variants have been linked to a clinically identical phenotype79. In other
cases, however, thedistinction is less straightforward. Both recessive and
dominant missense mutations in IGF1R cause resistance to insulin-like
growth factor 1, manifesting in intrauterine growth retardation; for
example, the recessive p.Arg40Leu80 and the dominant p.Val629Glu81.
Several genetic factors can explain this, e.g., hypomorphic homozygous
or compound heterozygous mutations (recessive partial LOF) that

produce phenotypes indistinguishable from those caused by hap-
loinsufficiency (dominant complete LOF). Another factor may be
incomplete penetrance82–85, which causes variable phenotype expres-
sivity within ancestries83, sexes86, and even families87. For example, the
presence of common variants may modify the penetrance of inherited
rare variants, lowering the liability threshold required for being affected
by a disease88. Alternatively, DN variants might present as perfect

Fig. 5 | Example input/output of the Colab notebook. The notebook predicts
molecular mechanisms for missense variants by accepting a gene name or UniProt
ID along with a list of comma-separated variants in one-letter notation. Results
include a link to the gene’s AlphaFoldmodel used for EDC calculation, aswell as the
EDC, ΔΔGrank, mLOF score, and prior/posterior mechanism scores. Themechanism

with the highest posterior score is suggested. Three plots are generated: (1) where
the gene’s prior for the suggested mechanism lies relative to all human genes, and
(2-3) where the observed EDC and ΔΔGrank values fall within the empirical dis-
tributions of LOF and non-LOF genes.
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phenocopies of the recessive disorder. In some possibly rare cases, a
single variant could result in biallelic LOF while exhibiting a DN effect in
the heterozygous state, as suggested by emerging evidence in AARS189.

Considering exclusively dominant genes, diverse genetic and
mechanistic factors can explain the coexistence of haploinsufficient and
DN phenotypes in the same90. For example, allele-specific expression
and sex differences in SMC1A lead to distinct phenotypes, with trun-
catingmutations linked to haploinsufficiency causing a seizure disorder
and DN missense mutations resulting in Cornelia de Lange syndrome91.
Notably, mutant SMC1A proteins maintain a residual function in males
but confer aDNeffect in females92. A similar phenomenonoccurs inNF1,
where truncatingmutations reduce protein levels via haploinsufficiency,
while destabilisingmissensemutations induce aDN effect by promoting
degradation of thewild type in a tissue-specific pattern93. Although such
contrastingmechanisms are scarcer amongphenotypes inducedonly by
missense mutations, these examples highlight the nuanced relationship
betweenmutation type, biological context, and the resultingphenotype,
complicating the interpretation of molecular mechanisms.

Unlike other molecular mechanism predictors, such as LoGoFunc12

or VPatho13, which are typically trained on mechanism labels using
supervised learning approaches and may suffer from inflated perfor-
mance estimates due to circularity issues94, the mLOF score is a simple,
empirical metric independent of existing mechanism classifications.
Moreover, the mLOF score also differs in functionality from these pre-
dictors. First, it reliesonmissensevariants alreadyknown tobecausal for
a disease or have evidence supporting their involvement in pathogen-
esis, for example, through family studies or cohort sequencing. Second,
rather than inferring the mechanism for a single variant, it harnesses
collective properties of variants, which potentially makes its estimate
more robust for variants related through their shared phenotype.

Interpreting the posterior mechanism scores requires joint con-
sideration of the prior and mLOF score. In cases where all prior
probabilities are uniformly low, the gene may have atypical features
not well captured by the training data. Here, a confidently low or high
mLOF score may still yield meaningful insight. Conversely, if the prior
strongly supports one mechanism but the mLOF score deviates in the
opposite direction, this may reflect either limitations in the gene-level
model or unusual structural properties of the variant set. We therefore
recommend that discordant results be interpreted cautiously and
supplemented with orthogonal evidence where possible. This gui-
dance is also included in the Colab notebook, where informative
warnings are issued based on score combinations.

Despite the utility of mLOF scores, several limitations remain,
many of which could be addressed as more structural data become
available. First, our method is necessarily restricted to missense var-
iants, because it relies on EDC and ΔΔG, measures that do not readily
apply to other mutation consequences like stop-gain, indel, or fra-
meshift variants with respect to differences between molecular
mechanisms. Future efforts should focus on developing structure-
based methods to evaluate these mutations in a mechanistic context,
expanding our variant interpretation ability beyondmissense variants.
Second, for the EDC calculation, our method includes variants only
within regions with a pLDDT (predicted local distance difference test)
score95 above 70, limiting it to non-disordered and well-predicted
regions of protein structure. Although pathogenicmissensemutations
are highly enriched in structured regions96, this limitation excludes
certain variants, e.g., those in short linearmotifs97. Note that variants in
disordered regions can still contribute to mLOF via their predicted
ΔΔG impacts.While these values are difficult to interpret quantitatively
due to low confidence in AlphaFold models, mutations in disordered
regions almost always receive low ΔΔG values. This is consistent with
their limited potential to cause global destabilisation and can still be
informative for inferring likely molecular mechanisms.

Our approach also assumes that the missense variants used to
calculate themLOF score are causal. This limits its direct application in

patient cohorts where often multiple variants in the same gene are
identified, and it is difficult to knowwhichvariants, if any, canbe linked
to the disease. In such cases, additional variant prioritisationmethods,
e.g., the use of variant effect predictors, are required before the mLOF
score can be applied.

While structurally mild pathogenic variants often localise to func-
tional sites, such as an interface, they are not exclusively non-LOF. For
example, the mutation p.Ile87Arg in PAX6 leads to loss of DNA
binding98,99, causing an aniridia phenotype through haploinsufficiency.
Rarely, LOF variants may cluster, as seen in follicular lymphoma-
associated mutations in EZH2, which concentrate in the SET domain,
disrupting S-adenosyl-L-methionine binding21. Conversely, in a few cases,
DN variantsmay be highly structurally damaging. For instance, missense
variants linked to late-onset retinal degeneration in C1QTNF5 occur in
the C1q head domain, responsible for functional activity, while assembly
into a trimeric complex is driven by a separate collagen-like domain. This
physical separationmay allow co-assembly of wild-type and functionally
impaired subunits, despite structural damage in the C1q domain100.

There are many genes with fewer than three pathogenic missense
variants in ClinVar, andwhen novel disease genes are identified, it is rare
formore thana fewmissense variants tobe causally linked toadisease at
once. Therefore, our method is primarily applicable to established dis-
ease genes whose phenotypes arise through missense variation. None-
theless, even when the mLOF score cannot be computed, variant
location and energetic impact can be informative. For example, low-
confidence AlphaFold predictions often coincide with intrinsically dis-
ordered regions, where missense mutations are less likely to destabilise
the folded structure and, by extension, less likely to act via a canonical
LOFmechanism101. Thismay suggest a non-LOFmechanism, particularly
when variants occur in close proximity in the sequence or within a well-
characterised functional motif. In cases where only one or two variants
fall within confidently predicted structured regions, 3D clustering may
not be informative, but the energetic impact of individualmutations can
still yieldmechanistic insight. When interpreted alongside a gene’s prior
mechanism probabilities, ΔΔG values in structured regions may offer
suggestive evidence for a specific mechanism.

Finally, while we currently rely on monomeric AlphaFold models
for EDC and ΔΔG estimation, incorporating predicted structures of
protein complexes102–107 could substantially improve the accuracy of
missense LOF likelihood estimation by providing more biologically
representative structural insights through the consideration of inter-
molecular interactions16,108. For example, our previous work demon-
strated that complex properties such as symmetry can be valuable for
predicting non-LOF genes, though such features are not yet available
for all genes2. Improved predictors of protein assembly state and
higher-resolution complex structures will likely enhance variant-level
predictions. Furthermore, predicting subunits as part of a complex,
rather than in isolation, often yields more accurate conformations due
to the presence of buried contacts109, potentially making the spatial
clustering of pathogenic residues more sensitive and informative.

In summary, we developed a broadly applicable and readily
interpretable metric of missense LOF likelihood, the mLOF score. Our
Google Colab notebook offers an accessible platform to compute the
score and apply it within a Bayesian framework to predict the most
likelymechanism for any combination of pathogenicmissense variants
in a humangene. This flexibility enables a deeper investigation into the
structural effect of mutations, facilitating applications in variant
interpretation and molecular mechanism studies.

Methods
ClinVar mapping to UniProt reference proteome
Genomic coordinates of ‘pathogenic’ and ‘likely pathogenic’missense
variants, which we refer to as pathogenic, were extracted from the
ClinVar22 variant calling file (accessed 10-Sep-2024) using BCFtools110.
These were subsequently mapped to human reference sequences in
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UniProt76 release 2024_04 with Ensembl VEP 112111. We retained phe-
notype cross-references to the OMIM database, as they represent the
most comprehensive and reliable phenotype annotations. These were
further annotated with MIM identifiers from two additional sources:
the protein-specific JSON files with UniProt variation data via the EBI
Proteins API112, and the UniProt index of human variants curated from
literature reports (2024_04 of 24-Jul-2024). Gene-level inheritances
were obtained from the OMIM database (06-Aug-2024) via its API. To
obtain inheritance modes at the phenotype level, we accessed the
phenotype_to_genes.txt and phenotype.hpoa files from the Human
Phenotype Ontology (HPO) database43 (13-Aug-2024), which contain
MIM identifiers and their HPOontology terms. This process resulted in
63,920 pathogenic missense variants, of which 45,888 (71.8%) have an
associated OMIM phenotype with an inheritance annotation, as sum-
marised in Supplementary Fig. 5a, b.

Structural data
We computed EDC and ΔΔGrank based on the predicted human struc-
tures downloaded from the AlphaFold database77,113 (AFDB). For the
most part, we used AFDB v1 structures, which are consistent with the
2021_02 UniProt release. Any reference sequence between the lengths
of 50 to 5000amino acids that has undergone a sequence change from
the 2021_02 to the 2024_04 UniProt releases were remodelled with
AlphaFold2, using the default settings of LocalColabFold (ColabFold114

v1.5.5) on an NVIDIA A100 GPU with 500 GB of RAM. Structures were
visualised using UCSF Chimera X version 1.8115.

EDCwas calculated aspreviously described16. For each residue, we
determined the alpha carbon distance to pathogenic residue positions
(‘disease’) and to all other (‘non-disease’) positions, keeping the
shortest distance. The final metric is the ratio of the common loga-
rithm of average non-disease and disease distances. Residues with
pLDDT <70 were removed from the calculation, because pathogenic
missense mutations are highly enriched in structured regions96,
therefore mutations in disordered proteins with a small structured
core may appear clustered relative to the total volume of the model.
For proteins modelled asmultiple overlapping fragments in the AFDB,
we took the fragment with the highest number of missense variants.

To compute ΔΔGrank, FoldX 5.0 was first used to estimate the
change in the Gibbs free energy for all amino acid substitutions pos-
sible by a single nucleotide change based on human codon usage. The
RepairPDB command was called on each model before running the
BuildModel command to estimate the ΔΔG. For pathogenic variants
that map to multiple fragments of the same protein in the AFDB, we
took the mean ΔΔG. The output values were ranked and rescaled so
that 0 represents the mildest mutation in the structure and 1 the most
damaging. Finally, for any group of variants (e.g., that belonging to a
specific phenotype), we average ΔΔGrank values to obtain the mean
ΔΔGrank metric, which we refer to as ΔΔGrank for brevity. We note that
raw FoldX ΔΔG values are available for non-disordered and well-
predicted regions in human AlphaFold models via the ProtVar API116.
However, as these do not allow calculation of ΔΔGrank, we have made
our values available at https://osf.io/g98as.

mLOF calculation
Weusegenes fromGerasimavicius et al.16 tofit ourmodel, as thesegenes
have at least onemissense variant (rather than, e.g., a protein-truncating
variant) associated with a molecular disease mechanism. At both the
gene and phenotype levels, we require at least three missense variant
positions with a pLDDT >70 to ensure reliable estimates for EDC. We
perform Gaussian kernel density estimation separately on the EDC and
the ΔΔGrank values of pathogenic missense variants in LOF and non-LOF
genes, evaluating at 1024 equidistant points with three times the
Sheather-Jones bandwidth117. The adjustment factor of three was chosen
because, at this value, the probability distributions are smooth and
monotonic without noticeable fluctuations, as shown in Supplementary

Fig. 1a, b. To prevent extreme values from disproportionately influen-
cing the probability estimates, we cap the empirical distributions at the
10th and 90th percentiles. We then compute the density functions for
bothgroups and identify the closest point in thedensity function toeach
observation, allowing us to derive the estimated density values.
PLOF(EDC) andPLOF(ΔΔG),which represent LOFprobabilities of observed
EDC or ΔΔGrank values, respectively, are computed by dividing the
density value of the LOF group by the sum of LOF and non-LOF density
values. The combined estimate, i.e., the mLOF score, is obtained by
taking the case-specificweightedmean of the two probabilities, which is
considered a robust method when the dependence between the vari-
ables is strong or unknown118. PLOF(EDC) is weighted by the number of
variants used forΔΔGrank calculation, while PLOF(ΔΔG) is weighted by the
number of residue positions used for EDC calculation. This approach,
which we refer to as the ‘weighted mean’ method, effectively weakens
the influence of ΔΔG when variants are localised to disordered regions,
thereby strengthening that of EDC. The previous steps are visually
represented in Supplementary Fig. 1. Finally, to estimate a posterior
mechanism likelihood score, we use pDN, pGOF, and pLOF from our
proteome-scalemodel as informedpriors, which reflect the likelihoodof
observing the givenmechanismwhenmissense variants are identified in
a gene18. These priors are updated with the mLOF score according to
Bayes’ rule. We formalise our probabilistic framework below:

Definitions:
Let x be a single observation of EDC or mean ΔΔGrank.
Let capLOF and capnon�LOF be the cap values for the observations.
Let x0 be the capped observation.
Let f LOF x0ð Þ and f non�LOF x0ð Þ be thedensity functions at observationx

0.
Let dpoints be the vector of points where the density functions are

evaluated.
Let index be the index of the closest value in the density function.
LetwΔΔG be the number of unique residue positions used for EDC

calculation.
Let wEDC be the number of variants used for mean ΔΔGrank cal-

culation.

x0ðΔΔGrankÞ=
capLOF if x > capLOF,

capnon�LOF; if x < capnon�LOF,

x otherwise,

8
><

>:

x0ðEDCÞ=
capLOF if x < capLOF,

capnon�LOF if x > capnon�LOF,

x otherwise,

8
><

>:

ð1Þ

Finding indices of nearest density points f or a given capped observation x0 :

indexLOF x0ð Þ= argmin
i

jdpoints i½ � � x0j
indexnon�LOF x0ð Þ= argmin

i
jdpoints i½ � � x0j

ð2Þ

Obtaining density values :

f LOF x0ð Þ = f LOF dpoints indexLOF x0ð Þ� �� �

f non�LOF x0ð Þ = f non�LOF dpoints indexnon�LOF x0ð Þ� �� �
ð3Þ

Calculating PLOF ðEDCÞ andPLOF ðΔΔGÞ :
PLOF x0ð Þ = f LOF x0ð Þ

f LOF x0ð Þ+ f non�LOF x0ð Þ
ð4Þ

Calculating themLOFscore :

mLOF = wEDC �PLOF ðEDCÞ +w44G �PLOF ðΔΔGÞ
wEDC +w44G

ð5Þ
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Calculating mechanism�specif ic posterior scores :

postDN =
ð1�mLOFÞ � PDN

ð1�mLOFÞ � PDN +mLOF � ð1� PDNÞ
postGOF =

ð1�mLOFÞ � PGOF

ð1�mLOFÞ � PDN +mLOF � ð1� PGOF Þ

postLOF =
mLOF � PLOF

mLOF � PLOF + 1�mLOFð Þ � PLOF

ð6Þ

Method validation
We initially compared the performance of the weightedmeanmethod
to a generalised linear model (GLM) that estimates mLOF from EDC
and ΔΔGrank and an interaction term between them. The rationale was
that a GLM may better capture the joint distribution of the metrics,
potentially outperforming the weightedmeanmethod, which relies on
marginal distributions. By comparing bootstrapped AUROC estimates,
we found that the posterior mechanism-specific scores obtained with
the GLM-based mLOF score had a consistently worse performance
across the binary class pairs. A possible explanation for this is that
mLOF scores from the GLM (Supplementary Fig. 1d) are much less
conservative than those from the weighted mean model (Supple-
mentary Fig. 1c), leading to the mLOF score having a greater influence
on the posterior. This result suggested that a generalised linearmodel
cannot achieve the same performance as our weighted mean model,
supporting its use.

To evaluate the mLOF score’s utility in distinguishing different
molecular mechanisms within the same gene, we applied it tomissense
LOF, GOF, DN, and hyper-complementing (HyC) variants detected by
multiplexed assays of variant effect (MAVEs).We identified sixMAVEs in
which at least two of the aforementioned molecular disease mechan-
isms, or functional consequences in the case of HyC variants, have been
confidently detected in the same gene: TP5330,HRAS27,MC4R28,HMBS29,
TP5330, PTPN1131, and MTHFR32. All scores were obtained from the sup-
plementary material of the respective publication.

For TP53, we adopted the classification approach described in the
original study: DN and LOF variants were defined as those with
Z-scores three standard deviations (SD) from the mean of all synon-
ymousmutations, based on the ‘p53WT+nutlin-3’ assay for DN variants
and the ‘p53NULL+nutlin-3’ and ‘p53NULL+etoposide’ assays for LOF
variants. For visualisation in Supplementary Fig. 3d, a combined score
was calculated as (‘p53WT+nutlin-3’ + ‘p53NULL+nutlin-3’ – ‘p53NULL
+etoposide’)/3.

For HRAS, we defined LOF variants as those with relative
enrichment values more than two SD below the mean in the
‘DMS_regulated’ assay, and GOF variants as those more than two SD
above the mean in the ‘DMS_attenuated’ assay. We note that this
classification ismore stringent than the one SD threshold used by the
authors. For visualisation in Supplementary Fig. 3a, the combined
score was calculated as (‘DMS_regulated’ + ‘DMS_attenuated’ +
‘DMS_unregulated’)/3.

For MC4R, we selected the ‘THIQ_1.2e-08_minus_Forsk_2.5e-05’
contrast for analysis, as GOF variants are most discernible under low
agonist stimulation. LOF and GOF variants were defined as those with
‘log2ContrastEstimate’ values more than two SD below and above the
mean, respectively.

For HMBS (‘score’ column) and MTHFR (‘base functionality’ col-
umn), missense LOF and HyC variants were classified relative to the
score distribution of synonymous variants. LOF variants were defined
as those scoring below the mean minus two SD, and HyC variants as
those exceeding the mean plus two SD.

For PTPN11, we used the ‘Enrichment (ave)’ column and defined
LOF and GOF variants as thosemore than two SD below and above the
mean of the distribution for missense variants, respectively.

For the analysis with LoGoFunc-predicted GOF and LOF variants12,
we downloaded genome-wide missense variant predictions from the

GOF/LOF database (release 10-Aug-2024, https://itanlab.shinyapps.io/
goflof/).Genomic coordinatesof these variantsweremappedusing the
Ensembl VEP 112 pipeline (as described above) and merged with our
ClinVar dataset. We computed the mean LoGoFunc_GOF score for
variants associatedwith phenotypes in single-phenotypeADgenes and
evaluated it against all genes in our GOF vs. LOF dataset, as well as the
corresponding test set. The test set excludes genes used for training
the model (used to construct pGOF) and is limited to proteins with
<50% pairwise sequence identity.

Phenotype-level analyses
To ensure reliablemLOF estimates, we considered disease phenotypes
withmissense variants at 3 distinctpositions. In Fig. 2a, b, the following
criteria were used to create the phenotype classifications. Note that
gene-level molecular mechanisms are based on our previous study18.
1. AR: the gene is exclusively AR in OMIM, and the phenotype is

annotated as AR in HPO.
2. [AR]-AD/ARmixed: the gene has at least one AD and one AR phe-

notype with a sufficient number of missense variants, and the
phenotype is annotated as AR in HPO.

3. [AD]-AD/ARmixed: the gene has at least one AD and one AR phe-
notype with a sufficient number of missense variants, and the
phenotype is annotated as AD in HPO.

4. AD/ARsame: the phenotype has both AD and AR inheritance
annotation in HPO.

5. XLR: any phenotype of genes in OMIMwith ‘X-linked recessive’ or
‘X-linked’ inheritance.

6. AD: the gene is exclusively AD in OMIM, and the phenotype is
annotated as AD in HPO.

7. LOF: the phenotype is annotated as AD in HPO, with the gene
either having a reported LOF mechanism or has ‘Sufficient evi-
dence for dosage pathogenicity’ in the ClinGen database38 as of
10-Sep-2024. Does not overlap with DN or GOF genes.

8. GOF: the phenotype is annotated as AD inHPO, and the gene has a
reported GOF disease mechanism. Excludes AD/ARmixed genes.
May overlap with DN genes.

9. DN: the phenotype is annotated as AD in HPO and the gene has a
reported GOF disease mechanism. Excludes AD/ARmixed genes.
May overlap with GOF genes.

10. Unknown: the gene is exclusively AD in OMIM, lacks a reported
disease mechanism, and the phenotype is annotated as
AD in HPO.

For eachwithin-gene phenotype pair, we calculated howmissense
variant sets relate to each other in terms of overlap: (1) distinct, if the
variant sets are mutually exclusive; (2) intersect, where some variants
are shared between the sets; (3) subset, if variants of one phenotype
represent a subset of the other; and (4) identical, if the variant sets are
mutually inclusive. Supplementary Fig. 5c illustrates the relative pro-
portions of set relationships across all non-redundant phenotype pairs
and within unique inheritance groupings. As the mLOF score can be
affected by the extent of variant overlap, losing discriminatory value
for ‘identical’ sets, we only considered phenotype pairs whose variants
had ‘distinct’ and ‘intersect’ set relationships.

Semantic similarity between AD-AR phenotype pairs was calcu-
latedwith the ontologyIndex and ontologySimilarity R packages based
on the 08-Feb-2024 HPO release, using Lin’s expression of term
similarity119.

Statistical analysis
Data analysis was performed in R 4.3.0120, using the tidyverse meta-
package. Statistical tests were two-sided, and an alpha level of 0.05 was
considered significant. In bootstrap analyses, 1,000 resamples were
used. The optimal threshold was derived by selecting the value that
minimises the combined Euclidean distance from the (0,1) coordinate of
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the ROC curve, based on the true positive and false positive rates.
Balancedprecisionwas computedby adjusting the standardprecision to
account for class imbalance, followingapreviously introduced formula26.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw datasets used in this study can be accessed from the OSF
repository (DOI: 10.17605/OSF.IO/AH2UC)121, available at https://osf.io/
ah2uc. A README file describing eachdataset is available at https://osf.
io/5w3qf. AlphaFold-predicted structures, including those shown in
Fig. 3c and Fig. 4, can be accessed from the AlphaFold Protein Struc-
ture Database at https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/
UP000005640_9606_HUMAN_v1.tar. Those predicted structures that
underwent a sequence change between the 2021_02 and 2024_04
UniProt releases and were generated in this study are available in PDB
format at https://osf.io/e32q9. ΔΔGrank values for all missense variants
in the human proteome, based on AlphaFold-predicted structures, can
be downloaded in bulk at https://osf.io/g98as. Source data are pro-
vided with this paper. Previously published databases or datasets used
in this work: ClinVar (accessed 10-Sep-2024) (https://www.ncbi.nlm.
nih.gov/clinvar/), dataset: https://osf.io/9e3h2; ClinGen haploinsuffi-
ciency curations (https://clinicalgenome.org/), dataset: https://osf.io/
2cze7; EBI Proteins API; UniProt humsavar (2024_04 of 24 Jul 2024)
https://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/variants/humsavar.txt); Online Mendelian Inheritance
in Man database (06-Aug-2024) (https://www.omim.org/api/), dataset:
https://osf.io/cdnqy; Human Phenotype Ontology database (13-Aug-
2024) (https://hpo.jax.org/), datasets: https://osf.io/9e2pn and https://
osf.io/46yxv; AlphaFold Protein Structure Database (https://alphafold.
ebi.ac.uk/), dataset: https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/
UP000005640_9606_HUMAN_v1.tar; LoGoFunc predictions (https://
itanlab.shinyapps.io/goflof/), dataset: https://osf.io/wmesg; TP53 deep
mutational scanning data (https://doi.org/10.1038/s41588-018-0204-
y), dataset: https://osf.io/wntsv; HRAS deep mutational scanning data
(https://doi.org/10.7554/eLife.27810), dataset: https://osf.io/5jw9k;
MC4R deep mutational scanning data (https://doi.org/10.7554/elife.
104725), dataset: https://osf.io/b2r9q; HMBS deep mutational scan-
ning data (https://doi.org/10.1016/j.ajhg.2023.08.012); dataset: https://
osf.io/e3fgm; PTPN11 deep mutational scanning data (https://doi.org/
10.1101/2024.05.13.593907); dataset: https://osf.io/32hfg; MTHFR
deepmutational scanning data (https://doi.org/10.1016/j.ajhg.2021.05.
009); dataset: https://osf.io/4e2jz; Crystal structure of TP53: 3USO
AlphaFold model of SMCHD1 (A6NHR9) AlphaFold model of KRAS
(P01116) AlphaFold model of TP53 (P04637) AlphaFold model of BRAF
(P15056) AlphaFold model of MTOR (P42345) AlphaFold model of
AARS1 (P49588) Source data are provided with this paper.

Code availability
Code to reproduce all analyses is available at https://osf.io/ah2uc. The
Colab notebook for mechanism prediction can be accessed at https://
github.com/badonyi/mechanism-prediction. A copy of this notebook
has also been deposited in the repository associated with this project
and can be found at https://osf.io/27wc4.
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