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Molecular disease mechanisms caused by mutations in protein-coding regions
are diverse, but they can be broadly categorised into loss-of-function, gain-of-
function and dominant-negative effects. Accurately predicting these mechan-
isms is important, since therapeutic strategies can exploit these mechanisms.
Computational predictors tend to perform less well at the identification of
pathogenic gain-of-function and dominant-negative variants. Here, we develop
a protein structure-based missense loss-of-function likelihood score that can
separate recessive loss of function and dominant loss of function from alter-
native disease mechanisms. Using missense loss-of-function scores, we estimate
the prevalence of molecular mechanisms across 2,837 phenotypes in 1,979
Mendelian disease genes, finding that dominant-negative and gain-of-function
mechanisms account for 48% of phenotypes in dominant genes. Applying
missense loss-of-function scores to genes with multiple phenotypes reveals
widespread intragenic mechanistic heterogeneity, with 43% of dominant and
49% of mixed-inheritance genes harbouring both loss-of-function and non-loss-
of-function mechanisms. Furthermore, we show that combining missense loss-
of-function scores with phenotype semantic similarity enables the prioritisation
of dominant-negative mechanisms in mixed-inheritance genes. Our structure-
based approach, accessible via a Google Colab notebook, offers a scalable tool
for predicting disease mechanisms and advancing personalised medicine.

The vast majority of disease-causing genetic variants identified to date
are located within protein-coding regions of the genome. While many
lead to a loss of protein function (LOF), often through premature stop
codons or missense changes that destabilise protein folding, others
exert their effects via alternative (non-LOF) mechanisms'. Gain-of-
function (GOF) mutations cause disease through a wide range of
molecular mechanisms, including increased activity (hypermorphs),
altered binding specificity, or acquisition of novel functions (neo-
morphs). Dominant-negative (DN) mutations interfere with the activity

of the wild-type protein, either by co-assembling into dysfunctional
complexes’ or by competitively sequestering shared binding partners
or substrates. Understanding these mechanisms usually requires
examining how mutant proteins interact with other molecules. Their
impacts can manifest through various means, including disruption or
creation of novel interactions, altered binding affinity or specificity,
changes to protein complex assembly, and induction of aggregation,
mislocalisation, or phase separation'. The diversity of molecular
mechanisms presents a significant challenge for their identification,
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often necessitating elaborate experimental strategies to validate
them?, which are costly and time-consuming.

Accurate prediction and validation of molecular disease
mechanisms are essential for developing effective targeted therapies.
Diseases resulting from LOF mutations are usually amenable to gene
therapy, where the delivery of functional gene copies compensates for
the defective allele. This approach has successfully treated conditions
such as RPE65-associated retinal dystrophy* and Duchenne muscular
dystrophy’. In contrast, diseases caused by non-LOF mutations are
more suited to treatment with small molecules that inhibit the altered
or excessive function, as demonstrated by the development of KRAS
degraders for cancer®, or through gene-editing and silencing strate-
gies, as exemplified by a promising treatment for retinitis pigmentosa,
driven by the GOF mutation p.Pro23His in rhodopsin’. Similar allele-
specific targeting approaches offer hope for treating DN conditions,
such as collagen-related dystrophy® and long QT syndrome’. While
most genes are associated with a single molecular mechanism, some
are known to exhibit multiple mechanisms, requiring distinct ther-
apeutic interventions. For example, sodium channel blockers are
effective for epilepsy associated with GOF variants in SCNA1'’, whereas
gene replacement therapy may soon address SCNA1 haploinsuffi-
ciency in Dravet syndrome".

Despite the clear clinical need, predicting molecular disease
mechanisms remains difficult. Current computational methods usually
focus on predicting LOF and function-altering mechanisms at the level
of individual genetic variants’>™*. However, there are also gene-level
features that tend to be associated with different mechanisms>*". We
recently developed a model to predict the most likely mechanism when
heterozygous disease mutations are found in a gene'®. These predic-
tions have now been incorporated into the DECIPHER database’,
assisting clinicians in identifying potential disease mechanisms.

We previously reported two structural properties—specifically, the
energetic impact and clustering of missense variants—that discriminate
between genes with LOF and non-LOF mechanisms exceptionally well’.
This is because LOF mutations tend to be highly destabilising and
spread throughout protein structures, whereas non-LOF mutations,
which are structurally milder, often exhibit clustering within func-
tionally important regions. We quantify the impacts of variants on
protein stability using changes in Gibbs free energy of folding (AAG)
predicted with FoldX?°, while variant clustering is assessed with the
extent of disease clustering (EDC) metric'®. While AAG is calculated at
the variant level, EDC operates at an intermediate level, requiring
multiple variants but not necessarily all disease variants within a gene.
This flexibility enables EDC to be applied to a group of variants, par-
ticularly those associated with the same phenotype, as demonstrated
for cancer-associated and Weaver syndrome variants in EZH2?.

In this study, by integrating EDC and AAG data from pathogenic
variants, we develop an empirical distribution-based method to derive
a missense LOF (mLOF) likelihood score and demonstrate its utility for
improving molecular mechanism predictions in a Bayesian framework.
By assembling phenotype annotations for over 70% of pathogenic
missense variants in Clinvar??, we show that the mLOF score is parti-
cularly powerful at the phenotype level. Most importantly, we estimate
the prevalence of molecular mechanisms across genetic disease phe-
notypes, revealing widespread mechanistic heterogeneity and high-
lighting its implications for precision medicine. We make our method
available as a Google Colab notebook, allowing mLOF score calculation
for variant sets in human protein-coding genes at https://github.com/
badonyi/mechanism-prediction.

Results

Developing the mLOF score for predicting missense variant
molecular mechanisms

Our objective was to predict the likelihood of a set of missense variants
being associated with LOF vs. non-LOF molecular mechanisms by

integrating information about their protein structural context. Speci-
fically, we sought to combine clustering in three-dimensional space, as
quantified by EDC, and predicted energetic impacts, as measured by
AAG. To achieve this, we developed an approach based on the
empirical distributions of these metrics in LOF and non-LOF genes',
i.e., genes with pathogenic missense variants known to act via LOF and
DN or GOF mechanisms, respectively. Importantly, we use AAG; . in
place of raw AAG values. This is a recently introduced rank-normalised
metric that improves interpretability and facilitates comparisons
across different proteins®**. For a given observation of EDC and
AAG;,.n in a set of variants, we calculate the marginal probabilities of
these observations being drawn from the LOF rather than non-LOF
distributions (Supplementary Fig. 1). The probabilities are then com-
bined into the mLOF score, which represents the likelihood that the
variants will have a LOF effect given their energetic impact and dis-
persal within the protein structure.

To evaluate the utility of the mLOF score, we treated predictions
from our previously published proteome-scale model (pDN/GOF/LOF)
as informative priors for the likelihood of a disease mechanism
occurring in a gene'®. By updating these priors with the mLOF score, we
derived mechanism-specific posterior scores (postDN/GOF/LOF),
which represent adjusted estimates of the likelihood that a gene
exhibits a mechanism, taking into account the structural properties of
its pathogenic missense variants. Figure 1a provides a graphical over-
view of our method.

We first applied this method to pathogenic missense variants in
exclusively autosomal dominant (AD) genes with gene-level molecular
mechanism classifications', and calculated the area under the receiver
operating characteristic curve (AUROC) for the mLOF score, as well as
the prior and posterior mechanism-specific scores (Fig. 1b). We found
the mLOF score to be predictive across the binary class pairs pre-
viously used to construct the priors (DN vs. LOF, GOF vs. LOF, and LOF
vs. non-LOF), with AUROC ranging from 0.622 to 0.714, indicating
generalisability across the mechanisms.

One possible explanation for the limited performance is that
many genes are associated with multiple molecular disease mechan-
isms, which imposes fundamental limitations on our gene-level
approach. Although we only have gene-level rather than phenotype-
level classifications, one way of addressing this limitation is by con-
sidering those genes with a single disease phenotype, which are thus
more likely to be associated with a unique mechanism. Therefore, we
used variant-level phenotype annotations from the Online Mendelian
Inheritance in Man (OMIM) database® to identify dominant genes
associated with a single disease phenotype. Notably, AUROC values
were markedly increased across all binary class pairs (Fig. 1b). A similar
conclusion is supported by the area under the balanced precision-
recall curve (AUBPRC) analysis*® (Supplementary Fig. 2). We also
derived the optimal threshold for distinguishing between LOF and
non-LOF mechanisms using the single phenotype genes. The resulting
value of 0.508 provides a practical cutoff for assessing whether a
group of variants is likely to exhibit a LOF mechanism and can be used
to compare different variant groups in the same gene. At this thresh-
old, the mLOF score achieves a sensitivity of 0.721, a specificity of
0.702, an accuracy of 0.712, and an F1 measure of 0.719, indicating a
balanced performance.

We assessed the robustness of the model in two ways: first, by
progressively increasing the minimum number of unique residue
positions required for EDC calculation; and second, by restricting the
analysis to ClinVar variants with at least a one-star review status.
AUROC and AUBPRC values under these conditions are summarised in
Table 1. We found that model performance remained stable when
limited to variants with at least a one-star review status. As expected,
performance moderately improved when more pathogenic residue
positions were considered, reflecting increased confidence in the
collective properties of the variants.
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Fig. 1| Predicting the likelihood of a loss-of-function mechanism based on the
structural properties of pathogenic missense variants. a Overview of the mLOF
score framework. The missense LOF likelihood score mLOF is calculated from
empirical distributions of the metrics EDC (spatial clustering) and AAG;,nx (ener-
getic impact) in LOF and non-LOF genes. This score is then used to update gene-
level mechanism-specific priors (pDN/GOF/LOF) established in an earlier study'®.
The final posterior scores (postDN/GOF/LOF) represent adjusted estimates of the
likelihood that a gene exhibits a specific molecular disease mechanism, given the

structural properties of its pathogenic missense variants. b Receiver operating
characteristic (ROC) curves and area under the curve (AUC) values of the mLOF
score, the prior mechanism probability for the gene, and the posterior mechanism-
specific scores across the binary class pairs used to construct the priors. The ana-
lysis is split into all genes, using all pathogenic missense variants, and a subset of
single-phenotype genes, where only variants linked to the specific OMIM pheno-
types are considered. N is the number of genes in each group. mLOF £,p¢ima Shows
the optimal ROC threshold. Source data are provided as a Source Data file.

As an additional validation, we applied the mLOF score to pre-
viously published high-throughput functional assay data on six human
disease genes: HRAS?”, MC4R*, HMBS*, TP53*°, PTPNI1*, and
MTHFR* (Supplementary Fig. 3a-f). In all assays, the mLOF score was
predictive of the assigned classifications, with scores for the different
molecular mechanisms consistently falling above or below the optimal
threshold. For example, a clear difference was observed between GOF
and LOF HRAS variants, with mLOF scores of 0.426 and 0.613,
respectively (Supplementary Fig. 3a). GOF variants were clustered at

key functional sites, whereas LOF variants spread across protein core
residues. For TP53, we found that variants with a LOF mechanism had
the highest mLOF score (0.551; Supplementary Fig. 3d), primarily dri-
ven by the dispersal of variants in the structure. DN variants, in con-
trast, had a lower mLOF score of 0.445 and were concentrated within
the DNA-binding domain. Notably, variants exhibiting both DN and
LOF properties in the assay clustered exclusively in the DNA-binding
domain, showed the highest predicted structural destabilisation, and
had the lowest mLOF score (0.351). We speculate that these variants
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Table 1| Performance of the posterior score postLOF at distinguishing between LOF and non-LOF mechanisms using dominant

single-phenotype genes

ClinVar P/LP variants Min N of residues N genes AUROC AUBPRC
All, with phenotype 3 172 0.889 0.874
All, with phenotype 5 12 0.927 0.910
All, with phenotype 10 47 0.937 0.911
>=1-star, with phenotype 3 122 0.909 0.902

The four conditions represent different stringency levels, including the number of unique residue positions (min N of residues) considered for the calculation of the EDC clustering metric or for
ClinVar evidence assertion (star-rating). Area under the receiver operating characteristic curve (AUROC) and balanced precision-recall curve (AUBPRC) are shown. Source data are provided as a

Source Data file.

are highly destabilising in TP53 knockout assays, but may achieve
partial stabilisation through wild-type binding, thus manifesting a DN
effect in a context-dependent fashion.

Furthermore, we evaluated the mLOF score against GOF predic-
tions by the LoGoFunc method®™. Although LoGoFunc provides GOF
probabilities at the variant level, averaging these probabilities for a
phenotype yields a measure comparable to the mLOF score. We tested
the performance of this metric in dominant single-phenotype genes,
using both all available genes and the test set of our gene-level pre-
dictor. As shown in Supplementary Fig. 3g, h, in both cases, when
combined with the prior GOF mechanism likelihood, mLOF yielded
postGOF scores that substantially outperformed the average GOF
probabilities from LoGoFunc. Notably, although updating pGOF with
the average GOF probabilities from LoGoFunc achieved the nominally
highest AUROC on all data, its performance declined when evaluated
on the test set. We also note that LoGoFunc incorporates many fea-
tures overlapping with those used to derive the gene-level priors, and
is therefore not fully independent of the prior, unlike the mLOF score.

Prevalence of molecular mechanisms across disease phenotypes
Motivated by these findings, we set out to assess the prevalence of
molecular mechanisms across genetic disease phenotypes. We first
classified disease phenotypes on the basis of their inheritance. Specifi-
cally, genes can show either exclusively autosomal dominant (AD) or
autosomal recessive (AR) inheritance, or they may show mixed inheri-
tance, being associated with both dominant and recessive variants.
Dominant and recessive variants in mixed-inheritance genes may be
associated with distinct phenotypes, in which case we can consider the
dominant ([AD]-AD/ARixeq) OF recessive ([AR]-AD/ARixeq) phenotypes
separately. In contrast, as we only have gene-level phenotype:inheritance
associations available from OMIM, for those genes with mixed-
inheritance associated with the same phenotype, we are unable to dis-
tinguish between dominant and recessive variants, so they are considered
together (AD/ARs,me). We also classified AD phenotypes on the basis of
molecular mechanisms, using our previous gene-level LOF, GOF and DN
annotations. These phenotype classifications are summarised in Table 2.

Figure 2a shows the mLOF score distribution for the different
inheritance-based phenotype classifications, ordered by their mean. The
observed distributions align remarkably well with our expectations: AR,
[AR]-AD/ARixeq and XLR phenotypes display the highest mLOF scores.
AD phenotypes, while shifted to the left side of the optimal threshold by
the mean, are evidently bimodal, suggesting the presence of both LOF
and non-LOF mechanisms. Interestingly, [AD]-AD/ARixea Phenotypes
fall on the left side of the optimal threshold, with a mean of 0.499. This
can be explained by considering that the coexistence of a recessive
disorder provides a level of evidence against dosage sensitivity®, thus
making AD phenotypes in these genes more likely to arise through
alternative mechanisms. In contrast, AD/ARs,;. phenotypes have a
higher mean mLOF score relative to AD phenotypes, which could result
from the unequal mixing of AD and AR variants—a limitation inherent to
our use of phenotype-level rather than variant-level annotations. Alter-
natively, missense variants in these phenotypes may follow a single

Table 2 | Inheritance- and mechanism-based classification of
disease phenotypes

Abbreviation
AR

[AR]'AD/ARmixed

Inheritance-based phenotype classification
Phenotypes of exclusively autosomal recessive genes

Autosomal recessive phenotypes of mixed-
inheritance genes

Autosomal dominant phenotypes of mixed-
inheritance genes

[AD]-AD/ARmixed

Phenotypes of autosomal genes inherited in both domi- AD/ARsame
nant and recessive modes

Recessive phenotypes of X-linked genes XLR
Phenotypes of exclusively autosomal dominant genes AD
Mechanism-based phenotype classification

Autosomal dominant phenotypes in genes with a loss-of- LOF
function mechanism

Autosomal dominant phenotypes in genes with a gain- GOF
of-function mechanism

Autosomal dominant phenotypes in genes with a DN
dominant-negative mechanism

Autosomal dominant phenotypes in genes without a Unknown

reported molecular mechanism

inheritance mode, while other mutation types, such as protein null
variants (e.g., nonsense or frameshift mutations that are presumed to
completely abolish protein function), particularly when homozygous,
correspond to the other mode. This phenomenon has been observed,
for example, in ITPR1, where homozygous null and de novo missense
variants both cause Gillespie syndrome™.

The different mechanism-based phenotype classifications are
shown in Fig. 2b. As expected, dominant LOF phenotypes have the
highest mean mLOF score (0.547), while GOF and DN phenotypes are
strongly left-shifted, with mean mLOF scores of 0.480 and 0.474,
respectively. Unknown phenotypes, those of dominant genes without
reported mechanisms, show a left-skewed distribution with a mean of
0.484. This likely reflects detection bias, as non-LOF variants are more
difficult to experimentally characterise and less well predicted by
computational tools, leading to an apparent enrichment of alternative
mechanisms in these genes.

Next, we classified AD phenotypes based on their highest
mechanism-specific posterior scores into LOF, GOF, and DN categories
to assess the contribution of different molecular mechanisms. We
focused on three groups in particular: exclusively AD genes with a
single phenotype, those with multiple phenotypes, and AD pheno-
types in mixed-inheritance genes, i.e., genes associated with both AD
and AR disorders. In Fig. 2c, we show the composition of predicted
molecular mechanisms across these groups. Single-phenotype AD
genes exhibited the largest fraction of phenotypes with a LOF
mechanism, at 54.6%. The remaining fraction was attributed to GOF
and DN mechanisms occurring at similar frequencies, at 23.8% and
21.6%, respectively. In multi-phenotype AD genes, the fraction of
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Fig. 2 | mLOF scores reveal the prevalence of molecular mechanisms at the
phenotype level. a, b Distribution of mLOF scores for inheritance- and mechanism-
based phenotype classifications (see Table 2 for the description of the abbrevia-
tions). N denotes the number of phenotypes in each group. Red line indicates the
optimal mLOF score threshold. Boxes represent data within the 25th and 75th
percentiles, the middle line is the median, the notches contain the 95% confidence
interval of the median, and the whiskers extend to 1.5x the interquartile range.
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indicated categories. The predictions represent the highest-ranking posterior
mechanism-specific score for each phenotype. N denotes the number of pheno-
types in each group. Bar charts show the fraction of genes with both LOF and non-
LOF (‘hybrid’) mechanisms, with 50/116 and 55/112 for multi-phenotype AD genes
and AD/ARpixeq genes, respectively. Error bars are 95% credible intervals calculated
from a posterior distribution of fractions derived using the bootstrap estimates of
the optimal mLOF threshold. Source data are provided as a Source Data file.

phenotypes with a LOF mechanism was lower, at 48.1%, followed by
GOF at 32.5% and DN at 19.3%. This difference may be explained by the
observation that multiple disease phenotypes are unlikely to arise in
haploinsufficient genes, where reduced dosage (a form of LOF) already
causes disease; thus, by exclusion, additional phenotypes are more
likely to involve non-LOF mechanisms. AD phenotypes in mixed-
inheritance genes had the lowest proportion of LOF mechanisms, at
just 9.9%, followed by GOF at 53.6% and DN at 36.5%. As observed with
the mLOF score distribution of these genes in Fig. 2a, this likely reflects
a reduced likelihood of haploinsufficiency conferred by the presence
of a recessive disorder, which makes dominant phenotypes more likely
to arise through alternative mechanisms.

We next estimated the fraction of multi-phenotype genes with
disease phenotypes involving both LOF and non-LOF molecular
mechanisms. This analysis revealed that 43.1% of multi-phenotype AD
genes accommodate at least one DN or GOF disease mechanism in
addition to LOF. Similarly, in mixed-inheritance genes, we estimated a
frequency of 49.1%, assuming most recessive disorders involve biallelic
LOF (with rare exceptions®?®), and quantifying the fraction with a
dominant non-LOF mechanism. These findings suggest that, based on
the structural properties of missense variants, mechanistic

heterogeneity is widespread among multi-phenotype genes. To facil-
itate access to these results, we provide a comprehensive list of OMIM
phenotypes (N =2837) in Supplementary Data 1, including MIM iden-
tifiers, disease names, EDC and AAG;., values, mLOF scores, and the
mechanism-specific posterior scores.

Dominant-negative phenotypes in mixed-inheritance genes

Intriguingly, our results suggest that LOF is very rare as a mechanism
underlying dominant phenotypes in mixed-inheritance genes,
accounting for only 9.9% of cases (Fig. 2c). While this might in part be
explained by considering that mixed-inheritance genes are less likely
to be haploinsufficient, there are many examples where the same
phenotype is associated with both dominant and recessive variants.
One possible explanation is that the recessive variants are hypo-
morphic, causing only a partial LOF in each allele that amount to the
same net wild-type activity level as complete LOF in one allele. To test
this hypothesis, we compared AAG, . distributions of recessive phe-
notypes in mixed-inheritance genes ([AR]-AD/ARpixeq) With those in
exclusively AR genes (Fig. 3a). We observed that [AR]-AD/ARixed
phenotypes exhibit lower AAG;,,k values compared with those of AR
genes (P=1.6x10% Wilcoxon rank-sum test), consistent with the
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® OPTB4
© OPTA2

represents a two-sided Wilcoxon rank-sum test. ¢ CLCN7, which encodes the H(+)/
CI(-) exchange transporter 7, is an example of an AD/ARyixeq gene with a reported
DN mechanism of pathogenesis. Its structure represents the AlphaFold-predicted
model (P51798 [https://alphafold.ebi.ac.uk/files/AF-P51798-F1-model_v1.pdb]).
Missense variant positions are shown for the dominant (OPTA2) and recessive
(OPTB4) forms of osteopetrosis, with their corresponding mLOF scores displayed
below. Regions below a pLDDT of 70 are shown in purple. Source data are provided
as a Source Data file.

presence of hypomorphic variants. A similar tendency was observed
using raw AAG values (Supplementary Fig. 4). While this trend also
appears in AD/ARg,me genes, we do not have variant-level inheritance
classifications in these genes, where the tendency for recessive var-
iants to be hypomorphic may be even stronger, potentially explaining
the identical phenotypes for dominant and recessive variants. None-
theless, the case of PKD1, where recessive hypomorphic variants have
recently been implicated in polycystic kidney disease’’—the same
phenotype for which there is sufficient evidence of haploinsufficiency
caused by dominant LOF mutations (ClinGen®® Curation ID: 007675)—
underscores the relevance of these effects.

Another phenomenon that could explain the tendency for domi-
nant and recessive variants in the same gene to be associated with
similar phenotypes is the DN effect, as has been described in cases
where DN variants phenocopy recessive disorders®****2, To test whe-
ther AD phenotypes with a predicted non-LOF mechanism have a ten-
dency to phenocopy the recessive disorder, we analysed all non-
redundant AD-AR phenotype pairs within AD/ARyixeq g€NES, repre-
senting 217 phenotype pairs in 103 genes. These were grouped into a
high confidence non-LOF category if the mLOF score for the AD phe-
notype fell below the optimal threshold and was less than that for the
AR phenotype. We then calculated the semantic similarity between AD-
AR phenotype pairs using Human Phenotype Ontology* terms, with the
hypothesis that the non-LOF category should tend to have higher
semantic similarity values due to its enrichment in genuine DN
mechanisms. As shown in Fig. 3b, the non-LOF class displayed sig-
nificantly higher AD-AR phenotype similarity values relative to AD-AR
phenotype pairs in the LOF class (P=9.2 x 10?, Wilcoxon rank-sum test).

We further refined the analysis by filtering for genes whose DN-
specific prior was greater than that for GOF and selecting the pheno-
type pair with the highest similarity for each gene. Pairs with a
semantic similarity greater than 0.5 are listed in Table 3. Among these,
we highlight CLCN7 (Fig. 3c), with an mLOF score of 0.549 for the
recessive and 0.455 for the dominant forms of osteopetrosis (OPTB4

and OPTA2, respectively). These scores are reflective of the con-
siderably greater clustering of dominant variants, with an EDC of 1.36
vs. 1.03 for the recessive phenotype. The two phenotypes share many
clinical features, as implied by their disease names and semantic
similarity scores. Heterozygous osteopetrosis-associated variants are
known to exert a dominant-negative effect***°. The p.Gly215Arg var-
iant, for example, disrupts CLCN? trafficking in a dominant-negative
manner”’, and has been used to generate a mouse model of OPTA2,
which recapitulates the characteristic osteopetrosis phenotype with
excessive bone deposition*:. These findings highlight the utility of
combining mLOF scores with semantic similarity to identify DN disease
phenotypes in mixed-inheritance genes.

Disease phenotypes linked to distinct molecular mechanisms
within the same gene

Given that mLOF score analysis suggested considerable mechanistic
heterogeneity among multi-phenotype genes, we aimed to identify
phenotype pairs most likely to exhibit distinct molecular mechanisms.
To this end, we calculated the difference in mLOF scores for all pos-
sible phenotype pairs within multi-phenotype genes, excluding those
with only recessive inheritance. We further refined our analysis by
selecting pairs from beyond the 95" percentile of the distribution,
which we consider particularly interesting, and where one phenotype
scored above and the other below the optimal threshold. Table 4
summarises these genes, listing their phenotypes with higher mLOF
scores (LOF-like) alongside those with lower mLOF scores (non-LOF-
like). For some of the top-ranking genes, discussed in more detail
below, protein structures and missense variant positions linked to the
different phenotypes are shown in Fig. 4.

SMCHDI1 (Fig. 4a) is a member of the structural maintenance of
chromosomes protein family, which plays an essential role in epige-
netic silencing. Mutations in the gene are linked to two distinct clinical
phenotypes: the digenic dominant facioscapulohumeral muscular
dystrophy type 2 (FSHD2) and the dominant Bosma arhinia
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Table 3 | Top AR-AD phenotype pairs with high semantic similarity, where the dominant phenotype is likely to involve a

dominant-negative effect

Gene Recessive phenotype Dominant phenotype Similarity

POLG Progressive external ophthalmoplegia with mitochondrial DNA Progressive external ophthalmoplegia with mitochondrial DNA 0.775
deletions, autosomal recessive deletions, autosomal dominant 1

AFG3L2 Spastic ataxia 5, autosomal recessive Spinocerebellar ataxia 28 0.775

ACTA1 Congenital myopathy 2B, severe infantile, Congenital myopathy 2 C, severe infantile, 0.763
autosomal recessive autosomal dominant

ALDH18A1  Spastic paraplegia 9B, autosomal recessive Spastic paraplegia 9 A, autosomal dominant 0.740

TN Muscular dystrophy, limb-girdle, autosomal recessive 10 Myopathy, myofibrillar, 9, with early respiratory failure 0.708

POLR3B Leukodystrophy, hypomyelinating, 8, with or without oligodontia Charcot-Marie-Tooth disease, demyelinating, type 1l 0.700
and/or hypogonadotropic hypogonadism

HTRA1 Autosomal recessive cerebral arteriopathy with subcortical infarcts ~ Cerebral arteriopathy, autosomal dominant, with subcortical 0.669
and leukoencephalopathy (CARASIL) infarcts and leukoencephalopathy, type 2

DEAF1 Dyskinesia, seizures, and intellectual developmental disorder Vulto-van Silfout-de Vries syndrome 0.668

TWNK Mitochondrial DNA depletion syndrome 7 (hepatocerebral type) Progressive external ophthalmoplegia with mitochondrial DNA 0.638

deletions, autosomal dominant 3

CLCN7 Osteopetrosis, autosomal recessive 4 Osteopetrosis, autosomal dominant 2 0.569

GHR Laron syndrome Growth hormone insensitivity, partial 0.521

LMNA Mandibuloacral dysplasia Restrictive dermopathy 2 0.5M

SAMDIL Myelodysplasia and leukaemia syndrome with monosomy 7 Ataxia-pancytopenia syndrome 0.510

Source data are provided as a Source Data file.

microphthalmia syndrome (BAMS). In FSHD2, missense LOF mutations
in SMCHD1, combined with a permissive D4Z4 haplotype on chro-
mosome 4, lead to ectopic expression of DUX4, which is toxic to
skeletal muscle cells*. Conversely, BAMS, characterised by the
absence of the nose and accompanied by ocular and reproductive
defects, is thought to result from GOF mutations®°. Structural model-
ling revealed that BAMS-specific mutations cluster on the protein
surface, pinpointing a cryptic interface”, a finding later confirmed by
the crystal structure of the ATPase domain®’. These observations are
borne out by the high mLOF score of BAMS (0.656) and the low mLOF
score of FSHD2 (0.274).

KRAS (Fig. 4b) is a signalling protein and established oncogene
with GTPase activity. The two phenotypes identified through mLOF
analysis are cardiofaciocutaneous syndrome 2 (CFC2) and multiple
myeloma. CFC2 is characterised by a distinctive facial appearance,
heart defects, and intellectual disability’®. Heterozygous missense
variants underlying the phenotype are dispersed in the protein and
have a highly structurally damaging effect, reflected by an mLOF score
of 0.623. Supporting this, functional studies on the CFC2-associated
variant p.Lys147Glu revealed weak GTP binding, falling short of the
oncogenic threshold™. In contrast, multiple myeloma variants, which
are typically highly recurrent somatic variants®, cluster around the
GTP-binding site and are structurally mild, with an mLOF score of
0.296. Consistent with this, multiple myeloma is strongly linked to
KRAS GOF variants>®.

TP63 (Fig. 4¢) is a transcription factor required for limb formation
from the apical ectodermal ridge”, linked to two dominant pheno-
types: Rapp-Hodgkin syndrome (RHS) and split-hand/foot malforma-
tion 4 (SHFM4). RHS is characterised by anhidrotic ectodermal
dysplasia and cleft lip and/or palate, and it is associated with LOF
mutations in the sterile alpha motif domain (SAM)***°. SHFM4, attrib-
uted to GOF mutations®®, presents with clefts in the hands and feet,
webbed fingers and toes, underdeveloped bones, and sometimes
involves cognitive impairment. In agreement with their reported
mechanisms, we found RHS to have a high mLOF score (0.653) due to
strongly damaging mutations in the SAM domain, and SHFM4 to have a
low mLOF score (0.329) as a result of much milder mutations at
solvent-exposed residues. Because TP63 forms tetramers via its oli-
gomerisation domain®®, and may form extended polymeric structures

mediated by its SAM domain®, these structural features could suggest
an assembly-mediated GOF (dominant-positive') effect underlying
SHFM4. For example, one SHFM4-associated mutation, p.Ala354Glu, is
located in a region responsible for interacting with HIPK2°?, which
phosphorylates TP63 in response to DNA damage®’.

BRAF (Fig. 4d) is a serine/threonine-protein kinase and an estab-
lished oncogene in human cancer®. Mutations in BRAF are linked to
several clinical phenotypes, notably Noonan syndrome 1 (NSI) and
multiple myeloma. Missense variants associated with NS1 have an mLOF
score of 0.632, suggesting a LOF mechanism. These variants tend to be
less clustered but more structurally damaging, and present with cardiac
defects, facial dysmorphia, and reduced growth®. In contrast, missense
mutations linked to multiple myeloma exhibit more activating effects,
exemplified by the highly recurrent cancer-driver p.vVal600GIu®>,
Multiple myeloma variants show a lower mLOF score of 0.321, likely
reflective of an underlying GOF mechanism. These variants tend to be
milder and localised exclusively within the kinase domain, a region cri-
tical for activating downstream signalling in the RAS-MAPK pathway.

MTOR (Fig. 4e) is a serine/threonine protein kinase and the master
regulator of cellular metabolism. mLOF score analysis has identified
renal carcinoma and CEBALID syndrome (an acronym for craniofacial
defects, dysmorphic ears, structural brain abnormalities, expressive
language delay, and impaired intellectual development) to have mis-
sense variants with dissimilar effects on protein structure. Variants
linked to renal carcinoma are dispersed across protein domains and
are energetically impactful, yielding an mLOF score of 0.619. In con-
trast, CEBALID syndrome variants tend to be structurally milder and
cluster near the ATP-binding site in the FATC domain, with an mLOF
score of 0.32. GOF variants in MTOR have been previously linked to
conditions such as Smith-Kingsmore syndrome®” and there is a grow-
ing body of evidence further implicating MTOR in developmental
disorders®®*, with a recent de novo enrichment analysis detecting a
significant missense burden in a cohort of in 31,058 parent-offspring
trios’. Given that two MTOR subunits co-assemble into the mTORCI
complex, these mutations may exert DN or dominant-positive effects,
potentially contributing to the observed phenotypic spectrum in
MTOR-associated disorders.

AARSI (Fig. 4f) is the cytoplasmic alanine-tRNA ligase. mLOF score
analysis revealed two distinct disease phenotypes: the recessive
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Table 4 | The most different phenotype pairs within multi-phenotype disease genes by the mLOF score

Gene LOF-like phenotype mLOF non-LOF-like phenotype mLOF
SMCHD1 Facioscapulohumeral muscular dystrophy 2 0.656 Bosma Arhinia Microphthalmia Syndrome 0.274
KRAS Cardiofaciocutaneous syndrome 2 0.623 Multiple myeloma 0.296
TP63 Rapp-Hodgkin syndrome 0.653 Split-Hand/foot malformation 4 0.329
PRPF8 Retinitis pigmentosa 0.656 Retinitis pigmentosa 13 0.339
SMARCB1 Schwannomatosis 0.63 Coffin-Siris syndrome 3 0.318
GNAS Pseudopseudohypoparathyroidism 0.659 Pituitary adenoma 3, multiple types, somatic 0.346
BRAF Noonan syndrome 1 0.632 Multiple myeloma 0.321
ABCB11 Cholestasis, progressive familial intrahepatic 2 0.638 Cholestasis, intrahepatic, of pregnancy 3 0.33
CAV3 Long QT syndrome 9 0.598 Rippling muscle disease 0.294
MTOR Renal cell carcinoma, papillary, 1, familial and somatic 0.619 CEBALID syndrome 0.32
ADCY5 Dyskinesia with orofacial involvement, autosomal recessive 0.645 Dyskinesia, familial, with facial myokymia 0.364
AARS1 Epileptic encephalopathy, early infantile, 29 0.644 Charcot-Marie-Tooth disease, axonal, type 2N 0.366
LRP6 Tooth agenesis, selective, 7 0.656 Coronary artery disease, autosomal dominant 2 0.378
AIFM1 Deafness, X-linked 5 0.585 Spondyloepimetaphyseal dysplasia, X-linked, with 0.31
mental deterioration
ARX Mental retardation, X-linked, with or without seizures, ARX- 0.637 Corpus callosum, agenesis of, with abnormal 0.368
related genitalia
LHCGR Hypergonadotropic hypogonadism 0.567 Precocious puberty, male 0.301
TWNK Perrault syndrome 5 0.61 Progressive external ophthalmoplegia with mito- 0.346
chondrial DNA deletions, autosomal dominant 3
ACTA1 Congenital myopathy 2B, severe infantile, autosomal recessive 0.656 Congenital myopathy 2 C, severe infantile, auto- 0.395
somal dominant
TP53 Breast cancer 0.648 Medulloblastoma 0.394
IMPG2 Macular dystrophy, vitelliform, 5 0.648 Macular dystrophy, vitelliform, 2 0.395
HBA2 Heinz body anemias 0.651 Methemoglobinemia, Alpha type 0.406
SLC32A1 Generalised epilepsy with febrile seizures plus, type 12 0.641 Developmental and epileptic encephalopathy 114 0.397
SCN4A Congenital myopathy 22 A, classic 0.62 Paramyotonia congenita 0.376
EXT2 Exostoses, multiple, type Il 0.633 Ovarian cancer 0.395
RECQL4 RAPADILINO syndrome 0.656 Ovarian cancer 0.422
POLR3B Leukodystrophy, hypomyelinating, 8, with or without oligo- 0.607 Charcot-Marie-Tooth disease, demyelinating, type 1l  0.385
dontia and/or hypogonadotropic hypogonadism
APOE Lipoprotein glomerulopathy 0.539 Hyperlipoproteinemia, type Il 0.316
NPR2 Acromesomelic dysplasia, Maroteaux type 0.616 Short stature with nonspecific skeletal 0.395
abnormalities
PRNP Gerstmann-Straussler disease 0.552 Creutzfeldt-Jakob disease 0.331
FLNA Cardiac valvular dysplasia, X-linked 0.652 Otopalatodigital syndrome, type | 0.432
TN Cardiomyopathy, dilated, 1G 0.584 Myopathy, myofibrillar, 9, with early respiratory 0.365
failure
SDHD Mitochondrial complex Il deficiency, nuclear type 3 0.634 Pheochromocytoma 0.417
BEST1 Bestrophinopathy, autosomal recessive 0.598 Vitreoretinochoroidopathy 0.382
MECP2 Rett syndrome 0.615 Mental retardation, X-linked, syndromic 13 0.399
TSHR Hypothyroidism, congenital, nongoitrous, 1 0.594 Ovarian cancer 0.379
TRPV4 Metatropic dysplasia 0.568 Hereditary motor and sensory neuropathy, type IIC~ 0.355

Source data are provided as a Source Data file.

developmental and epileptic encephalopathy 29 (DEE29) and the
dominant Charcot-Marie-Tooth disease, axonal, type 2N (CMT2N).
Variants associated with DEE29 predominantly map to the ATP-binding
site or the acceptor site recognition domain, consistent with its
established biallelic LOF mechanism?. This is further supported by an
mLOF score of 0.644, reflecting the severe structural impact of DEE29-
associated mutations. By contrast, CMT2N variants are primarily
located in the anticodon-binding domain and in a region homologous
to the dimerisation interface observed in a remote paralogue’. These
variants are associated with a lower mLOF score of 0.366, in agreement
with their milder structural effects. Supporting this further, recent
studies employing a humanised yeast assay suggest that missense
variants linked to CMT2N exert a DN effect”.

Mechanism prediction Google Colab notebook

To facilitate mLOF score calculation, we created a Google Colab
notebook, available at https://github.com/badonyi/mechanism-
prediction, allowing users to input a gene name or UniProt’® acces-
sion number along with a list of variants. The variants should map to
the UniProt reference sequence—any mismatch between the variant
and the reference amino acid sequence will be flagged with a warning.
When only genomic variants are available, we recommend using the
ProtVar’® web server to map these directly to the UniProt canonical
isoform. We employ precomputed AAG;,, values for the proteome
and structures from the AlphaFold database’ to calculate EDC for the
input variants. Although the latter limits proteins to <2700 amino
acids, only about 1% of human proteins exceed this length. The results
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mLOF © 0.274 e 0.656
SMCHD1

mLOF © 0.321 @ 0.632

mLOF © 0.296 e 0.623
KRAS

mLOF © 0.329 e 0.653
TP63

Fig. 4 | Examples of proteins having two disease phenotypes with mLOF scores
indicating both loss-of-function and alternative mechanisms. Phenotype pairs
in top-ranking genes; see main text for a discussion on these and Table 4 for their
phenotype definitions. Structures are predicted models from the AlphaFold data-
base. Red and blue spheres represent missense variants associated with the LOF-
like and non-LOF-like phenotypes, respectively. Regions below a pLDDT of 70 are
shown in purple. a AlphaFold model of SMCHD1 (A6NHR9 [https://alphafold.ebi.ac.
uk/files/AF-A6NHR9-F1-model_v1.pdb]) b AlphaFold model of KRAS (PO1116

[https://alphafold.ebi.ac.uk/files/AF-PO1116-F1-model_v1.pdb]). ¢ AlphaFold model
of TP53 (P04637 [https://alphafold.ebi.ac.uk/files/AF-P04637-F1-model_vl.pdb])
superimposed onto the DNA-bound TP63 complex (3USO [https://doi.org/10.2210/
pdb3USO/pdb])*2. d AlphaFold model of BRAF (P15056 [https://alphafold.ebi.ac.
uk/files/AF-P15056-F1-model_v1.pdb]) e AlphaFold model of MTOR (P42345
[https://alphafold.ebi.ac.uk/files/AF-P42345-F1-model_v1.pdb]). f AlphaFold model
of AARSI (P49588 [https://alphafold.ebi.ac.uk/files/AF-P49588-F1-model_vl.pdb]).

include all intermediary metrics, such as EDC and AAG;. values, the
mLOF and the mechanism-specific posterior scores, as shown in Fig. 5.
A brief summary of the results is also provided to assist users in
interpreting and reporting their findings.

Discussion

Here, we developed an empirical distribution-based approach to calcu-
late the missense LOF score, mLOF, which represents the likelihood that
a group of pathogenic missense mutations will act via a simple LOF
mechanism. We achieved this by leveraging fundamental protein struc-
tural properties of missense variants, their energetic impact (AAG) and
spatial clustering (EDC), both of which have an established and robust
relationship to molecular disease mechanisms'®'®*?*78_ This approach
offers two advantages. First, the use of a non-parametric kernel density
estimation method preserves data interpretability at each step, allowing
the use of intermediary results for hypothesis testing. Second, the
applicability of AAG and EDC to any combination of missense variants
provides an optimal metric for assessing the missense LOF likelihood at
the phenotype level. Variants within the same gene contributing to the
same phenotype are more likely to be causally and functionally coupled,
enhancing the precision of molecular mechanism predictions.

In our data, a quarter of genes whose disease phenotypes are
linked to missense mutations have more than one associated pheno-
type. Although this proportion may be skewed by study bias, in that
multi-phenotype genes are overrepresented in disease genes that have

historically attracted more attention (e.g., TP53, KRAS, and BRCA2),
mLOF score analysis indicates that 43% of dominant and 49% of mixed-
inheritance multi-phenotype genes exhibit phenotypes driven by both
LOF and non-LOF mechanisms. This finding has important implications
for the design of clinical trials and the development of therapeutic
interventions, suggesting that in many cases, different disease phe-
notypes of the same gene may require distinct treatment strategies
tailored to the underlying mechanism.

Many dominant phenotypes in mixed-inheritance (AD/ARmixed)
genes are likely attributable to DN effects rather than simple LOF.
While this is expected—given that the presence of recessive inheritance
reduces the likelihood of haploinsufficiency®, and a GOF mechanism is
unlikely to mimic a recessive disorder'—it is nonetheless valuable
information from a clinical point of view. By combining mLOF scores
with phenotype semantic similarity, we could prioritise phenotypes
resembling the recessive disorder in the same gene, identifying cases
that may result from DN mechanisms. However, this analysis was not
feasible for genes where the same phenotype is inherited in both
dominant and recessive patterns (AD/ARsame). In such cases, chal-
lenges remain in determining which variants are pathogenic only in the
homozygous state and whether dominant variants are as likely to exert
DN effects as those in AD/ARyixeq gENES.

In many mixed-inheritance genes, the distinction between domi-
nant and recessive modes of action is clear: missense DN variants in /TPR1
are associated with Gillespie syndrome*, whereas only recessive null

Nature Communications | (2025)16:8392


https://alphafold.ebi.ac.uk/files/AF-A6NHR9-F1-model_v1.pdb
https://alphafold.ebi.ac.uk/files/AF-A6NHR9-F1-model_v1.pdb
https://alphafold.ebi.ac.uk/files/AF-P01116-F1-model_v1.pdb
https://alphafold.ebi.ac.uk/files/AF-P04637-F1-model_v1.pdb
https://doi.org/10.2210/pdb3USO/pdb
https://doi.org/10.2210/pdb3USO/pdb
https://alphafold.ebi.ac.uk/files/AF-P15056-F1-model_v1.pdb
https://alphafold.ebi.ac.uk/files/AF-P15056-F1-model_v1.pdb
https://alphafold.ebi.ac.uk/files/AF-P42345-F1-model_v1.pdb
https://alphafold.ebi.ac.uk/files/AF-P49588-F1-model_v1.pdb
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63234-3

(2]

(>

D

Gene name

gene: [ SCNYA

or UniProt accession number

id: { Insert text here

Example: A108S, L738H, T454pP

variants: ’ F216S,1234T,N395K,V400M,L834R,I859T,L869H,L869F,Q886E,R307W,Y1001 }

Show code

INFO

Using the AlphaFold model (https://alphafold.ebi.ac.uk/entry/Q15858)

WARNING
INFO
INFO

Calculating EDC... DONE

Retrieving AAGrank scores... DONE

Structure-based metrics
EDC 1.465
AAGrank
mLOF

Prior mechanism propensities

postGOF
postDN
postLOF

Observed prior mechanism propensity
for the suggested mechanism

Residue(s) 660, 834, 1143, 1959 are below the pLDDT cutoff for EDC calculation.

VERDICT A gain-of-function mechanism is most likely for the variants.

Probability density of EDC

Probability density of AAGrank

All human genes

S S 4 T
= 98.4th percentile o LOF ™ LOF :
non-LOF v ——— non-LOF |
3- . 3 .
- !
Q a 7
© | o~ y
u o = 2
8 £3- za. ]
. 8 8 1
(=) o | !
0 - 1
N o 1
S 3 |
1
=3 =g —— = !
o© T T T T T o© T T T X o T T T |1 T T
0 5000 10000 15000 20000 0.5 1.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0

DAG

Fig. 5 | Example input/output of the Colab notebook. The notebook predicts
molecular mechanisms for missense variants by accepting a gene name or UniProt
ID along with a list of comma-separated variants in one-letter notation. Results
include a link to the gene’s AlphaFold model used for EDC calculation, as well as the
EDC, AAG;ank, MLOF score, and prior/posterior mechanism scores. The mechanism

with the highest posterior score is suggested. Three plots are generated: (1) where
the gene’s prior for the suggested mechanism lies relative to all human genes, and
(2-3) where the observed EDC and AAG;, values fall within the empirical dis-
tributions of LOF and non-LOF genes.

variants have been linked to a clinically identical phenotype”. In other
cases, however, the distinction is less straightforward. Both recessive and
dominant missense mutations in /GFIR cause resistance to insulin-like
growth factor 1, manifesting in intrauterine growth retardation; for
example, the recessive p.Arg40Leu®® and the dominant p.Val629GIu®.
Several genetic factors can explain this, e.g., hypomorphic homozygous
or compound heterozygous mutations (recessive partial LOF) that

produce phenotypes indistinguishable from those caused by hap-
loinsufficiency (dominant complete LOF). Another factor may be
incomplete penetrance®™®, which causes variable phenotype expres-
sivity within ancestries®, sexes®, and even families”. For example, the
presence of common variants may modify the penetrance of inherited
rare variants, lowering the liability threshold required for being affected
by a disease®. Alternatively, DN variants might present as perfect
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phenocopies of the recessive disorder. In some possibly rare cases, a
single variant could result in biallelic LOF while exhibiting a DN effect in
the heterozygous state, as suggested by emerging evidence in AARSI®.

Considering exclusively dominant genes, diverse genetic and
mechanistic factors can explain the coexistence of haploinsufficient and
DN phenotypes in the same®. For example, allele-specific expression
and sex differences in SMCIA lead to distinct phenotypes, with trun-
cating mutations linked to haploinsufficiency causing a seizure disorder
and DN missense mutations resulting in Cornelia de Lange syndrome”.
Notably, mutant SMCIA proteins maintain a residual function in males
but confer a DN effect in females®>. A similar phenomenon occurs in NFI,
where truncating mutations reduce protein levels via haploinsufficiency,
while destabilising missense mutations induce a DN effect by promoting
degradation of the wild type in a tissue-specific pattern®. Although such
contrasting mechanisms are scarcer among phenotypes induced only by
missense mutations, these examples highlight the nuanced relationship
between mutation type, biological context, and the resulting phenotype,
complicating the interpretation of molecular mechanisms.

Unlike other molecular mechanism predictors, such as LoGoFunc*
or VPatho®, which are typically trained on mechanism labels using
supervised learning approaches and may suffer from inflated perfor-
mance estimates due to circularity issues™, the mLOF score is a simple,
empirical metric independent of existing mechanism classifications.
Moreover, the mLOF score also differs in functionality from these pre-
dictors. First, it relies on missense variants already known to be causal for
a disease or have evidence supporting their involvement in pathogen-
esis, for example, through family studies or cohort sequencing. Second,
rather than inferring the mechanism for a single variant, it harnesses
collective properties of variants, which potentially makes its estimate
more robust for variants related through their shared phenotype.

Interpreting the posterior mechanism scores requires joint con-
sideration of the prior and mLOF score. In cases where all prior
probabilities are uniformly low, the gene may have atypical features
not well captured by the training data. Here, a confidently low or high
mLOF score may still yield meaningful insight. Conversely, if the prior
strongly supports one mechanism but the mLOF score deviates in the
opposite direction, this may reflect either limitations in the gene-level
model or unusual structural properties of the variant set. We therefore
recommend that discordant results be interpreted cautiously and
supplemented with orthogonal evidence where possible. This gui-
dance is also included in the Colab notebook, where informative
warnings are issued based on score combinations.

Despite the utility of mLOF scores, several limitations remain,
many of which could be addressed as more structural data become
available. First, our method is necessarily restricted to missense var-
iants, because it relies on EDC and AAG, measures that do not readily
apply to other mutation consequences like stop-gain, indel, or fra-
meshift variants with respect to differences between molecular
mechanisms. Future efforts should focus on developing structure-
based methods to evaluate these mutations in a mechanistic context,
expanding our variant interpretation ability beyond missense variants.
Second, for the EDC calculation, our method includes variants only
within regions with a pLDDT (predicted local distance difference test)
score”® above 70, limiting it to non-disordered and well-predicted
regions of protein structure. Although pathogenic missense mutations
are highly enriched in structured regions®, this limitation excludes
certain variants, e.g., those in short linear motifs”’. Note that variants in
disordered regions can still contribute to mLOF via their predicted
AAG impacts. While these values are difficult to interpret quantitatively
due to low confidence in AlphaFold models, mutations in disordered
regions almost always receive low AAG values. This is consistent with
their limited potential to cause global destabilisation and can still be
informative for inferring likely molecular mechanisms.

Our approach also assumes that the missense variants used to
calculate the mLOF score are causal. This limits its direct application in

patient cohorts where often multiple variants in the same gene are
identified, and it is difficult to know which variants, if any, can be linked
to the disease. In such cases, additional variant prioritisation methods,
e.g., the use of variant effect predictors, are required before the mLOF
score can be applied.

While structurally mild pathogenic variants often localise to func-
tional sites, such as an interface, they are not exclusively non-LOF. For
example, the mutation p.lle87Arg in PAX6 leads to loss of DNA
binding”™?’, causing an aniridia phenotype through haploinsufficiency.
Rarely, LOF variants may cluster, as seen in follicular lymphoma-
associated mutations in EZH2, which concentrate in the SET domain,
disrupting S-adenosyl-L-methionine binding”. Conversely, in a few cases,
DN variants may be highly structurally damaging. For instance, missense
variants linked to late-onset retinal degeneration in CIQTNF5 occur in
the Clq head domain, responsible for functional activity, while assembly
into a trimeric complex is driven by a separate collagen-like domain. This
physical separation may allow co-assembly of wild-type and functionally
impaired subunits, despite structural damage in the Clq domain'®.

There are many genes with fewer than three pathogenic missense
variants in ClinVar, and when novel disease genes are identified, it is rare
for more than a few missense variants to be causally linked to a disease at
once. Therefore, our method is primarily applicable to established dis-
ease genes whose phenotypes arise through missense variation. None-
theless, even when the mLOF score cannot be computed, variant
location and energetic impact can be informative. For example, low-
confidence AlphaFold predictions often coincide with intrinsically dis-
ordered regions, where missense mutations are less likely to destabilise
the folded structure and, by extension, less likely to act via a canonical
LOF mechanism'?". This may suggest a non-LOF mechanism, particularly
when variants occur in close proximity in the sequence or within a well-
characterised functional motif. In cases where only one or two variants
fall within confidently predicted structured regions, 3D clustering may
not be informative, but the energetic impact of individual mutations can
still yield mechanistic insight. When interpreted alongside a gene’s prior
mechanism probabilities, AAG values in structured regions may offer
suggestive evidence for a specific mechanism.

Finally, while we currently rely on monomeric AlphaFold models
for EDC and AAG estimation, incorporating predicted structures of
protein complexes'®'” could substantially improve the accuracy of
missense LOF likelihood estimation by providing more biologically
representative structural insights through the consideration of inter-
molecular interactions'®'®, For example, our previous work demon-
strated that complex properties such as symmetry can be valuable for
predicting non-LOF genes, though such features are not yet available
for all genes®. Improved predictors of protein assembly state and
higher-resolution complex structures will likely enhance variant-level
predictions. Furthermore, predicting subunits as part of a complex,
rather than in isolation, often yields more accurate conformations due
to the presence of buried contacts'”’, potentially making the spatial
clustering of pathogenic residues more sensitive and informative.

In summary, we developed a broadly applicable and readily
interpretable metric of missense LOF likelihood, the mLOF score. Our
Google Colab notebook offers an accessible platform to compute the
score and apply it within a Bayesian framework to predict the most
likely mechanism for any combination of pathogenic missense variants
in a human gene. This flexibility enables a deeper investigation into the
structural effect of mutations, facilitating applications in variant
interpretation and molecular mechanism studies.

Methods

ClinVar mapping to UniProt reference proteome

Genomic coordinates of ‘pathogenic’ and ‘likely pathogenic’ missense
variants, which we refer to as pathogenic, were extracted from the
Clinvar® variant calling file (accessed 10-Sep-2024) using BCFtools™’.
These were subsequently mapped to human reference sequences in
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UniProt’® release 2024 04 with Ensembl VEP 112", We retained phe-
notype cross-references to the OMIM database, as they represent the
most comprehensive and reliable phenotype annotations. These were
further annotated with MIM identifiers from two additional sources:
the protein-specific JSON files with UniProt variation data via the EBI
Proteins API'2, and the UniProt index of human variants curated from
literature reports (202404 of 24-Jul-2024). Gene-level inheritances
were obtained from the OMIM database (06-Aug-2024) via its APIL. To
obtain inheritance modes at the phenotype level, we accessed the
phenotype_to_genes.txt and phenotype.hpoa files from the Human
Phenotype Ontology (HPO) database® (13-Aug-2024), which contain
MIM identifiers and their HPO ontology terms. This process resulted in
63,920 pathogenic missense variants, of which 45,888 (71.8%) have an
associated OMIM phenotype with an inheritance annotation, as sum-
marised in Supplementary Fig. 5a, b.

Structural data

We computed EDC and AAG; ., based on the predicted human struc-
tures downloaded from the AlphaFold database””'™ (AFDB). For the
most part, we used AFDB vl structures, which are consistent with the
2021_02 UniProt release. Any reference sequence between the lengths
of 50 to 5000 amino acids that has undergone a sequence change from
the 2021 02 to the 2024 04 UniProt releases were remodelled with
AlphaFold2, using the default settings of LocalColabFold (ColabFold"*
v1.5.5) on an NVIDIA A100 GPU with 500 GB of RAM. Structures were
visualised using UCSF Chimera X version 1.8,

EDC was calculated as previously described. For each residue, we
determined the alpha carbon distance to pathogenic residue positions
(‘disease’) and to all other (‘non-disease’) positions, keeping the
shortest distance. The final metric is the ratio of the common loga-
rithm of average non-disease and disease distances. Residues with
pLDDT <70 were removed from the calculation, because pathogenic
missense mutations are highly enriched in structured regions®,
therefore mutations in disordered proteins with a small structured
core may appear clustered relative to the total volume of the model.
For proteins modelled as multiple overlapping fragments in the AFDB,
we took the fragment with the highest number of missense variants.

To compute AAG.n, FoldX 5.0 was first used to estimate the
change in the Gibbs free energy for all amino acid substitutions pos-
sible by a single nucleotide change based on human codon usage. The
RepairPDB command was called on each model before running the
BuildModel command to estimate the AAG. For pathogenic variants
that map to multiple fragments of the same protein in the AFDB, we
took the mean AAG. The output values were ranked and rescaled so
that O represents the mildest mutation in the structure and 1 the most
damaging. Finally, for any group of variants (e.g., that belonging to a
specific phenotype), we average AAG;,n values to obtain the mean
AAG;,,n metric, which we refer to as AAG, . for brevity. We note that
raw FoldX AAG values are available for non-disordered and well-
predicted regions in human AlphaFold models via the ProtVar API',
However, as these do not allow calculation of AAG;,,, we have made
our values available at https://osf.io/g98as.

mLOF calculation

We use genes from Gerasimavicius et al.”® to fit our model, as these genes
have at least one missense variant (rather than, e.g., a protein-truncating
variant) associated with a molecular disease mechanism. At both the
gene and phenotype levels, we require at least three missense variant
positions with a pLDDT >70 to ensure reliable estimates for EDC. We
perform Gaussian kernel density estimation separately on the EDC and
the AAG,, values of pathogenic missense variants in LOF and non-LOF
genes, evaluating at 1024 equidistant points with three times the
Sheather-Jones bandwidth'”. The adjustment factor of three was chosen
because, at this value, the probability distributions are smooth and
monotonic without noticeable fluctuations, as shown in Supplementary

Fig. 1a, b. To prevent extreme values from disproportionately influen-
cing the probability estimates, we cap the empirical distributions at the
10th and 90th percentiles. We then compute the density functions for
both groups and identify the closest point in the density function to each
observation, allowing us to derive the estimated density values.
PLor(EDC) and P, or(AAG), which represent LOF probabilities of observed
EDC or AAG.. values, respectively, are computed by dividing the
density value of the LOF group by the sum of LOF and non-LOF density
values. The combined estimate, i.e., the mLOF score, is obtained by
taking the case-specific weighted mean of the two probabilities, which is
considered a robust method when the dependence between the vari-
ables is strong or unknown". P or(EDC) is weighted by the number of
variants used for AAG; . calculation, while P or(AAG) is weighted by the
number of residue positions used for EDC calculation. This approach,
which we refer to as the ‘weighted mean’ method, effectively weakens
the influence of AAG when variants are localised to disordered regions,
thereby strengthening that of EDC. The previous steps are visually
represented in Supplementary Fig. 1. Finally, to estimate a posterior
mechanism likelihood score, we use pDN, pGOF, and pLOF from our
proteome-scale model as informed priors, which reflect the likelihood of
observing the given mechanism when missense variants are identified in
a gene'®. These priors are updated with the mLOF score according to
Bayes’ rule. We formalise our probabilistic framework below:

Definitions:

Let x be a single observation of EDC or mean AAG,n.

Let cap, or and cap,,,_; or be the cap values for the observations.

Let x’ be the capped observation.

Letf} oray aNA f 1on_10F () DE the density functions at observation x'.

Let d,,;ncs be the vector of points where the density functions are
evaluated.

Let index be the index of the closest value in the density function.

Let w, be the number of unique residue positions used for EDC
calculation.

Let wgpc be the number of variants used for mean AAG;, cal-
culation.

Capor if x>capy o,
X'(AAGan) =1 CaPpon_LoFs if x <cappon_LoFs
X otherwise, (08
Capor if x <capor,
X/(EDC)= ¢ CaPyon_LoF if x>capgon_toFs
X otherwise,

Finding indices of nearest density points for a given capped observation x':
index or(x')=arg ml_in |dpaints[l] —x'|

indexnun—LOF(x,) =arg miin Idpoim‘sm - X/l

@

Obtaining density values:
SrorX)=f10r (dpaim‘s [index; o (X’ )]) 3)

fnon—LOF(x/) :fnon—LOF (dpoints [indexnon—LOF(X/)}>

Calculating P, or(EDC) and P, or(AAG):

Pop(X)= Sfrorx) 4)
LOF FrorX)*Fron—10rX")

Calculating the mLOFscore :

mLOF = Yenc -Pop(EDC) +w, 56 - Prop(AAG) (5)
Wepe Y Wang
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Calculating mechanism—specific posterior scores:
(1= mLOF) - Ppy
(I=mLOF) - Ppy+mLOF - (1= Ppy)
(1= mLOF) - Pgor (6)
(1—mLOF) - Ppy+mLOF - (1 — Pgor)
mLOF - Pyyr
mLOF - P,or+(1— mLOF) - Pyor

postDN =

postGOF =

postLOF =

Method validation

We initially compared the performance of the weighted mean method
to a generalised linear model (GLM) that estimates mLOF from EDC
and AAG,,n and an interaction term between them. The rationale was
that a GLM may better capture the joint distribution of the metrics,
potentially outperforming the weighted mean method, which relies on
marginal distributions. By comparing bootstrapped AUROC estimates,
we found that the posterior mechanism-specific scores obtained with
the GLM-based mLOF score had a consistently worse performance
across the binary class pairs. A possible explanation for this is that
mLOF scores from the GLM (Supplementary Fig. 1d) are much less
conservative than those from the weighted mean model (Supple-
mentary Fig. 1c), leading to the mLOF score having a greater influence
on the posterior. This result suggested that a generalised linear model
cannot achieve the same performance as our weighted mean model,
supporting its use.

To evaluate the mLOF score’s utility in distinguishing different
molecular mechanisms within the same gene, we applied it to missense
LOF, GOF, DN, and hyper-complementing (HyC) variants detected by
multiplexed assays of variant effect (MAVEs). We identified six MAVES in
which at least two of the aforementioned molecular disease mechan-
isms, or functional consequences in the case of HyC variants, have been
confidently detected in the same gene: TP53*°, HRAS”, MC4R*®, HMBS®,
TP53*, PTPNI1I*, and MTHFR®. All scores were obtained from the sup-
plementary material of the respective publication.

For TP53, we adopted the classification approach described in the
original study: DN and LOF variants were defined as those with
Z-scores three standard deviations (SD) from the mean of all synon-
ymous mutations, based on the ‘p53WT+nutlin-3’ assay for DN variants
and the ‘p5S3NULL+nutlin-3" and ‘p53NULL+etoposide’ assays for LOF
variants. For visualisation in Supplementary Fig. 3d, a combined score
was calculated as (‘p53WT+nutlin-3’ + ‘p5S3NULL+nutlin-3’ - ‘pS3NULL
+etoposide’)/3.

For HRAS, we defined LOF variants as those with relative
enrichment values more than two SD below the mean in the
‘DMS _regulated’ assay, and GOF variants as those more than two SD
above the mean in the ‘DMS_attenuated’ assay. We note that this
classification is more stringent than the one SD threshold used by the
authors. For visualisation in Supplementary Fig. 3a, the combined
score was calculated as (‘DMS _regulated’ + ‘DMS attenuated’ +
‘DMS _unregulated’)/3.

For MC4R, we selected the ‘THIQ 1.2e-08 minus_Forsk_2.5e-05’
contrast for analysis, as GOF variants are most discernible under low
agonist stimulation. LOF and GOF variants were defined as those with
‘log2ContrastEstimate’ values more than two SD below and above the
mean, respectively.

For HMBS (‘score’ column) and MTHFR (‘base functionality’ col-
umn), missense LOF and HyC variants were classified relative to the
score distribution of synonymous variants. LOF variants were defined
as those scoring below the mean minus two SD, and HyC variants as
those exceeding the mean plus two SD.

For PTPN11, we used the ‘Enrichment (ave)’ column and defined
LOF and GOF variants as those more than two SD below and above the
mean of the distribution for missense variants, respectively.

For the analysis with LoGoFunc-predicted GOF and LOF variants'?,
we downloaded genome-wide missense variant predictions from the

GOF/LOF database (release 10-Aug-2024, https://itanlab.shinyapps.io/
goflof/). Genomic coordinates of these variants were mapped using the
Ensembl VEP 112 pipeline (as described above) and merged with our
ClinVar dataset. We computed the mean LoGoFunc_GOF score for
variants associated with phenotypes in single-phenotype AD genes and
evaluated it against all genes in our GOF vs. LOF dataset, as well as the
corresponding test set. The test set excludes genes used for training
the model (used to construct pGOF) and is limited to proteins with
<50% pairwise sequence identity.

Phenotype-level analyses

To ensure reliable mLOF estimates, we considered disease phenotypes
with missense variants at 3 distinct positions. In Fig. 2a, b, the following
criteria were used to create the phenotype classifications. Note that
gene-level molecular mechanisms are based on our previous study'®.

1. AR: the gene is exclusively AR in OMIM, and the phenotype is
annotated as AR in HPO.

2. [AR]-AD/ARpixed: the gene has at least one AD and one AR phe-
notype with a sufficient number of missense variants, and the
phenotype is annotated as AR in HPO.

3. [AD]-AD/ARyixeq: the gene has at least one AD and one AR phe-
notype with a sufficient number of missense variants, and the
phenotype is annotated as AD in HPO.

4. AD/ARge: the phenotype has both AD and AR inheritance
annotation in HPO.

5. XLR: any phenotype of genes in OMIM with ‘X-linked recessive’ or
X-linked’ inheritance.

6. AD: the gene is exclusively AD in OMIM, and the phenotype is
annotated as AD in HPO.

7. LOF: the phenotype is annotated as AD in HPO, with the gene
either having a reported LOF mechanism or has ‘Sufficient evi-
dence for dosage pathogenicity’ in the ClinGen database® as of
10-Sep-2024. Does not overlap with DN or GOF genes.

8. GOF:the phenotype is annotated as AD in HPO, and the gene has a
reported GOF disease mechanism. Excludes AD/ARpixeq g€NeS.
May overlap with DN genes.

9. DN: the phenotype is annotated as AD in HPO and the gene has a
reported GOF disease mechanism. Excludes AD/ARixeq geNes.
May overlap with GOF genes.

10. Unknown: the gene is exclusively AD in OMIM, lacks a reported
disease mechanism, and the phenotype is annotated as
AD in HPO.

For each within-gene phenotype pair, we calculated how missense
variant sets relate to each other in terms of overlap: (1) distinct, if the
variant sets are mutually exclusive; (2) intersect, where some variants
are shared between the sets; (3) subset, if variants of one phenotype
represent a subset of the other; and (4) identical, if the variant sets are
mutually inclusive. Supplementary Fig. 5c illustrates the relative pro-
portions of set relationships across all non-redundant phenotype pairs
and within unique inheritance groupings. As the mLOF score can be
affected by the extent of variant overlap, losing discriminatory value
for ‘identical’ sets, we only considered phenotype pairs whose variants
had ‘distinct’ and ‘intersect’ set relationships.

Semantic similarity between AD-AR phenotype pairs was calcu-
lated with the ontologyIlndex and ontologySimilarity R packages based
on the 08-Feb-2024 HPO release, using Lin’s expression of term

similarity™®.

Statistical analysis

Data analysis was performed in R 4.3.0"°, using the tidyverse meta-
package. Statistical tests were two-sided, and an alpha level of 0.05 was
considered significant. In bootstrap analyses, 1,000 resamples were
used. The optimal threshold was derived by selecting the value that
minimises the combined Euclidean distance from the (0,1) coordinate of
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the ROC curve, based on the true positive and false positive rates.
Balanced precision was computed by adjusting the standard precision to
account for class imbalance, following a previously introduced formula®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All raw datasets used in this study can be accessed from the OSF
repository (DOI: 10.17605/0SF.I0/AH2UC)', available at https://osf.io/
ah2uc. A README file describing each dataset is available at https://osf.
io/5w3qf. AlphaFold-predicted structures, including those shown in
Fig. 3c and Fig. 4, can be accessed from the AlphaFold Protein Struc-
ture Database at https://ftp.ebi.ac.uk/pub/databases/alphafold/vl/
UP000005640_9606_ HUMAN_vl.tar. Those predicted structures that
underwent a sequence change between the 2021.02 and 2024 _04
UniProt releases and were generated in this study are available in PDB
format at https://osf.io/e32q9. AAG;.nk Values for all missense variants
in the human proteome, based on AlphaFold-predicted structures, can
be downloaded in bulk at https://osf.io/g98as. Source data are pro-
vided with this paper. Previously published databases or datasets used
in this work: ClinVar (accessed 10-Sep-2024) (https://www.ncbi.nlm.
nih.gov/clinvar/), dataset: https://osf.io/9e3h2; ClinGen haploinsuffi-
ciency curations (https://clinicalgenome.org/), dataset: https://osf.io/
2cze7; EBI Proteins API; UniProt humsavar (2024 04 of 24 Jul 2024)
https://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/variants/humsavar.txt); Online Mendelian Inheritance
in Man database (06-Aug-2024) (https://www.omim.org/api/), dataset:
https://osf.io/cdnqy; Human Phenotype Ontology database (13-Aug-
2024) (https://hpo.jax.org/), datasets: https://osf.io/9e2pn and https://
osf.io/46yxv; AlphaFold Protein Structure Database (https://alphafold.
ebi.ac.uk/), dataset: https:/ftp.ebi.ac.uk/pub/databases/alphafold/v1l/
UP000005640 9606 HUMAN _vl.tar; LoGoFunc predictions (https://
itanlab.shinyapps.io/goflof/), dataset: https://osf.io/wmesg; TP53 deep
mutational scanning data (https://doi.org/10.1038/s41588-018-0204-
y), dataset: https://osf.io/wntsv; HRAS deep mutational scanning data
(https://doi.org/10.7554/eLife.27810), dataset: https://osf.io/5jw9k;
MC4R deep mutational scanning data (https://doi.org/10.7554/elife.
104725), dataset: https://osf.io/b2r9q; HMBS deep mutational scan-
ning data (https://doi.org/10.1016/j.ajhg.2023.08.012); dataset: https://
osf.io/e3fgm; PTPN11 deep mutational scanning data (https://doi.org/
10.1101/2024.05.13.593907); dataset: https://osf.io/32hfg; MTHFR
deep mutational scanning data (https://doi.org/10.1016/j.ajhg.2021.05.
009); dataset: https://osf.io/4e2jz; Crystal structure of TP53: 3USO
AlphaFold model of SMCHD1 (A6NHR9) AlphaFold model of KRAS
(PO1116) AlphaFold model of TP53 (P04637) AlphaFold model of BRAF
(P15056) AlphaFold model of MTOR (P42345) AlphaFold model of
AARSI1 (P49588) Source data are provided with this paper.

Code availability

Code to reproduce all analyses is available at https://osf.io/ah2uc. The
Colab notebook for mechanism prediction can be accessed at https://
github.com/badonyi/mechanism-prediction. A copy of this notebook
has also been deposited in the repository associated with this project
and can be found at https://osf.io/27wc4.
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