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Spatial isotope deep tracing deciphers inter-
tissue metabolic crosstalk

Xinzhu Li1,6, Ying Zhu1,6, Ting Li1, Xinyi Tu 1, Shiyu Zhu1, Lingzhi Wang1, Fei Li1,
Chenglong Sun 2, Xin Li1, Haiyi Zhao3, Tang Tang 3, Qingce Zang 1,7 ,
Ruiping Zhang 1,7 & Zeper Abliz 1,4,5,7

Organs collaborate to maintain metabolic homeostasis in mammals. Spatial
metabolomics makes strides in profiling the metabolic landscape, yet can not
directly inspect themetabolic crosstalk between tissues. Here,we introduce an
approach to comprehensively trace the metabolic fate of 13C-nutrients within
the body and present a robust computational tool, MSITracer, to deep-probe
metabolic activity in a spatial manner. By discerning spatial distribution dif-
ferences between isotopically labeled metabolites from ambient mass spec-
trometry imaging-based isotope tracing data, this approach empowers us to
characterize fatty acid metabolic crosstalk between the liver and heart, as well
as glutaminemetabolic exchange across the kidney, liver, andbrain.Moreover,
we disclose that tumor burden significantly influences the host’s hexosamine
biosynthesis pathway, and that the glucose-derived glutamine released from
the lung as a potential source for tumor glutamate synthesis. The developed
approach facilitates the systematic characterization of metabolic activity in
situ and the interpretation of tissue metabolic communications in living
organisms.

Spatial omics is becoming a powerful tool for profiling cellular het-
erogeneity, complex tissue architectures and dynamic molecular
changes during development and disease1–3 and has been widely her-
alded as a new frontier in the biomedical and life sciences fields4.
Remarkably, mass spectrometry imaging (MSI) can be used to simul-
taneously locate and visualize thousands of molecules, such as meta-
bolites, peptides, glycans, and drugs, within the spatial context of
various tissues, providing multidimensional information that is
essential for spatial omics investigations. MSI-driven spatial metabo-
lomics is widely used to decipher metabolicmechanisms that underlie
diverse physiological and pathological processes5. However, the
metabolite levels measured by MSI can only reflect molecular relative

abundances and may not imply metabolic pathway activity, as these
levels are the net product of multiple metabolic reactions, which
constantly synthesize and consume metabolites. This limitation hin-
ders research to clarify the dynamic role of metabolites andmetabolic
rewiring across heterogeneous tissues in health and disease.

Isotope tracing allows for the direct interrogation of metabolic
pathway activity6. Generally, isotopically labeled tracers are intro-
duced into living systems, such as cultured cells7, model animals8 and
patients9. Mass spectrometry can then be used to detect downstream
metabolites and identify heavy atom (e.g., 2H, 13C, 15N) enriched
isotopologues10. By tracking isotope incorporation and distinctive
labeling patterns, this technique provides an extra dimension to infer
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metabolite interconversion and estimate biochemical pathway
activities11. In particular, the integration of stable isotope tracing and
MSI has proven to be highly beneficial for investigating metabolic
activity in heterogeneous tissues12 and spatially mapping the flux of
fatty acid synthesis and elongation in gliomas and healthy brain
tissue13. Nevertheless, current spatial isotope labeling analyses pre-
dominantly focus on a few specificmetabolites and targetedpathways,
making it challenging to identify metabolites derived from non-
classical or unexpected reactions in situ.

To date, a collection of software solutions has been developed to
broaden the coverage of the labeled metabolites, including
MetTracer14, X13CMS15, NTFD16, and others17–19, which are tailored for
liquid chromatography coupled with mass spectrometry (LC‒MS) or
gas chromatography coupled with mass spectrometry (GC‒MS) tech-
niques. Due to the absence of separation and enrichment steps in MSI
and the relatively low abundance of metabolite isotopologues, iden-
tification of labeled metabolites from complex MSI datasets in an
automated and unbiased manner is difficult. While Blanc et al. pro-
posed a variation of the Kendrick mass defect concept to detect
13C-enriched molecules with lower technical demand20, this method is
more applicable to lipids with a greater number of carbons and cannot
provide information on labeling fractions. Therefore, a tool that can
comprehensively identify labeled metabolites for MSI and auto-
matically calculate labeling fractions for spatial isotope tracing is
urgently needed.

In living organisms, individual organs coordinate and commu-
nicate to acquire essential metabolites, therebymaintainingmetabolic
homeostasis21,22. One of the key examples is the Nobel Prize discovery
of the “Cori cycle”, which involves glucose–lactate shuttling between
skeletal muscle and the liver23. Increasing evidence suggests that sys-
temic metabolic imbalances occur within an organism during disease
states. In certain circumstances, such as cancer, tumor cells may
interact with peripheral tissues to reallocate energy resources to sus-
tain their proliferation24. For instance, alanine cycling between mela-
noma and healthy liver tissue has been revealed using a zebrafish
model25. Similarly, researchers found that glutamate and glutathione
synthesis in patient-derived tumor xenografts could be largely fueled
by host liver-derived glutamine26. These efforts underscore that inter-
tissue crosstalk is paramount in the context of organismal develop-
ment and has the potential to pinpoint new metabolic vulnerabilities
for therapeutic intervention.

Here, we propose a framework that enables deep probing of the
metabolic fate of nutrients and explores metabolic communication in
living organisms (Fig. 1a). Specifically, a robust computational tool,
MSITracer, which leverages the metabolic profile provided by stable
isotope tracing and laboratory-built, highly sensitive ambient airflow-
assisted desorption electrospray ionization (AFADESI)-MSI27 was
introduced for spatial tracing metabolic network within tissues. We
demonstrate that effective quantification of themetabolite fingerprint
in situ can be achieved, yielding ample molecular insights towards
distribution differences between native metabolites and correspond-
ing isotopologues from whole-body animals to microregions of tis-
sues. Our results show interactions between the liver and heart in fatty
acid metabolism. This approach further allows us to characterize the
globalmetabolomeand lipidome alterations inducedby tumorburden
and to unravel the lung provides glucose-derived glutamine to the
tumor via the circulation, thereby promoting glutamate metabolism
within the tumor.

Results
In vivo stable-isotope deep tracing
The first objective of this study was to establish a workflow to deeply
track the metabolic fate of nutrients across various organs in vivo.
Serumandnine organs, including the brain, liver, kidney, heart, spleen,
lung, pancreas, muscle, and brown adipose tissue (BAT), were

collected from mice following intrajugular vein infusion of U-13C glu-
cose and U-13C glutamine, which are commonly used tracers. To
maximize the detection of labeled metabolites using LC‒MS/MS, the
metabolome and lipidome were extracted and analyzed separately for
each sample. Polar metabolites were separated using hydrophilic
interaction chromatography (HILIC), while other metabolites and
lipids were separated using two different reversed-phase chromato-
graphy (RP) systems. LC‒MS/MSwas performed for all samples in both
positive and negative ionmodes. MetDNA228 andMetID29 were used to
generate annotations of signals in unlabeled samples, andMetTracer14

software was used to extract all possible isotopologues and quantify
the labeling fraction. All potential labeled features were manually
curated to exclude false positives.

After the isotopic steady state was reached in mice (Supplemen-
tary Fig. 1a–d), we determined and identified a large number of iso-
topically enriched metabolites utilizing the developed tracking
workflow. The labeled extent of compounds varied between 0.02 and
0.69 across the ten biological matrices (Fig. 1b, and Supplementary
Fig. 2a). Specifically, 1274 labeled metabolites and 3227 isotopologues
from 41metabolic pathways were tracked in the U-13C glucose infusion
samples (Fig. 1c, and Supplementary Fig. 2b, 2c), while 462 labeled
metabolites and 1018 isotopologues, covering 36 metabolic pathways,
were identified using the U-13C glutamine tracer (Fig. 1c, and Supple-
mentary Fig. 2d). Compared to prior work30, we identified a higher
number of labeledmetabolites from in vivo infusion experiments, and
these values increased by nearly threefold after U-13C glucose infusion
(Supplementary Fig. 2e). For metabolites that were previously unre-
ported, we assigned chemical formulas based on their accurate mass,
natural isotope distribution, and MS/MS spectra. Surprisingly, after
U-13C glucose infusion, three metabolites showed higher labeling
fraction than those of intermediates related to glycolysis and the TCA
cycle (Supplementary Figs. 2f, 3a–c). Metabolite ion corresponding to
the molecular formula C20H33O7 (m/z 385.2226) was highly labeled in
the serum, liver, kidney, lung, heart, and BAT tissues (Fig. 1d). Further
elaboration on the structure and function of the compounds exceeds
the scopeof this study, butwe included thedata hereas a resource that
provides a comprehensive overview of the metabolic landscape fol-
lowing the administration of glucose and glutamine (Supplemen-
tary Data 1).

Considering compartmentalizedmetabolicprofiles across various
organs, we next compared the inter-tissue differences in the number
and class distribution of labeled metabolites. The results demon-
strated that the liver contained the most considerable amount of 13C
isotopologues, while the muscle contained the least for both U-13C
nutrients (Fig. 1e). Moreover, the brain and pancreas were the second-
largest metabolic organs that incorporated 13C labels after U-13C glu-
cose and U-13C glutamine infusion, respectively. This discrepancy in
enrichment is consistent with the knowledge that the brain primarily
uses glucose for energy, and the pancreas is sensitive to glutamine.
Moreover, the accumulation of labeledmetaboliteswas various among
organs, as the liver was enriched mostly in lipids; the brain and kidney
were enriched in lipids and comparable amounts of amino acids.
Further cross-organ analysis revealed that nearly three-quarters of the
labeled metabolites were uniquely detected in only one matrix after
infusion with U-13C glucose (Fig. 1f), suggesting that heterogeneous
metabolic properties occurred among the organs. Based on this col-
lective evidence, deep stable isotope tracing enables the comprehen-
sive mapping of labeled metabolites in vivo and the exploration of
unknownmetabolic processes, paving theway for the characterization
of metabolic activity in organs.

MSITracer: a tool for spatial isotope tracing
Based on the labeled metabolites identified by LC‒MS/MS, we devel-
oped a tool called MSITracer, which was tailored for MSI datasets to
achieve spatial isotope tracing. Studies by us and other researchers
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revealed that the types and abundances of adduct ions between LC‒
MS and MSI systems vary31,32; thus, an MSI-specific database was
introduced for U-13C glucose and U-13C glutamine infusion experi-
ments. To improve the detection coverage, the database encompasses
both experimentally determined and theoretically predicted adduct
ions. Accordingly, it comprised 2394 metabolite ions and 65,303 cor-
responding isotopologues following the administration of U-13C glu-
cose and 928 metabolite ions with 27,458 corresponding
isotopologues after the administration of U-13C glutamine (Supple-
mentary Data 2).

Building on this comprehensive database, MSITracer functions
through the following major steps: (1) extracting the intensity of tar-
geted isotopologues; (2) selecting ions with sufficient imaging signals,
and (3) quantifying labeling patterns and fractions (Fig. 2a). Briefly, in
the first step, the tool automatically performs isotopologuesmatching
through comparingmeasured and theoreticalm/z values within 5 ppm
error range. The corresponding signal intensity for each ion is also
recorded. Subsequently, unlabeled isotopologue groups are removed
according to the set threshold of 12C-metabolite ion intensities and the

isotopologue intensity ratios between labeled and unlabeled samples.
Finally, after natural isotope abundance correction, a file containing
compound names, molecular formulas, and isotopologue ion inten-
sities is generated, as well as a file containing corrected labeled frac-
tions. Supplementary Fig. 4 illustrates the ability of MSITracer to
achieve efficient and accurate analysis for spatial isotope tracing. Uri-
dine can be detected in both [M+Cl]– and [M −H]– forms via AFADESI-
MSI. However, [M+Cl]– adduct ions exhibit higher intensity across
multiple organs in AFADESI-MSI compared to LC‒MS, resulting in
better imaging of the isotopologue ions (such as M5). This highlights
the importance and necessity of database extension, as additional
examples provided in Supplementary Figs. 5a and 5b. Moreover, two
consecutive kidney sections were ground and subjected to MSI and
LC‒MS analyses, consistent metabolite isotope labeling patterns were
observed for five representativemetabolites involved in the TCA cycle,
glycolysis, and amino acid metabolism, indicating the quantitative
accuracy of MSITracer (Supplementary Fig. 5c).

Given the advantages of MSITracer, the tool facilitates the com-
prehensive quantitative mapping of metabolic activity from whole-
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Fig. 1 | The framework of in vivo spatial-isotope deep tracing. aOverview of the
spatial isotope deep tracing framework using LC‒MS/MS and AFADESI-MSI. Cre-
ated in BioRender. Li, X. (https://BioRender.com/sakosq5). b High-coverage iden-
tification of labeled metabolites in the mass range (m/z 70−1200) under three LC
conditions following U-13C glucose infusion. c Numbers of labeled metabolite ions
and isotopologues after U-13C glucose and U-13C glutamine infusion. The iso-
topologues counted refer to those with labeling fractions greater than zero across
all three samples. d Labeling profile of the metabolite ion m/z 385.2226 across

serum and organs. e Classification of the labeled metabolites in various matrices
following infusion of U-13C glucose (left) and U-13C glutamine (right). Metabolite
ions detected under different LC‒MS conditions were counted once. f The dis-
tributions of shared and unique labeled metabolites across the body. Each column
represents the number of labeled metabolites identified in the specific matrix,
which are displayed as black solid dots in the lower section of the plot. Source data
are provided as a Source Data file.
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body animals to heterogeneous tissues. According to the whole-body
MSI analysis, the infusion of U-13C glucose led to the predominant
distribution of labeled glutamate within the brain, whereas following
U-13C glutamine infusion, labeled glutamate was primarily observed in
the pancreas (Fig. 2b, and Supplementary Fig. 6a). Additionally, in
heterogeneous tissues (such as the kidney), the labeled fraction of
glutamate isotopologue M2 was highest in the medulla (Me), with a
labeled fraction of 0.12 following U-13C glucose infusion; furthermore,
the isotopologue M5 was most intense in the inner cortex (Ic), at 0.15
following U-13C glutamine infusion (Fig. 2c, Supplementary Fig. 6b).
Similar region-specific differences in nutrient utilization were also
detected in the brain (Figs. 2d, and Supplementary Fig. 6c–d).

Characterization of organ-specific metabolic activity
Next, we sought to directly visualize and explore themetabolic activity
of individual organs with theMSITracer.WhenU-13C glucose enters the
blood, the isotope distribution of glucose M6 provides a readout of
glucose uptake from circulation, and isotopologue M3 serves as an
indicator of gluconeogenic activity within tissues (Supplementary

Fig. 7a). Compared with native glucose (M0), which was prominently
distributed in the liver (Fig. 3a1), isotopologues M6 and M3 were
notably enriched in the lung and kidney, respectively, with normalized
labeling of 0.43 in the lung and 0.10 in the kidney (Fig. 3a2, a3). In
terms of U-13C glutamine infusion, the native form (M0) exhibited high
intensity in the brain, heart, and pancreas (Fig. 3b1), and the highest
normalized labeling (1.09) of uniformly labeled ions (M5)was observed
in the pancreas (Fig. 3b2). This result further confirms the tendency of
the pancreas to utilize glutamine.

The labeled characteristics of downstream metabolites originat-
ing from the two U-13C nutrients were also elucidated (Supplementary
Fig. 8). Besides isotopologue M2, highly enriched M4 form of malate,
succinate, aspartate, and N-acetyl aspartate (NAA) were dominant in
the brain following U-13C glucose infusion (Fig. 3c1-c4), suggesting that
glucose metabolism was robust and the TCA cycle occurred at least
twicewithin this organ.Moreover, theoxidationproductgluconateM3
was intensely labeled in the liver regardless ofwhetherU-13C glucose or
glutamine was infused, highlighting the significance of the liver in
glucose generation and oxidative metabolism (Fig. 3c5, and
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Supplementary Fig. 7b). Unexpectedly, lactate labeling was widely
enriched throughout the body, with a greater abundance in the brain
(Fig. 3c6). For all labeled metabolite ions discussed above, no inter-
fering signalwasdetected in themice that didnot receive the infusions
(Supplementary Figs. 7c–f, 6d, and 4e).

To further validate the organ-specific metabolic activity, we ana-
lyzed the dynamic metabolic labeling profiles by sampling at six time
points following U-13C glucose infusion: 10, 30, 60, 120, 180, and
240min. Over time, the mean enrichment (ME) of labeled metabolites
exhibited a progressive increase. In particular, the accumulated ME of
labeled lactate was similar across the five major organs, while for TCA
intermediates, such as succinate, it was highest in the brain (Fig. 3d). A
first-order kinetic equation was then employed to estimate labeling

rates in those organs33. The decay rate (k) of each metabolite was
determined and the curve fitting was assessed by the correlation
coefficient (r), with r > 0.80 indicating a good fit. Using succinate as an
example, the k value was calculated to be 0.0011min−1, with an r value
of 0.991 (Supplementary Fig. 9a). These results demonstrate that,
unlike lactate, TCA-related metabolites turnover most rapidly in brain
tissue (Fig. 3e, Supplementary Fig. 9b).

After U-13C glutamine infusion, one of the intriguing findings is the
notable spatial distribution differences among various forms of iso-
topologues for certainmetabolites. For example, higher-order labeling
isotopologues (e.g., aspartate M4, glutamine M5, glutamate M5, and
succinate M4) were enriched in the spleen, pancreas or liver, whereas
their M2 isotopologues appeared in the brain (Fig. 3f, 3b3, 2b,
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The organs of interest are delineated with dashed lines in different colors. Signal
intensity is shown in ion counts. NAA, N-acetyl aspartate. d Time-course mean
enrichment of lactate and succinate in the brain, lung, heart, kidney and liver.

e Exponential fitting of the unlabeled fraction of lactate and succinate in the five
organs. Data are presented as mean± SD (n = 3 biological replicates). Source data
are provided as a Source Data file. f Notable spatial distribution differences among
the native aspartate and corresponding isotopologues following U-13C-glutamine
infusion. Signal intensity is shown in ion counts. g Schematic diagram of 13C-atom
translations from U-13C-glutamine. Colored circles denote 13C carbons, while white
circles represent 12C carbons. Red circles indicate labeling in the first turn of the
TCA cycle, whereas blue circles indicate labeling in the second turn of the TCA
cycle. h Illustration of the glutamine-glucose metabolic coordination between
kidney, liver and brain. Created in BioRender. Li, X. (https://BioRender.com/
gc0ge5m).
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Supplementary Fig. 10a). Given the vigorous TCA activity in the brain,
we suspected that the enrichment of M2 metabolites indicates active
13C-glucose oxidation occurring (Fig. 3g). Additionally, the pre-
dominant enrichment of glucose M3 in the kidney and liver, as
detected by AFADESI-MSI and LC −MS (Supplementary Fig. 10b, 10c),
points to enhanced gluconeogenic activity in these two organs. This is
further supported by the elevated expression of glycolysis-related
enzymes, including fructose-1,6-bisphosphatase (FBPase), glucose-6-
phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase
(PEPCK), in the liver and kidney compared to other organs (Supple-
mentary Fig. 10d). Coupled with the higher levels of serum glucoseM3
(Supplementary Fig. 10c), these results suggest that the newly syn-
thesized glucose is entering the systemic circulation. Therefore,
following 13C-glutamine infusion, the glutamateM2 andM1observed in
the brain are primarily derived from glucose produced via gluconeo-
genesis in the kidney and liver (Fig. 3h). Taken together, spatially
resolved metabolic tracing supported the quantitative comparison of
metabolic activities across tissues and offers valuable clues for dis-
covering inter-organ metabolic communication.

Deciphering inter-organ metabolic communication
Drawing from this concept, we investigated the differences in spatial
distribution between M0 and Mn (n is the total number of carbons in
the metabolite). Interestingly, we observed significant differences in
the spatial patterns of nascent fatty acids (FAs) compared to those of
preexisting FAs. For instance, 12C-palmitic acid (M0) was pre-
dominantly localized in the brain, while its isotopologues (M1 to M6)
were most abundant in BAT (Fig. 4a, Supplementary Fig. 11a). A similar
spatial fingerprint was observed for myristic acid (Supplementary
Fig. 11b). As glucose can be converted into acetyl-CoA to provide two-
carbon units that support the de novo synthesis of FAs (Fig. 4b), this
data provides evidence that BAT is a major producer of FAs.

We further analyzed the in vivo oxidative metabolism of FAs,
which can provide energy by converting FAs into even-chain carnitine
species (Fig. 4b). AFADESI-MS images and LC‒MS data revealed that
the acetylcarnitine M2 exhibited the highest ion intensity and nor-
malized labeling in the heart (Fig. 4c, d). Since acetylcarnitine can be
used to buffer excess acetyl-coenzyme A, we checked the labeling
patterns of longer-chain carnitines using LC‒MS data. As a result,
labeled palmitoylcarnitine were exclusively detected in BAT and the
brain (Fig. 4e), while hexanoylcarnitine was highly labeled in the BAT,
brain and heart, with no detectable labeling in the serum (Fig. 4f).
These results suggest that the heart utilizes both circulating fatty acids
and glucose simultaneously for energy production, and fatty acid
oxidation is more pronounced in the brain and BAT compared to
the heart.

As no labeled free FAswere detected in the heart, wewere curious
about their origin. Themost likely source is free FAs in the circulation.
Yet, despite the high ion intensity of FAs in the serum,no labeled forms
were detected via LC‒MS analysis (Fig. 4g). We then examined alter-
native lipid carriers, with triglycerides (TGs) emerging as the primary
candidates. We detected labeled TG (48:1) in BAT, brain, liver, and
serum but with distinct profiles across these samples (Fig. 4h). In BAT,
13C-labeling extends to isotopologueM10, while in the brain, it reaches
M7. In contrast, the liver and serum exhibited only M3-labeled TG.
Other classes of lipids, such as diacylglycerol (DG, 34:0) and lyso-
phosphatidylcholine (LPC, 16:0), exhibited similar distribution pat-
terns (Fig. 4i).

Theoretically, triglyceride molecules can be labeled from two
different sources: the glycerol backbone and the acyl chain (Fig. 4j).
The isotopologue spectraof thehighly abundant andhighly labeledTG
(48:1) suggest that the labeling patterns observed in the brain and BAT
result from a combination of both labeling pathways, while the liver
predominantly utilizes the labeled glycerol backbone for lipid synth-
esis. As the isotope distribution pattern of lipids in the serum aligns

with that in the liver, the blood could selectively transport lipids syn-
thesized in the liver to other organs, such as the heart, for energy.
Therefore, the following metabolic exchange model may exist
between organs: BAT and the brain utilize glucose for de novo synth-
esis of FAs and simultaneously oxidizes the FAs for metabolism within
tissues. Moreover, the liver synthesizes lipids using the glycerol
backbone generated from glucose oxidation and transports them to
other organs for interorgan energy exchange, thereby maintaining
overall lipid homeostasis (Fig. 4k).

To validate the proposed metabolic communications, we
assessed the expression of key enzymes involved in the aforemen-
tioned process. Acetyl-CoA carboxylase 1 (ACC1) and fatty acid
synthase (FASN) are two key enzymes in the fatty acid synthesis.
Results from the immunohistochemistry (IHC) and quantitative
proteomics assays demonstrated that the two enzymes were most
abundant in BAT, with the lowest expression in the heart (Supple-
mentary Fig. 11c-11e), further supporting BAT’s central role in syn-
thesizing FAs. Diacylglycerol O-acyltransferase 2 (DGAT2),
recognized as the rate-limiting enzyme in triglyceride biosynthesis
with greater substrate affinity than DGAT134, is more highly expres-
sed in BAT and the liver (Supplementary Fig. 11f), consistent with the
triglyceride synthesis observed in this study. Moreover, the lipo-
protein lipase (LPL) and carnitine O-palmitoyltransferase 1b (CPT1b)
are responsible for the hydrolysis of triglycerides and the β-
oxidation of long-chain FAs, respectively35. In BAT and the heart,
the elevated expression of LPL and CPT1b underscores their
dependence on fatty acids as a primary energy source (Supple-
mentary Fig. 11g, 11h). This is further supported by the uniquely
enhanced levels of uncoupling protein 1 (UCP1) in BAT, highlighting
its role in non-shivering thermogenesis by converting energy into
heat36 (Supplementary Fig. 11i). By comparison, the heart exhibits
greater levels of ATP synthase F1 subunit alpha (ATP5F1A) and
ATP5F1B, reflecting its reliance on ATP production for contractile
activity37 (Supplementary Fig. 11j, 11k).

Systemic loss of metabolic coordination in tumor-bearing mice
A disturbance in metabolic homeostasis is a defining characteristic of
cancer. Yet, the impact of tumors on host metabolism at the system
level is not fully understood. Here, we infused U-13C glucose into
HepG2 tumor-bearing mice and employed LC‒MS and AFADESI-MSI
for untargeted stable-isotope tracing metabolomics to mapmetabolic
changes acrosswhole-bodymice (Fig. 5a).We identified 231 13C-labeled
metabolites and 1360 13C-labeled isotopologues in positive mode, as
well as 264 13C-labeledmetabolites and 1096 13C-labeled isotopologues
in negativemode using LC‒MS/MS in tumors (Supplementary Fig. 12a).
Most of these labeled ions were lipids, suggesting that autonomous FA
oxidation and synthesis processes occurred within the tumor to sup-
port its proliferation (Supplementary Fig. 12b, 12c). Moreover, MSI-
Tracer annotated the labeled metabolites in the tumor within 5min
and allowed us to identify heterogeneous distribution of labeled
metabolites across various microregions (Fig. 5b, Supplementary
Fig. 12d). For example, labeled glucose M6 and its derivative, glucosyl-
glycerol M3, were predominantly distributed in the necrotic and
stromal regions, with no presence in the proliferating zone (Fig. 5b, c).
In contrast, lactate was distributed throughout the tumor, with higher
concentrations in the necrotic areas. Othermetabolites involved in the
TCA cycle (e.g., succinate), FA oxidation (e.g., acetylcarnitine), and
glutathione metabolism (e.g., glutathione), were predominantly dis-
tributed in the proliferative region (Fig. 5b, c). These results indicate
that tumor exhibits extensive glucose metabolism.

When examining the labeling patterns in tumors usingMSITracer,
we observed that the 13C-fingerprint of glutamate was distinct from
that of othermetabolites (Fig. 5d, Supplementary Fig. 13a). Specifically,
the labeled fraction of glutamate isotopologues was higher compared
to other TCA cycle intermediates (Fig. 5e). Using LC‒MS, we further
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discovered a progressive decrease in 13C enrichment among metabo-
lites extracted from tumors (Supplementary Fig. 12e), while the labeled
fraction of glutamate M2 was higher than that of its anticipated pre-
cursor,α-ketoglutarate (α-KG)M2 (Supplementary Fig. 12f). Glutamate
and α-KG are theoretically in isotopic equilibrium, allowing glutamate
enrichment measurements to serve as a proxy for α-KG enrichment in
certain cases38. The discrepancy in labeling between these two

metabolites suggested an additional 13C source may exist to facilitate
glutamate synthesis. Moreover, glutamate can be converted to gluta-
mate semialdehyde, which subsequently leads to the formation of
proline and arginine39. The labeled fractions of prolineM2and arginine
M1 in tumors were approximately 0.02 and 0.01, respectively, con-
firming the presence of active glutamate metabolism (Supplementary
Fig. 12g).
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We next sought to determine the carbon source that could com-
plement the metabolic demand for glutamate in tumors. Glutamine
can be swiftly converted to glutamate by glutaminase (GLS), thereby
facilitating TCA cycle anaplerosis40. After infusing 13C-glucose into
tumor-bearing mice, glutamate and glutamine predominantly accu-
mulated in brain (Supplementary Fig. 13b, c), and the labeled fractions
of these two metabolites were linearly correlated, with an R2 of 0.984
(Supplementary Fig. 13d). Nevertheless, this correlation decreased in
tumor, with an R2 of 0.919, suggesting that additional sources of glu-
tamine may contribute to the pool (Supplementary Fig. 13e). At the
protein level, we noticed that the expression of GLS and glutamine
transporters responsible for shuttling glutamine into the cytosol
(SLC1A5, SLC38A1) were significantly elevated in tumors compared to

livers of the tumor-bearing mice (Supplementary Fig. 14a–c). In con-
trast, the expression of glutamine synthetase (GS) in tumorswasmuch
lower than that in livers (Supplementary Fig. 14d), suggesting that the
tumors may rely more on importing glutamine from the extracellular
environment rather than synthesizing it internally. Subsequently, we
used LC‒MS to examine the labeling of glutamine in the serum and
other tissues. The highest labeled fractions of glutamine M2 and M4
were detected in the brain, consistent with the data obtained by MSI-
Tracer. Additionally, the isotopologue profiles in the lung and serum
were the most closely matched (Supplementary Fig. 14e). Based on
their isotopologue similarities, we infer that glutamine released from
the lung may serve as a source of glutamine for tumors (Supplemen-
tary Fig. 14f).
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Given that N-acetyl-aspartyl-glutamate (NAAG) was recently
identified as a glutamate reservoir41, we explored the possibility that
metabolites containing glutamyl or glutamate groups could fuel glu-
tamate synthesis in tumors. Through in-depth in vivo isotope tracing,
five labeled metabolites were detected with this characteristic
including NAAG, N-acetyl-glutamine, glutamylalanine, glutamylgluta-
mate, and glutamylglutamine. All of them exhibited higher labeling in
the brain, indicating robust glutamate synthesis and utilization (Sup-
plementary Fig. 14g). However, the labeling profiles in serum and
tumor differed significantly. For example, no labeled NAAG was
detected in the serum, and NAAG labeling in the tumor was sig-
nificantly lower than in the brain. These results suggest that the con-
tribution of circulating intermediates containing glutamate groups to
glutamate synthesis is likely insignificant.

Another question of interest was what metabolic alterations
occurred in the host in response to the metabolic burden imposed by
the tumor. Utilizing LC‒MS based deep isotope tracing, our results
demonstrated that UDP-N-acetyl-glucosamine (UDP-GIcNAc) showed
the most significant reduction in labeling extent across organs. For
example, in the lung of normal mice, UDP-GIcNAc was labeled to iso-
topologue M8, indicating incorporation from glucose M6 and acetyl-
CoA M2 molecules (Fig. 5f, and Supplementary Fig. 15a). However, in
tumor-bearing mice, no labeled UDP-GIcNAc was detected. UDP-GIc-
NAc, the end product of the hexosamine biosynthetic pathway (HBP)
(Supplementary Fig. 15b), plays a crucial role in proteinN-glycosylation
and O-linked N-acetylglucosamine modification42. The shift in labeling
fraction of other key metabolites in this pathway, such as N-
acetylglucosamine-6-phosphate (GlcNAc-6-P) (Supplementary
Fig. 15c), further highlights that tumor burden exerts a considerable
impact on host HBPmetabolism. In conclusion, these results indicated
that the tumor burden significantly impacted the HBP pathway in host
organs, with the lungs sustaining the tumor’s metabolic demands
through glucose-derived glutamine communication (Fig. 5g).

Discussion
In the field of spatial isotope tracing, the lack of methods to compre-
hensively identify labeled metabolites causes significant challenges. In
this study, we introduced a framework to track labeled metabolites
spanning from polar metabolites to lipids for both LC‒MS and MSI.
Although several efforts have been made to automatically access LC‒
MS based isotope tracing spectra, and we attempted to avoid rein-
venting the wheel, our study has several distinctive advantages in
comparison with previous publications. First, a thoroughly optimized
workflow that encompasses LC‒MS/MS data collection conditions,
peak detection parameters, metabolite identification tools, and iso-
topologue feature tracing algorithms was developed (see “Methods”).
Thisworkflowhas significantly improved the identification coverageof
labeled metabolites and can be applied to any given 13C-labeled tracer.
As an addedvalue, the largest available resourceof labeledmetabolites
in mammals (after the in vivo infusion of U-13C glucose and U-13C glu-
tamine) was provided, complementing and substantially improving
the knowledge accumulated by conventional metabolomics studies.
This workflow enabled us to observe significant differences among
various organs in the uptake and utilization of the two nutrients that
are most essential for cell metabolism, emphasizing the brain’s meta-
bolic preference for glucose and the pancreas’s sensitivity towards
glutamine. Notably, many previously unreported metabolites were
identified, three of which were labeled more greatly than those of the
TCA cycle-related intermediates. Future studies are needed to eluci-
date thebiologicalmechanismsunderlying the rapid transformationof
these metabolites in vivo.

Second, a computational tool was introduced for spatial isotope
tracing that can achieve the untargeted identification of labeled
metabolites and qualify the labeled fraction, offering streamlined and
automated MSI data analysis. For LC‒MS data, isotope labeling signals

can be identified by comparing the signal intensity of naturally
occurring isotope profiles with that of heavy atom-enriched profiles.
However, conducting this kind of calculation per pixel in complexMSI
spectra can be convoluted and computationally intensive. Hence, the
main advancement in MSITracer resulted from the integration of a
thorough database that contained potentially labeled signals. As we
have fully considered the difference in the adduct ions between MSI
and LC‒MS, this strategy enhances annotation coverage and reduces
the number of false positives through two intensity filtering functions
(see “Methods”). While we only demonstrated the efficiency of the in-
house-developed AFADESI-MSI system, MSITracer is designed to
accommodate all types of MSI data and supports the input of tabular
forms. The tool is also accessible without a requirement for advanced
computational capabilities and professional bioinformatics knowl-
edge. Moreover, MSITracer can directly export information such as
metabolite names, molecular formulas, adduct forms, and labeled
fractions and allow users to customize databases and thresholds for
each step as needed. In the case of multiple labeled nutrients being
introduced, this approach is also effective for delineating differences
in nutrient utilization among various regions. For example, distinct
labeling patterns were detected in the kidney and brain after two U-13C
nutrient infusions (Fig. 2c, d), which may reflect the expression of
relevant transporters and enzymes.

Furthermore, a strategy is proposed to elucidate inter-tissue
metabolic communication by examining spatial distribution differ-
ences between isotopically labeled metabolites. In particular, MSI-
Tracer enables intuitively and visually uncovers clues in three
dimensions: original and newly assimilated metabolites (M0 and Mn),
various labeled isotopologues of the same metabolite (M1 and Mn),
and different newly synthesized metabolites within the same pathway
(Mx andMy). Since it is generally assumed that the spatial distribution
of metabolites and their isotopologues is uniform, this unexpected
labeling pattern prompted us to use LC‒MS for further analysis.
Accordingly, we characterized the turnover of glutamine between the
kidneys, liver, and brain, and conversion of glucose-derived lipids
between the liver and heart. In these scenarios, MSI and LC‒MS func-
tions act as flashlight and magnifying glass, enabling the identification
of metabolic exchanges and their underlying causes. Meanwhile, we
can also effectively identify the spatial distribution differences within
heterogeneous tissues, such as native glutamate and glutathione, and
their corresponding isotopologues (Figs. 2c, d and Supplementary
Fig. 6e). This phenomenon sheds light on metabolic crosstalk at the
mircoreigon level of tissue.

Cancer metabolism is regulated by cell-intrinsic factors, interac-
tions within the tumor microenvironment, and overall metabolic
homeostasis43. While numerous studies have focused on the first two
aspects, the impact of a tumor on distant tissues remains poorly
understood. Naser, Jackstadt, et al. proposed a tumor-liver alanine
cycle using a zebrafish model and highlighted some organs within an
organism that are likely to reprogram their metabolism to comple-
ment the tumor25. Our results further support this idea in a mouse
xenograft model, tumors can exploit lung-derived glutamine to meet
their high metabolic demands. While the inter-organ glutamine traf-
ficking has been proposed before44,45, it has been directly demon-
strated usingMSI and 13C-isotope tracing in this study.We showed that
the lung of host mice, rather than the muscle, make a greater con-
tribution to the tumor’s glutamine supply, despite both being primary
producers in healthymice. Our data also suggested a system-wide loss
of metabolic coordination across various organs in the tumor-bearing
mice, whichwas uniquely evidenced by the downregulation of theHBP
throughout the entire body. It has been reported that 3%-5% of glucose
participates in the HBP and leads to the production of UDP-GIcNAc, an
important regulator of cell signaling and protein glycosylation46. This
observation indicates that tumors typically downregulate certain
physiological tasks to conserve energy, exemplifiedby the reduction in
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the rate of proteins synthesis observed in the pancreas within pan-
creatic cancer models8. Therefore, we argue that although the organ-
ism undergoes metabolic reprogramming to adapt to tumor
proliferation, the tumor exerts irreversible effects on hostmetabolism.
These changes may contribute to cancer-associated cachexia and
hijacking systemic metabolic alterations holds the potential to benefit
patients.

The technical limitations of the study include that the number of
labeled metabolites that can be visualized by MSI is smaller than that
measurable by LC‒MS and that the signal for higher-order labeling
(e.g., M4 in citrate and malate) is poor in MSI. Since varying sample
efficiencies occur between these two techniques, integrating LC‒MS
and MSI is highly encouraged to elucidate critical metabolic interac-
tions. Secondly, unlike LC −MS, which can differentiate metabolites
based on retention times, the current MSITracer cannot distinguish
isomeric molecular species. The presence of the same molecular
weights may lead to multiple tentative annotations. Integrating
orthogonal techniques, such as ion mobility MS47, presents a promis-
ing solution to this challenge. Moreover, we employed ex vivo rapid
freezing of tissues to terminate enzymatic activity during sample col-
lection. Since this approach may not entirely prevent post-mortem
degradation of metabolites, studies examining metabolites that
rapidly change after death can consider alternative organ sampling
methods, suchas in-situ focusedmicrowave irradiation48, to effectively
halt metabolic activities. Finally, the spatial resolution of the AFADESI
platform applied in this study was approximately 100 micrometers.
The efficiency of MSITracer in single-cell analysis has yet to be vali-
dated. As higher spatial resolution MSI techniques continue to
evolve49, we anticipate that this tool will improve our ability to inves-
tigate cellular interactions and elucidate dynamics within the tissue
microenvironment.

Methods
Ethics
All animal experiments were conducted with the approval of the Ani-
mal Ethical Committee at the Institute of Materia Medica, Chinese
AcademyofMedical Science, and Peking UnionMedical College (grant
no. 00008359).

Chemicals and reagents. HPLC-grade acetonitrile (ACN), methanol
(MeOH), isopropanol (IPA), and methyl tertiary butyl ether (MTBE)
werepurchased fromFisher Scientific (Fair Lawn,NJ, USA). Ammonium
acetate (AmAc) was purchased from Sigma‒Aldrich (St. Louis, MO.
USA). Ammonium hydroxide (NH4OH) was purchased from Fisher
Chemical (Fair Lawn, NJ, USA). Formic acid was purchased from J&K
Scientific (Shanghai, China). U-13C glucose and U-13C glutamine were
purchased from Cambridge Isotopes laboratories (MA, USA). Pure
water was purchased from Wahaha Co., Ltd. (Hangzhou, China). Dul-
becco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS),
penicillin–streptomycin, 0.25% trypsin-ethylenediaminetetraacetic
acid, and phosphate-buffered saline (PBS) were purchased from
Gibco (Life Technologies, Carlsbad, CA). Other materials used for cell
culturewerepurchased fromCorning (NorthCarolina, NY,USA) unless
otherwise noted.

Mouse xenografts. Male BALB/c nude mice weighing 16 − 19 g and
aged 4–5 weeks were purchased from Beijing Vital River Laboratory
AnimalTechnologyCo., Ltd. (Beijing, China) andhousedunder specific
pathogen-free conditions with a constant room temperature of
20−24 °C, 35 − 55% air humidity, and a 12-hour light/dark cycle. Sexwas
not considered in this study as our primary focuswas the development
of the spatial isotope deep tracing method and the investigation of
tumor metabolic crosstalk.

Human hepatocarcinoma (HepG2) cells were originally purchased
from ATCC. The cells were cultured in DMEM supplemented with 10%

FBS and 1%penicillin–streptomycin at 37 °Cunder 5%CO2. To establish
a subcutaneous xenograft tumor model, exponentially growing cells
were harvested and suspended in PBS. A total of 3.5 × 106 HepG2 cells
were inoculated into the right flank of each mouse. To ensure a
homogeneous tumor size, when the tumor reached approximately
1 cm3 in size, the tumor masses were resected, minced into pieces of
approximately 2 mm3 and transplanted subcutaneously into the next
cohort of experimental nude mice. The tumor volume was measured
every 2 days and calculated using the formula V = length ×width2 × 0.5.

In vivo 13C labeling experiments. The BALB/c nude mice were ran-
domly divided into noninfusion or infusion groups. Catheters were
inserted into the jugular vein of mice under anaesthesia. U-13C glucose
and U-13C glutamine were infused into conscious, free-moving animals
for 3 h at constant rates of 80 and 30 nmol/min/g, respectively. For the
dynamic 13C labeling experiments, the infusion groups received U-13C
glucose at a rate of 80 nmol/min/g for six time points, namely, 10, 30,
60, 120, 180, and 240min, with no infusion group used as a control.
For the flank hepatocellular carcinoma mouse model, U-13C glucose
infusions were initiated when the tumors reached 1.0-1.2 cm in dia-
meter. The infusion rate was set at 80 nmol/min/g for conscious, free-
moving animals over a period of 3 hours.

For whole-body animal (WBA) MSI analysis, the samples were
collected as follows: After the infusion, blood was collected from the
orbital sinus, and the mouse was euthanized. The whole-body mouse
was then quickly snap-frozen in liquid nitrogen within 30 s to halt
metabolic processes. The samples were subsequently stored at −80 °C
until section preparation.

For MSI and LC–MS analysis of individual organs, the samples
were collected as follows: After the infusion, blood was collected from
the orbital sinus, and the mouse was euthanized. Nine organs (liver,
kidney, spleen, pancreas, heart, lung, brain, brown adipose tissue, and
muscle) were sequentially harvested and quickly snap-frozen in liquid
nitrogen to halt metabolic processes and ensure comparability
between different groups. The samples were stored at −80 °C until the
preparation of tissue section for MSI analysis and tissue homogenates
for LC–MS analysis.

Metabolite extraction from serum and tissues. For metabolomics
analysis, 500μL of extraction solvent (ACN: MeOH: H2O = 2:2:1, v/v/v)
was added to 100μL of serum or 25mg of tissue sample. The mixture
was vortexed for 30 s, followed by homogenization and sonication for
5min in an ice-water bath; this processwas repeated 3 times. Then, the
mixture was incubated for 1 h before centrifugation at 15000× g for
15min at 4 °C. An aliquot of the supernatant was used for the LC‒MS
assay. For lipidomic analysis, 480μL of extraction solution (MTBE:
MeOH = 5: 1, v/v) was sequentially added to 200μL of water. Apart
from the supernatant collection, all other procedureswere the same as
those described above. After solution layering, the supernatant was
transferred and vacuum-dried. Finally, the samples were resolubilized
in ACN/IPA/H2O (65:30:5, v/v/v) containing 5mM AmAc prior to
analysis.

Tissue slide preparation. For the tissue slide samples, frozen brains,
kidneys, tumors, and WBA were preserved intact at −80 °C. For brain,
kidney and tumor analyses, 15 µm-thick sections were collected on a
cryostat (CM1860 UV, Leica Microsystems, Wetzlar, Germany) and
thaw-mounted onto Superfrost Plus microscope slides (Thermo Sci-
entific, USA) for AFADESI-MSI. Prior to analysis, the sections were
desiccated under vacuum for 30min. Consecutive tissue sectionswere
collected for hematoxylin and eosin staining.

EachWBA samplewas soaked in ametalmold container filledwith
3% carboxymethyl cellulose sodium (CMC-Na) gel, and 25 µm thick
sections were collected using a cryomacrotome (CM3600, Leica
Microsystems, Wetzlar, Germany) and mounted onto an epoxy-gel-
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coated slide. Dryingwas carried out for 2 h at −20 °C and then for 2 h at
room temperature before analysis. Optical images of theWBA sections
were obtained by a Microtek scanner (Shanghai, China).

LC‒MS analysis. Metabolomics and lipidomics data were acquired
using a UHPLC system (ACQUITY, Waters) coupled to a Q-Orbitrap
mass spectrometer (Q Exactive, Thermo Scientific). For metabolome
analysis, aWaters BEH Amide column (2.1mm× 100mm, 1.7μm) and a
Waters HSS T3 column (2.1mm× 100mm, 1.8μm) were used for LC
separation in HILIC and RPmodes, respectively. For lipidome analysis,
a Waters BEH C8 column (2.1mm × 100mm, 1.7μm) was utilized. In
HILICmode, themobile phase consisted of water containing 25mmol/
L AmAc, 25mmol/L NH4OH (A) and ACN (B) in both positive and
negative ion modes. The gradient program was set as follows:
0–0.5min, 5% A; 0.5–7.0min, 5% A-35% A; 7.0–8.0min, 35%–60% A;
8.0–9.0min, 60% A; and 9.0–12.0min, 5% A. The flow rate was 0.5mL/
min, and the sample injection volumewas 5μL. InRPmode, themobile
phase consisted of water containing 0.1% formic acid (A) and ACN (B)
for both positive and negative ion modes. The gradient program was
set as follows: 0–1.5min, 98% A; 1.5–15min, 98-0% A; 15–22min, 0% A;
22–22.1min, 0-98% A; 22.1–27min, 98% A. The flow rate was 0.25mL/
min, and the sample injection volume was 5 μL. For lipid analysis, the
mobile phase consisted of ACN/H2O (60:40, v/v) (A) and IPA/ACN
(90:10, v/v) (B), both containing 10mM AmAc, for positive and nega-
tive ion modes. The gradient program was set as follows: 0–1.5min,
68% A; 1.5–15.5min, 15% A; 15.5-15.6min, 3% A; 15.6–18min, 3% A;
18–18.1min, 68%A; and 18.1–20min, 68%A. The flow rate was0.26mL/
min, and the sample injection volume was 5μL.

The HESI source parameters were as follows: spray voltage, 3.6 kV
(positive) and −3.2 kV (negative); capillary temperature, 400 °C (for
HILICmode) or 350 °C (for RP mode and lipid analysis); sheath gas, 25
arb; and aux gas, 20 arb. For all the samples, full-scan LC‒MSdata were
acquired. For quality control samples, an additional ddMS2 scan was
applied to obtain MS/MS spectra. The detailed parameters were as
follows: full scan, resolution, 140000; AGC target, 1e6; maximum
injection time, 100ms; scan range, 70 − 1000Da (for HILIC and RP
mode) or 200 − 1200Da (for lipid analysis); ddMS2 scan, orbitrap
resolution, 70000; AGC target, 1e5; maximum injection time, 60ms;
scan range, 50− 1200Da; top N setting, 15; isolation width, 1.0m/z;
collision energy mode, stepped; collision energy type, normalized;
HCD collision energies (%), 20, 30, 40 (for HILIC and RP mode) or 25,
35, 45 (for lipid analysis).

AFADESI-MSI experiments. The AFADESI-MSI platform mainly com-
prises a home-built AFADESI source, an ESI sprayer, a sample carrier
platform, a 3D translational stage, a height-adjustable desk, and an
electricity controlmodule50. TheAFADESI sourcewas constructedwith
a stainless-steel transport tube (i.d. 3mm, o.d. 4mm, length 50 cm)
and a vacuum pump that produces the extracting gas for remote ion
transport, with a flow rate of 45 L/min. The spray solution was ACN/
H2O (80:20, v/v), and was delivered to the sprayer at a flow rate of
10μL/min forWBA samples and 5μL/min for tissue samples. The spray
gas was N2, and the pressure was set at 0.7MPa. The spray voltage was
set at 7.0 kV in positive ion mode and −7.0 kV in negative ion mode.
The sprayer and glass slide were mounted on a 3D translational stage
to allow their positioning relative to the transport tube with sub-
millimeter precision. Before data collection, mass calibration was
conducted in both positive and negative ion modes via electrospray
ionization, using the respective calibration solution (Pierce, Thermo
Scientific). Themass error wasmaintained below 3 ppmwithin them/z
range of 70–1000. ForWBA sample analysis, the 3D translational stage
moved continuously at a horizontal speed of 0.35mm/s with a vertical
step size of 0.50mm. For tissue sample analysis, the 3D translational
stage moved continuously at a horizontal speed of 0.10mm/s with a
vertical step size of 0.15mm. Accordingly, the time required forMSI of

each whole-body mouse, brain, kidney, and tumor section is approxi-
mately 140min, 130min, 100min, and 120min, respectively. The pixel
sizes for AFADESI-MSI are 100 μm×76μm for a tissue and 500 μm×
270 μm for a whole-body animal. The mass spectrometer was oper-
ated in full scanmode. The capillary temperaturewas set at 350 °C, and
S lens voltagewas set at 55 V. Themaximum injection timewas200ms,
and AGC target was 3 × 106. The resolution was set at 140,000, and the
scan range was m/z 70−1000.

Comprehensive isotope tracing workflow using the LC‒MS tech-
nique. After the infusion of two U-13C tracers, metabolomics and lipi-
domics data were collected from nine organs and serum in both
positive and negative ion modes, yielding a total of 60 datasets. Each
dataset was processed according to the following procedure. Proteo-
Wizard (version 3.0.22143) was used to convert the rawMS data (.raw)
files to the.mzXML format (for full scan mode) and.mgf (for ddMS2

mode) format. The R package AutoTuner (version 1.4.0) was utilized to
select dataset-specific parameters to ensure reliable data processing
(Supplementary Table 3)51. Then, theseoptimized key valueswere used
to group mzXML data files from noninfusion samples for peak detec-
tion, retention time correction, and peak alignment using the R
package XCMS (version 3.12.0)52. For datasets acquired under HILIC
mode, the resulting MS1 peak table and MS2

files were input into the R
package metID (version 1.2.19)29 and MetDNA2 (version 1.4.1; http://
metdna.zhulab.cn/)28 for metabolite annotation, with the liquid chro-
matography set to “HILIC”. For datasets acquired under the RP mode,
metID was used to perform metabolite annotation using public data-
bases embedded in its library. According to the definition of the
metabolomics standards initiative, the confidence of metabolite
annotation was assigned to level 2 (public MS2 database) and level 3
(public MS1 database). The generated metabolite annotation tables
were further filtered and modified to meet the data formatting
requirements of the R package MetTracer (version 1.0.4); these mod-
ifications included removing unreliable adduct forms, eliminating
isotope annotations, adding molecular formula information, etc.
Finally, default parameters were applied to globally track labeled
metabolites within the dataset14.

Manual curation of U-13C labeled metabolites. To improve the
accuracy of identifying labeled metabolites and reduce false positives,
we furthermanually checked the results outputted byMetTracer using
the following criteria in the raw files: (1) for the unlabeled sample, the
extracted ion chromatogram at the givenm/z exhibited a well-defined
peak shape; (2) the retention time difference between isotopic peaks
should be less than 0.1min and consistent with the results recorded in
the table; (3) for labeled samples, the calculated labeling fraction
should derive from the corresponding isotopic peaks rather than
nearby ion interferences; and (4) ions identified as M0 should not be
isotopic peaks.

Categorization of metabolites. We used the Human Metabolome
Database (HMDB) (www.hmdb.ca) to classify the metabolites into
seven categories: energy, carbohydrate, nucleotide, amino acid, pep-
tide, lipid, and others.

MSI data processing. In the AFADESI-MSI experiment, the tissue
sample is scanned line by line, with each line’s data saved as a raw file.
These raw files were converted to.cdf format using Xcalibur (Thermo
Fisher Scientific, version 2.2) and then imported into MassImager
software53. By typing the physical length and height of the tissue
sample, the scan count and sampling time can be checked auto-
matically by the MassImager (version 1.0) upon completing line
sequence creation. Peak picking was conducted by identifying local
maxima with a slope threshold of 100, determined based on the peak
shape. To reduce background interference, a non-tissue background

Article https://doi.org/10.1038/s41467-025-63243-2

Nature Communications |         (2025) 16:7934 11

http://metdna.zhulab.cn/
http://metdna.zhulab.cn/
http://www.hmdb.ca
www.nature.com/naturecommunications


area was selected, and background subtractionwas performed using a
proportional coefficient (k = 1). The deduction formula is: Adjusted
intensity =Original intensity- k × Background average intensity. Them/
z tolerance for background subtraction is set to 0.001 Da. Data nor-
malization was performed on the entire data matrix to further reduce
the mass intensity variant in each mass pixel. After selecting the
regions of interest (ROIs), them/z andpeak intensity list wereexported
as text files and imported into MarkerView software (Sciex, version
1.2.1) for peak alignment (mass tolerance: 5 ppm; minimum required
response: 100).

The workflow of MSITracer. MSITracer features a high-coverage
labeled metabolite database constructed from in vivo 13C-tracing
experiments. Since the chemical formulaswere known for each labeled
metabolite from the LC‒MS results, we first calculated the theoretical
m/z values of all 12C-metabolites with potential adduct ions, including
[M+H]+, [M + Na]+, [M +K]+, [M +NH4]

+, and [M+H −H2O]
+ in positive

ion mode and [M −H]−, [M + Cl]− and [M −H −H2O]
− in negative ion

mode (Supplementary Table 1). Subsequently, the m/z values of the
13C-isotopologues corresponding to each metabolite were calculated
based on a mass difference of 1.0033548378. Users can also flexibly
define and customize ion types in the database file (Supplemen-
tary Data 2).

Using this database, the MSITracer package processes data in
three major steps: (1) Extracting the intensity of the targeted iso-
topologues. After inputting the average mass spectra data, MSITracer
automatically matched the intensities between the experimentally
measuredm/z and the targeted isotopologues list with a tolerance of 5
ppm for each dataset. If multiple peaks are present in the specified
window, MSITracer will record the most intensive signal. (2) Selecting
ions with sufficient imaging signals. For the generated table, if the
intensity of the 12C-metabolite ion was less than 100 in more than half
of the samples, this ion and its corresponding isotopologue group
were removed. This threshold of 100 counts can be customized by the
users according to the instrument sensitivity. For the remaining iso-
topologue groups, ratio analysis was performed by dividing the aver-
age ion intensities of the isotopologues (M2 and M3) in the labeled
sample group by the corresponding average ion intensities of the
isotopologues in the unlabeled sample group. For the two ratios
obtained, if one of them exceeded 10, the isotopologue group was
retained, indicating sufficient labeled signals following 13C-nutrient
infusion. The selection of M2 and M3 instead of M1 for the ratio cal-
culations was because nutrients commonly engage in downstream
metabolism via two or three carbon units. Additionally, M1 might be
susceptible to greater interference from natural isotopes. The
threshold of 10 for ratio analysis was empirical but adjustable based on
the type of tracer administered and the degree of isotope enrichment.
Finally, intermediate files for each step and tables containing the
names, molecular formulas, and ion intensities of the labeled meta-
bolites were generated as outputs. This data filtering strategy greatly
reduced data complexity and improved the accuracy of labeled
metabolite identification. (3) Quantification of labeling patterns and
fractions. The R package AccuCor (version 0.3.0; https://github.com/
XiaoyangSu/AccuCor)54 was further integrated to perform 13C natural
isotope abundance correction and provide the mass isotopologue
distribution table. This result was output as another file.

Definition of labeled extent, mean enrichment and normalized
labeling. Following the infusion of the 13C-labeled tracer, the labeled
extent (LE) represents the overall 13C enrichment of one metabolite
and can be calculated by Eq. 116 as follows:

LE = 1� IM0
PN

i=0 IMi

= 1� LM0 ð1Þ

where IMi is the peak intensity of isotopologue Mi, LM0 denotes the
labeled fraction of M0 and N represents the carbon count of the
metabolite.

The mean enrichment (ME) reflects the average carbon atom
labeling of one metabolite in a heterogeneous region and can be cal-
culated by Eq. 214 as follows:

ME =

PN
i=0 i � LMi

� �

N
ð2Þ

where LMi is the labeled fraction of isotopologue Mi and N represents
the carbon count of the metabolite.

Normalized labeling was calculated by dividing the labeled frac-
tion by the relative enrichment of the 13C tracer (glucose or glutamine)
in circulation55.

Immunohistochemistry. Formalin-fixed paraffin-embedded tissue
blocks were cut into 4 μm slices and were mounted on polylysine-
charged glass slides. Endogenous peroxidase activity was blocked by
exposure to 3.0%H2O2 for 30min. Antigen retrievalwasperformed in a
citrate buffer (pH 6.0) at 120 °C for 10min. Sections were then incu-
bated at 4 °C overnight with FASN (C20G5) rabbit mAb (#3180, CST,
1:50 dil) and ACC1 monoclonal antibody (#67373-1-Ig, Proteintech,
1:500 dil). After washing, the sections were further incubated with the
goat anti-rabbit IgG (H+ L) secondary antibody, HRP (#EF0002,
Sparkjade, 1:200 dil) and goat anti-mouse secondary antibody, HRP
(#EF0001, Sparkjade, 1:200 dil) for 1 h at room temperature, respec-
tively. Sections incubated with isotype and concentration matched
immunoglobulins without primary antibodies were used as isotype
controls. Peroxidase activity was visualized with the DAB working
solution (#CW0125M, CWBIO), and brown coloration of tissues
represented positive staining. Images were captured using a Pan-
noramic MIDI scanner (3DHISTECH, Budapest, Hungary).

Quantitative proteomics. Tissue samples were retrieved from the
−80 °C freezer and ground into powder using liquid nitrogen. An
appropriate amount of the powder was then transferred to 1.5mL
centrifuge tubes, followed by the addition of lysis buffer (containing
8Murea, 1mMPMSF, and 2mMEDTA). Ultrasonic lysis was performed
on ice for 5min. The samples were then centrifuged at 15000 × g and
4 °C for 10min to collect the supernatant. Finally, protein concentra-
tion was determined using a BCA assay kit. Based on the determined
protein concentration, 100μg of protein solution was taken, and the
volume was adjusted to 200μL with 8M urea. The sample was then
reducedwith 5mMDTTat 37 °C for 45min, followedby alkylationwith
11mM iodoacetamide (IAM) in the dark at room temperature for
15min. Afterward, 800μL of 25mM ammonium bicarbonate solution
and 2μL of Trypsin (Promega, V5280) were added, and the mixture
was incubated overnight at 37 °C for digestion. The pH of the digested
peptides was then adjusted to 2 − 3 using 20% TFA, followed by
desalting with C18 resin (Millipore, Billerica, MA). Finally, the peptide
concentration was measured using a Pierce™ Quantitative Peptide
Assay Kit with standards (Thermo Fisher Scientific).

All data were acquired using a Vanquish Neo UHPLC system
coupled with an Orbitrap Astral mass spectrometer (Thermo Fisher
Scientific).Mobile phase A consisted of 0.1% formic acid inwater, while
mobile phase B was ACN containing 0.1% formic acid. A trap-and-elute
dual-column setup was used, with a PepMap Neo Trap Cartridge (300
μm× 5mm, 5 μm) serving as the trapping column, and an Easy-Spray™
PepMap™ Neo UHPLC column (150μm× 15 cm, 2μm) as the analytical
column. The column temperature was maintained at 55 °C, with an
injection volume of 200ng and a flow rate of 2.5μL/min. The effective
gradient lasted 6.9min, and the total runtime was 8min. Mass spec-
trometry was conducted in positive ion mode. MS1 spectra were
acquired with a precursor ion scan range of 380-980m/z, a mass
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resolution of 240000 at 200m/z, a normalized AGC target of 500%,
and a maximum injection time (IT) of 5ms. MS2 spectra were acquired
using DIA mode with 299 scan windows, an isolation window of 2 Th,
an HCD collision energy of 25%, a normalized AGC target of 500%, and
a maximum IT of 3ms.

MS raw data were analyzed using DIA-NN (v1.8.1) with a library-
free method. The uniprotkb_proteome_UP000000589_mouse_54910_
20240528.fasta database (containing 54910 sequences) was used to
generate a spectra library through deep learning algorithms based on
neural networks. The Match Between Runs (MBR) option was
employed to create a spectral library from the DIA data, which was
then reanalyzed using this library. The false discovery rate for the
search results was controlled to < 1% at both the protein and precursor
ion levels, and the remaining identifications were used for further
quantification analysis.

In the DIA-NN search settings, the maximum number of missed
cleavages was set to 1, and only one variable modification per peptide
was allowed. N-terminal methionine excision and cysteine carbami-
domethylation were set as fixed modifications, while methionine oxi-
dation (Ox[M]) was selected as a variable modification. Peptide length
was restricted to6–35 amino acids, andprecursor charge rangewas set
to 2–5. Protein inferencewas performed based on protein names from
the FASTA file, and aminimumof one unique peptide was required for
protein identification. All other parameters were left at their default
values.

Statistical analysis. The statistical significance of the difference
between two groups was analyzed using an unpaired two-tailed Stu-
dent’s t test. P values were corrected for multiple testing using the
Benjamini‒Hochberg procedure. For multiple comparisons, statistics
were calculated using one-way ANOVA and post hoc Tukey’s test. The
data are expressed as the means ± SDs, and differences were con-
sidered statistically significant at *p <0.05, **p <0.01, ***p < 0.001, and
****p < 0.0001. Both GraphPad Prism (version 9.0.0) and R (version
4.2.0) were used to conduct the tests. The exact sample sizes and
statistical tests used are indicated in the figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The LC‒MS rawfiles ofmetabolomicsdata generated in this study have
been deposited in the Metabolomics Workbench56 with study ID
ST004031 (https://doi.org/10.21228/M8HR85) and OMIX database of
the National Genomics Data Center under accession number
OMIX006225. The AFADESI-MSI data were uploaded to METASPACE
and are available at https://metaspace2020.org/project/li-2024. The
proteomics data have been deposited in the Integrated Proteome
Resources under project number IPX0009979001. The remaining data
are available within the supplementary material of this article. Source
data are provided with this paper.

Code availability
MSITracer is available for non-commercial use as an R package at
(https://github.com/xinzhul/MSITracer) alongside clear example code
vignettes. A version of the code has been archived on Zenodowith the:
(https://doi.org/10.5281/zenodo.15760474).
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