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Anomalous photoelectrochemical etching of
undoped semiconductor surfaces

Pan Peng1,2,3,8, Xinqin Liu1,2,3,8, Shuming Yang4, Renjie Zhou 5, Hui Deng6,
Liang Gao1, Nicholas X. Fang 7 , Shiyuan Liu 1,3 & Jinlong Zhu 1,2,3

For more than 60 years, it has been widely accepted that the irradiance of the
incoming light plays the most critical role in the etching effect of the photo-
electrochemical etching process, which is built upon the underlying physics
that photo-generated charge carriers catalyze the dissolution of n-type semi-
conductors. However, in this paper, we report an anomalous physical phe-
nomenon, i.e., the spatially distributed photons with a lateral gradient could
drive the lateral distribution of carriers on the surface of semiconductors,
which leads to the anomalous etching phenomenonon the surface of undoped
semiconductormaterials during the PEC etching process. Research shows that
parameters such as light intensity, light intensity gradient, and carrier diffusion
length are significantly correlated with this process. This discovery provides a
potential method of rapid and large-scale 3D nanomanufacturing on semi-
conductor materials, which holds promise for significant applications in
diverse fields such as microelectronics, nanophotonics, microelec-
tromechanical systems (MEMS), and biomedicine.

Photoelectrochemical (PEC) etching, with its simplicity and efficiency
in the processing of semiconductor materials, holds extensive appli-
cations in diverse fields, such as the manufacture of liquid crystal
displays and light-emitting diodes (LEDs)1,2, the fabrication of trans-
formation optics3, and the surface processing for silicon solar energy
and photonic resonators4,5. By combining PEC etching with program-
mable photonic devices such as projectors and spatial light
modulators6, the large-area, fast, and precise patterning of grayscale
nanostructures on semiconductor surfaces in a single-shotmanner can
be achieved, which may further catalyze the applications of PEC
etching in microelectronics7,8, metamaterials9,10, photovoltaic
devices11,12, and MEMS13.

Numerous studies have delved into the reaction principles gov-
erning the PEC etching process14–19. It is generally accepted that a space
charge region, similar to a p-n junction, forms at the semiconductor-

electrolyte interface, establishing a built-in electric field6,14,20. The
direction of this electric field is from the interior towards the surface in
an n-type semiconductor. When light irradiates the semiconductor
surface, electron-hole pairs are generated, after which the holes
migrate to the surface under the influence of the electric field, thereby
accelerating the surface etching reaction. A prevailing consensus
suggests that increasing the irradianceof the incoming light leads to an
increased etching rate because more minority carriers will be gener-
ated and trek toward the semiconductor surface to catalyze the sur-
face etching process20.

However, we observed an entirely contrary phenomenon when a
structured light field with an intensity gradient is employed to etch an
undoped semiconductor wafer, that is, etching is significantly sup-
pressed and accelerated in the high-intensity and low-intensity
regions, respectively; see how a Gaussian beam in the PEC etching
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experiments on an undoped semiconductor wafer and an n-type
semiconductor wafer leads to the contrary microstructures in Fig. 1a.
We theoretically and experimentally demonstrated that the structured
light field with an intensity gradient produces a lateral electric field on
the surfaceof thewafer, which is stronger than the built-in electricfield
of the space-charge region because the undoped wafer has an elec-
trochemical potential close to that of the electrolyte, meaning low
band banding conditions by nature. As a result, holes and electrons
migrate laterally toward the low-potential area (i.e., the low-intensity
area) and the high-potential area (i.e., the high-intensity area),
respectively. Because holes catalyze the etching process, while elec-
trons suppress it, the resultant steady-state distribution of holes and
electrons leads to accelerated etching in low-intensity areas and sup-
pressed etching in high-intensity areas. We believe this discovery may
provide a potential method of large-area and laser-writing technique
on undoped semiconductor surfaces, which may find applications in
diverse fields such as microelectronics, nanophotonics21–23, metama-
terials, clean energy, and biomedicine.

Results
Experimental system
Figure 1a, c illustrates the schematic and scanning electronmicroscopy
(SEM) (SU3900, Hitachi, Ltd.) images of the etching results, respec-
tively. Figure 1b depicts the in-house developed optical system for

demonstrating the anomalous PEC (a-PEC) etching phenomenon
alongside its application in the 3D nanofabrication on the surface of an
undoped GaAs wafer (see also Supplementary Fig. 4 for the physical
diagram of the processing system). In this system, a 532 nm collimated
laser (cnilaser-MLL-U-532-SM, Changchun New Industries Optoelec-
tronics Technology Co., Ltd.) beam is spatially filtered by a filter
module (consisting of lens L3, the pinhole, and lens L4) after passing
through a rotating diffuser to reduce the speckle. The filter module
could effectively reduce the instability of the light beam after passing
through the rotating diffuser24. A phase-only spatial light modulator
(SLM) modulates the spatially filtered beam after passing through a
linear polarizer and an iris25. The Fourier imageof the desired light field
on the sample plane and the transmissive phase distribution of a
Fresnel lens are added to the SLM26. The introduced phase of the
Fresnel lens can significantly reduce the impact of the zero-order
beam27.

This paper uses the improved Gerchberg-Saxton (GS) algorithm
to calculate the desired light field (see Supplementary Note 1)28. The
distancebetween the SLMand the iris is designed tobe the focal length
of the virtual Fresnel lens, such that the reflected light field from the
SLM on the iris plane is conjugate to the one on the sample plane. A
demagnification system consisting of lens L5 and the objective OBJ is
used to achieve the patterning of nanostructures. A complementary
metal-oxide-semiconductor (CMOS) transistor camera (GS3-U3-
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Fig. 1 | Schematic of the anomalous effect in PEC etching and the in-house
developed optical fabrication system. a The schematic diagram illustrating the
difference between the anomalous phenomenon and the conventional PEC etch-
ing. b The experimental system consisting of PEC etching and in-situ monitoring
modules (L lens, M mirror, P polarizer, BS beam splitter, SLM spatial light mod-
ulator, OBJ objective). c The SEM images of an etched pattern (i.e., the “USAF 1951”

resolution test target pattern) on n-type and undoped GaAs wafers based on a
physical photomask. d The structured light field of an array of 36 circles captured
by the camera. e The fabricatedmicrolens array obtained by the conventional PEC
etching on an n-doped GaAs wafer. f The fabricated microlens array obtained by
the a-PEC etching on an undoped GaAs wafer.
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41C6M-C 1” FLIR Grasshopper®3) is placed after lens L6, which is
conjugated with the sample surface for in-situ monitoring of the sur-
face dynamics of the wafer. Additional details on sample preparation
and the specific experimental procedures can be found in theMethods
section.

Through this experimental system, we found the etching process
on an undoped GaAs wafer resulted in an opposite structure when
compared to that on a traditional n-type GaAs wafer (the specific
parameters of the wafers are provided in Supplementary Note 5): see
how a Gaussian beam could result in a concavity and a convexity on an
n-type GaAs wafer and an undoped GaAs wafer respectively in Fig. 1a
and an experimentally etching results are provided in Fig. 1c (see
Supplementary Fig. 8 for the enlarged figure). We have confirmed that
the material of the convexity on the undoped GaAs wafer is Ga and As
by spectral analysis (see Supplementary Fig. 9). We further imple-
mented several etching experiments on n-type and undoped GaAs
wafers, the first of which is the fabrication of a microlens array (see
more details regarding the design of the structured light field in Sup-
plementary Note 1). As shown in Fig. 1d, the generated structured light
field, consisting of 6×6 circles with intensity decreasing from the
center outward, resulted in opposite etching profiles on the n-type and
undoped GaAs wafers; see Fig. 1e, f. This indicates that the undoped
GaAs exhibited a low etching rate in the regions with high light
intensity, contrary to the etching results in the n-type GaAs wafer. The
height difference between the high-light intensity and dark regions in
Fig. 1f is almost 100 nm. In comparison, the natural etching depth is
800–1000nm, considering etching rates in the dark region
(80–100 nmmin−1) (see Supplementary Fig. 5). This indicates that the
structures are lower than the original surface. Thus, we can eliminate
the possibility of growth in the high-light intensity regions. Addition-
ally, we conducted experiments to ensure that the electrochemical
etching rate is not limited by the area of the cathode reaction (see
Supplementary Fig. 13).

Hole concentration dominates the dissolution rate of materials at
the semiconductor-electrolyte interface, i.e., the higher the hole con-
centration, the faster the etching is29. Therefore, we can infer that the
region illuminated by the weak-intensity light corresponds to a higher
hole concentration (see the blue area in Fig. 1f). In comparison, the
region illuminated by the high-intensity light corresponds to a lower

hole concentration (see the red area in Fig. 1f). Moreover, we observed
that the etching is less pronounced in the area far away from the
microlens array. However, the intensity of the illuminated light is also
weak but non-zero (see the blue area in Fig. 1d and the corresponding
yellow outer region in Fig. 1f). This indicates that the intensity of the
illuminated light does not directly determine the concentration of
holes on the surface of the undoped semiconductor wafer. Further-
more, we observed a noticeable acceleration of etching at the dia-
phragm’s boundary, where the light intensity is weak but the light
intensity gradient is quite large. This implies that the light intensity
gradient plays a crucial role in determining the distribution of hole
concentration (see the deeply etched region around each microlens,
where the light intensity gradient is maximal, in Fig. 1f).

Photocarrier transport in a-PEC etching
To investigate how the gradient of light intensity affects the formation
of nanostructures on undoped GaAs wafers, we first revisit the etching
mechanisms for n-type GaAs and p-type GaAs. A built-in electric field
akin to the one in a PN junction formson the surfacewhen n-typeGaAs
interfaces with the etchant30; see the schematic in Fig. 2a. The built-in
vertical electric field drives photogenerated holes towards the inter-
face and thus catalyzes the etching process31. In contrast, p-type GaAs
presents a distinct scenario where the potential barrier hinders holes
from migrating to the interface, making the etching process
challenging32,33. The conclusion mentioned above drives us to make a
hypothesis, that is, the built-in vertical electric field originating from
the “PN junction” of the GaAs-etchant interface has a much more
substantial impact on the carrier distribution than the lateral electric
field induced by the gradient of the illuminated light, when imple-
menting the PEC etching on n-type GaAs wafers. In this case, carriers
are predominantly driven vertically toward the surface by the built-in
electric field. At the same time, the lateral migration induced by the
gradient of light intensity can be neglected. As a result, regions with
higher light intensity exhibit higher surface carrier concentration,
resulting in a faster etching rate on n-type GaAs wafers.

The concentration of photoinduced holes dominates the dis-
solution rate of materials at the semiconductor-electrolyte interface;
therefore, the higher the hole concentration, the faster the etching is29.
However, the built-in electric field in the “PN junction” region of an
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the lateral electric potential generated on the sample surface accelerates the lateral
diffusion of charge carriers when illuminated by a structured light field. As a result,
the laterally redistributedholes and electrons lead to a completelydifferent etching
profile on the surface of undoped semiconductor wafers. The light blue area
represents the space charge region.
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undoped GaAs wafer is relatively weak when illuminated by the light;
see the schematic in Fig. 2b. As a result, the migration of carriers is
primarily along the lateral direction because electric field induced by
the illuminated structured light field is more substantial than that
caused by the “PN junction” of undoped GaAs-etchant interface. This
indicates that the number of holes migrating vertically toward the
surface will increase if we enhance the impact of the built-in electric
field while keeping the structured light field unchanged, resulting in a
more pronounced etching effect on the wafer.

We use the same structured light field to illuminate multiple
undoped GaAs wafers with different purities to validate this hypoth-
esis. The experimental results confirmed our hypothesis, i.e., that the
higher doping density results in amore pronounced etching effect due
to the stronger built-in electric field (see Supplementary Figs. 6 and 7).
Overall, if the built-in vertical electric field originated from the “PN
junction” on the undoped GaAs-etchant interface is significantly
weaker than the lateral electric field induced by the gradient of the
illuminated light, holes migrate to the region with a low lateral
potential caused by the illuminated light. In contrast, the electrons
migrate to the region with a high lateral potential.

Surface electrochemical reaction
When the interfacebetween undopedGaAs and the etchant is exposed
to nonuniform illumination, the light gradient leads to a horizontal
distribution of holes and electrons across the interface. Specifically,
the surface concentration ratio of electrons and holes can lead to
different surface reaction scenarios20,34. When we process with
hydrogen peroxide-free etching solution (H2SO4: H2O= 1:25) at a cer-
tain light intensity, the illuminated region has no change on the
undoped GaAs surface. In contrast, the n-GaAs surface presents a sig-
nificantly accelerated etching (see Supplementary Fig. 14). This indi-
cates that chemical etching, with the participation of H2O2, plays a
decisive role in forming surface topography on undoped GaAs. The
chemical etching process of GaAs in the mixed solution of H2SO4 and
H2O2 has been proposed in previous research19,34. The first step in
chemical etching involves a synchronous exchange of bonds between
HO─OH and Ga─As surface bonds35,36:

GaAs +H2O2 +Ga
� +OH� +As�OH ð1Þ

The primary product for both surface atoms is a hydroxide (this
may subsequently undergo conversion tooxide), and theGa─OHbond
will be hydrolyzed. When this sequence is twice repeated Ga3+ and
As(OH)3 are formed as products:

GaAs +H2O2 +H
+ ! Ga3+ ðaqÞ + As OHð Þ3 aqð Þ ð2Þ

The etching rate of this chemical process is determined by the
synchronous exchange of bonds in the first step19. Three simultaneous
exchanges can dissolve one unit of GaAs. When gradient light is irra-
diated, the etching rate of the process will be affected. Where the
concentration of electrons is relatively high, the effect of “photo-
current-doubling” occurs36. H2O2 first captures a conduction band
electron to give an OH• radical:

H2O2 + e
� ! OH� +OH� ð3Þ

which subsequently injects a hole into the valence band:

OH� ! OH� +h+ ð4Þ

Equations (3 and 4) have been proven to suppress chemical
etching, the probable reasons being competition for the reactant H2O2

or the hydroxide of Ga that adheres to the surface. The effect of
hydroxide can be negligible, considering the concentrationofH2SO4 is

0.04M19. Where the concentration of holes is relatively high, holes
could catalyze the oxidative dissolution of GaAs:

GaAs + 2H2O2 + 2h
+ ! GaðOHÞ2 + +AsO2

� +2H+ ð5Þ

The hydroxides of Ga may be hydrolyzed and eventually become
Ga3+. The dissolution of GaAs only needs a two-step local electron
exchange with H2O2, under the catalysis of holes. Hence, the etching
rate of reaction 5 is faster than that of 2.

Both light intensity and gradient can affect etching suppression
and catalytic dissolution. When the light intensity is constant and the
gradient increases, the lateral diffusion of the carriers intensifies,
which enhances both reduction (Eqs. (3 and 4)) and oxidation (Eq. 5),
resulting in more obvious inhibition and accelerated etching. It is
worth noting that when the gradient approaches 0, most carriers
undergo surface recombination rather than lateral diffusion. The
remaining few carriers can participate in Eqs. (3–5) locally simulta-
neously, at which point the dissolution rate approaches that of che-
mical etching. When the gradient is constant and the light intensity
increases, the total number of photogenerated carriers increases,
resulting in more obvious inhibition and accelerated etching. Equa-
tions (3 and 4) are coupled to Eq. (5), which means that the effect of
inhibiting etching is similar to that of accelerating etching. In other
words, the volume of the convex is close to that of the concave part.
This conclusion is valid if the light intensity is high enough to flatten
the band bend. When the light intensity is weak (less than 1mWcm−2),
the accelerated etching effect can be more significant (presented in
Supplementary Fig. 16) because the band bending on the surface of
undoped GaAs makes the surface hole concentration relatively high.
The above conclusions were verified in extended experiments in the
section: Effects of experimental parameters on surface etching.

Our study highlights a feature of the PEC etching process when an
undoped GaAs surface is illuminated with a structured light field; that
is, a process called hole-catalyzed oxidation is the key player in areas
where the light intensity is lower. This process accelerates the etching
by dissolving the material more rapidly than direct chemical etching.
On the other hand, in areas where the light is more intense, a different
process called the “photocurrent-doubling” effect occurs, which can
slowdown thedissolution rate. In essence, the intensity of our spatially
modulated light can control the speed of the etching process.

Simulation of surface photocarrier behavior
To quantitatively demonstrate that a-PEC etching indeed originated
from the gradient of the illuminating light field, we rigorouslymodeled
thebuilt-in vertical electricfield and the lateral electricfield inducedby
the “PN junction” and the illuminating light field (see Supplementary
Note 6 for the specific simulation process), respectively, using a
commercial software SILVACO (Silvaco International Inc.)37–39. In
Fig. 3a, it is evident that the ratio of electron concentration to hole
concentration on the surface of undoped GaAs increases as the light
intensity increases, which could result in a more significant inhibition
of etching, as per the reaction mechanism mentioned earlier. Our
etching results have experimentally validated this under various light
intensities (see Supplementary Fig. 3 for more details). As shown in
Fig. 3b–e, the vertical potential difference (see Fig. 3e) is much stron-
ger than the lateral potential difference (see Fig. 3c) in the n-typeGaAs.
In comparison, the vertical potential difference (see Fig. 3d) is weaker
than the lateral potential difference (see Fig. 3b) in the undoped GaAs.
This demonstrates that the lateral migration of charge carriers is more
pronounced than the vertical migration of charge carriers on the sur-
face of undoped GaAs. In contrast, the vertical migration of charge
carriers dominates the etching process on the surface of n-type GaAs.
We also conducted comparative experiments on p-type GaAs, as pre-
sented in Supplementary Note 7, which indicates that in p-type GaAs,
where the influence of the built-in electric field is much greater than
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that of the lateral light intensity gradient, the phenomenon of etching
acceleration caused by the lateral gradient does not occur.

Effects of experimental parameters on surface etching
Furthermore, we performed extended experiments to determine if or
how some factors affect the etching results40. The gradient and
intensity of light are first studied as the most critical parameters that
influence the surface height of the sample after etching. All samples
were etched for 10min. A designed pattern projected on the sample
surface is shown in Fig. 4a, in which the light intensities of the central
square of the sixteen partitions (each partition consists of a large
square and a small cube inside) are almost the same, while the inten-
sities of the peripheral region are increasing from 1 to 16. This design
ensures that the gradient in region 1 and region 16 are the largest and
smallest, respectively. According to our theory, the cubewith themost
significant gradient in the upper right corner should produce the
highest structure, which has been verified by the etching result shown
in Fig. 4b. It can be seen that the height of the cubes is decreasing from
region 1 to 16, ignoring the height deviation of the cube at the bottom
left which is affected by the gradient at the edge of the pattern. The
experimental results agree well with our theoretical analysis. We then
presented the surface height h of the etched cubes as a function of the
gradient g in Fig. 4c (defined as g = (I1 − I2)/I1, in which I1 and I2 are the
optical power density at the central cube and peripheral region,
respectively). As shown in Fig. 4c, the height h of the cube indeed
increases as the light-intensity gradient increases.We then use another
pattern of four circles shown in Fig. 4d to verify the relationship
between height and light intensity. The corresponding gradient of the
circles is almost the same when light intensity varies within a small
range (a significant difference in light intensity will result in a large
difference in image contrast, leading to a substantial change in the
gradient). Here, we presented the relation of surface height h (the
average height of the circle relative to the unilluminated region) after
etching as a function of light intensities ranging from 6 to 18mWcm−2

in Fig. 4f, while the gradient is near 0.466, 0.522, 0.728, and 0.851,
respectively. The data indicate that the height increases with the
increase in light intensity at a fixed gradient condition. In summary,
light intensity and gradient simultaneously affect height. Light

intensity represents the optical power density of a point, and gradient
represents the difference in optical power density between a point and
its surrounding points. Thus, the height at a specific point on the
etched sample surface is affected by the optical power density at that
point and in the surrounding areas. The lateral diffusion of carriers
determines the surrounding range.

The lateral diffusion of carriers plays an important role in forming
surface topography during the etching process41,42. We designed four
patterns shown in Fig. 4g, each featuring a square area with uniformly
distributed light intensity. The dimensions of the squares differ among
the patterns, while the total illumination area is the same. The etching
results are presented in Fig. 4h. The etched profile across different
pattern sizes presents significant variations. Specifically, the smaller
rectangles are etching suppressed, and there was minimal height dif-
ference between each rectangle’s edge and central area. However, in
the caseof larger rectangles, suppression of etchingwasobservedonly
at the edges, while the central area was etching-accelerated. According
to our theory, the lateral migration of carriers affected by the light
gradient causes apparent etching and inhibition of etching at the edge,
after which the carriers spread laterally between the edge region and
the center region until equilibrium is reached. Based on the above
analysis, we can conclude that a flat surface is obtained after etching
for patterns of uniform light intensity with small dimensions (here, it is
less than ≈50μm). For uniform patterns with large dimensions (here,
>200μm), themiddle area is a plane, while a curved outline appears at
the edge after etching. The situation between these two sizes will
produce a concave. From these results, we can see that the rate of
structure formation is related to the structure’s light intensity, gra-
dient, and size, all of which are fixed for a given etching solution. Per
our experiments, the maximum rate does not exceed the chemical
etching rate (100 nmmin−1). Additionally, we verified that the etching
topography does not exhibit significant changes over time, as the light
field remains consistent when the etching depth is small. Furthermore,
our findings indicate that polarization does not influence the etching
topography. Detailed information regarding these experiments is
provided in the Supplementary Note 3.

The experiments above demonstrate that we can achieve precise
3D nanofabrication on undoped semiconductor wafers by controlling
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both the gradient and intensity of the incoming light (see Fig. 4 for an
explanation of how thegradient and intensity of light could control the
3D nanofabrication process).

Surface nanofabrication
The revealedmechanism of a-PEC etching indicates that we can create
grayscale nanostructures and planar 2D nanostructures on the surface
of undoped semiconductor materials by customizing the gradient
distribution and intensity of the incoming light field. The critical
dimension achievable by our method is diffraction-limited; see

Supplementary Note 4 for more details regarding the resolution tests.
Additionally, we have presented the surface height of the etched
structures as a function of the gradient, light intensity, and the etching
time, as shown in Supplementary Fig. 19, demonstrating the precise
height control of this method. The structures shown in Fig. 5a–c,
including a spiral line structure with its height diminishing from the
inside out, a logo “HUST,” and a concentric ring structure, highlight the
adaptability of this approach, as altering the light field pattern allows
for flexible modification of the structures’ characteristics (another
pattern named “USAF 1951” resolution test target can be found in
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Supplementary Fig. 8). Furthermore, this method is well-suited for the
fabrication of grayscale nanostructures, owing to its capacity to con-
trol the height of nanostructures, exemplified by the grayscale panda-
like structure showcased in Fig. 5d. The a-PEC etching can also be
employed as a cost-effective and highly efficient method to fabricate
the reflective phase mask for holographic lithography. Holographic

lithography,whichutilizes light interference to generate a light pattern
into the photosensitive polymer (see the schematic of an in-house
developed holographic lithography system in Fig. 5e and Supple-
mentary Fig. 10)43–49, has been demonstrated as a viable platform for
rapid and scalable manufacturing of nanostructures50,51. A photomask
can be fabricated using conventional methods such as e-beam
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lithography and direct laser writing, but they are typically slow and
costly due to the raster scanning mode52–55. In contrast, the proposed
etching method enables the direct fabrication of grayscale or 2D pat-
terns on a semiconductor surface in a single-shot manner. The pat-
terned semiconductor surface canbeused as the reflective phasemask
in a holographic lithography system; see the simulated and fabricated
reflective phase masks in Fig. 5f, g. The holographic images (i.e., the
gratings and the zeroth diffraction orders) resulting from the phase
masks with large and small pixel sizes are shown on the right side of
Fig. 5f, g. The smaller the pixel size in the phase mask, the higher the
resolution of the holographic images. Moreover, we can observe that
defects introduced in the phase mask during the etching process do
not significantly impact the results of holographic imaging, because
the phase mask we processed modulates the light field in the fre-
quencydomain. This indicates a high fault tolerance in this application.
The capability of directly fabricating 2D and grayscale nanostructures
on semiconductor surfaces in a single-shot manner without the use of
photoresist demonstrates that our prototype fuses the capabilities of a
stepper as well as an etcher, which may find applications in nano-
photonics, biomedicine, and microelectronics.

Discussion
Our study revealed an anomalous phenomenon: the structures fab-
ricatedon undoped semiconductor surfaces are opposite to those on
n-type semiconductor surfaces after PEC etching. We theoretically
and experimentally demonstrated that this phenomenon is attrib-
uted to the lateral redistribution of carriers prompted by thegradient
of the illuminated light field. Our experimental studies revealed that
a-PEC etching can be achieved with a minimal critical dimension
close to the optical diffraction limit at the maximal rate
(100 nmmin−1). Moreover, we found that a-PEC etching is very sen-
sitive to the gradient. For example, our experiments have demon-
strated that a-PEC etching occurs only if the gradient exists, and the
required gradient value is closely related to the optical power den-
sity. This phenomenon and mechanism can provide some enlight-
enment for the surface photoelectrochemical process of
semiconductors. Additionally, the a-PEC etching has the potential for
fabricating a phase mask due to its nm-level accuracy in height
control and near-diffraction limit resolution. This discovery provides
a rapid and large-scale 3D nanomanufacturing technique for
undoped semiconductor materials by simply customizing the gra-
dient and intensity of an illumination light field, which may find
applications in diverse fields such as microelectronics, nanopho-
tonics, MEMS, clean energy, and biomedicine.

Methods
Materials
Sulfuric acid (H2SO4, 10%), hydrogen peroxide (H2O2, 30%), and
ultrapure water purchased from Shengshi Standard (Xiamen) Tech-
nology Co., Ltd were mixed according to the volume ratio to prepare
the etching solution. Isopropyl alcohol (IPA, 99.5%) was purchased
from Shandong Xiya Chemical Co., Ltd. Deionized (DI) water was
supplied by Suzhou IndustrialDistilledWater Co., Ltd. The n-typeGaAs
(100) with a doping concentration of Nd = 3 × 1018cm−3 and undoped
GaAs (100) with a resistivity of 4 × 108Ω cm were supplied by Inno-
tronix Technologies Co., Ltd. The p-type GaAs (100) with a doping
concentration of Nd = 1.9 × 1019cm−3 was supplied by Suzhou Lei-
lichang Semiconductor Co., LTD.

Sample preparation
The following steps remove contaminants from the sample surface.
Firstly, we remove organic residues on the sample surface by immer-
sing the sample in a solution of isopropyl alcohol and subjecting it to
ultrasonic cleaning for 10min. Subsequently, sulfuric acid removes
inorganic contaminants. After each of the steps above, a thorough

rinse of the sample is necessary to ensure the residual cleaning agents
and contaminants are removed. Finally, we clean all the remaining
impurities by subjecting the sample to ultrasonic waves in deionized
water. When the cleaning process is completed, the sample is dried
using a nitrogen gun to prevent the introduction of contaminants,
afterwhich the dried sample is stored in a cleanenvironment for future
experiments.

Optical power density calculation
In all experiments, a digital optical power and energy meter (PM100,
Thorlabs Co., Ltd.) was used to measure the optical power (P) of the
pattern projected directly after the objective lens, approximating the
optical power incident on the sample surface. The optical power
density I was calculated by I = P/A, where A is the total area of the
processed pattern.

Processing operation
The n-type GaAs (100) with a doping concentration of
Nd = 3 × 1018cm−3 and undoped GaAs (100) with a resistivity of
4 × 108Ω cm are cut into 0.8 × 0.8 cmpieces and placed in a glass Petri
dish without electrical contact, which is mounted on amotorized x-y-z
stage to ensure accurate positioning and in-focal fabrication. Each
experiment is performed on a different piece. A standard etchant
(H2SO4:H2O2:H2O= 1: 1: 25)waspoured into the containerwith adepth
of 5mm, which was changed after each etching process to ensure the
accuracy of the comparison experiment. Then, the phase diagram is
loaded onto the SLM, followed by the focus adjustment. When
focusing is completed, we turn off the light source and then move the
sample 2mm along the x-axis to ensure the following a-PEC etching is
implemented in an unexposed region. We then turn the light source
back on for a-PEC etching. All of the samples were etched for 10min.
We monitor the etching dynamics using a regular camera (GS3-U3-
41C6M-C 1” FLIR Grasshopper®3).

3D surface measurement and analysis for the fabricated
nanostructures
The 3D profiles of the etched samples were measured using a com-
mercial white light interferometer (ER230-Atometrics) with a 20×
objective. We used a commercial white light interferometer with a 20×
objective tomeasure the profile of the fabricated 3D nanostructure on
undoped GaAs wafers. The resulting vertical and lateral resolution can
reach 1 nm and 400nm, respectively. MountainsMap® generates all
three-dimensional images and cross-sectional profiles.

Photocarrier simulation
Weutilize thedevice simulator, Atlas, part of the software suite Silvaco,
to simulate the distribution of carrier concentration and electric field
on the GaAs surface under illumination.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon request. Source data are provided with
this paper.
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