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Understanding how we learn about the value and structure of our environment
is central to neurocognitive theories of many psychiatric and neurological dis-
orders. Learning processes have been extensively studied during performance
of behavioural tasks (online learning) but less so in relation to resting (offline)
states. A candidate mechanism for such offline learning is replay, the sequential
neural reactivation of past experiences. Notably, value-based learning is espe-
cially tied to replay unfolding in reverse order relative to the original experience
(backward replay). Here, we demonstrate the utility of EEG-based neural
decoding for investigating offline learning, and relate it to trait anxiety, mea-
sured using the Spielberger Trait Anxiety Inventory. Participants were first
required to infer sequential relationships among task objects by using a learned
rule to reorganise their visual experiences into distinct sequences. Afterwards,
they observed that the final object in one of the sequences was associated with a
monetary reward and then entered a post-value resting state. During this rest,
we find evidence of backward replay for reward-linked object sequences. The
strength of such replay is negatively associated with trait anxiety and positively
predicts an increased behavioural preference for reward-predictive stimuli. We
also find that healthy individuals with high trait anxiety (score > 45) show
inefficient credit assignment irrespective of reward magnitude, indicating that
this effect does not merely reflect reduced reward sensitivity. Together, these
findings suggest a potential aberrant replay mechanism during offline learning
in individuals with high trait anxiety. More broadly, our approach illustrates the
potential of EEG for measuring structured neural representations in vivo.

Mechanistic accounts of psychopathological symptoms often centre bias prioritising punishment over reward signals, which negatively
on maladaptive learning processes, such as structure learning— impacts value learning*®, and may lead to avoidant behaviours that
understanding how entities are related’, and value learning—assigning  limit engagement in potentially rewarding activities". While most
value to states or actions*’. For instance, anxiety has been linked to a  research has focused on online (i.e., on-task) learning, recent work
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emphasises the importance of offline learning that occurs during rest
and sleep™.

Offline learning, as occurs during rest or sleep, involves proces-
sing and consolidation of information acquired during an awake
state™®". A key neural mechanism of offline learning is neural replay,
the spontaneous sequential reactivation of on-task neural
representations” . Replay is crucial for both structure learning, where
internal relationships are encoded"®, and value learning'®*°, in which
reward signals are assigned to relevant states” . Of particular interest
is backward replay—reactivating experiences in reverse order—which is
highly responsive to reward®*, and enables non-local value
learning™?®, allowing reward signals to propagate to preceding (non-
local) states in a sequence. Disruptions in such offline replay processes
may underlie dysfunctional reward processing in psychopathologies®.

Recent methodological advances enable the non-invasive detec-
tion of replay-like sequential reactivations in humans®, typically
through magnetoencephalography (MEG)"'$***-! or functional mag-
netic resonance imaging (fMRI)***. Studies using these techniques
indicate that reward can enhance backward replay of learned
sequences'®*>*, suggesting that replay is integral to the propagation of
reward signals beyond direct reward associations.

Trait anxiety is increasingly viewed as a biomarker or vulnerable
phenotype for mood disorders, encompassing both depression and
anxiety’*®, Rather than separating anxiety from depression, we
examined whether offline replay mechanisms were disrupted in indi-
viduals with higher trait anxiety, particularly in the context of non-local
value learning. We focused on reward-based credit assignment, for
which backward replay serves as a robust neural signature'®'®*,
Building on our previous MEG study'®, we employed an established
sequence-learning paradigm to investigate these processes in indivi-
duals with varying levels of trait anxiety, but now using electro-
encephalography (EEG).

Participants first learned the structure of two picture sequences
and then underwent a value-learning phase where the final image of
one sequence was paired with a monetary reward, while the other
sequence had no such pairing. Preference ratings collected before and
after this phase served as an implicit behavioural measure of credit
assignment. Crucially, prior to value learning, we ensured all partici-
pants had learned the true sequence structure to a similar extent, so
that any observed deficits in reward-based preference shifts and replay
mechanisms could not be attributed to poor structural knowledge.

We recorded EEG—a method more widely accessible than MEG in
clinical settings—to detect replay during rest following value learning.
All 80 participants were carefully recruited to ensure an even sampling
across levels of trait anxiety, as assessed by the Chinese-validated
version of Spielberger Trait Anxiety Inventory (STAI)***. We hypo-
thesised that higher trait anxiety would be associated with weaker
backward replay of reward-linked sequences, accompanied by smaller
preference shifts reflecting impaired value updating.

To rule out the possibility that high trait anxiety simply reflects
diminished reward sensitivity, we conducted a separate behavioural
experiment (n =200) in which we manipulated reward magnitude (¥10
vs. ¥100). Across both reward conditions, individuals with higher trait
anxiety exhibited diminished propagation of reward value through the
learned sequence. Together, this outcome suggests that aberrant off-
line replay mechanisms may underlie value learning deficits beyond
mere reward sensitivity, providing insights into the maladaptive
learning patterns associated with trait anxiety.

Results

Task

Participants completed the task over two study days. On Day 1 (beha-
vioural training only), they learned only the task structure. Eight images
were presented in two scrambled visual sequences, [B° A D’ B] and [A’ C
C’ D], while the true latent orderswereA>B~>C~>DandA’'>B > C > D"

An explicit unscrambling rule, for example, the first picture of visual
sequence 1is actually the second picture of structural sequence 2, taught
participants to map the visual order onto the hidden structural order.
Crucially, the structural neighbours that later define replay transitions,
such as A - B, never appeared consecutively in the visual streams, so any
A~ B reactivation detected at rest must reflect internally inferred
structure rather than replay of a perceptual pairing. Following our pre-
vious MEG work", this procedure was designed to induce off-task
replay of inferred transitions between stimuli (i.e., beyond simple
experience), as well as to track how reward information propagates
along these inferred sequences. This study focused on distinguishing
replay of reward-associated versus neutral sequences. Because replay
and spontaneous memory reactivation can also prioritise weakly learnt
experiences™*°, participants were required to reach >80% accuracy on
the Day 1 structure learning task to minimise confounds from incom-
plete structural knowledge. Only those meeting this threshold pro-
ceeded to the EEG experiment on Day 2.

On Day 2, the task involved a sequence-learning phase with a new
set of eight visual stimuli, mirroring the structure learning task from
Day 1. This session was conducted during a 64-channel EEG scan.
Initially, participants rated their liking for each stimulus on a 1-9 scale,
followed by a functional-localiser task wherein each picture was dis-
played randomly (crucial for neural state decoding). Following the
functional localiser, participants completed a sequence-learning phase
where they learned how eight new pictures related to two underlying
structural sequences, using the same rule as learnt on Day 1. Partici-
pants then entered a value learning phase, where the final picture in
one of the structural sequences (D) was associated with a reward, while
the other (D) was associated with a neutral state. The task concluded
with a position probe session, where participants identified each pic-
ture’s position in the sequence, followed by a final preference rating. A
preference change was used to quantify the impact of reward on
subjective valuation®. Three resting-state sessions (4 min each) were
included: one at the task’s start, prior to structure learning (pre-task);
and surrounding the value learning phase (pre-value and post-value),
to capture spontaneous replay of the task sequences. For further
details, refer to the ‘Methods’ section.

Behavioural performance

Seven participants were excluded for failing Day 1 structure learning,
and an additional five were excluded due to excessive movements and/
or EEG artifacts, leaving 68 participants in the final sample. Behavioural
analysis confirmed that these 68 participants successfully learned the
structural task sequences. The overall mean trait anxiety score was
43.93 +1.33. Furthermore, as expected, our trait anxiety measure cor-
related with other anxiety questionnaires (e.g. the Self-Rating Anxiety
Scale*? (SAS; r(66) = 0.65, p < 0.001, 95% Cl=[0.49, 0.77]), Penn State
Worry Questionnaire*** (PSWQ; r(66) = 0.65, p < 0.001, 95% Cl = [0.48,
0.77]) and Intolerance of Uncertainty Scale®*° (r(66) = 0.37, p=0.002,
95% Cl=[0.14, 0.56])), demonstrating construct validity. Trait anxiety
also correlated with depression scores, such as the Self-Rating
Depression Scale'” (SDS; r(66) = 0.81, p <0.001, 95% CI=[0.71, 0.88]),
in line with the high comorbidity between trait anxiety and depression,
well-documented in epidemiological studies***.

The main EEG task consisted of four phases (Fig. 1). During the
functional-localiser phase, sequence pictures were presented ran-
domly to train neural decoders. To ensure attention, stimuli were
occasionally (20% probability) shown upside down, requiring a button
response from participants. The mean response accuracy for this task
was 97.54 £ 0.21%.

Next, in the sequence-learning phase, participants applied the Day
1 mapping rule to newly introduced Day 2 stimuli. After each learning
run, their knowledge of the true stimulus order was assessed without
feedback, revealing a mean accuracy of 84.58 +1.47% (chance level =
50%). Accuracy improved over the course of the learning runs

Nature Communications | (2025)16:7975


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63281-w

Day 1 Day 2

Preference Rating
Structure Learning Functional Localiser

Visual

Applied Learning
B+ A—-D—+B

Preference Rating

Value Learning Position Test

@)

Y ; * D — Reward ;
Ph 1: & . ¥ = ¥
G VAR \B] ey PR [ 2] | e
A—-»C—»C—>D ? Visual A—-»C—>C—-D -
. ) A P
Phase 2/& ﬁ‘ Rest Sequence 2: £ A~ T Rest Rest k] v *
. 1_q g - Wy True - A Pos1 Pos2 Pos3 Pos4
equence 1:°X aﬂ‘ Sequence 1 V/ D’ — Neutral e
~— — T =
A —B>C' =D True A—B—>C'—»D’ \ e ?Which Position? (Pos2)
Sequence 2/ = @ Sequence 2: 5 »
= B ek

Fig. 1| Task design. On Day 1, during a structure learning phase, participants were
trained on the mapping rule between the order of stimuli presentation (the visual
sequence, e.g. B> A~> D’ > B) and the task-relevant order (the true sequence, e.g.
A~ B~ C~> D) (details not shown). On Day 2, they were exposed to a new set of
stimuli but followed the same mapping rule. Stimuli preferences were rated twice:
once at the beginning and again at the end of the task. Participants engaged in the
sequence-learning task'® while undergoing whole-brain EEG recording. During the
functional-localiser phase, stimuli were presented in random order to train

EEG recording

decoders. In the sequence-learning phase, stimuli were presented in the same
manner as on Day 1, with participants required to apply the learned structure to
reorder the new stimuli. Following this phase, the last stimulus of each true
sequence, either D or D’, was paired with a reward or neutral icon. Finally, partici-
pants were probed on the position of all stimuli in the true sequence. There were
three resting states throughout the task, used to capture spontaneous replay of the
task sequences. During these resting states, participants were instructed to keep
their eyes open for 4 min without engaging in any specific task.

(F (2, 134) =58.59, p<0.001, n?=0.47). Notably, no statistically sig-
nificant correlations emerged between trait anxiety scores and any
learning or test performance measures (rs < 0.10, ps > 0.20). Following
Nour et al.!, we quantified learning efficiency by calculating a learning
lag, which regresses quiz performance on run number, where larger
values indicate slower performance improvements (i.e., lower effi-
ciency). No statistically significant correlations were observed between
learning lag and trait anxiety (accuracy: r (66) =-0.07, p=0.586, 95%
CI=[-0.30, 0.17]; response time: r (66)=-0.10, p=0.431, 95% Cl=
[-0.33, 0.15]), indicating that trait anxiety did not significantly bias the
transfer of task-structure knowledge to new experiences in this study.

In the value learning phase, the last object of each true sequence
(D or D) was paired with a reward or a neutral icon, respectively.
Participants pressed specific buttons to indicate their recognition of
reward or non-reward, achieving an overall mean accuracy of
94.42 +1.91%. The position probe then tested participants on the
ordinal position of each picture within the learned sequence, revealing
an overall mean accuracy of 96.98 + 0.86%, indicating correct encod-
ing of the task structure. See the ‘Methods’ section for details of
behavioural testing procedures.

At the end of the entire task, participants again rated their pre-
ference for stimuli. ANOVA analysis, considering factors of structural
position, time (pre- vs. post-task), and sequence (reward vs. neutral),
revealed a statistically significant 3-way interaction (position x time x
sequence) on final preference ratings (F (3, 201)=4.82, p=0.003,
n?=0.067), such that maximal preference was for the final picture of
the rewarded sequence, after value learning. Specifically, for the
rewarded sequence, a statistically significant interaction between
position and time was observed (F (3, 201) = 5.44, p=0.001, n2 = 0.075,
Fig. 2a), with a notable preference increase for the last object post-task
(pre: 5.43+0.21, post: 6.03+0.23, t (67)=-3.32, p=0.001, Cohen’s
d=-0.40, 95% Cl=[-0.97, —0.24], Fig. 2a). No such statistically sig-
nificant effects were found for the neutral sequence (F (3, 201) =1.58,
p=0.195, n?2 =0.023). Additionally, a statistically significant interaction
between sequence and time was noted (F (1, 67)=4.93, p=0.030,
n?=0.068). The post-hoc test showed the difference of post-task
preference ratings between the rewarded sequence and the neutral
sequence (F (1, 67) =3.18, p=0.079, n*=0.045).

Importantly, we found a statistically significant negative correla-
tion between trait anxiety score and increased (post-pre) preference

rating for the rewarded stimulus (r (66) =-0.26, p=0.036, 95% Cl=
[-0.47, -0.02], Fig. 2b), indicating a blunting of a preference increase
in the more anxious individuals. This finding aligns with previous
research linking trait anxiety to impaired value learning*°. Further-
more, when treating anxiety as a categorical variable (below vs above
the clinical severity cut-off), based on prior work®’~°, we observed that
for low anxious individuals, the preference for all reward-predictive
stimuli increased proportionally to their proximity to the reward
(#=0.31+0.11, t (142) =2.68, p=0.008, 95% CI=[0.08, 0.53], Fig. 2c),
there was no statistically significant effect for high anxious individuals
(=020+0.12, t (126)=1.63, p=0.106, 95% CI=[-0.04, 0.44]),
although the difference between groups was not statistically sig-
nificant (independent samples t-test, t (65) =0.68, p>0.05, Cohen’s
d=0.16, 95% Cl=[-0.22, 0.44]).

Neural decoding
Having uncovered a significant relationship between post-value learn-
ing behavioural preference (a reflection of value learning) and anxiety,
we next investigated potential neural correlates of learning. A post-
value rest period separated value-learning and preference ratings,
allowing us to specifically investigate post-learning offline neural replay.
To measure sequential replay during rest, we first trained multi-
variate neural decoders for each task picture, based on visually evoked
response EEG data from the functional localiser, using lasso-
regularised logistic regression trained in k-fold cross-validation.
Importantly, as the localiser was conducted at the start of each scan-
ning session, prior to any learning, this removed any possibility that
information pertaining to task-structure might be present in the clas-
sifiers. Consistent with prior studies'®, we trained a distinct set of
decoders from neural data at each 10 ms window following stimulus
onset. Classification accuracy in held-out data was evaluated using a
10-fold cross-validation®. The peak decoding accuracy was observed at
180 ms post-stimulus onset (23.21+0.90%, one-sample t-test, t
(67) =11.93, p<0.001, Cohen’s d=1.45, 95% CI=[0.09, 0.13]; chance
level: 12.50%, Fig. 2a), as in our prior work'. Importantly, there was no
statistically significant correlation between the peak decoding accu-
racy and trait anxiety scores (r (66) =0.08, p=0.50, 95% Cl=[-0.16,
0.32]); later replay-anxiety effects cannot be attributed to the insig-
nificant association between decoding accuracy and trait anxiety. The
classifiers demonstrated high specificity for task states, as the
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Fig. 2 | Change of preference rating following value learning. a Increased
(post-pre) preference rating of stimuli based on distance to reward/neutral icon
(referred to as sequence position) for both reward and neutral sequences. Rewar-
ded sequence: Statistically significant position x time interaction (two-way ANOVA:
F (3,201) =5.44, p=0.001, n2=0.075). Position 4 increase: t (67) =-3.32, p=0.001,
Cohen’s d=-0.40, 95% Cl=[-0.97, —0.24] (paired t-test, two-sided). Neutral
sequence: No statistically significant interaction (F (3, 201) =1.58, p=0.195,
n?=0.023). Data presented as mean + SEM (n = 68 participants); each dot indicates
results from one participant. The density curves illustrate probability distributions,
with width indicating response density. b The increased preference rating on object
(D), paired with reward, is linked to trait anxiety score, evident in a negative cor-
relation between increased preference rating and trait anxiety score (Pearson
correlation: r (66) =-0.26, p=0.036, 95% Cl =[-0.47, -0.02], two-sided). Each dot
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indicates results from one participant. The solid line reflects the best robust linear
fit, with a shaded band that represents a 95% confidence interval of the fit.

c Increases in stimuli preference as a function of distance to reward. There was a
statistically significant positive linear relationship between closeness to reward and
increase in preference for low anxious participants (3=0.31+0.11, ¢ (142) = 2.68,
p=0.008, 95% CI=[0.08, 0.53], n=36, blue dots), but not so for participants with
high anxiety (8=0.20 £ 0.12, ¢ (126) =1.63, p = 0.106, 95% Cl =[-0.04, 0.44], n=32,
red dots) (no statistically significant difference between groups (independent
samples t-test, t (65) = 0.68, p > 0.05, Cohen’s d = 0.16, 95% Cl = [-0.22, 0.44])). Data
presented as mean = SEM; each dot indicates results from one participant (n = 68).
The solid line reflects the best robust linear fit, ns not statistically significant,

**p <0.01, **p<0.001.

predicted probability of the trained models significantly exceeded the
threshold only when the test state matched the state the model was
trained to detect (Supplementary Fig. 1). For all subsequent analyses,
we used stimulus classifiers trained at 180 ms post-stimulus onset.

Selective increase of backward replay after value learning

We assessed evidence for spontaneous neural replay of inferred
sequences in resting-state EEG data using Temporal Delayed Linear
Modelling (TDLM)*, consistent with methodologies used in prior MEG
studies'®***°, TDLM captures unique neural patterns while accounting
for co-activations and autocorrelations among all states, thereby mini-
mising false positives arising from overlapping image representations®.
This involves applying trained classifiers to the neural (time, sensors)
matrix to generate a (time, states) reactivation probability matrix. We
then quantified the degree to which these reactivation probabilities
systematically adhered to a specified task transition matrix at various
replay lags (speeds, 10-600 ms) using general linear models, for each
participant separately. We measured replay strength across two stimuli
orders: forward (e.g. [A~>B]) and backward (e.g. [B > A])"**. Notably,
previous studies using MEG have revealed an increase in backward
replay following receipt of rewards'®**%,

We found significant backward replay for the rewarded sequence
in the rest period following value learning (post-value), with a state-
state lag (speed) of 50-80ms time lags, peaking at 60ms
(8=0.02 £0.01, one-sample t-test, ¢t (67)=3.20, p=0.002, Cohen’s
d=0.39, 95% Cl=[0.01, 0.03], statistically significance threshold from
a non-parametric permutation test, FWE corrected across all lags,
Fig. 3b). Importantly, no such statistically significant backward replay
was observed in the reward sequence during the rest period before
value learning (pre-value) or during the rest period at the start of the
task (pre-task). Conversely, we found no statistically significant back-
ward replay for the neutral sequence in any of the three rest periods
(Supplementary Fig. 2).

We found a significant interaction between time (pre vs. post-
value learning) and sequence type (rewarded vs. neutral) in the mag-
nitude of backward replay (measured at the maximum time lag (70 ms)
averaging across both reward and neutral sequences: F (1,67) = 6.80,

p=0.011, n?>=0.092, Reward: B, =0.006 + 0.0042, By, =0.0187 +
0.0053, paired t-test, ¢ (67) =-3.13, p=0.003, Cohen’s d =-0.38, 95%
Cl=[-0.02, -0.01], Neutral: 8, = 0.0028 + 0.0044, f3,,;, =—0.0036 +
0.0055, paired ttest, ¢t (67) =130, p=0.198, Cohen’s d=0.16, 95%
CI=[-0.003, 0.02]). This indicates a significant increase in backward
replay after value learning for the rewarded compared to the neutral
sequence. As anticipated, we found no statistically significant replay of
the visual sequence (observed picture transitions, not part of the latent
structural sequence) in any rest session (Supplementary Fig. 3). In
contrast to prior work™, we did not observe statistically significant
forward replay in either the rewarded or neutral sequences during any
rest period that exceeded Prj,r<0.05 threshold (Supplementary
Fig. 4). See Supplementary Figs. 5 and 6 for additional validation
results. We also trained classifiers on post-learning data (during the
position task), which yielded a lower decoding accuracy (21.40 *
0.96%) than the pre-task localiser-trained classifiers (23.18 + 0.86%;
paired t-test, t (67)=-1.79, p = 0.039, Cohen’s d=-0.22, 90% one-
sided Cl<-0.001, one-tailed). No statistically significant replay was
observed in this condition, likely because task-related representational
overlap reduced decoding accuracy and resulted in non-significant
replay measures.

To test whether learning produced a selective blurring of neigh-
bouring states that might masquerade as replay—e.g. if the pattern for
state A became more like state B and thus yielded an apparent A~>B
replay during rest—we carried out two checks. First, a cross-temporal
decoding analysis showed that classifiers trained on pre-learning func-
tional-localiser data at 180 ms remained highly discriminative when
applied to signals from the final position-test phase (Supplementary
Fig. 7a). This stable, state-specific generalisation argues against wide-
spread representational drift after learning. Second, we asked whether
decoders misclassified adjacent items more often than non-adjacent ones
(for example, whether a classifier for state A was more likely to predict
state B than state C). In the position test, we modelled the decoder
probability for each non-target state (i.e., confusion), using a linear
mixed-effects modelP>**, Probability Confusion ~ Adjacency*Time +
(Adjacency*Time|Participant). Adjacency was not statistically significant
for the reward sequence (8=-0.0008+0.003, p=0.911, 95% Cl=
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probabilities of all stimuli at a given time point. On the right panel is the mean
backward replay for the reward sequence, after value learning (mean + SEM,
n=68). The vertical grey shaded area indicates significant time lags of replay. The
dashed line is the FWE-corrected significance threshold. Shaded areas show SEM
across participants. This result is similar to previous studies measuring replay in
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multiple comparisons. b The reward effect on replay is linked to behavioural
change—there is a statistically significant positive correlation between an increase
in backward replay and an increase in preference rating, specifically for reward
sequence (Pearson correlation: r (66) = 0.25, p=0.042, 95% Cl =[0.01, 0.46], two-
sided). Each dot is a participant, the solid line represents the best linear fit, with the
shaded area indicating SEM. *p < 0.05.

[-0.007, 0.006]) or the neutral sequence (8=0.0003 + 0.004, p=0.942,

95% Cl=[-0.007, 0.008]), and there were no statistically significant
adjacency-by-time interactions (ps>0.70; Supplementary Fig. 7b). No
evidence showed neighbouring items becoming disproportionately
confusable after learning (representational drift).

High trait anxiety is associated with reduced backward replay
We observed a statistically significant negative correlation between
trait anxiety and an increase in backward replay for the rewarded
sequence after value learning (r (66)=-0.27, p=0.029, 95% Cl=
[-0.47, -0.03], Fig. 4a left panel, also shown for low vs. high anxiety
comparison on the right panel). Moreover, this increase in backward
replay was negatively correlated with SDS scores (r (66)=-0.29,
p=0.015, 95% Cl=[-0.50, —0.06]). These findings suggest that deficits
in offline value learning may be broadly linked to mood-related
pathology. There were no statistically significant correlations between
the increase in backward replay and SAS scores (r (66)=-0.22,
p=0.071, 95% Cl=[-0.44, 0.02]) and PSWQ scores (r (66)=-0.22,
p=0.066, 95% Cl=[-0.44, 0.02]).

We also found a statistically significant positive correlation
between the increase in backward replay for the reward sequence and
changes in preference ratings from pre- to post-task (r (66)=0.25,

p=0.042, 95% CI=[0.01, 0.46], Fig. 4b). Additionally, in the reward
sequence, a statistically significant interaction effect was observed
between group (high vs. low trait anxiety) and time (pre vs. post-value
learning) for (increase in) backward replay (F (1, 66) =4.77, p=0.032,
n?=0.067). Specifically, individuals with low trait anxiety demon-
strated a larger increase in backward replay following value learning
than did those with high trait anxiety (B,,,=0.02+0.0],
Bhign =0.00 £ 0.01, two-sample ¢-test, £ (66) =-2.19, p =0.032, Cohen’s
d=-0.53, 95% Cl=[-0.03, -0.001], Supplementary Fig. 8). In contrast,
we found neither statistically significant correlations (rs <0.18, ps >
0.139) nor interaction effects (F (1, 66) =1.69, p = 0.199, n2 = 0.025) for
backward replay changes in the neutral sequence (pre- vs. post-value
learning) and trait anxiety or scores on other mood-related
questionnaires.

One might argue that a neutral outcome in our study could be
perceived as relatively aversive. Individuals with higher trait anxiety
are often thought to ruminate on negative outcomes™*, and if such
rumination is expressed via replay during rest”, one might predict a
positive correlation between neutral-sequence replay strength and
anxiety traits. In a post-hoc analysis, we observed no statistically sig-
nificant positive correlation between post-value-learning backward
replay of neutral sequences (averaged over the 20-60 ms time lag,
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following previous human replay studies™®) and trait anxiety
(r(66) =0.24, p=0.051, 95% Cl=[-0.0006, 0.45]).

Reward-based neural map representation is positively related to
backward replay, and negatively linked to trait anxiety

Finally, we explored whether diminished reward-associated backward
replay in participants with high trait anxiety was linked to a distorted
neural representation of task structure. For this, we implemented a
representational similarity analysis (RSA), similar to approaches used in
previous studies™”’. The RSA quantifies the representational geometry of
evoked neural responses both before and after value learning (utilising
data from the functional localiser and position probe sessions, respec-
tively—see ‘Methods’ and Fig. 1). By contrasting representational patterns
(representational dissimilarity matrices, RDMs) from before (functional
localiser) and after (position probe) value learning, we generated a
[state x state] similarity change matrix (RDM §,~RDM (o), which is
equivalent to RSM (,p)~RSM (s, where RSM denotes representational
similarity matrices) for each time point following stimulus onset.

These similarity change matrices were then regressed onto a task
design matrix that included predictors for an abstracted position
representation (1, 2, 3, 4) and two sequence representations (reward
and neutral sequences, as illustrated in Fig. 5a, with additional details
provided in the ‘Methods’ section). The position matrix assigned a
value of 1 to image pairs sharing the same ordinal position, and O
otherwise, while each sequence matrix assigned 1 to image pairs within
that same sequence. This allowed us to determine whether learning-
related changes in similarity emerged because two images occupied
the same position in a sequence, or because they both belonged to a
reward or neutral sequence. Ultimately, this analysis enabled us to
quantify the changes in task-specific neural representation induced by
the learning process.

Given our focus on value learning, our primary hypotheses are
related to the reward representation regressor. In the context of our
RSA analysis, we operationalised a reward representation as a neural
index that quantifies the degree to which the neural patterns for states
within the rewarded sequence become more similar from the start to
the end of the task. We found no statistically significant evidence for
the emergence of reward representation across all participants fol-
lowing learning at any time point. However, in view of the above
relationships between replay and anxiety, we also correlated the
strength of reward representation at each time point post-stimulus
onset with anxiety scores. A statistically significant negative correla-
tion emerged between reward representation and trait anxiety during
520-670 ms post-stimulus onset (cluster-level Pgywe=0.05, non-
parametric permutation test; peak 600 ms: r (66) =-0.33, p=0.007,
95% Cl =[-0.53, —0.10], Fig. 5b left panel). Subsequent analysis of the
mean reward representation in high and low anxiety groups (defined
as above) revealed that only participants with low trait anxiety showed
a statistically significant reward representation from 480 to 630 ms
post-stimulus onset (cluster-level Prwe = 0.02, non-parametric permu-
tation test; peak 540ms: [=0.05+0.02, one-sample ttest, ¢
(35)=3.37, p=0.002, Cohen’s d=0.56, 95% Cl=[0.02, 0.08], Fig. 5b
right panel). This effect was not statistically significant in the high
anxiety group (f=-0.01+0.02, one-sample t-test, ¢ (31)=-0.56,
p=0.578, Cohen’s d=-0.10, 95% Cl=[-0.04, 0.02]). There was also a
significant group difference between high vs. low anxiety participants
(two-sample t-test, t (66) =2.77, p=0.007, Cohen’s d=0.67, 95% Cl =
[0.02, 0.10]). Furthermore, the magnitude of reward-related repre-
sentational similarity statistically significant positively correlated with
the strength of reward-induced backward replay (r (66)=0.25,
p=0.038, 95% CI=[0.02, 0.46], Fig. 5c left panel), and also with an
increase in preference rating for stimuli within the reward sequence (r
(66) =0.26, p=0.034, 95% CI=[0.02, 0.47], Fig. 5c right panel). Such
an effect was absent in relation to the neural representation of struc-
tural position (see Supplementary Fig. 9).

Finally, we evaluated the generalisability and potential clinical
relevance of these findings by conducting a supplementary regression
analysis that integrated behavioural markers (increased preference
ratings for reward-predictive stimuli) and neural measures (repre-
sentational change and increased backward replay strength in the
reward sequence) to predict trait anxiety scores. Using a general linear
model, with leave-one-out cross-validation, we observed a modest but
statistically significant correlation between predicted and actual
anxiety scores (r (66) = 0.32, p=0.009, 95% CI=[0.08, 0.52]). By con-
trast, a model using only behavioural predictors failed to reach sta-
tistically significance (r (66) =0.13, p=0.291, 95% ClI=[-0.11, 0.36]),
whereas a model using only neural predictors showed a statistically
significant correlation (r (66) =0.31, p=0.009, 95% CI=[0.08, 0.51]).
Furthermore, in a combined model, both increased backward replay
(B=-2.95, p=0.025, t (65)=-2.30, 95% Cl =[-5.52, —0.39]) and repre-
sentational change of the reward sequence (8=-2.66, p=0.042, t
(65)=-2.07,95% Cl =[-5.23, -0.10]) emerged as statistically significant
predictors. These results suggest that neural markers substantially
enhance the prediction of trait anxiety, implying that either a combi-
nation of behavioural and neural measures or neural measures alone
can explain a meaningful portion of variance in trait anxiety. The
accessibility and cost-effectiveness of scalp EEG underscore the feasi-
bility of applying these biomarkers in diverse research and clinical
contexts.

Reward sensitivity and trait anxiety on preference change

To rule out the possibility that the effects in our EEG study could be
attributed to reduced reward sensitivity, we conducted a separate
behavioural experiment (n=200) manipulating reward magnitude
(¥10 vs. ¥100; Fig. 6a). Thirty-one participants were excluded for either
failing to learn the task structure or being unable to complete the task,
leaving a final sample of 169 participants (106 females; mean age =
19.89 + 2.03 years). Participants were again assessed by the Chinese-
validated version of STAP***%%° with an overall mean trait anxiety
score of 44.68 + 8.78. The results showed that individuals with high
trait anxiety exhibited inefficient credit assignment irrespective of the
reward magnitude, suggesting that anxiety impairs value updating in
an offline context rather than merely reflecting reduced reward
sensitivity.

Similar to the EEG experiment, participants performed both
structure learning and value learning tasks (Fig. 6a). After rating their
preferences for ten stimuli on a 1-9 scale (strongly dislike to strongly
like) at the start of the experiment, they then underwent a pairwise
learning session to infer two true sequences ([A/B/C/D/E] and [A’/B’/C/
D’/E’]). Each run comprised a learning session (eight pairwise rela-
tionships, such as B> C’ and A ~> B) followed by a probe session. Note,
we expanded the original 2 x 4 sequence to a 2 x5 format in order to
increase task complexity. During the value learning phase, the
final object in each sequence (E or E’) was paired with either a ¥10 or a
¥100 reward icon. Two resting-state sessions (4 min each) were
included—one before and one after value learning—to mirror the EEG
procedure.

Participants again rated their preferences at the end of the task to
measure the impact of reward on subjective valuation®’. A three-way
ANOVA, with factors of structural position, time (pre- vs. post-task),
and sequence (reward ¥10 vs. reward ¥100) was used to assess the
impact on final preference ratings. This analysis revealed no statisti-
cally significant three-way interaction (F (4, 672)=1.32, p=0.262,
n%=0.008; Fig. 6b). However, within each sequence, in either reward
magnitude condition, the final object showed a preference increase
post-task (reward ¥10: ¢ (168) =-2.07, p=0.040, Cohen’s d=-0.16,
95% Cl=[-0.65, -0.02]; reward ¥100: t (168)=-2.34, p=0.020,
Cohen’s d=-0.18, 95% CI=[-0.69, -0.06]), and preference changes
were comparable between these two magnitudes (¢ (168)=-0.18,
p=0.858, Cohen’s d=-0.01, 95% CI=[-0.50, 0.42]).

Nature Communications | (2025)16:7975


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63281-w

a

Functional Localiser

Applied Learning

Position Test

\‘ A\Neural Similarity ?/

Position

Within-Sequence

(Reward) "%w

ABCDA BCD
[ |

M

ot

o

o' HEE
ABCDA BCD

Al [ [ [ ]

8 H_ HEEE

c

B

|
gl
~ NN

g | [ []
o
o

ABCDA B CD

H
(Neutral) | 'i;j.:/ * - gIEFII.

(op

Correlation Coefficient

*

400 600 750
Stimulus Onset (ms)

0 200

0

Increased Neural Similarity
o

Association between Reward-Seq. Representation and Trait Anxiety

o
Y

o
o
a

1
o
o
a

m Low Anxiety
= High Anxiety

|
o
—

0 200 400 600 750
Stimulus Onset (ms)

Reward Sequence

0.3 .
r20.25 p =0.038

0.2

0.1

Reward-Seq. Representation

-0.05 0 0.05 0.1 0.15
Increased Backward Replay

Fig. 5 | Neural representation of reward sequence and trait anxiety.

a Hypothesised patterns of learning-induced similarity change and corresponding
state x state design matrices are presented. b The learning-induced change in the
neural representation of the reward sequence is statistically significant, negatively
correlated with trait anxiety scores (520-670 ms, cluster-level Py, <0.05, peak: r
(66) =-0.33, p=0.007,95% Cl =[-0.53, —0.10], Pearson correlation, two-sided) (left
panel). Notably, this change is observed in participants with low anxiety alone but
not in those with high anxiety (right panel). The group difference is also significant.
The horizontal black line denotes the significant time window (cluster-level

0.3 .
r=0.26 p =0.034

/

0.2}

0.1¢

of =<
-0.1]

2 -1 0 1 2 38 4

Increased Preference Rating
Prye < 0.05) where the correlation between the reward representation and trait
anxiety scores is significant. ¢ The neural representation of the reward sequence
statistically significant positively correlates with an increase in backward replay (at
a 50 ms lag, the timepoint showing peak increase in replay from pre- to post-value
rest, Pearson correlation: r(66) = 0.25, p = 0.038, 95% CI=[0.02, 0.46], two-sided)
and with preference ratings, specifically for the reward sequence (Pearson corre-
lation: r(66) = 0.26, p = 0.034, 95% CI =[0.02, 0.47], two-sided). Each dot represents
a participant, with the solid line indicating the best linear fit. The shaded area
depicts the SEM across participants. *p < 0.05.

When anxiety was considered as a categorically variable (low vs.
high, using the same cut-off as in the EEG study), only low-anxiety
participants demonstrated a positive linear relationship between
proximity to reward and preference changes (reward ¥10:
B=0.20+0.08, ¢ (408) =2.32, p=0.021, 95% Cl=[0.03, 0.36]; reward

¥100: f=0.18+0.08, ¢t (408)=2.19, p=0.029, 95% CI=[0.02, 0.35],
Fig. 6¢). In contrast, this relationship was absent in high-anxiety indi-
viduals (reward ¥10: 8=0.09 + 0.09, t (433) =1.05, p=0.292, 95% Cl =
[-0.08, 0.26]; reward ¥100: f=-0.12+ 0.08, ¢ (433) =-1.52, p=0.130,
95% Cl=[-0.28, 0.04], Fig. 6¢). These findings reinforce the conclusion
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that high trait anxiety disrupts value updating in an offline context,
rather than simply reflecting diminished reward sensitivity.

Discussion
Our study highlights the utility of EEG-based neural decoding for
characterising neural replay, a key process linked to offline learning>'*.
In line with previous MEG-based replay findings'®*, our EEG study
revealed a selective increase in backward replay for reward-paired
sequences. Moreover, the magnitude of this replay correlated with both
behavioural measures of reward learning and a neural index of cognitive
map representation. These findings extend previous research in several
ways. First, they connect cognitive map representation signatures
(offline replay and online RSA) to a specific behavioural disposition—
trait anxiety. Specifically, individuals with high trait anxiety displayed
reduced reward-related backward replay, which was associated with a
distorted neural representation of the reward sequence and a dimin-
ished preference shift for reward-predictive stimuli. Further support for
this interpretation was evident in a separate behavioural experiment
showing inefficient credit assignment among high trait anxiety partici-
pants, regardless of reward magnitude. These results align with studies
showing that individuals with anxiety have difficulty learning from
positive experiences™®® and suggest a potential aberrant replay
mechanism during offline learning.

Backward replay has been hypothesised to play a crucial role in
offline value learning, by guiding the assignment of value to states and
actions within an internal cognitive map?. Consequently, we suggest

that reduced backward replay in individuals with high trait anxiety may
lead to erroneous value associations or suboptimal credit assignment.
Clinically, disrupted connectivity between the hippocampus and the
DMN has been reported in anxiety disorders®**, impairing the con-
solidation of reward-related information and effective decision-
making*®. At a more descriptive level, clinical studies have con-
sistently reported reduced hippocampal volumes and heightened
hippocampal activation in individuals with anxiety, both clinically and
sub-clinically®®,

Rumination, characterised by repetitive, distress-focused
thoughts®”’°, is common in anxiety and depression™. Our core find-
ing—that individuals with high trait anxiety exhibit reduced backward
replay for rewarded sequences—points to deficits in learning positive
outcomes beyond direct associations. Interestingly, during a post-
value learning rest period, we observed a marginally significant posi-
tive correlation between backward replay for neutral sequences and
trait anxiety. This might suggest that individuals with higher anxiety
may ruminate on neutral sequences as if they were less favourable
experiences. However, this finding should be interpreted with caution,
given its modest strength and the neutral (rather than overtly negative)
nature of these stimuli. Furthermore, there is little current evidence
linking the fast time scale dynamics of replay to elements of conscious
experience, as exemplified by rumination. Future research should
investigate replay of explicitly negative sequences to elucidate how
anxiety shapes the extent and content of neural reactivation, and in
relation to rumination®.
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We did not aim to dissociate trait anxiety from depression, as
these overlapping clinical phenotypes may share similar offline learn-
ing mechanisms”. Indeed, trait anxiety and depression are strongly
related: they frequently co-occur in epidemiological studies***°, and
trait anxiety is recognised as a biomarker or vulnerability phenotype
spanning both conditions*. In our study, trait anxiety was strongly
associated with scores on other mood-related questionnaires, includ-
ing the SDS, SAS, and PSWQ, implying overlapping clinical character-
istics. Rather than focusing on aversive or value-free structure
learning, we chose to examine reward learning, given previous work
demonstrating the sensitivity of replay to reward®'**, In future stu-
dies, we plan to extend our approach and investigate anticipation of
negative outcomes in anxiety’>”’*, as well as the role of aberrant replay
in such contexts>”.

Consistent with evidence that trait anxiety reduces learning from
positive experiences in online tasks”>’¢, we extend this observation to
offline learning by showing that higher trait anxiety coincides with
weaker backward replay, diminished neural representation of reward
sequences, and smaller preference changes for reward-predictive sti-
muli. These findings suggest that trait anxiety disrupts replay-based
offline value learning beyond potential deficits in structural learning,
as indicated by the absence of correlations with structural acquisition
or learning efficiency. Future experimental approaches, including
longitudinal designs, may help determine whether these relations
reflect a single or multiple interacting processes and refine hypotheses
regarding their causal interactions. Additionally, our tasks did not
involve structure learning through trial and error, which are processes
that other studies>*”” have implicated in anxiety-related learning def-
icits. Future research should employ tasks that directly assess struc-
tural learning to achieve a more comprehensive understanding of
learning deficits in trait anxiety.

Decoding human cognition during rest has considerable promise
for elucidating mechanisms underpinning learning, memory, and
planning”, and thereby offers fresh perspectives on psychiatric
disorders"’®”°. Such work has driven methodological developments in
neural decoding and replay analysis using non-invasive
neuroimaging’®***2, MEG studies, in particular, offer high spatio-
temporal resolution and have demonstrated replay during rest"***?%,
By comparison, EEG offers comparable temporal resolution and has
the added benefit of being more readily available in clinical settings.
The current study demonstrates that a 64-channel EEG system can
decode up to eight stimuli with sufficient sensitivity to detect their
sequential neural replay during rest periods (Supplementary Fig. 6).
Consistent with prior MEG research, we observed a selective increase
in backward replay for reward sequences following value learning, but
no replay for visual sequences.

Unlike previous MEG studies*™®, we did not detect forward replay
prior to value learning. This may be due to our participant selection
procedure, which excluded participants who failed the Day-1 structural
learning requirement, thereby ensuring that structural knowledge
differences did not confound value learning in individuals with varying
trait anxiety. However, this approach contrasts with that of Nour et al’,
who implemented extensive training to avoid excluding participants.
Consequently, in the current study, skilled in structural learning may
have less reliance on replay during rest, potentially leading to a
reduced need for offline structure learning®*°. Future research can
consider alternative designs that enable a more sensitive assessment
of how replay is influenced by task performance. Furthermore, while
64-channel EEG systems were adequate for detecting replay (see also
Supplementary Fig. 6), the lower decoding accuracy (mean accuracy
23.21+0.90%) compared to MEG (275 independent sensors and mean
accuracy 39.60 +2.20%)"®, might further limit replay detection. Future
work may benefit from improved EEG decoding approaches, e.g.
spectral  frequency  decomposition®*®®  and  high-density
configurations®®, both of which might enhance replay detection.

Another difference in the present study is that it was conducted
with a Chinese-speaking sample. Nonetheless, the use of non-linguistic
images minimises potential language-based influences on replay, and
we have successfully detected neural replay in a similar population
with simultaneous EEG-fMRI recordings®’. Preliminary analyses indi-
cate that these findings align with those from other populations, sug-
gesting that the fundamental neural mechanisms for offline learning
are broadly conserved across cultural and linguistic backgrounds'**°,

In conclusion, we show that high trait anxiety correlates with
aberrant offline learning signatures, specifically reduced backward
replay for reward sequences during rest—an impairment associated
with altered cognitive map representation both neurally and beha-
viourally. The approach we describe opens new avenues for investi-
gating offline learning mechanisms in psychopathology, including
potential interventions that can modulate memory and affective pro-
cesses during rest or sleep.

Methods

Participants

EEG experiment. Eighty healthy volunteers (46 males; mean age =
20.90 +1.95, biological sex) participated in the EEG experiment. To
achieve a statistical power of 0.80 for detecting the effect size (0.35)
based on previous similar studies***¢, around 60 participants should
be recruited. Considering some participants may not be able to pass
the Day-1 structure learning, we expanded our sample size to 80
individuals. All participants had a normal or corrected-to-normal vision
and no history of neurological or psychiatric illness. The study was
approved by the local Ethical Committee of Shenzhen University (PN-
202300013).

Participants were recruited based on their trait anxiety score on
the Chinese-validated version of STAI’***%*° so that they evenly
spanned its full spectrum (20 participants in four score domains,
20-30, 30-40, 40-50, and above 50). The overall mean trait anxiety
score was 42.57 +1.34. The participants provided written informed
consent in compliance with the Declaration of Helsinki and were
compensated approximately ¥200 (¥100 show-up fee plus a variable
amount up to ¥100 depending on-task performance) for their parti-
cipation. The participants received comprehensive training on the task
rule (structure learning) one day prior to the EEG task and only parti-
cipants achieving at least 80% accuracy were permitted to the EEG
experiment the next day. Seven participants were excluded from the
analysis because of failure of passing the Day-1 structure learning, and
another five participants were excluded due to excessive movements
and/or recording artifacts during EEG recording. A total of 68 partici-
pants were included for subsequent analysis.

The trait anxiety was treated as a continuous variable in all rele-
vant analyses. In a complementary analysis, we also found consistent
findings in group analysis (see Supplementary Materials) based on the
normative trait anxiety scores for the Chinese population®”: those who
scored 45 or higher were assigned to the high trait anxiety group (32
participants, 15males, mean score=53.41+6.63), while those who
scored below 45 were placed in the low trait anxiety group (36 parti-
cipants, 15males, mean score = 35.50 + 6.01). Previous studies indicate
that individuals with high trait anxiety (=45) exhibit behavioural and
neural deficits similar to those with anxiety disorders®>*-*°_ All corre-
lational analyses in this study employed two-tailed Pearson’s r tests,
and all t-tests were likewise two-tailed unless otherwise specified in
the text.

Behavioural experiment manipulating reward magnitude

Two hundred healthy volunteers participated in a separate behavioural
experiment, all of whom had normal or corrected-to-normal vision and
no history of neurological or psychiatric illness. Thirty-one of these
were excluded from the analysis for failing to pass the structure
learning task or completing the whole task, resulting in a final sample
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of 169 participants (106 females; mean age =19.89 +2.03, biological
sex). Participants were again recruited based on their trait anxiety
scores from the Chinese-validated version of STAP**%%, yielding an
overall mean trait anxiety score of 44.68 + 8.78. Those scoring 45 or
higher were assigned to the high trait anxiety group (87 participants,
54 females, mean score =51.68 +5.21), while those scoring below 45
were assigned to the low trait anxiety group (82 participants, 52
females, mean score =37.24 +4.77)**%. All participants provided writ-
ten informed consent in accordance with the Declaration of Helsinki
and were compensated approximately ¥60 (¥30 show-up fee plus up
to ¥30 based on task performance).

Design and materials

EEG experiment. The task spanned two days in a manner that followed
closely our previous MEG study design'®, with the exception of eliciting
stimuli preference ratings before and after the main task, in order to
capture a putative reward effect on behaviour.

On Day 1, participants were shown eight sample stimuli embedded
in two visual sequences [B’/A/D’/B] and [A’/C/C’/D] and were explicitly
instructed on how to map the stimuli onto two true sequences: A >
B>C->D and A'>B >C ~>D. This mapping between visual and
underlying true order was randomised across participants. Participants
completed four runs of training, where each run consisted of one
learning and one probe session. During learning, two visual sequences
([B’/A/D’/B] and [A’/C/C’/D]) were presented three times, with each sti-
mulus presented serially in the centre of the screen for 900 ms, fol-
lowed by a 500 ms inter-stimulus interval. Each sequence presentation
ends with a 2000 ms interval of a blank screen. After that, participants
were quizzed about the true order of the stimuli without feedback. On
each trial, the target image appeared for 5000 ms, during which parti-
cipants were required to think about which image should appear fol-
lowing (but not necessarily next to) the target image. When considering
directional (i.e., forward) sequences, we distinguish between a picture
that immediately follows the target (next to or adjacent, e.g.1~>2) and a
picture that appears at any point after the target (following, e.g. 1> 4).
The former is a subset of the latter. This distinction is crucial for
assessing whether participants have accurately learned, and can sub-
sequently reproduce, the correct order of the true sequence™®. Then,
two candidate images appeared on the screen and participants were
asked to select the correct one within 1000 ms, a limit set to minimise
potential associative learning when the stimuli were presented
together'. Participants were required to reach at least 80% accuracy in
the last structure learning run to be permitted for the Day-2 experiment.

On Day 2, participants were presented with a new set of eight
stimuli and first rated their preferences for each of the eight images on
a 1-9 scale (from strongly dislike to strongly like). The procedure was
performed twice, one before and one after the main task, where the
aim was to assess preference changes due to value learning?°, an
implicit reward effect on behaviour. Participants then performed the
main task during concurrent whole-brain EEG recording. The main task
comprises four phases: functional localiser, sequence learning, value
learning, and a position test, and three resting states, one immediately
before the functional-localiser task, one before and one after value
learning in order to capture reward-induced change in spontaneous
neural replay.

In the functional-localiser phase, stimuli were presented in a
random order. As this preceded sequence learning, participants had
no structural information about stimuli, such that decoding models
trained during functional localiser solely captured sensory-level sti-
mulus information. On each trial, this phase starts with a text pre-
sented for 1500-3000 ms during which participants were required to
vividly imagine its associated imagery content, followed then with the
actual image for 750 ms, and a jitter ITI for 700-1700 ms. To ensure
participants were attending to the stimuli, on rare occasions (20%
probability), random stimuli were presented upside down and

participants were required to respond to these by pressing a button.
There were 400 trials in total, split into two runs, with 50 instances for
each visual stimulus (20% were upside down). Only correct-side-up
images (40 repetitions per image) were used for classifier training.

In the sequence-learning phase, participants were required to
apply the Day-1 learnt mapping rule to the Day-2 new stimuli. The use
of an entirely new set of stimuli ensured neural replay signatures in EEG
(if exist) could not be attributed to perceptual biases introduced
during Day-1 training. Participants were explicitly informed that the
mapping rule was the same as the one on Day 1. There were three runs
of sequence learning. As for structure learning, each run consisted of
one learning and one probe session. During learning, two visual
sequences ([B’/A/D’/B] and [A’/C/C’/D]) were presented three times,
with each stimulus presented serially in the centre of the screen for
900 ms, followed by a 500 ms inter-stimulus interval. Each sequence
presentation ends with a 2000 ms interval of a blank screen. After that,
participants were quizzed about the true order of the stimuli without
feedback. On each trial, the target image appeared for 5000 ms, during
which participants were required to think about which image should
appear following (but not necessarily next to) the target image. Then,
two candidate images were presented on the screen and participants
were tasked to select the correct one within 1000 ms. This time limit
was designed to minimise potential associative learning when the sti-
muli were presented together. No feedback was provided. There was a
33% possibility that the wrong answer came from the same sequence
but preceded instead of following the probe stimuli. This setup was
designed to encourage participants to form sequential rather than
clustering representations (i.e., which sequence does this object
belong to).

Next, participants completed value learning, in which they were
taught that the end stimulus of one of the sequences would lead to a
monetary reward, while the end stimulus of the other would not, in a
deterministic way. Specifically, on each trial, participants saw the
object at each end of the sequence (i.e., D or D) for 900 ms, followed
by an inter-stimulus interval of 3000 ms, and then either received a
reward (image of 10 Chinese Yuan banknote) or no-reward (scrambled
image of 10 Chinese Yuan banknote) outcome for 2000 ms, followed
by an ITI of 3000 ms. Participants were required to press one button
for the reward and a different button for the non-reward. Pressing the
correct button to pick up the coin led to a payout of this amount at the
end of the experiment, and participants were pre-informed of this.
There were 12 repetitions for each association, with trial order ran-
domised. Before or after the value learning, participants underwent a
4-min resting session.

Participants subsequently completed a position test, wherein an
object was presented on screen for 1000 ms, and participants were
required to think about its position within its sequence. Each object
was followed by a single number (1, 2, 3, or 4), and participants
indicated whether the presented number matched the sequence
position of the preceding object, via a button press (1000 ms
response window, chance accuracy 50%). This was followed by a
3000 ms ITIL. There were 80 trials in total, 10 repetitions for each
stimulus, with the constraint that the same stimulus does not appear
consecutively. No feedback was provided. Finally, at the end of the
main task, participants were required to write down the true
sequences in the correct order.

Notably, participants did not receive any direct monetary rewards
on Day 2 for identifying correct positions, as the focus was on offline
value learning and replay rather than immediate rewards. The >80%
accuracy criterion on Day 1 nonetheless ensured that all participants
had already learned the abstracted task structure.

Behavioural experiment manipulating reward magnitude
This behavioural study comprised six phases: pre-preference rating,
structure learning, a rest period before value learning, value learning, a

Nature Communications | (2025)16:7975

10


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63281-w

rest period after value learning, and post-preference rating. To evalu-
ate how value learning impacted subjective valuation, participants
began by rating their preferences for ten stimuli on a 1-9 scale, both
before the main task and after completing it.

During the structure learning phase, participants were required to
learn pairwise rank relationships between the objects to infer the true
sequences, specifically [A/B/C/D/E] and [A’/B’/C'/D’/E’]. Three runs of
sequence learning were conducted, each containing one learning and
one probe session. During learning, eight pairwise image combinations
were displayed three times each (1500 ms per stimulus, 500 ms ISI).
This was followed by a quiz session (without feedback), encouraging
sequential rather than cluster-based learning.

In the value learning phase, the final object of each sequence (E or
E’) was paired with either a ¥10 or ¥100 reward icon (a real banknote
image). Each trial displayed the object for 900 ms, followed by a
1000 ms ISI, then the reward image for 2000 ms, followed by a
1000 ms ITI. Participants pressed different buttons to register whether
the stimulus was associated with a ¥10 or ¥100 reward and could earn
that amount (divided by a constant factor) by responding correctly.
Each association was presented 12 times in random order. Resting
periods (4 min each) occurred before and after value learning.

Finally, participants performed a post-task preference rating to
assess changes in preferences following value learning. Although off-
line replay could not be directly measured in this behaviour experi-
ment, these rest sessions were designed to parallel the EEG study,
implying that any offline replay might also occur during these inter-
vals. This design enabled us to examine whether reward magnitude
influenced behavioural responses, offering insights into the underlying
mechanisms of offline value learning in sequences.

EEG data acquisition
Data acquisition and preprocessing. In this study, a Brain Products
64-channel EEG system was used to record EEG during the Day-2
experiment, with an additional electrode placed below the right eye as
vertical electro-oculograms. Online EEG recordings were sampled at a
rate of 1000 Hz with FCz as the reference electrode during data
acquisition. All electrode impedances were kept below 5KQ.
Preprocessing was conducted separately for each session, fol-
lowing the approach used by a previous MEG study’®. The data were
first high-pass filtered at 0.5Hz and a notch filter of 50 Hz to remove
line noise, and then down-sampled to 100 Hz. The continuous
recording was visually screened for noisy channels, which were inter-
polated using the weighted average of surrounding electrodes. All
electrodes were re-referenced offline to the average. The data was
subsequently segmented into epochs, with each epoch spanning from
-100ms before to 750 ms after the image onset. Trials with extremely
high noises by visual inspection were manually excluded. Bad channels
with abnormal voltage were interpolated with the weighted average of
their neighbouring electrodes. Independent component analysis was
performed to remove eye movement and other artefactual compo-
nents and the remaining components were then back-projected to the
EEG channel space. Five participants were excluded for excessive head
movement or other artifacts. Only trials with correct button press were
used for subsequent analyses.

EEG analysis

Neural decoding analysis. Same with Liu et al.', we trained each of
the eight binary classifiers (k € {1:8}) on the evoked whole-brain neural
response at a signal time bin after the stimulus onset in the functional-
localiser task. Essentially, model (k) distinguished sensor patterns
based on the particular stimulus k (positive examples) relative to all
other stimuli (-k), which was further aided by an equal amount of null
data from the inter-trial interval that acted as negative examples. The
inclusion of null data decreased the spatial correlation between the
decoders and allowed simultaneous reporting of low probabilities in

the rest data by all decoders'. To enhance sensitivity for sequence
detection, we used L1 regularisation and fixed lambda=0.001, to
prevent overfitting of the results to the regularisation parameter. Every
model k, unique to time and stimulus, was represented as a single
vector of length n +1 (n sensors [max. 62], plus intercept).

To quantify within-session decoding accuracy, we trained
regression models using 10-fold cross-validation on the functional-
localiser data. During each validation loop, prediction accuracy was
quantified as the proportion of test trials, where the decoder reported
the highest probability corresponding to the trial label, giving a pre-
diction accuracy. Each classifier is trained to recognise only one of the
eight images; the probability of correctly identifying an image in a
balanced dataset defaults to 1/8 (i.e., 0.125), which represents chance
performance. The average of all estimates obtained over the validation
loops determined the overall accuracy, consistent with the approachin
previous MEG studies"*.

Decoders trained and tested at 180 ms post-stimulus onset
achieved the highest decoding accuracy (mean accuracy across parti-
cipants; Figs. 2a and S1). Accordingly, these decoders were employed
in the replay analysis'*°”", We confirmed that decoding accuracy was
significantly above chance (12.5%) using non-parametric tests. The
association between the eight visual stimuli and their respective state
indices was fixed within each participant but randomised across par-
ticipants, ensuring that any stimulus-related factor (e.g. overall pre-
ference or decodability) did not systematically affect state decoding at
the group level. During the functional-localiser phase, participants
received no information about stimulus-state mappings and the
images were presented in random order, so classifiers remained free of
task-related biases. We also trained all classifiers exclusively on pre-
learning EEG data to avoid contamination by task-specific sequence
knowledge®, and then applied them to the resting-state EEG to
examine replay patterns.

Neural sequence analysis. To evaluate neural sequences, we mea-
sured the sequence strength of a pairwise state-to-state transition using
a multiple regression model, where the representation of state i statis-
tically predicts the subsequent representation of state j at a specific
time lag (i.e., speed of replay). This measure is an average estimate of
statistical predictiveness, incorporating the number and strength of
replay events, and is referred to as sequence strength. The reason for
this approach is that neural representations (of different states) are
efficiently decoded in a noisy and probabilistic manner. The detailed
methodology, including related simulations, is documented in Liu
et al.”®. We have implemented the TDLM methodology in EEG data fol-
lowing its success in earlier MEG empirical work. The process began by
utilising eight-state classifiers (from the highest accuracy time bin) to
characterise EEG data from each timepoint of all the resting sessions,
thus generating a [time x state] reactivation probability matrix for each
session. We then utilised TDLM to estimate the evidence for sequential
reactivations, consistent with the task-defined sequential order.

TDLM is a method that employs multiple linear regression to
quantify the degree to which a lagged reactivation time course of state
i, (X(At),), where t indicates lag time, can predict the reactivation time
course of state j, (X;). This approach comprises two stages. Initially, we
conducted separate family multiple regressions (first-stage) with the
reactivation time course of each state (j € {1:8}) as the dependent
variable and the historical (i.e., time-lagged) reactivation time courses
of all states as predictor variables:

8
X;=Y X0 By, +C @

i=1
The predictor (design) matrix from a single model contained a
separate predictor for the reactivation time courses of all states
(ie{1:8}), lagged by At e {10ms, 20ms, ..., 600 ms}, plus the
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reactivation time course of all states lagged by At+a, where
a=[100ms, 200 ms, ...], to capture autocorrelations in state time
courses at a canonical alpha frequency, which predominated in human
brain activity at rest, in addition to a constant term, C. We repeated the
regression in Eq. 1 for eachj € {1: 8} and At < {10, 20, 30, ..., 600 ms},
and used ordinary least squares regression to obtain . The regression
coefficients from Eq. 1 quantify the evidence for each empirical state-
to-state reactivation pattern at a specific lag. At. For example, B(At); ;
quantifies the coefficient that captures the unique variance in X;
explained by X(A¢);. These coefficients were demonstrated in a lag-
specific [8 x 8] empirical transition matrix B, representing evidence for
all possible state-to-state transitions at a given time lag.

In a second-level regression, we quantified the evidence that the
empirical transition matrix, B, can be predicted by the underlying task
transition structure (i.e., true sequences).

4
B=>"7T, 2
r=1

Here, T, is the [state x state] predictor transition matrix (for regressor
r, with 1for transitions of interest, and O otherwise), and Z, is the scalar
regression coefficient quantifying the evidence that the hypothesised
transitions, T, predict the empirical transitions, B. Four predictor
matrices were considered, including T .o, Tconst» Tr» Tg, (1) Tg: true
sequence transitions in the forward direction (A>B->C~>D and A’ >
B’'> C > D’ entries in T =1, all others set to 0), (2) Tg, true sequence
transitions in the backward direction (D>C~>B~>Aand D’>C >B >
A, i.e. Ty is the transpose of Tr), (3) T ,u,: self-transitions ([8 x 8]
identity matrix), to control for auto-correlation, and (4) T.,,: a
constant matrix, to capture the average of all transitions, ensuring that
any weight on T, and T was not due to general dynamics in
background neural dynamics.

Z represents the weights of the second-level regression, which is a
vector with dimension of r by 1. Each entry in Z reflects evidence for the
hypothesised sequences in the empirical transitions, i.e., sequence
strength. Note that this estimate of sequence strength is a relative
quantity, and an estimate of zero for state i to state j does not mean
there is no replay of i - j, but rather suggests that there is no stronger
replay of i > j than that of other transitions.

The regression in Eq. 2 was repeated for each time lag (At=10, 20,
30.,..., 600 ms), resulting in time courses of both forward and back-
ward sequence strength as a function of time lag. Shorter lags indicate
greater time compression, corresponding to faster speed. For statis-
tical testing, we used non-parametric permutation tests at the second-
level regression, shuffling the rows and columns of T, (forward pre-
dictor matrix), defining T, (backward predictor matrix) as its trans-
pose. For each of 100 permutations, we calculated the peak absolute
mean sequence strength over participants and across lags (controlling
for multiple comparisons across lags). Sequence strength in the
unpermuted data was deemed significant at peak-level Pryg < 0.05 if its
absolute magnitude exceeded 95% of the within-permutation peak.

Representational similarity analysis (RSA). To examine how the
representation of task structure changes from the functional localiser
(pre-learning) to Position Probe (post-learning) sessions, we applied RSA
on EEG data. We first z-scored the pre-processed EEG data across all trials
for each sensor and time point (¢, 100 to +750 ms) post-stimulus onset.
Next, we regressed the [trial x 1] neural data for each trial, Y (s), (at time
point ¢ and sensor s), onto a session design matrix, X, which included
dummy coding for the trial stimulus label, using Eq. 3:

Y($)=X"B(5), 3

Here, (s), was the [stimulus x 1] vector of regression weights, as an
estimate of the stimulus-specific activation for sensor s at time point t.

The procedure was repeated over all sensors to yield a [sensor x
stimulus] matrix at each time point. Pearson correlation distance was
computed between the sensor patterns for each pair of pictures
(columns), which resulted in a symmetrical [8 x 8] RDM at each time
point. This procedure was repeated in functional localiser (FL) and
Position Probe (PP) sessions to determine the learning-induced
increase in representational similarity AS, at each time point, as
expressed in Eq. 4:

AS, =RDM(FL), — RDM(PP), @

Here, s; of AS, quantified the post-learning similarity increase between
evoked signals for stimuli i and j at time ¢.

To assess the unique contribution of three predictors (an
abstracted representation of ordinal position, reward within-
sequence, and neutral within-sequence representation) in explaining
the variance in AS,, we employed a second multiple regressions
approach. The data were pre-processed by smoothing AS, over time
using a 90 ms Gaussian kernel before conducting regression analysis.
To identify time windows (clusters) that showed significant positive
evidence for each predictor, we utilised non-parametric tests while
correcting for multiple comparisons over time. Specifically, we per-
formed correlation analysis with participants’ trait anxiety for each
time point over all participants for each predictor and computed the
sum of r values within each continuous stretch of time points exhi-
biting a positive effect at a level of 0.05. And we also performed one-
sample ¢-tests for each time point over all participants for each pre-
dictor and computed the sum of ¢ values within each continuous
stretch of time points exhibiting a positive effect at a level of 0.05.

To validate our results, we repeated this procedure 1000 times,
shuffling the rows and columns (stimulus labels) of AS, consistently
across time to preserve temporal smoothness prior to the second
regression (permutations). Finally, we extracted the maximal sum of r
or t value for each predictor and identified a suprathreshold cluster in
the unpermuted data as significant if its sum of ¢ exceeded 95% of
maximal within-permutation sum of ¢ values. This method is the same
with the previous study’. The results are displayed in Fig. 5b.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed data generated in this study have been deposited in
the Zenodo database without restrictions. The processed data
(functional localiser and resting stages) for analysis replay and pro-
cessed data (functional localiser and position test stage) for analysis
RSA are available at https://doi.org/10.5281/zenod0.15792506 with-
out restrictions’’. Source data for every figure will accompany the
paper. The raw data are protected and are not available due to data
privacy laws. Researchers interested in exploring possibilities for
controlled access to these protected materials may contact the cor-
responding author. Source data are provided with this paper.

Code availability
The analysis code will be released at https://doi.org/10.5281/zenodo.
15795242%,
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