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Generative emergence of non-local
representations in the hippocampus

Yuchen Zhou 1, Jeremie Sibille1 & George Dragoi 1,2,3

The role of internally-generated networkdynamics in rapid temporal sequence
coding, updating, and parallel recalling of alternate spatial and mental navi-
gation contexts has remained unclear. Here, we revealed rapid emergence of
temporally-compressed hippocampal theta sequences in adult male rats
within 1-2 laps of a novel detour via re-purposing of pre-existing correlated
neuronal sequence motifs expressed during pre-detour sleep. Detour
experience-induced neuronal remapping and plasticity were consolidated and
reconfigured hippocampal network during post-detour sleep,which predicted
future representational drift expressed during the following post-detour
reversal-track runs. Pre-detour or reversal-track representations flickered with
detour representation across distinct phases of theta oscillation, revealing
segregation of non-local internally-generated/recalled and local experience-
related hippocampal representations by theta phase. These findings demon-
strate that internal generative network dynamics across brain states support
rapid theta-scale sequential coding, within-day representational updating,
and flickering parallel representations — collectively forming non-local
representations — during navigation.

The hippocampus is believed to support rodent navigation by creating
an internalized “cognitive map” of the external environment1,2. An
important hallmark feature of a cognitivemap is in enabling animals to
infer, internally generate, and perform detours and shortcuts through
a familiar space beyond guidance by external landmarks and salient
cues. The rodent hippocampus displays “place cells” that have selec-
tive firing at specific locations along the animal′s trajectory through
space2,3. The spatial selectivity of hippocampal activity is contributed
to by multisensory external drives, which have been extensively stu-
died by examining howplacefields tune to environment geometry and
distal cues4–7. Moreover, hippocampal place fields do not form an
unbiased, uniform representation of space, since place fields tend to
accumulate around goal locations8,9, can sustainmultiple maps for the
same environment10–17, and can be altered by internally driven changes
in network activity18. This indicates the hippocampal map is not a
precise reflection of the external environment but is rather con-
tributed by internally generated representations of the external world,
which depend on an animal′s past and current experience, motivation,

and goals. The internal drive of hippocampal representations is further
supported by the discovery of time-compressed hippocampal preplay
activity patterns19–24 and theta sequences25–27, which support rapid and
distinct encoding of multiple novel environments20,28,29.

Temporally-compressed sequence coding in the form of hippo-
campal theta sequences candevelop rapidlywith limited experience in
a novel environment30 while the hippocampus receives multisensory
external stimuli at uncompressed, behavioral timescale. Whereas
whether and how hippocampal preconfiguration expressed as preplay
during sleep or waking rest can facilitate rapid behavioral time scale
sequential coding of novel contexts have been extensively studied
using template matching19,20,22,23,31–33, Bayesian decoding20,22,24,32, and
predictive coding21,34 approaches, the direct relationship between
preplay and theta sequences, both temporally-compressed phenom-
ena, was never investigated.

The interplay between the internal and external drives on cogni-
tive map formation and expression has received considerable
attention4,18,32,35–37. Temporally-compressed sequential patterns of
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neuronal ensemble activity expressed during pre-exploration sleep
form a large repertoire of pre-existing firing sequences that are
selected, allocated, and partly modified during encoding of multiple
possible future experiences19–21,38. The experience-dependent mod-
ification of internally generated patterns of hippocampal activity was
described as hippocampal neural plasticity during behavior18,39,40 and
plasticity during offline replay22,32,41–44. Neural plasticity is essential for
the operation of a cognitive map as it permits the updating of the
internal model based on new experiences21. This plasticity also indi-
cates that hippocampal spatial representation could change during re-
visits of unchanged external environments, likelydue to changes in the
internal state of the network acquired in between successive visits.
This altered representation of the same external environment can be
interpreted as within-day′representational drift′11,15–17,45 when its defi-
nition is broadened to allow the occurrence of different experiences
between exposure and re-exposure to an unchanged familiar context.
Earlier studies indicated that a novel experience could induce intra-
hippocampal synaptic plasticity, mostly supported by changes in
lower-activity cells or neural assemblies18,22. However, what remained
unknown is how this plasticity will impact the future representation of
a previously explored spatial context and which brain states are
actively involved, given that cognitive map-related experiences, such
as spatial detour and reversal run, shouldbe able to update the internal
model and thus reshape the representation of unchanged
environments.

To address the question of how internal network dynamics sup-
port non-local representations, we designed a repeated detour task
during exploration of a familiar maze, followed by a reversal run
restoring the original maze configuration, with sleep sessions occur-
ring before and after maze explorations. We defined non-local repre-
sentations as internally generated or recalled hippocampal activity
patterns that do not correspond to the animal′s current location or
ongoing experience, including look-ahead theta sequences, repre-
sentational drift influenced by intervening experiences, and flickering
between alternate contextual representations. We investigated how
the hippocampal network pre-configuration supported the rapid time-
compressed sequential coding of novel detour experiences, and how
the novel experiences had network effects lasting into the reversal run
sessions, the latter envisioned as supporting a formof representational
drift. Moreover, we explored the potential parallel hippocampal co-
representations of alternate non-local contexts when the internal
model had richer context predictions beyond the current local exter-
nal stimuli.

Results
Neuronal ensemble recording during a novel detour task
To study the hippocampal neuronal activity during an unexpected
detour experience, we performed electrophysiological recordings
from the hippocampus CA1 area in five adult rats during a task con-
sisting of four run sessions (Run 1–4) intercalated with four sleep
sessions (Sleep 1–4; Fig. 1a, b; Sleep duration: 124.0 ± 9.2min as mean
±s.e.m.). In Run1, food-deprived rats ran on an elevated familiar square
maze consisting of four connected 150 cm linear tracks (tracks 1–4, T1-
T4) to collect food rewards placed on both sides of a permanent bar-
rier separating T1 andT4. After Run1, two novel U-shape 150 cmdetour
segments were introduced in succession, one detour per session, on
T2 and T4 during Run2 and Run3, replacing the original middle linear
segment (50 cm) that was temporarily removed. The order of T2-T4
detours was counterbalanced across individual animals (“Methods”).
After completion of the corresponding detour session, access to the
detour segment was blocked by the original barriers, and the original
middle segmentwas placed back. Run4was a reversal sessionwhere all
the changes were restored to the Run1 configuration. We called the
50 cm removablemiddle segment during the pre-detour session as the
‘mobile segment′ of the detoured track, and when that segment was

placed back during the post-detour session, as the ‘reversal segment′
relative to the detour. The start and the end 50 cm segments on the
detoured tracks were not changed and were defined as ‘stationary
segments′. The other two linear tracks, T1 and T3, remained unchan-
ged across the experiment. Throughout the manuscript, we used′L′ to
refer to the 150 cm linear tracks without detour, and′detour segment′
to refer to the 150 cm novel U-shape detoured segment. The pre-
detour session referred to the run session immediately preceding the
detour session for a given track, and the post-detour session referred
to the run session immediately following the detour session for a
given track.

Sleep sessions (Fig. 1a) occurred before all explorations (Sleep1),
between Run1 and the detour sessions Run2-3 (Sleep2), between the
detour sessions and the reversal Run4 session (Sleep3), and after all
Run sessions (Sleep4). During waking rest (animal velocity < 2 cm/s)
and sleep states, we detected epochs with strong multi-unit activities
preceded and followed by reduced neuronal activity called frames20,32,
where we investigated preplay and replay activity. Rat 4 was excluded
from all sleep analyses because of limited detected frames due to low
neuronal counts and synchrony during sleep (frame numbers across
Sleep1–4 combined: Rat1: 14,816; Rat2: 9718; Rat3: 7423; Rat4: 376;
Rat5: 7643).

Strong remapping between pre-detour and detour sessions
Place maps were computed based on spiking activities of putative
pyramidal cells during active maze exploration (animal velocity
> 10 cm/s). Pyramidal cells exhibited similar levels of spatial tuning
between the linear tracks and detour segments (Fig. 1c left; T1T3L vs.
DetSeg, P =0:8683; T2T4L vs. DetSeg, P =0:1333; Kruskal-Wallis with
Tukey-Kramer; n = 1354, 1037, 464 for T1T3L, T2T4L, and DetSeg).
However, place cells had significantly higher firing rates and place
maps were more similar between the two directions on the detour
segments than on linear tracks (Fig. 1c middle and right; P < 10�8

between all pairs; Kruskal-Wallis with Tukey-Kramer; n = 850, 643, 259
for T1T3L, T2T4L, and DetSeg during computing bi-directionality). By
introducing the unexpected novel detour experience, the animals
explored two spatially different but relatedmaze segments in different
sessions: the 150 cm detour segment and the 50 cm mobile middle
segment of the detoured track. We investigated the detour-induced
process of place cell remapping at the single-cell, neural population
level, and the sequential coding level.

At the single cell level, we tested three hypotheses for possible
structured remapping (see “Methods”) during detour: dominated by
prospective/retrospective coding12 based on the distance to the near-
est maze corner (topological; Fig. 1d, 2nd and 4th columns), domi-
nated by track orientation34 (geometric; Fig. 1d, 3rd column), or
stretching the spatial tuning from the mobile segment about three
times to map the entire detour segment28 (sequential; Fig. 1d, 5th
column). We computed the individual neuron-level place map simi-
larity between corresponding maze segments across pre-detour and
detour sessions, controlled by changes in mapping across these ses-
sions on unchanged maze segments. The correlation values were
compared to cell-ID shuffle datasets, where across-session cell iden-
tities were mismatched. We found that the place map similarity
between the pre-detour mobile segment and the detour segments
were not significantly different from the shuffle cases. Meanwhile, on
the stationary first and last 50 cm segments of the detour tracks
(Fig. 1d, 1st and 6th columns) and the middle 50 cm segments or the
entire 150 cm linear segments of non-detoured tracks 1 and 3 (Fig. 1d,
8th and 9th columns), the across-sessions place map similarities were
significantly higher than the cell-ID shuffle (Fig. 1d; Direction 1, Data vs.
shuffle, P-values for columns 1-9: 2:2x10�6, 0.5330, 0.6720, 0.8413,
0.2710, 1:5x10�5, 0.5272, 5:7x10�12, 1:5 × 10�23; n values for columns
1–9: 167, 195, 195, 201, 236, 158, 271, 163, 146; Direction 2, Data vs.
shuffle, P-values for columns 1–9: 2:9x10�8, 0.5055, 0.1072, 0.5005,
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0.5716, 6:2x10�4, 0.2540, 4:8x10�24, 7:5x10�17; n-values for columns
1–9: 179, 207, 198, 198, 240, 169, 274, 171, 151; Wilcoxon rank-sum
tests). These results indicate the detour-induced global remapping did
not simply follow our hypothesized topological, geometric, or
sequential structured remapping scenarios.

Next, we askedwhether someof the placemaps andneuronswere
specifically repurposed from the removed segment to the detour
segment. Thus, we investigated whether the active place cells on the
pre-detour mobile segment were more likely to be recruited in
representing the detour segment. We found that neuronal activity on
the pre-detour mobile segment was positively correlated with activity

on the detour segment; however, this network preference was not
significantly stronger for detour compared to other middle-track
segments (Fig. 1e and Supplementary Fig. 1; P-values of Mobile vs.
Opposite track, T1, and T3: 0.3039, 0.0636, 0.3642; Kruskal-Walliswith
Tukey-Kramer). Therefore, the positive correlation primarily reflected
the difference in the overall activity level between cells across track-
segments rather than a preferential recruitment of pre-detour place
cells of the mobile segments on the detour segments.

At the neuronal ensemble level, a population vector (PV) was
constructed as all cells′ firing rates at one specific spatial bin on the
maze, and the cosine similarity of population vectors were computed
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population vector (PV) cosine similarity across spatial bins between pre-detour and
detour sessions (top). PV similarity against detour segments from different seg-
ments (bottom) with each dot representing one animal, direction, and detour
session (n = 20). Kruskal-Wallis with Tukey-Kramer. g Example placemap sequence
across individual T1-4 (continuous line rectangles) sorted based on Run1. Dashed
line rectangle: detour segments. h Spearman rank-order correlation of place map
sequences of Runs2–4 against Run1 for individual tracks, with each dot repre-
senting one animal and direction (n = 10). Student’s t test. Error bar plots were
represented as mean± s.e.m. In box plots, whiskers represented the 5th to 95th
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dot indicated themedian value. ***P <0.001, *P <0.05, n.s. = not significant. Source
data are provided as a Source Data file.
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between spatial bins across different sessions. The PV similarity
between spatial bins on detour segment and pre-detour mobile seg-
mentwasnot significantly higher than that betweendetour andmiddle
segments of tracks 1 and 3 (T1, T3; not detoured), the opposite track
(OT; not detoured), or another detour segment (Fig. 1f; P-values of
Mobile vs. OT, T1, T3, and AnotherDet: 1, 0.1030, 0.8517, 0.9546;
Kruskal-Wallis with Tukey-Kramer).

To study the behavioral scale sequential coding, we sorted the
cells based on their peak firing rate on each track during Run1, and
plotted the place maps across the run sessions. The place cell
sequences experienced global reorganization on the detour tracks
during detour sessions (Fig. 1g). The sequence reorganization during
detour was quantified by a rank order correlationwith session 1, where
the detour session had the lowest correlation (Fig. 1h; Two-way
ANOVA, detour impact, F(1115) = 30.0623, P = 2:5x10�7).

Rapid emergence of novel detour theta sequence was compa-
tible with detour preplay
Since the experience of detour induced global remapping, we were
interested in studying how rapidly the hippocampus can form a
sequential representation of a novel spatial context. We observed a
rapid emergence of theta sequences on the detour segments, as early
as within the first detour lap, as measured by the quadrant ratio from
decoding and the cross-correlogram (CCG) bias across the time-
compressed and behavioral timescales25 (Fig. 2a–d; P-values of quad-
rant ratio from lap 1 to 3: 8:6x10�9, 1:9x10�25, 6:0x10�31; One side
Wilcoxon signed rank test with positive quadrant ratio; P-values of
CCG temporal bias correlation across time scales from lap 1 to 3:
1:4x10�9, 1:1x10�15, 1:8x10�33; P-values of correlation between CCG
temporal bias and place map bias25 from lap 1 to 3: 0.8020, 0.0092,
9:0x10�6). The expression of the theta sequence was faster than pre-
viously reported30,46, likely contributed by the strong bidirectionality
of spatial tuning on the detour segment. Since no external stimuli were
presented to the animals at the theta time scale, we asked what could
drive the rapid expressionof theta sequences at an order ofmagnitude
compressed time scale compared with place cell sequences. Hippo-
campal pyramidal cells are known to exhibit single-cell temporal
coding47 in the formof theta phase preference andphaseprecession of
spikes48, which could contribute to the expression of theta sequences,
an ensemble temporal code. However, we found the theta phase
sequence formedby place cells with significant theta phase locking did
not match their novel detour place map sequence (Supplementary
Fig. 2e; 1 out of 20 samples was significant, P =0:6415; Binomial test
with 5% chance level), and the decoded probability within a theta cycle
based on spike phase histograms did not depict theta sequence
structure (Supplementary Fig. 2e; P =0:1125; One sideWilcoxon signed
rank test with positive quadrant ratio). Similarly, while theta phase
precession could contribute to theta sequence, we found that time-
jittering of place cell spike times, revealed a regimen (± 35ms to
± 55ms) where theta phase precession were abolished while theta
sequences in the first two detour laps were preserved (Supplementary
Fig. 2f, g; P-values of theta sequence at jittering scale of ± 35, ± 40, ± 45,
± 50, and ± 55ms: 2:1x10�11, 2:0x10�7, 3:3x10�4, 3:5x10�5, 2:9x10�6; P-
values of theta phase precession at jittering scale of ± 35, ± 40, ± 45,
± 50, and ± 55ms: 0:0755, 0:0755, 0:2642, 1, 1; Binomial test with 5%
chance level). Both theta sequence quadrant ratio and phase preces-
sion slope were individually correlated with the jittering scale (Quad-
rant ratio vs. jittering scale:R= � 0:57, P =2:6x10�27; Phaseprecession
slope vs. jittering scale: R=0:33,P =3:4x10�9; Pearson correlation),
but they were not directly correlated, as measured using partial cor-
relation analysis and considering jittering as a confounding factor
(Supplementary Fig. 3; P-value of partial correlation: 0.274). In addi-
tion, when we eliminated single cell theta phase precession by
removing spikes outside the largest burst/lap/place field (i.e., the
remaining spikes had max interspike interval ≤ 20ms), we could still

observe theta sequences in the first 2 detour laps (Supplementary
Fig. 4; After spike removal, Lap1, P = 1:4x10�4; Lap2, P =0:0012; One
side Wilcoxon signed rank test with positive quadrant ratio). This
highlighted the critical contribution from precise temporal coordina-
tion at the neuronal ensemble level toward theta sequence expression.
Our results are consistent with previous studies that found a dis-
sociation between theta phase precession and theta sequence25,30,49,
and suggest that although theta rhythm-related single-cell properties
could contribute to the expression of theta sequence, the latter cannot
be fully explained by the individual cells′ theta phase locking or
precession.

An alternative scenario would posit that hippocampal waking rest
replay during the early laps of detour could have actively compressed
and consolidated the behavioral timescale experience into theta
timescale sequences50,51. For that to be the case, the theta sequence
would need to emerge only after the hippocampal waking rest replay
of detour. However, within our detected hippocampal spiking activ-
ities, the emergence of theta sequence during detour run was sig-
nificantly earlier than the sequential trajectory representation during
waking rest replay when decoded either using clustered or cluster-
less52 spiking activities (Supplementary Fig. 2a–d; Clustered spikes
decoding: Time, P =9:7x10�4; Laps, P =0:002; Cluster-less decoding:
Time, P =4:4x10�4; Laps, P = 1:2x10�4; Wilcoxon signed rank test). In
thedetection of theta sequences and replay, wematched the detection
false positive ratios and the number of detections, and our result was
robust across different detection criteria (“Methods”, Supplementary
Figs. 5 and 6). While the occurrence of waking rest replay depends on
task design and the number of rests the animals take, here, replay
statistically expressed later than the theta sequence during animals′
spontaneous detour behavior, indicating it was not causal nor neces-
sary for theta sequence time-compression. However, expression of
time-compressed detour representation could happen and was
observed during waking rest in pre-detour run sessions or before the
first lap in the detour session (i.e., preplay) in rare cases (Supplemen-
tary Fig. 7).

Therefore, we hypothesized that network pre-configuration into
sequential motifs, that are predictive over selection and allocation of
future place cell sequences on novel tracks20,21,34, could also contribute
to the rapid theta-scale sequential coding during the novel detour
experience (Fig. 2e). The internal pre-configured structure of CA1
network has been revealed by the discovery and the study of hippo-
campal preplay19–24,32,38. We found a significant preplay of the detour
experience, where the decoded trajectory could cross several 90°
detour corners. The detour preplay was significant based on absolute
weighted correlationmeasure aswell as based on combination criteria
of absolute weighted correlation and maximum jump distance32,51

(Fig. 2f, g; P =4:4x10�4; Wilcoxon signed rank test). The expression
of detour preplay occurred during both sleep and waking rest
brain states, with a relatively stable preplay distribution over time
spanning over 5-6 h before the detour experience, without obvious
recency effects (Fig. 2h; Preplay proportion vs. Time to detour:
R= � 0:0082,P =0:8989; Pearson correlation).

Next, we wanted to investigate whether the early emergence of
the theta sequence could be derived from the hippocampal pre-
configuration. Given that hippocampal preplay is a primary expression
rather than the underlying mechanism of pre-configuration, we used a
computational and analytical approach to test whether early theta
sequence is compatiblewithpre-configuration. Previous studies used a
single maze unidirectional running task and found that, using spike
cross-correlogram (CCG) analysis that averaged neuronal activity
temporal bias across entire run or sleep sessions, pairwise temporal
structure during running theta state correlated with post-run, but not
with pre-run sleep53,54. Using combined multiple novel detour tracks
and both running directions, each with distinct CCG patterns (Sup-
plementary Fig. 8a–c), here we showed that temporal bias computed
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from the entire sleep CCG cannot correlate with any single experience,
even during post-run sleep (Supplementary Fig. 8g). However, when
we selected sleep frames that were forward p/replays for a given
detour and direction experience, the same cell-pair could exhibit dis-
tinct CCG patterns within different subgroups of frames p/replaying
the other detour and/or run direction (Supplementary Fig. 8d–f); their

temporal bias was indeed correlated with the corresponding run
bias (Supplementary Fig. 8h). This indicates that in previous stu-
dies, the single novel run experience dominated the post-run sleep
session, while single-experience-induced increase in firing rates and
strengthening of cell-assembly organization likely enabled the detec-
tion of stronger temporal bias during post-run compared to the brief
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Fig. 2 | Rapid expression of detour theta sequences is compatible with network
pre-configuration. a Example showing rapid expression of detour sequence. (Top
and middle) The animal’s position during the first 3 laps with zoomed-in windows
showing theta-scale decoding results. Vertical lines: theta peaks. (Bottom) Decod-
ing results averaged over detour theta cycles from 2 run directions on the first 3
laps. b Distribution of detour segment theta cycle decoding quadrant ratio across
first 3 laps (Wilcoxon signed rank test). c Behavioral and theta time-scale cross-
correlograms (CCG) from two example cell-pairs during the lap 1 detour run.
dCorrelation of CCG bias between theta time-scale and behavioral time-scale (top)
or bias of placemap (i.e., distance between place fields) on detour (bottom) across
first 3 laps. Dots: cell pairs. e Four hypothesized mechanisms contributing to the
rapid development of theta sequence: Spike theta-phase locking (top left); Spike
theta-phase precession (top right); Waking-rest replay compression (bottom left);
Pre-configuration (bottom right). The first 3mechanismswere either not occurring
or could not fully explain the early-laps theta sequence (Supplementary Fig. 2);
thus, we focused on pre-configuration. f Examples of detour preplay during pre-
detour sleep. g Proportions of significant detour preplay measured by weighted
correlation (left; Wilcoxon signed rank test) or a combined criteria of absolute
weighted correlation and normalized maximum jump (right; Z-tests for two pro-
portions) compared against time bin shuffles. On combined criteria, the black box
indicates the region of significant preplay. h Proportion of significant detour pre-
play in sleep and run sessions before Run2 measured in 10min time windows.

Orange and blue lines: sleep (orange) and waking rest (blue) preplay proportions
for each animal and direction. Black line and shaded area: mean and s.e.m.
i Example frames detected as forward detour preplay of a detour segment with
highlighted activities from two example cells. j Transition probability matrix esti-
mated from significant forward detour preplay. Pixels indicate the conditional
probability of one pyramidal cell firing (x-axis) right after another one (y-axis); one
example pixel indicated by the small square and arrowheads, color-coded as cor-
responding cells in (i). k Example theta cycle depicting a detour theta sequence.
l Probability of spikes in theta cycle from (k) computed based on detour preplay
transition probability matrix from (j) compared against 500,000 shuffles with the
same length to calculate percentile value.m Distribution of detour theta cycle (> 3
active cells) probability percentile values against shuffle. Significant (> 95% of
shuffles) proportion of theta cycles was above chance level (Binomial test).
n Forward preplay had steady prediction power in predicting theta cycles from the
first, middle, and the last 2 laps, while prediction power from forward replay
accumulated over experience. o Recruitment of tuplets with length of 2 or 3 cells
from pre-detour sleep into early theta cycles was significantly higher than from
shuffled sleep (Wilcoxon signed rank test). Bar plots in (g, o): mean ± s.e.m with
each dot representing one animal, direction, and detour session (n = 16). ***P <0.01,
**P <0.01, *P <0.05, n.s. = not significant. Source data are provided as a Source
Data file.
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(15 min-long), sparser pre-run sleep32,55,56. Therefore, when investigat-
ing exposure to several novel experiences (e.g., multiple tracks and/or
running directions), where different experiences induce specific
changes in the network, we need to either consider the inherently rich
and complex sleep dynamics or adopt analysis methods with indivi-
dual sleep frame resolution.

We used aMarkovmodel built from the spiking activity during the
significant detour preplay frames during pre-detour sleep to predict
the spike activities during theta cycles within the first 2 detour laps.
Based on spike activities expressed during forward preplay of detour
during sleep (Fig. 2i), we constructed a transition probability matrix,
which gave the probability of the next active cell conditioned by the
activity of the current cell21 (Fig. 2j). Using the transition probability
matrix, we computed the probability of spike sequences occurring in
the early laps′ theta cycles with more than 3 active cells (Fig. 2k). We
defined that theta sequences on the detour segment can be sig-
nificantly predicted by the detour sleep preplay if the computed
sequence probability was higher than the 95th percentile of the
500,000 shuffles where random sequences with the same cell num-
bers were generated (Fig. 2l). We found that spiking activity in the
early-laps′ theta cycles on the novel detour could be significantly
predicted by the detour preplay activity (Fig. 2m; 14.34% theta cycles
were significant with 5% chance level, P =4:2x10�15; Binomial test). The
prediction power was specific to this detour experience and forward
theta sequence. Indeed, the prediction was not significant if we only
used theta cycles with low quadrant ratios, theta cycles with high
quadrant ratios for non-detoured tracks 1 and 3, pre-detour sleep
frames that were not detour preplay, or if we conducted a cell ID
shuffle in the detour preplay transition matrix (Supplementary Fig. 9;
Respective P-values: 0:2729, 0:1386, 0:1246, 0:6227; Binomial test
with 5% chance level). A compelling argument for the proposed role of
preplay in driving theta sequence is that phase precession (a single
neuron feature) plays no role in selecting which group of several dis-
tinct neurons will be activated within a theta cycle together as a theta
sequence (a feature of the neuronal ensemble). Instead, preplay and
tuplet analyses indicated this neuronal selection/grouping was already
present within and could be predicted from selected frames of cor-
responding preplay activity.

Interestingly, forward detour preplay had a steady prediction
power over subsequent theta cycle activities, from early to late detour
laps. However, if we built the Markov model from forward detour
replay occurring after the detour experience, the model′s prediction
power increased as a function of experience, and always exceeded the
prediction power from preplay (Fig. 2n; Preplay prediction early laps
vs. late laps P =0:7783; Replay prediction early laps vs. late laps
P =6:0x10�4; Z-tests for two proportions). This result implies the pre-
configuration had a steady contribution as a backbone, while the
plastic impact from experience accumulated over time. This analysis is
distinct from but consistent with previous research showing that
preconfiguration supported behavioral timescale future spatial
sequences using the Bayesian decodingmethod. Here, we investigated
the compatibility between compressed temporal sequence during pre-
run sleep and run theta cycles, based on neuronal sequence activity
using mean neuronal spike times. Importantly, our analysis did not
prove an absolute prediction of a novel theta sequence, since we used
the future information of the detour place map to select the corre-
sponding sleep frames. This selection procedure was necessary con-
sidering the large repertoire of sequential activity patterns expressed
during sleep29 and the variability of theta sequences during run34

(Supplementary Fig. 8a–f). Thus, the “prediction power” in our analysis
revealed the compatibility between the corresponding preconfigured
frames of activity during sleep and the future time-compressed theta
sequence, rather than an absolute prediction of the theta sequence
from indiscriminate sleep patterns. To avoid a potential technical cir-
cularity, we selected the corresponding preplay frames using Bayesian

decoding (i.e., using all neuronal spikes within frames and neuronal
coactivation) but used a Markov model (i.e., using the center-of-mass
spike time/neuron and neuronal order) to compute theta sequence
prediction. These two methods are based on different aspects of
spiking activity patterns during sleep as well as run, as emphasized by
thedissociation betweendetection of significant p/replay frames using
decoding vs. rank order correlation methods (Supplementary
Fig. 10f, g).

The Markov model was dependent both on neuronal firing rates
and spiking order during sleep, thus it predicted both the allocation of
cells and their relative order during run theta cycles (Supplementary
Fig. 10a–c). To evaluate the spike order compatibility between pre-run
sleep and early detour lap theta cycles, we conducted three analyses,
which were independent from firing rates. First, we computed the
pyramidal cell pair-wise spike order probability matrix based on for-
ward detour preplays, defined as the probability that one cell fires
before another given both are active in a sleep frame. Then, based on
this sleep probability matrix, we estimated the spike order prob-
abilities during early detour lap theta cycles by averaging the order
probabilities for all cell pairs, and found the average probabilities were
significantly higher than a 50% chance level (Supplementary Fig. 10d;
P =0:0262; Wilcoxon signed rank test). Second, we computed rank
order correlation between spiking in each pre-detour sleep frame and
early detour lap theta cycles when there were at least 5 common active
cells (to have 5! = 120 independent permutations).We defined a pair to
be significantly correlated if the correlation value was larger than 95%
of the shuffle, and we found that among all the pairs with at least 5
common active cells, the ratio of significant correlated pairs was sig-
nificantly higher than 5% chance level (Supplementary Fig. 10e;
P =0:0097; Wilcoxon signed rank test against 5%). Similar with Baye-
sian decoding, this rank-order correlation analysis had single-frame
resolution to investigate how preconfiguration could support various
future experiences. Last, we conducted a tuplet analysis exploring the
biological mechanism of how pre-configuration could support the
rapid expression of the theta sequence. Previous studies found that
pre-configured high-repeat short neuronal tuplet (sequences of
3 ± 1 cells) motifs expressed during pre-novel run sleep were sig-
nificantly recruited and allocated to the run place cell sequence21,34.
Similarly, we found that pre-detour sleep tuplets that contributed to
the detour preplay were preserved and significantly recruited into the
early laps′ theta sequence (Fig. 2o; Tuplets with length of 2 cells
P =4:4x10�4; tupletswith lengthof 3 cellsP =0:0038;Wilcoxon signed
rank test against shuffle sleep). The tuplet analysis is different from
pairwiseCCGanalysis since the former considersnot only theneuronal
temporal order but also the tendency of neuronal pairs to be active
within the same frame (Methods) and potential future runs. In tuplets
with a length of 2 cells (e.g., neurons A and B), around 36% of them
were bidirectional (i.e., both A→B and B→Awere detected as tuplets),
which significantly enriched the bidirectional run sequential structures
during detour run (Supplementary Fig. 11), impacting the power of
CCG analysis in determining neuronal temporal bias. Our results sug-
gest that pre-existing short sequence motifs contributed a backbone
for the rapid expression of time-compressed sequential coding during
novel detour exploration in conjunction with plasticity-driving inputs
from presumed specific sensory-motor external stimuli.

Impact of detour expressed during offline rest and sleep states
Since the novel detour induced strong place cell remapping, we next
investigated whether this detour experience could alter the hippo-
campal network more persistently. We investigated hippocampal
inferred plasticity (synaptic and/or intrinsic) expressed at the circuit
level as changed spatial representation and reorganization of cell
assemblies across brain states. We found the novel detour experience
led to significant plasticity expressed during subsequent waking rest
and sleep states. In both waking rest and sleep states, p/replay
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generally tended to be confined to individual tracks and avoid crossing
maze corners (Supplementary Fig. 12), suggesting a maze representa-
tion segmentation by its corners.

During the waking rest state, we observed significant detour
replay after detour sessions ended (Fig. 3a, b), even when the replayed
detour segment was not currently accessible. This observation mat-
ched previously reported remote waking rest replay57 and indicated
the strong impact of a novel detour on the hippocampal network.
During waking rest state, we observed significant compressed repre-
sentations of detour and linear track experiences before, during, and
after the actual depicted experiences occurred (Fig. 3c; Detour before,

during, after, P-values: 0:0036, 8:9x10�5; 8:9x10�5; Linear before,
during, after, P- values: 8:9x10�5, 8:9x10�5, 1:2x10�5; Wilcoxon signed
rank test). Detour experience also induced plasticity on the detoured
tracks (Fig. 3c; Detour before vs. during, P =4:2x10�4; Detour before
vs. after, P =0:0351; Detour during vs. after, P =0:0808; One-sided
Wilcoxon signed rank test with hypothesized order before < after <
during) but not on the non-detoured linear tracks (Fig. 3c; Linear
before vs. during, P =0:9825; Linear before vs. after, P =0:9347; Linear
during vs. after, P =0:5223; One-sided Wilcoxon signed rank test with
hypothesized order before < after < during). The decoding probability
during waking rest frames was also biased towards depicting the
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Fig. 3 | Detour-induced neural plasticity expressed during offline states.
a, b Example significant detour waking rest replays of T2 (a) and T4 (b) occurring
after the detour session ended. Top row, cartoon highlighting the current run
session and the track being replayed. Green dots mark the animal’s actual position
during replay. Bottom 4 rows display decoding results using place maps con-
catenated across tracks and sessions. Colormaps are in red for detour tracks and
blue for linear tracks. c Proportions of significant waking rest replay of detour (left)
and linear (right) tracks grouped by before-experience (frame session earlier than
place map session), during-experience, and after-experience sessions. Wilcoxon
signed rank test. d Decoding probability of the 2 detour segments and current
linear tracks across sessions (Run2Det, Run3Det: detour segments in Run2, Run3;

CurrL: current session linear tracks). Wilcoxon ranksum test. e Examples of sig-
nificant sleep preplay and replay of detour. f Detour preplay and replay measured
by absolute weighted correlation and normalized maximum jump, compared with
time bin shuffle. Z-tests for two proportions. gRatio of significant preplay or replay
of detour and linear tracks measured by weighted correlation compared with time
bin shuffle. Wilcoxon signed rank test. h Replay over preplay plasticity measured
with absolute weighted correlation and normalizedmaximum jump for detour and
linear tracks. Z-tests for two proportions. Bar plots display mean±s.e.m., with each
dot representing one animal, direction, and detour session (n = 16). ***P <0.001,
**P <0.01, *P <0.05, n.s. = not significant. Source data are provided as a Source
Data file.
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detour segments during and after, but not before, the detour experi-
ence (Fig. 3d; two-way ANOVA, detour segment probability * detour
experience, F(2,75442) = 1285.3, P =0).

We envisioned network plasticity during sleep as the improve-
ment in detour representation from preplay to replay22,31,32,41,44

(Fig. 3e). There were more significant detour preplay and replay
events compared to time-bin shuffles as shown with either
2-parameter (weighted correlation and normalized maximum jump
distance) (Fig. 3f) or one-parameter (weighted correlation) sig-
nificance measures (Fig. 3g; Detour data vs. shuffle in preplay
P =4:4x10�4; Detour data vs. shuffle in replay P =4:4x10�4; Wilcoxon
signed rank test). With the one-parameter measure, detour
representations were significantly stronger in post-detour sleep
sessions compared to pre-detour sleep sessions, while plasticity was
not significant for representations of non-detoured, unchanged
linear tracks (Fig. 3g; Detour post vs. pre P =0:0011; Linear tracks
post vs. pre P =0:0703; Wilcoxon signed rank test). With a two-
parameter measure, detour showed significant plasticity in three
pixels within the significant region, while non-detoured linear

tracks showed significant plasticity in one pixel within the significant
region (Fig. 3h).

Impact of detour on representations during future run sessions
was predictable from sleep
Since we observed that detour-induced plasticity was expressed later
during offline states, we asked whether this detour-induced plasticity
was long-lasting and could also impact the activity during the following
reversal run. Indeed, we found that neuronal activity changes (i.e.,
remapping) induced by the unexpected detour experience were
only partially restored during the reversal run (Fig. 4a), which
we interpreted as a form of representational drift. We defined the
detour-induced neuronal changes that reversed during the reversal
run as ′elastic′while the persisting changes as ′plastic′ (see “Methods”).
We were particularly interested in the additional network plasticity/
elasticity caused by the detour experience, and thus we quantified
them by comparing detoured tracks with non-detoured tracks. We
expected that detour-induced elastic changes would result in a higher
similarity between the circuit patterns before and after the detour
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Sleep3. Wilcoxon signed rank test. j Probability percentiles of Run4 stable and drift
placemap sequences compared against shuffle sequences predicted by Sleep1 and
Sleep3. Purple region indicates significant (>95% of shuffle) sequences. Wilcoxon
signed rank test. Data are displayed as mean±s.e.m. In (i) and (j), each dot repre-
sents one animal, direction, and detour session (n = 16). ***P <0.001, **P <0.01,
*P <0.05, n.s.=not significant. Source data are provided as a Source Data file.
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compared to before and during the detour. Meanwhile, detour-
induced plastic changes would result in larger circuit changes between
before and after detour than when there was no direct detour impact
(Fig. 4b). We tested these hypotheses by studying hippocampal net-
work changes across run sessions at the single neuron level and neu-
ronal ensemble level. We categorized run session pairs into four
groups based on how they were related to detour: (1) session pairs
for tracks without direct detour (T1 & T3); (2) before detour versus
detour session pairs; (3) after detour versus detour pairs; (4) before
detour versus after detour pairs.

At the single neuron level, we studied the spatial tuning curve
similarity on the first and the last stationary 50 cm linear segments of
the detoured or non-detoured tracks across sessions, which match the
vector length of tuning curves across sessions (Fig. 4c). Themiddle track
segments were excluded as there was no direct correspondence
between the 150 cm U-shape detour segment and the 50cm mobile
segment (Fig. 1d). Both plastic and elastic place maps were observed in
relation to detour (Fig. 4d), with detoured tracks having significantly
higher ratio of plastic and elastic place maps than non-detoured T1 and
T3 (Supplementary Fig. 13; detoured tracks, plastic maps 21.00±2.45%;
elastic maps 31.80± 3.03%; non-detoured tracks, plastic maps
13.73 ± 2.28%; elastic maps 2.92± 1.04%; mean±s.e.m.). By definition, the
plastic/elastic cells belonged to a subpopulation undergoing strong
remapping from the pre-detour to the detour session. T1 and T3 tracks
had fewer elastic place maps because cells generally exhibited stable
spatial tuning across sessions, which reduced their plastic/elastic
indexes to around 0, rendering them neither plastic nor elastic. Across
session pairs, the place map similarity was highest between tracks that
were not directly detoured (group 1), strongest remapping occurred
between before detour and detour run sessions (group 2), while the
other two groups (3 and 4) exhibited intermediate levels of remapping
(Fig. 4e; P-values of ANOVAmultiple comparison over the dimension of
relationship to detour: NoDet and BeforeVsDet 3:8x10�9; NoDet and
AfterVsDet 3:8x10�9; NoDet andBeforeVsAfter 0.0175; BeforeVsDet and
AfterVsDet 0.0087; BeforeVsDet and BeforeVsAfter 3:8x10�9; Degree of
freedom 2641). This indicates the novel detour differentially impacted
the associated T2/T4 tracks stronger compared to the non-detoured T1/
T3 tracks, suggesting its experiencewasdifferent thana simpleexposure
to a novel track environment. We also found that cells that were more
active during the detour session compared with the pre-detour session
were more plastic, while cells that were more active on the pre-detour
session were more elastic (Supplementary Fig. 14b). Based on a multi-
variate linear regression model, both pre-detour and detour tuning
curves significantly and best explained post-detour tuning curves
(Fig. 4f), which revealed the intricate external stimuli-driven and internal
experience-driven features of hippocampal activity.

At the neuronal pair level, the relative order as well as the time lag
between neurons can be characterized by spike-time CCGs. The CCG
can be studied at a behavioral timescale, which reflects the placemaps
sequence on the track, or at a theta timescale, which reflects the
sequential neuronal order during compressed temporal coding25.
Unlike the place map correlation analysis, the CCG analysis was con-
ducted in the time domain and was amenable to comparisons across
different track lengths. As a result, we compared the spiking activities
on the entire tracks across sessions. We showed that CCGs at the
behavioral and compressed theta timescales were impacted by the
detour experience (Supplementary Fig. 15a). To quantify the impact of
detour on CCGs from before to during and after detour sessions, we
measured the cosine similarity of low-pass filtered CCG curves across
sessions. At both timescales, the CCGs changed the least when there
was no direct detour impact, and changed the most between before
and during detour run sessions (Supplementary Fig. 15b; P-values of
ANOVA multiple comparison over the dimension of relationship to
detour: Behavioral scale: NoDet and BeforeVsDet 3:8x10�9; NoDet and
AfterVsDet 1:4x10�4; NoDet and PreVsPost 8:0x10�5; BeforeVsDet and

AfterVsDet 0.1289; BeforeVsDet and PreVsPost 0.0066; Theta scale:
NoDet and BeforeVsDet 3:8x10�9; NoDet and AfterVsDet 1:6x10�4;
NoDet and PreVsPost 5:6x10�8; BeforeVsDet and AfterVsDet 0.0881;
BeforeVsDet and PreVsPost 0.0245).

At the neuronal ensemble level, we studied how cells were
recruited into cell assemblies to co-represent space32,39,58,59 (see
“Methods”). We detected cell assemblies for each run direction, track,
and session. In example cell assemblies, their cellular patterns illu-
strated cells′ contributions to the assembly, and their temporal pat-
terns showed assemblies′ activations over time (Supplementary
Fig. 15c). We investigated detour′s impact on cell assemblies by com-
paring the similarity of significant cell assemblies′ cellular patterns
across run sessions. We found the detour experience changed the
assemblies from before to during and after the detour experience
significantly stronger compared to not-detoured tracks (Supplemen-
tary Fig. 15d; P-values of ANOVA multiple comparison over the
dimensionof relationship todetour: NoDet andBeforeVsDet 3:8x10�9;
NoDet and AfterVsDet 3:8x10�9; NoDet and PreVsPost 2:2x10�4;
BeforeVsDet and AfterVsDet 0.0937; BeforeVsDet and PreVsPost
2:2x10�7). We also found that active pre-detour assemblies were more
elastic while detour-active assemblies were more plastic in the post-
detour reversal run (Supplementary Fig. 14e).

To further investigate whether the plastic impact of detour on the
post-detour reversal run was related to its consolidation and network
reconfiguration expressed during the preceding offline states18,31,60,
place map sequences during Run4 were split into drift and stable cell
sequences based on their place map correlation between Run1 and
Run4. We built a Markov model of activity in Sleep3, which was post-
detour experience but before the reversal run, to predict the drift or
stable sequences in Run4, and compared that with the Markov model
built fromSleep1.We found that Sleep3better explained theRun4drift
sequence than Sleep1, while this difference was not observed for the
Run4 stable sequence (Fig. 4g–j; Normalized probability: Stable
sequence Sleep1 vs. Sleep3 prediction: P =0:2553; Drift sequence
Sleep1 vs. Sleep3 prediction: P =0:0113; Probability percentile vs.
Shuffle sequence: Stable sequence Sleep1 vs. Sleep3 prediction:
P =0:5417; Drift sequence Sleep1 vs. Sleep3 prediction: P =0:0072;
Wilcoxon signed rank test). A similar phenomenonwas observedwhen
we used sleep to predict sequential activities of drifting cells in theta
cycles (normalized probability: Stable theta sequenceSleep1 vs. Sleep3
prediction: P =0:0703; Drift theta sequence Sleep1 vs. Sleep3 predic-
tion: P =0:0012; probability percentile vs. shuffle sequence: Stable
theta sequence Sleep1 vs. Sleep3 prediction: P =0:0174; Drift theta
sequence Sleep1 vs. Sleep3 prediction: P =0:0052; Wilcoxon signed
rank test; Supplementary Fig. 16). This further demonstrates that
dynamic hippocampal internal network patterns expressed during
sleep are predictive over a variety of changes expressed in future
network-level context representation that include representational
drift and remapping at both behavioral and compressed time scales.
While stable sequences across detours were compatible with network
pre-configuration throughout the task, the more recent detour
experience-induced plastic changes were consolidated during the
offline post-detour sleep and were correlated with the future
representational drift.

Flickering representations of alternate environments
We found a significant activation of detour assemblies during the post-
detour run session (Supplementary Fig. 14h), which suggested that
even when the animals were immersed in a certain environment, spa-
tial representation of alternative environments could be activated in
the form of a competing alternate cognitive map1,2. To explore this
parallel representation during the awake exploratory run state, we
concatenated place maps from the related track segments and deco-
ded the spike activity during detour laps at a theta timescale (40ms
time bin). During the detour session, there were instances with high
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decoding probability of the 50 cm pre-detourmobile segment (Fig. 5a,
b), which was significantly higher than the probability of the equal
length (50 cm) control segment on the non-detoured parallel track
(Fig. 5b, c; P =0:0296; Wilcoxon one-sided signed rank test with pre-
detour mobile segment having higher probability). This decoded
probability was also stronger than those of different control segments
(Supplementary Fig. 17a, b) and was not caused by a similarity of place
maps between detour and the pre-detour mobile segments (Fig. 1f).

We found the pre-detour mobile segment had significantly
stronger representation than control segments only during the theta
oscillation (Theta state P = 1:2x10�11; Ripple state P =0:7050;Wilcoxon
signed rank test) while the novel detour representation was dominant
over pre-detour and control segments during both theta and ripple

oscillation brain states (Fig. 5c). We next investigated how the repre-
sentations of pre-detour and detour were related to the phase of theta
and what were their spatial-temporal patterns. The representations of
detour and pre-detour mobile segments weremodulated by the phase
of theta in dorsal CA1 pyramidal layer, with detour having higher
decoding probability around theta troughs while pre-detour mobile
segment around theta peaks (Fig. 5d). To alleviate a potential impact
from decoding noise, we defined strong representation epochs as the
time bins with at least 3 active cells and decoding probability higher
than0.9 for a given segment. Under this stricter regime, thepre-detour
mobile segment had stronger representation epochs than the control
segment (Supplementary Fig. 18a; P =0:0273; Wilcoxon one-sided
signed rank test with pre-detour mobile segment having stronger
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Fig. 5 | Spontaneous flicker between alternate spatial representations
during run. a Configuration of context decoding during laps on the detoured
track. b Example showing decoding results at fine time scale (40ms) with animal’s
trajectory (orange dashed line). Vertical gray linesmark theta peaks. Instances with
high probability decoding of the pre-detourmobile (non-local) segment during the
detour session are marked with arrows. c Left, decoding probability of the pre-
detour mobile segment compared with the control segment during all laps. Right,
decoding probability of detour, mobile, and control segments during theta and
ripple states. Wilcoxon signed rank test. d Theta phase modulation of decoding
probabilities for detour and the pre-detour mobile segment. e Spatial-temporal
pattern of decoded probability of pre-detour mobile segment during detour run.
High probabilities around entering or leaving detour corners are marked by blue
arrows. f Principal component (PC) analysis of the pre-detour mobile segment
probability for direction 1 (top) and direction 2 (bottom) laps. PC1 was the domi-
nant component for both directions. In PC1, probabilities were higher around

entering or leaving detour corners and decayed as a function of the number of laps.
g, h Configuration of decoding (g) and an example (h) during laps on the post-
detour reversal track during the post-detour session. i Decoding probability of
detour segment (non-local) compared with control segment across behavioral
states during post-detour run. Wilcoxon signed rank test. j, k Theta phase mod-
ulation (j) and spatial-temporal pattern of detour probability during post-detour
run (k). l PC analysis of detour probability for direction 1 (top) and direction 2
(bottom) laps. PC1 was the dominant component for both directions. In PC1,
probabilities had a relatively uniform distribution and decayed as a function of the
number of laps. In panels (c–f) and (i–l), results were obtained by concatenating
data from all animals and detour sessions. Lines and shaded areas in (d) and (j)
indicatemean and s.e.m. Data in (c) and (i) are displayed asmean ± s.e.m. with each
dot representing one animal, direction, and detour session (n = 20). ***P <0.001,
**P <0.01, *P <0.05, n.s. = not significant. Source data are provided as a Source
Data file.
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representations). The strong representation epochs of the pre-detour
mobile segment had significantly biased distribution near theta peaks,
while the strong representation of the control segment had a more
uniform theta phase distribution (Supplementary Fig. 18c). In terms of
spatial-temporal activation patterns, our animals expressed strongest
pre-detour mobile segment representation around entering or leaving
the detour boundary corners during the early laps (Fig. 5e). Based on
principal component (PC) analysis, the spatial-temporal pattern of this
representation was dominated by the first PC displaying the highest
probability around the detour boundary corners and decaying across
laps (Fig. 5f).

During post-detour reversal run, we observed instances of high
decoding probability for the detour segment (Fig. 5g, h), with average
detour decoding probability and the frequency of strong representa-
tion epochs significantly higher than the control segments (Fig. 5i;
P =8:0x10�4; Supplementary Fig. 18b; P =0:003; Wilcoxon one sided
signed rank test with detour having stronger representations; Sup-
plementary Fig. 17c, d). The representation of detour during post-
detour reversal run was caused by the detour experience as it was not
significant during the pre-detour run (Supplementary Fig. 17e, f;
P =0:0793; Supplementary Fig. 18b; P =0:5724; Wilcoxon one-sided
signed rank test with detour having stronger representations). The
detour segment probability was significantly higher than controls
during both theta state and ripple states (Theta state P =4:1x10�24;
Ripple state P =0:0379;Wilcoxon signed rank test). During theta state,
the reversal run had stronger representation during theta troughs
while the detour segment (physically absent, recalled) during theta
peaks, as measured by average probability or distribution of strong
representation epochs (Fig. 5j). The theta phase distribution of strong
representation epochs for the control segment was not significantly
different from a uniform distribution (Supplementary Fig. 18d). The
spatial-temporal pattern of detour representation (Fig. 5k) was domi-
nated by the first PC. Although the detour probability spatial dis-
tribution was relatively uniform across the linear track, the decay of
detour representation across laps during the post-detour run session
was significant (Fig. 5l).

Flickering representations were predictable from sleep and
contributed to low-tuning cell activities
Since the external stimuli of currently absent (non-local) contexts were
not directly available to the animals, we inferred the flickering repre-
sentation of the absent contexts primarily reflected the internal drive
of hippocampal representations originated from experience. During
both detour run and reversal run, we found that neuronal order
dependencies obtained using theMarkovmodel computed during the
preceding sleeppredictedmore accurately the spiking activitieswithin
the flicker epochs representing the non-local context (previously
explored) compared to the local context-representing epochs
(Fig. 6a–f; Detour run: mobile-representing epochs, n = 215, vs. detour-
representing epochs, n = 5345, normalized probability P =4:0x10�8,
percentile against shuffle P =0:0077; Reversal run: reversal-
representing epochs, n = 1169, vs. detour-representing epochs,
n = 384, normalized probability P =4:5x10�15, percentile against shuf-
fle P =0:0339; Wilcoxon rank-sum test). Thus, the flickering repre-
sentations of the local and non-local contexts reveal the competition
between the internally-driven recall and the combined external and
internal drives on hippocampal current representation, segregated by
hippocampal theta phases.

Since the flickering representation was strongly internally driven,
we further hypothesized the flickering representation would result in
spike activities not spatially-tuned to the current environment. During
the post-detour reversal run, place cells exhibited activity preference
between the current reversal and detour representation (Fig. 6g, h).
We defined detour cells and reversal cells based on their spike pre-
ference to these representations, and found the detour cells had

significantly less stable spatial tuning within the post-detour session
and experienced larger placemapdrift frompre-detour to post-detour
session compared to reversal cells (Fig. 6i, j; P =0:005, P =0:0436;
Wilcoxon signed rank test). This drift was different from the plastic
place maps shown in Fig. 4d–f, where a post-detour place field was
inherited from the detour session. Because the flickering representa-
tion of detour did not occur at a fixedposition on themaze (Fig. 5l), the
spikes of detour-representing cells did not show a significant spatial
tuning anchored to the current context, but their activities could be
explained by the flickering of a past detour experience.

Discussion
We have shown that during a novel detour experience, the hippo-
campal CA1 network rapidly expressed novel time-compressed theta
sequences that matched time-compressed sequence motifs active
during preplay events in the preceding sleep session. The detour theta
sequences were expressed several laps earlier than the first-time
expression of waking rest replay of the detour experience, consistent
with their emergence from native pre-existing sequence motifs and
not experience-induced replay-driven time compression. Moreover,
we demonstrated a dissociation between theta phase mechanisms
(phase locking and phase precession of individual place cells) and
theta sequence, indicating that single-cell temporal coding mechan-
isms were not sufficient to explain the neuronal ensemble grouping
during theta sequence coding. Finally, we showed that a compelling
aspect of the theta sequence, the rapid selection/grouping of different
neurons together within a theta cycle, was already expressed during
the preceding sleep as preplay and tuplet sequential motifs, and could
not be explainedby individual neuron properties like phase precession
and locking.

Our observations on the order of expression of temporally-
compressed neural sequences from preplay to theta sequences to
replay are consistent with previous studies where (1) their emergence
in this same order was found during postnatal neuro-development41,
(2) interrupting theta sequences during animal navigation resulted in
impaired replay42,61, and (3) lap emergence of theta sequences and
replay in adulthood were investigated in isolation in separate studies,
animals, and under different tasks30,46. To explain the rapid develop-
ment of time-compressed theta sequences, we propose that their
neural selection and allocation56 from the preconfigured repertoire of
sequence motifs rendered the rapid sequential coding of new envir-
onments. Several current findings support this view. First, we found
significant preplay of the novel detour experience, including of ani-
mals′ trajectory in the first 1-2 detour laps.Whereas previously, preplay
was described only for linear track experiences, we found that preplay
of detour trajectories crossed several detour corners, indicating the
preconfigured structure could function as a template for sequential
representation beyond linear spatial experiences. Second, we
demonstrated that detour preplay had strong predictive power over
early detour theta sequences, from cells′ recruitment and allocation as
place cells to their relative order during sequential representation of
novel detours. Third, we found that sequential tuplet motif structures
expressed during pre-detour sleep were significantly recruited and
reused in early laps theta cycles. All these findings support the pro-
posal that pre-configuration contributed to a relatively stable early-
laps theta sequence representation, whose meaning could be further
modified by association with specific external stimuli and generative
extension viamultiplexing into longer neuronal sequences21 and richer
cell assemblies32 during the novel experience.

The novel detour experience caused strong place cell remap-
ping and gave rise to network-level plasticity. The novel experience-
induced plasticity was consolidated during the following offline
brain states and was expressed during post-detour online brain
states, when it impacted the spatial representation of the unchanged
linear environment during the post-detour reversal run. This altered
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representation of the unchanged external context acted as a
representational drift. The hippocampal representational drift has
been studied with both calcium-imaging11,15,16 and electro-
physiological methods62,63. Here, we built a conceptual model to
partially explain the within-day representational drift, where the in-
between experience could contribute to the altered representation.
In addition to a previous study where the interleaving neuronal
activity was monitored between exposures64, our study linked the
altered representation with a specific detour experience that we
introduced. We propose that, as animals continuously engage in

unaccounted active exploration during and outside the recording,
any event happening during this time could be treated by the ani-
mals as task-relevant, and some of those can go beyond themodality
that we monitored. Those unmonitored events could update the
internal neuronal network state and thus alter the representation of
the unchanged external environment. This interpretation is con-
sistent with recent studies showing the contribution of active
experience to the representational drift16,17, and a previous study
exemplifying carry-over effects of geometric changes to the same
environment on CA1 place cell activity65. In our study, we critically
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i Spatial tuning curves of 4 highlighted example cells in (g) and (h) during pre-
detour, detour, and post-detour sessions. Peak firing rates are marked for all the
sessions. jWithin session (post-detour) across-laps place map stability and across-
sessions (pre-detour vs. post-detour) place map stability of detour- and RS-
representing cells. Wilcoxon signed rank test. Bar plots in (j) display mean± s.e.m.
with each dot representing one animal, direction, and detour session (n = 20).
Violin and box plots in (c) and (f) displayed the data distribution with whiskers
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percentiles, and the center dot indicated the median value. ***P <0.001, **P <0.01,
*P <0.05. Source data are provided as a Source Data file.
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linked this experience-induced representational drift with the con-
solidation process occurring during the interleaving sleep.

Our findings identified one expression of this experience-induced
plasticity in hippocampal CA1 during the flickering representation of
an alternate context. We found this flickering representation was
strongly contributed by intrinsic network dynamics predictable from
sleep, and was supported by spiking activity at CA1 theta peaks, while
representation of the current context was conveyed by spiking activity
at CA1 theta troughs. A similar theta phase segregation is also found
during hippocampal theta sequences when activities at theta peaks
represent past or future locations, while those at theta troughs the
current animal location25,41. This indicates a more general principle by
which prospective (e.g., imagining) and retrospective (e.g., recall)
coding preferentially occurs around theta peaks while current context
is represented around theta troughs, possibly enabling generative
temporal binding of current and recalled/imagined representations
within a theta cycle timescale. These differential activities may be
contributed by the upstream CA3 area, where neural activity patterns
also flicker between representations of two contexts during66 and after
artificially-evoking context-specific external cues67 or when rats were
presentedwith a choice/decision between twocurrent, incomingmaze
trajectories68–70. Here, we specifically investigated whether the CA1
area could spontaneously represent two environments in parallel, one
being physically available and currently explored (i.e., local) and one
being unavailable and retrieved frommemory (e.g., a previous detour,
non-local). Importantly, as thisflickering representationdidn′t occur at
fixed spatial locations, the spike activities during the flickering exhib-
itedweak spatial tuningwith respect to the current context. These low-
tuning cells and their associated alternate spatial co-representations
were likely omitted by previous studies using rigorous place cell
inclusion criteria. However, this flickering-induced representational
drift may not be a deficit of hippocampal representation, but rather
indicates higher-level cognitive functions beyond pure coding of the
present, local context56.

Our study characterized the interplay between internally- and
externally-driven brain states during hippocampal representation of
spatial detour experience. First, internal states could facilitate rapid
encoding and representation of novel environments via rapid recruit-
ment and incorporation of preconfigured preplay and tuplet sequences
into corresponding novel detour theta sequences. Second, the novel
detour experience was consolidated during sleep and modified the
internal state through network-level plasticity. Last, the retuning/
reconfiguration of internal state activity continuously sculpted the hip-
pocampal spatial representation during re-exposure to the unchanged
linear environment. This enabled flickering between a present repre-
sentation and theoneof the recalled, currently absent, context, resulting
in an updated representationmanifested as representational drift. These
forms of internally generated activity, which include look-ahead theta
sequences, experience-induced representational drift, and context-
dependent flickering, constitute non-local coding, whereby the hippo-
campus transiently expresses representations not anchored to the ani-
mal′s present location or ongoing sensory experience. Our results
highlight the dynamic balance between the intrinsic stable and flexible
frameworks, and how those frameworks incorporate the external input
while shaping and updating a cognitive map.

Methods
Animals
Five Long-Evans adult male rats with body weight ∼ 350g were used
for this study. Animals were housed on a normal circadian rhythm
(Light: 9 a.m. to 9 p.m.; Dark: 9 p.m. to 9 a.m.). The experiments started
at the light phase of the circadian rhythm to facilitate adequate sleep.
Animal handling and experimental procedures were approved by the
IACUC at Yale University and were performed in agreement with the
NIH guidelines for ethical treatment of animals.

Surgery and experimental design
Animals were implanted bilaterally with 32 independently movable
tetrodes (Rats 3–5) or two independently movable 64-channel 8-shank
silicon octatrodes (Neuronexus probes, Rats 1-2) under isoflurane
anesthesia. Craniotomy was performed above area CA1 of the hippo-
campus (centered at 4mmpost-bregma, 2mm lateral to midline). The
reference electrode was implanted posterior to lambda over the cer-
ebellum. During the following several weeks post recovery, the
tetrodes and silicon probes were advanced daily while animals rested
in a high-wall opaque sleeping box (30 × 45 × 40 (h) cm).

The experimental apparatus was a 150× 150 cm rectangular ele-
vated linear track maze (tracks 1-4, T1 to T4) with two additional par-
allel and two orthogonal tracks inside the square. All tracks were
150 cm long, 6.25 cm wide and 75 cm above the floor. Before the
detour task day, the animals had explored all eight 150 cm linear tracks
end-to-end and had access to the connected rectangular-shaped outer
tracks, while access to the inner tracks was blocked by 20 cm-high,
10 cm-wide barriers. A permanent barrier was placed throughout this
experiment and the previous days between tracks 1 and 4. Animals
explored the tracks for chocolate sprinkle rewards placed on both
sides of the permanent barrier at the adjacent ends of tracks 1 and 4.
During the detour task day, animals first had a sleep session (Sleep1)
where they were placed in the familiar sleep box for ∼ 2 h. After that,
while ratswere still in theopaque sleepbox, themazewasbrought into
the roomand installed. Subsequently, run session 1 (Run1) beganwhen
the animals were transferred onto track 1 next to the permanent bar-
rier and explored track 1 in both directions for at least 3 laps while
access to any other track was being blocked. Next, track 1 barrier
adjacent to track 2 was lifted, and the animals could explore tracks 1-2
to collect food rewards placed at the end of this L-shape portion of the
maze. Thisbarrier-lifting procedurewas repeated twomore times after
1-2 laps for tracks 3 and 4, until the animal could explore all four outer
tracks for at least 10 laps for rewards always placed at the 2 ends of
the maze.

Run session 1 lasted around 30min and after that, animals were
placed back in the sleep box for ∼ 2 h (Sleep2). During this sleep ses-
sion, an unexpected first detour was introduced on either track 2 or
track 4, counterbalanced across different animals. Specifically, the
50 cm middle segment of the detoured track was removed (therefore
called mobile segment), and two barriers were lifted to give the ani-
mals access to a 150 cm-long U-shape detour segment connecting the
first and third 50 cm stationary segments of the respective detoured
track, one at a time, as illustrated in Fig. 1a. After sleep session 2,
animals were placed on the maze to start the detour run session
(Run2). The entire 700 cmmazewas explored on both directions for at
least 10 laps for food rewards. After completing run session 2, the
animals were briefly blocked on track 1 or track 3 by barriers while the
experimenter reversed thefirst detoured track and introduced a novel,
analogous detour in the parallel outer track. Then, the temporary
blocking barriers were lifted, and animals started to explore the
700 cm maze with the new detour configuration for at least 10 full-
maze laps (run session 3, Run3). After Run3, the animals experienced a
post-detour sleep session in the sleep box (Sleep3), while the experi-
menter restored the maze to the original pre-detour configuration as
in Run1. After Sleep3, the animals explored again the original maze
configuration where they could access all four outer tracks (Run4); the
middle segments of the linear tracks that were previously detoured
were equivalent to a reversal segment. Run4 was followed by one last
sleep session in the sleepbox (Sleep4) that ended theday of the detour
experiment.

Detour session assignment
In Rat 1 and Rat 5, track 2 was detoured in run session 2, while track 4
was detoured in run session 3. In the other three animals, track 4 was
detoured in session 2, and track 2 was detoured in run session 3. In
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some analyses where track 1 and track 3 were used as controls to
compare against track 2 and track 4 changes, virtual detour sessions
were defined for track 1 and track 3. In those analyses, track 1 had the
same pre-detour, detour and post-detour sessions as track 2, and track
3 had the samepre-detour, detour and post-detour sessions as track 4.

Electrophysiology data acquisition
Electrophysiological data were collected using a 128-channel digital
Neuralynx data acquisition system (DigiLynx) with Cheetah software.
Raw signals were recorded at 30 kHz and were band-pass filtered
between 1 and 6000Hz. Spikes were obtained by high-pass filtering
the raw signal above 600Hz and triggering signal acquisition by pas-
sing a 50 µV threshold. Single cells were isolated offline using the
manual clustering method Xclust3 as described before20. Putative
pyramidal cells were distinguished from interneurons based on inter-
spike intervals, average rate, and waveforms20. To eliminate the
potential impact of electrode drift, only clusters with stable ampli-
tudes across all sessions were kept for further analysis. We collected
61, 27, 57, 11 and 45 stable putative pyramidal cells across all run and
sleep sessions from our 5 animals. After the completion of all experi-
ments, all ratswere perfused intracardiallywith 10% formalin, and their
brains were fixed, sectioned, and stained using Cresyl violet to
reconstruct all electrode tracks.

Behavior data processing
The animal′s position was monitored via headstage LEDs and an
overhead camera with a sampling frequency of 30Hz. Animals′ 2D
position was collapsed to a linear position where the range of each
track and the linear position of detour corners weremarked. Direction
1 was defined as clockwise movement in the square maze, while
direction 2wasdefined as counter-clockwisemovement. Hippocampal
activities were analyzed relative to individual tracks and moving
direction.

Place maps on tracks
Placemaps were computed as the ratio between the number of spikes
and the time spent in 2 cm spatial bins along the track, smoothed by a
Gaussian kernel with a standard deviation of 2 cm20. Bins where the
animal spent a total of less than 0.1 s and periods during which the
animal′s velocity was below 10 cm/s were excluded from place map
computation.

Spatial information and within-session stability
Spatial information (SI; bits/spike) quantifies the nonuniformity of
cells′ firing rates over spatial bins and was computed as described
before26. To quantify the within session place map stability for each
cell, laps were randomly split into two groups, the averaged place
maps were obtained for each group, and the cosine similarity between
two place maps was computed. This process was repeated 100 times,
and the averaged cosine similarity was defined as within session place
map similarity.

Remapping between mobile middle segment of the detoured
tracks and the detour segment
Spatial remapping between the pre-detour mobile segment (50 cm)
and the detour segment (150 cm) was assessed at single-cell and
population levels.

At the single cell placemap level, we first compared the placemap
similarity between the pre-detour mobile segment and the detour
segments. As the detour segment was 3 times longer, they were divi-
ded into three 50 cm segments separated by detour corners, and each
segment was compared to the pre-detour mobile segment. We also
added two additional configurations to test different hypotheses. First,
we compared the entire 150 cm detour segment with the 50 cm pre-
detourmobile segment to check if the detour segmentwas a stretched

version of the pre-detour mobile segment. Because the segment
lengths were different, we used 6 cm spatial bin resolution for the
150 cm detour segment and 2 cm spatial bin resolution for the 50 cm
pre-detour mobile segment, so we can match the total number of
spatial bins. Second, we compared the entire 150 cm detour segment
to the entire 150 cm pre-detour linear track. The Pearson correlation
between the place maps of the same cell was computed, where we
allowed segments to shift up to 2 bins (up to 4 cm) to reach the
maximum correlation value. The results were compared with surro-
gate datasets with cell ID shuffle (n = 1000), where the correlations
were computed in the same manner. Note that within each segment
pair, only cells with peak firing rate above 2Hz on at least one segment
were included in this analysis.

We compared the firing rate similarity on the pre-detour mobile
segment and the detour segment to determine if cells that were more
active on themobile segment would also be recruited to represent the
detour segment. We compared the similarity against other middle
segments during the pre-detour session, which were middle segments
from T1, T3, and the opposite track. Wemeasured howmany cells that
had place fields on the detour segment also hadplace fields on the pre-
detour middle segments. We also directly correlated the mean firing
rates on the detour segment and the pre-detour middle segments. To
better visualize the distribution, we sorted cells based on their mean
firing rates on the pre-detour middle segments, binned the percentile,
and computed within each percentile bin for those cells the mean and
s.e.m. activity percentile on the detour segments.

At the population level, the population vector (PV) cosine simi-
larity between spatial bin pairs was computed. The PV was defined as
the vector of all cells′firing rates at a given spatial bin. As thiswas a bin-
by-bin analysis, there was no need to match segment lengths. The PV
similarities of the spatial bin pairs within the pre-detour mobile seg-
ment and the detour segment region were compared with those of bin
pairs within the other tracks′ middle segment and detour segment
regions.

Detection of frames during sleep and waking rest
We defined short epochs with strong multi-unit activities as frames.
Frames were detected during non-REM sleep and waking rest immo-
bility periods where the velocity of the animal was smaller than 2 cm/s
in the sleep box or on the maze. During these periods, we binned
population activity of all putative pyramidal neuronswith 1ms timebin
and smoothed the activity by a Gaussian kernel with a standard
deviation of 15ms. Periods when the population activity exceeded
2 standard deviations above the mean were considered as frame can-
didates, and then the frame durations were extended to when the
population activities exceeded the mean value. Frame candidates
which lasted between 100ms and 1200ms and contained at least 5
distinct active pyramidal neurons were considered as frames and used
in further analysis.

Bayesian decoding of location and trajectories
To decode location and trajectories based on neural activity, we
employed a memoryless Bayesian decoding algorithm either with
clustered or cluster-less spikes50,52,71. A small value (mean rate× 10�5)
was added to the average firing rate to reduce instances of zero
decoding probability. The decoding time bin was 20ms in sleep frame
decoding, waking rest frame decoding, and theta sequence decoding.
The decoding time bin was 40ms to analyze representations of alter-
native detour or middle segments during the run. The decoding time
bin was 200ms to validate the Bayesian decoder and compute the
decoding error during the run.

To test whether the spike pattern specifically represented a track,
we included several tracks in the place map template, e.g., four tracks
in four sessions in one direction (16 tracks in total), and the decoded
probability was normalized across these tracks. We called this the
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concatenated place map decoding, where tracks in different sessions
competed for decoding probabilities. When not specified, place maps
on the four tracks in four sessions in one direction were included
during waking rest and sleep decoding.

Weighted correlations and maximum jump distance
To determine whether the decoded result of a frame represented a
sequential trajectory, a linear correlation between time and location
was computed, weighted by the associated posterior probabilities. To
study if the decoded trajectory exhibited large jumps (discontinuities
in trajectory sequences) within the frames, the peak decoded virtual
location was computed for each temporal bin. The maximum value of
the differences between peak decoded locations in consecutive bins
was defined as themaximum jumpdistance for a particular frame. The
maximum jump was then normalized by the length of the track.

Theta phase detection
In order to identify theta oscillation phases and cycles, an optimal
recorded channel was determined based on the number of detected
pyramidal cells. Then the LFP was band-pass filtered into the theta
range (7–10Hz), and aHilbert transformwas conducted on the filtered
trace to obtain the theta phase information. By default, the interval
between consecutive theta phase peaks was defined as a theta cycle.

Theta phase locking and phase precession detection
To construct the sequence based on the preferred theta phase, spikes
within the first two detour laps on the detour segment were first iso-
lated. Cells with significant theta phase modulations were detected
with Rayleigh Z test and their preferred spike phases were defined as
the peak phase in the spike histogram with bin size of 20 degrees.
Significantly phase modulated cells were sorted based on their pre-
ferred spike phases and comparedwith the actual placemap sequence
(directional sensitive) on detour segment with Spearman′s rank-order
correlation.

To test the significance of theta phase precession in the first two
detour laps, place fields on the detour segments were identified. Theta
phase, as well as normalized position in the place fields, were extracted
from all the spikes in the first two detour laps on detour segments. The
Pearson correlation coefficient and p-value between theta phase and
normalized position were computed.

Theta sequences detection
First, theta cycles occurring during active behaviors (velocity > 10 cm/
s) were isolated, and cycles with more than 3 neurons were used for
further analysis. Bayesian decoding was applied, including all the
spatial bins in the currentmaze, with a decodingwindowof 20ms, and
was performed for each theta cycle. The spatial bin was then corrected
based on the current location of the animal (within ± 40 cm) to reveal
the differences between actual and predicted locations. The quadrant
ratio was computed by summing the probabilities in quadrants 1
(immediate future) and 3 (recent past) relative to the current location
of the animal and subtracting the probabilities in the other two
quadrants (2 and 4) from their sum (directional sensitive). This dif-
ference was then normalized by the sum of all probabilities in quad-
rants 1–4 as used previously41. To test the significance of the theta
sequence, a Wilcoxon signed rank test was conducted to test whether
the distribution of quadrant ratios of the targeting theta cycles was
significantly positive.

Cross-correlograms (CCGs) between cell pairs
Spike activities of cell pairs on a given track, session and run direction
or during sleep frames were extracted to compute CCGs. We com-
puted the center of mass from CCG as the temporal bias across cell
pairs. At the compressed time scale, we used the CCG within
a ± 200ms window around 0 to compute the bias53. At the behavioral

time scale, we used the CCG within a ± 1000ms window around 0 to
compute the bias. The temporal bias can be correlated across time
scales or correlated with place field distances across different tracks
and directions. To get the temporal bias during sleep, we used spiking
activities during sleep frames (all sleep frames or selected preplay/
replay frames) to compute CCG. The temporal bias was defined as the
center of mass within the ± 200ms window around 0. To correlate
temporal bias with placemapbias on the track, we first found cell pairs
with overlapped place fields on the given track segment. Then we
computed theplacemapbias, definedas thedifferenceof the center of
mass from the partially overlapping place fields.

To study how the CCG temporal structure changes across run
sessions, we obtained the behavioral time scale CCG curve (low-pass
filtered below 0.5 Hz, within ± 1000ms around 0) and theta time scale
CCG curve (low-pass filtered below 30Hz, within ± 50ms around 0).
The cosine similarity of those CCG curves was measured across run
sessions given the CCG curves had significant peaks (>mean+ 2 SD &
> 2 counts).

Spike jittering for theta phase precession and theta sequence
To test the dissociation between theta phase precession and theta
sequence, we introduced temporal jittering to spike timing. We
defined a jittering temporal range stepping from ± 5ms to ± 75ms. For
a given jittering temporal range, each spike timing was independently
shifted by a random value drawn from the uniform distribution cen-
tered at zero andwith aminimum at the negative andmaximum at the
positive of the jittering temporal range (e.g., − 10 ms to 10ms for the
± 10ms jittering). The jittered spikes were generated once, and the
same dataset was used for theta phase precession and theta sequence
detection with the methods mentioned above.

Comparison between theta sequence and waking rest replay
significance
Despite the observation of expressionof detour theta sequences in the
early laps before the emergence of detour replay, there were several
challenges in directly comparing their occurrence time and lap. The
major difficulty was that the theta sequence and replay were detected
with different methods. The detection of theta sequence emphasized
the sweep from the past to the future in a theta cycle, whereas the
detection of replay focused on finding a continuous decoding trajec-
tory correlated in time and space. Furthermore, there weremore theta
cycles than spiking frames where replay could occur, which would
make the theta sequencemore likely to be detected due tomore tests.
Here, several efforts were made to make the occurrence of the detour
theta sequence and detour replay technically comparable.

First, since theta sequence and replay were detected with differ-
ent methods, we ensured that both detection methods had similar
false positive rates, or the detection of theta sequence would have a
lower false positive rate than replay.We used false positive rates rather
than false negative rates because there was no ground truth in deter-
mining replay or theta sequence, while the false positive rates could be
accessed from the temporal shuffle datasets. To achieve that, we first
decided the significant criteria for replay detection. In the result sec-
tion, we used the absoluteweighted correlation larger than0.6 and the
normalized maximum jump smaller than 0.4 as used previously32,51,
and tested a combinatorial range of these parameter values in Sup-
plementary Fig. 6. For the main parameters, the false positive rate was
estimated by checking how many representations passed the sig-
nificant criteria within the temporal shuffle datasets (Supplementary
Fig. 6a). We found that 1.146% of the shuffle representations were
detected as significant, thus we set a stricter detection criterion with a
false positive rate (alpha value) of 1% for theta sequence detection. To
make sure the actual false positive rate of theta sequence detection
was lower than replaydetection, we conducted a timebin shuffle for all
the theta cycles within the first two laps, and randomly drew
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1000 samples from the full population. For each sampled sub-
population, we tested whether the distribution was significantly posi-
tive using a one-sided Wilcoxon signed rank with the corresponding
alpha value. The procedure was repeated 1000 times, and we found
the ratio of the significant subpopulation was not larger than the
set alpha value (Supplementary Fig. 6).

Second, to make sure theta sequence and replay were detected at
the same rate, for each frame that was tested for replay, we tested
whether the whole population of theta cycles preceding that tested
frame exhibited significant theta sequence. For each frame, we deco-
ded all the theta cycles on the detour segment in a given direction
before the frame′s time point, andwe computed quadrant ratios for all
those theta cycles. Then, we tested whether the distribution of the
quadrant ratios was significantly positive using a one-sided Wilcoxon
signed rank test with significant level (alpha) smaller than the replay
false positive rate (0.01 in Supplementary Fig. 2b, d).

With the above method, the time and lap when a detour replay
was first detected was defined as the time and the lap of the significant
replay. With the corresponding false positive rates, the time and the
lap when the distribution of quadrant ratios of theta cycles first
showed significance was defined as theta sequence significant time
and lap.

Parameters estimation for Markov chain model
The parameters for the probability model were estimated from sleep
frames as described earlier21. Each sleep frame was represented by a
sequence of cell IDs sorted by the center of mass of their spike times.
The maximum likelihood estimation was used to estimate the para-
meters. Conditional probability in the transition matrix was given by:

Pr xijxi�k . . . xi�2xi�1

� �
=
n xi�k . . . xi�2xi�1xi
� �

n xi�k . . . xi�2xi�1

� � ð1Þ

where xi is the i
th cell in the sleep sequence, n is the count of sequence,

and k is the order of themodel. In this study,weonly used the 1st order
mode,l and conditional probability Pr was represented as P2:

P2 xijxi�i

� �
=
n xi�1xi

� �

n xi�1

� � ð2Þ

To alleviate the noise induced by low-firing cells, 0-value in the
transition matrix was reset to the minimum non-zero value in the
transitionmatrix, and 1was reset to themaximumnon-one value in the
matrix. This operation was performed to avoid a 0-value in the esti-
mated probability caused by the finite sample size of the real dataset,
since during probability estimation of long sequences, one 0-value
could make the probability of the whole sequence 0.

The unconditional probability P1 of each cell was given by:

P1 xi
� �

=
n xi

� �

N
ð3Þ

where N is the length of sequential activity during sleep.

Probability estimation of sequences from Markov model
For a given sequence x with length of n, the probability can be esti-
mated based on the 1st order Markov model as:

Pr xð Þ=P1 x1
� �Yn

i = 2

P2 xijxi�i

� �
ð4Þ

This sequence probability is sensitive to the sequence length. To
compare the sequence probabilities across different lengths, we
introduced the normalized sequence probability as the geometry
meanof the original probability. To evaluate the significance of a given

sequence, the estimated probability was compared to shuffle datasets
(n = 500,000), where random sequences with the same length were
generated and their probabilities were computed. If the probability of
the actual sequence exceeded the 95th percentile of the shuffled dis-
tributions, the sequence was considered significant.

Tuplet extraction and analysis
Tuplets were defined as 2- and 3-cells sequential structures that were
significantly repeated during sleep frames. The detection of tuplets
followed the method described in ref. 21. Briefly, 500 shuffle sleep
frames were generated with spike activities selected by a weighted
random sample without replacement based on the firing rates of cells
in the original sleep. The shuffle sleep preserved the firing rateswhile it
disrupted any cofiring or sequential structures during sleep frames.
Then, in the original sleep frames, all the 2- and 3-cell sequential
structures with at least two repeats were extracted. The number of
repeats of those candidates were compared with the repeat times
during shuffle sleep frames. If the repeating time was larger than 95%
of the shuffle, then the 2-cell sequence was defined as a tuplet with a
length of 2, and the 3-cell sequence was defined as a tuplet with a
length of 3. Note that sequential structures with reversed orders can
both be detected as tuplets if those cells are significantly co-active
within the same frames.

To study the recruitment of sleep tuplets into forming early theta
sequences, all the 2- and 3-cell sequential structures during the first 2
lap detour theta cycles were extracted, and among all these 2- or 3-cell
sequential structures, we computed how many of them were tuplets
expressed during pre-detour sleep. These values were compared
against tuplets extracted from shuffle sleep.

Pairwise order consistency between early lap detour theta
cycles and detour preplay
To investigate the cell pair spike order consistency between early lap
detour theta cycles anddetour preplay frames,wefirst constructed the
pairwise order probability matrix based on forward detour preplays.
For a given cell pair A and B, we divided the number of frames where A
fired before B (based on the center ofmass of spikes within a frame) by
the number of frames where both were active to get the order prob-
ability. The probability of B firing before A is 1 minus the probability
that A fired before B. After getting this anti-symmetric pairwise order
matrix, we examined all the pairwise spike orders in the early lap
detour theta cycles. For each animal, direction, and detour session, we
averaged the probabilities of those pairwise orders during theta cycles
based on the probability matrix computed from sleep and subtracted
the chance value 0.5 from the averaged probability. A positive result
indicates the pairwise order is consistent between early lap detour
theta cycles and forward detour preplays.

Order correlation between spike activities in detour theta cycles
and pre-detour sleep frames
To study the ensemble-level sequence order similarity between early
lap detour theta cycles and pre-detour sleep frames, we computed
the rank order correlation between sequences in theta cycles and
sleep. Specifically, we first isolated the first two lap detour theta
cycles with not less than 5 active cells, and computed the spike
sequence order based on the center of mass of spikes for each theta
cycle. Then we computed the spike sequence order in all the pre-
detour sleep frames. Across all the theta-cycle and sleep frame pairs,
we found pairs with not less than 5 common active cells to compute
the Spearman rank order correlation. The at least 5 common active
cells ensured there were at least 5! = 120 independent permutations.
We compared the rank order correlation against 500 sequence
permutation shuffles, and defined the pair as having significant
correlation if the correlation value is higher than 95% of the shuffles.
In the last step, the ratio of pairs with significant correlation (among
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pairs with at least 5 common active cells) was compared against a 5%
chance level.

Comparing decoding probability between linear and
detour tracks
Tocompare the decodingprobability between linear anddetour tracks
during waking rest frames, concatenated place map decoding was
used. Specifically, for a given direction, 6 place maps were included in
the template: if the current session contained no detour (run 1 and run
4), we used 4 current linear tracks + 2 detour segments in detour ses-
sions; if the current session contained detour (run 2 and run 3), we
used 4 current tracks (1 detour segment + 3 linear tracks) + 1 detour
segment in another detour session + 1 linear track for the current
detoured track from pre-detour session. There are four groups of
tracks: current linear tracks; detour segment in Run 2; detour segment
in Run 3; pre-detour linear track if the current session is detoured (not
shown in plots). The reason for using 6 tracks rather than 16 tracks
from all the sessions was that place maps of linear tracks were rela-
tively similar across sessions, and a replay of a specific linear track
could be mirrored in several sessions. Including tracks from several
sessionswill dilute the decodingprobability of linear tracks.Moreover,
to alleviate the impact of firing rate difference on decoding prob-
abilities, place maps from different tracks were rescaled to have the
same mean firing rate.

Impact of detour during run controlled by session pairs without
direct detour impact
To assess the impact of detour during and after the detour session, we
investigated howcells′ placemaps, cells′pair-wise spike order, and cell
assemblies change across sessions. All the possible session pairs were
characterized by two parameters. The first was the session difference
between session pairs (ranging from 1 to 3), and another was how this
session pair was related to detour. The impact of detour was assessed
bymatching session differences and comparing across groups. At each
session lag, the difference across groups was obtained by Kruskal-
Wallis ANOVA followed by post-hoc Tukey-Kramer multiple compar-
isons. To evaluate the overall difference between detour-related
groups, a N-way ANOVA was built, where the model included session
lag, animal ID and detour-related groups. Post-hoc multiple compar-
ison test was performed over the dimension of detour-related groups
with Tukey-Kramer correction. The place map correlation was only
evaluated on the two 50cm stationary segments to match the vector
length across sessions. The CCG and assembly analyses were not
impacted by different track lengths and were conducted on the
whole track.

Dimensionality reduction with UMAP
Dimensionality reduction method UMAP (UMAP: Uniform Manifold
Approximation and Projection) was used to visualize the impact of
detour on spike activities. Cells′ place maps were computed for indi-
vidual directions, tracks, sessions, and laps with a spatial bin of 2 cm.
On the dimensionof spatial bins, the placemapswere smoothedwith a
Gaussian kernel with a STD of 5 cm; on the dimension of laps, the place
maps were averaged every two laps. Then the processed place maps
from different tracks and sessions were concatenated, and projected
to a 2D space with UMAP transform. The parameters of the UMAP
transform were n_neighbors = 50, min_dist = 0.05, metric = ′cosine′.

Place map similarity across sessions
Placemap similarity was computed only on the first and the last 50 cm
segments of linear tracks to match the length of the stationary seg-
ments of detoured tracks across all tracks. The middle segments were
excluded, as on detoured tracks, therewas no explicit correspondence
between detour and non-detour sessions. The tuning curves on the
first and last segments were concatenated, and the cosine similarities

were computed across sessions. For a given track, direction, and ses-
sion pair, only the cells with peak rate over 2Hz and within session
stability over 0.8 in at least one session were further considered.

Cell assembly detection and activation
The procedure for cell assembly detection was adapted from previous
studies32,58. Briefly, spike activities were time binned (20ms) and z-
scored, followed by the principal component analysis to identify
eigenvalues and eigenvectors. If eigenvalues exceeded the theoretical
upper bound predicted by the Marchenko-Pastur law58, those modes
were defined as cell assemblies. In the eigenvector of significant cell
assemblies, cells with weights over two standard deviations above the
mean were defined as significantly contributing cells to that assembly.

In order to study the activation of cell assembly during run in the
same session or different sessions, the activity during run was similarly
binned at 20ms for each cell, and subsequently Z-scored. The weights
(eigenvectors) of the significant principal components were used to
calculate the activation strength of cell assemblies. First, the projec-
tion matrix was constructed as the outer product of the weight vector
of the cell assembly. The diagonal elements of this projection matrix
were set to zero to eliminate the contribution from single neuron
activities. This corrected projection matrix was quadratically multi-
plied by the normalized spike activities to get the activation strength
of cell assemblies.

To compare the cell assemblies′ similarity across sessions, we first
detected significant cell assemblies for each run session. Thenwe ran a
Pearson correlation between cellular patterns (cell′s contributions to
the cell assemblies) of all the significant cell assemblies across sessions.
We ended up with a matrix containing pairwise assembly similarities.
We found the maximum value within rows and then averaged row
maximum values to get an assembly similarity measure for a
session pair.

Plastic/elastic measure
To evaluate whether the detour impact would reverse or stay after the
detour session ended, a plastic/elastic measure was introduced. The
cells′ or assemblies′ tuning curves on the first and the last 50 cm linear
segments were computed and concatenated within each pre-detour,
detour and post-detour session. The plastic/elastic measure was
defined as the cosine similarity between post-detour and detour tun-
ing curves minus the cosine similarity between post-detour and pre-
detour tuning curves. The measure has a range from − 1 to 1. Given a
complete remapping frompre-detour todetour session, the− 1 plastic/
elastic measure represents that post-detour has the identical tuning
curve with pre-detour (i.e., elastic), while + 1 plastic/elastic measure
represents that post-detour has the identical tuning curve with detour
(i.e., plastic). If the tuning curves are stable or random across sessions,
the measure will have a value close to 0.

Multivariate linear regression
A multivariate linear regression model was used for predicting the
post-detour tuning curve based on pre-detour and detour activity
using the Matlab function mvregress. Tuning curves on the first and
the last 50 cm segments of tracks were concatenated and used, as
those parts were preserved across sessions.

The post-detour activity for a given cell was modeled with the
following equation:

Post= c0 + c1 × Ave +β1 × Pre+β2 ×Det +β3 ×OT+β4 ×T1 +β5 × T3

ð5Þ

where Ave represents averaged tuning curve across all the cells over
pre-detour and detour sessions. This term accounts for the overall
features of tuning curves, such as firing rates are higher near track
ends. Pre and Det represent that cell′s tuning curves on pre-detour or
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detour sessions.OT represents the curve on the opposite parallel track
during detour session, and T1 T3 represents curves on those tracks
during the detour session.

To evaluate how well each regressor predicts the dependent
variable, we compared the model residuals between two models. The
baseline model is the full model, and the model residual resifull was
computed as the Frobenius normof the residualmatrix. Then, for each
regressor of interest (Pre, Det, OT, T1, and T3), we removed it from the
full model and recomputed the model residual resiβi

. The variance
explained by each regressor varβi

was defined as:

varβi
=
resiβi

� resifull
resifull

ð6Þ

To take regressors′ variance difference into consideration, we
shuffled the observation identity (n = 1000) and recomputed the
explained variance. The actual variance explained was compared with
the shuffled distribution to get a significant measure.

Predicting drift and stable sequences in Run4 from Sleep1
or Sleep3
Drift and stable place map sequences in Run4 were extracted from
cells with peak firing rate over 2Hz in Run4, and Run1 vs. Run4 place
map correlation smaller than (drift) or larger than (stable) 0.3. Cells
were sorted based on their peak firing rate locations in Run4 (direc-
tional sensitive), and the probability of run placemap sequences were
computed from the Markov transition probability matrices estimated
from Sleep1 or Sleep3. The run sequence probability was normalized
by sequence length (geometric mean) and compared with prob-
abilities from random sequences to get a percentile value.

To predict the theta sequence in Run4, theta cycles with more
than 4 active cells on detoured tracks were extracted. In those theta
cycles, we separately generated stable or drift theta sequences with
stable or drift cells detected with the criteria mentioned above. The
probabilities of those sequences were computed from the Markov
transition probability matrices estimated from Sleep1 or Sleep3.

Brain state classification during run session
During running sessions, theta and ripple brain states were identified.
The theta ratiowasdeterminedby comparing the instantaneouspower
in the theta range (7–10Hz) against thepower in its adjacent frequency
ranges. The theta brain state was defined as the epoch when the run-
ning velocity was higher than 10 cm/s and the theta ratio (7–10Hz)/
(2–15Hz) was greater than the median value of the entire session.

The ripple state was defined based on ripple detection, where the
raw LFP was filtered in the 140–220Hz range. The mean ripple power
in this band was computed, and periods exceeding 5 standard devia-
tions above the mean were considered as ripple candidates, then the
ripple duration was extended to when the ripple power crossed the
2 standard deviations above the mean threshold. Ripples with a
duration shorter than 30ms or longer than 200ms were excluded.

Representing alternative track
Representing the alternative track was investigated by performing
Bayesian decoding during a run with 40ms time bins. Five place maps
were concatenated and the decoding probability was distributed
among those tracks: (1) the first 50 cm segment on detoured track (left
unchanged); (2) current segment (150 cm detour segment during
detour run or 50 cm current middle segment during reversal run); (3)
the last 50 cm segment on detoured tracks (left unchanged); (4)
alternative segment (50 cm pre-detour mobile segment during detour
run or 150 cm detour segment during reversal run); (5) control seg-
ment on the opposite of the maze with the same length with the
alternative segment. To alleviate the impact offiring rate difference on
decoding probability, place maps from all the segments were rescaled

to have the same mean firing rate. Only time bins with more than 3
active pyramidal cells were used in further analyses.

Theta phase modulation of detour and middle mobile segment
probabilities
During theta states, the influence of theta phase modulation was
examined by assigning the decoding probability to themidpoint of the
decodingwindow. The theta phase of that point was determined using
the Hilbert transform. We used two methods to investigate the theta
phase modulation. We computed the average decoding probability of
different segments across the theta phase, or we estimated the dis-
tribution of theta phase of strong representation epochs (probability
over 0.9) and tested the uniformity of the distribution using the
Rayleigh test.

During plotting examples, a 90% overlapping window was used.
This overlapping window was also employed in the theta modulation
analysis since a 40ms windowwas too coarse for theta phase analysis.
To address the lack of independence, the degrees of freedom were
corrected (10% of the window number) in computing the standard
error of the mean during probability versus theta phase plotting. In
other analyses (Fig. 6, except for panels b, d, h, and j), a non-
overlapping decoding window was used.

The spatial-temporal pattern of the decoding probability in the
alternative segment
The spatial-temporal pattern of the decoding probability in the alter-
native segment was obtained by averaging the decoding probability
based on the lap and linear position on the current track. Principal
component analysis was conducted on this 2D matrix of probability
(laps × linear position), and the first principal component was plotted.

During the detour run, the spatial pattern of the principal com-
ponent was analyzed to determine if the probability of the pre-detour
mobile segment near the corners where the detour was entered
(< 20 cm) was significantly higher compared to positions further away
from those corners (> 40 cm). During the reversal run, the spatial
pattern of the principal component was examined to determine if the
probability of detour on the two unchanged linear segments was sig-
nificantly higher than that of the middle segment.

Identifying detour-, mobile-, and reversal-representing epochs
during detour and post-detour run
To identify detour-, mobile-, and reversal-representing epochs, decod-
ingprobabilities of detour,mobile, or reversal segmentswere computed
by summing over probabilities on corresponding spatial bins. The sum
of probabilities was smoothed with a moving average window of 40ms.
The representing epochs were defined as the continuous period with a
sum of probability over 0.5 and the animal′s running speed larger than
10 cm/s. The cells′firing rates, aswell as spike sequences, were extracted
from those epochs for further analysis in Fig. 6.

Statistical analysis
Parametric statistical tests (one-sample and two-sample Student′s t
tests) were performed on data that did not violate the normality
assumption. Otherwise, non-parametric statistical tests (Kruskal-Wallis
ANOVA followed by Tukey-Kramer multiple comparison correction,
Wilcoxon ranksum test or the Wilcoxon signed rank test) were per-
formed. The significance of counts in data versus a theoretical value
was tested by the one-sided Binomial test (data larger than chance
level). The significance of differences in counts between two datasets
was testedby theZ-test for twoproportions. A P <0:05wasconsidered
significant. ***P <0:001, **P <0:01, *P <0:05, n.s. = not significant.
Tests were two-sided unless specified otherwise. UMAP analysis was
run in Python v3.8, all other analyses used MATLAB (R2017b; Math-
Works). In visualization, error bar plots depicted the standard error of
the mean. Violin and box plots displayed the data distribution with
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whiskers representing the 5th to 95th percentile range; the box
represented the 25th to 75th percentiles, and the center dot indicated
the median value.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this study are available from the corresponding author
upon request. The reported data are archived onfile servers at the Yale
Medical School. Source Data are provided with this paper. No clinical
datasets or genetic data have been used in this study. Source data are
provided in this paper.

Code availability
The custom codes specific to this study that are needed to interpret,
verify, and extend the research in the article canbeaccessed at: https://
github.com/GDYlab/GDYlabcode. Additional codes will be available
upon request from the corresponding author.
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