nature communications

Article

https://doi.org/10.1038/s41467-025-63373-7

Optimization and control of actuator
networks in variable geometry truss systems
using genetic algorithms

Received: 2 February 2024

Accepted: 16 August 2025

Jianzhe Gu"?, Ziwen Ye?, Tucker Rae-Grant®2, Shuhong Wang'?, Ding Zhao?,
Josiah Hester?, Victoria A. Webster-Wood ® 2 & Lining Yao ® 2

Published online: 30 September 2025

M Check for updates

A robot’s morphology is pivotal to its functionality, as biological organisms
demonstrate through shape adjustments - octopi squeeze through small

apertures, and caterpillars use peristaltic transformations to navigate complex
environments. While existing robotic systems struggle to achieve precise
volumetric transformations, Variable Geometry Trusses offer rich morphing
capabilities by coordinating hundreds of actuating beams. However, control
complexity scales exponentially with beam count, limiting implementations to
trusses with only a handful of beams or to designs where only a subset of
beams are actuable. Previous work introduced the metatruss, a truss robot that
simplifies control by grouping actuators into interconnected pneumatic con-
trol networks, but relies on manual network design and control sequences.
Here, we introduce a multi-objective optimization framework based on a tai-

lored genetic algorithm to automate actuator grouping, contraction ratios,
and actuation timing. We develop a highly damped dynamic simulator that
balances computational efficiency with physical accuracy and validate our
approach with experimental prototypes. Across multiple tasks, we demon-
strate that the metatruss achieves complex shape adaptations with minimal
control units. Our results reveal an optimal number of control networks,
beyond which additional networks yield diminishing performance gains.

Recent studies show that a robot’s morphology is pivotal to its
functionality'. Biological organisms demonstrate this through their
ability to adjust body structure and stiffness to accommodate envir-
onmental demands - octopi squeeze through small apertures, while
caterpillars use peristaltic shape changes to navigate diverse environ-
ments. This adaptability becomes indispensable for robots facing tasks
such as fitting into tight spaces, conforming to objects, or inducing
specific human emotions and cognitive responses. However, creating
artificial systems that can adaptively change their shape while main-
taining functionality, as seen in these biological examples, remains a
significant engineering challenge.

Robotic systems with adaptive morphology demonstrate the
ability to change shapes, including continuous volumetric transfor-
mations. Bar-joint robots use interconnected bars and joints as linear
or rotational actuators, but are often limited to tree topologies** or
single-bar limbs’®, restricting their shape expressiveness and weight-
bearing capacity. Multi-material voxel robots®®, composed of regular
cubic units (voxels) with different material properties, offer diverse
shape changes by activating specific voxels. However, they face chal-
lenges in scalability and real-world precision due to their solid volume
nature and the non-linear interactions between connected voxels.
Magnetic self-reconfigurable cubic robots®" allow reassembling of
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voxelated shapes through magnetic connections but lack structural
integrity and continuous motion, limiting their practical applications.
Other approaches include robots with variable limb lengths>,
morphing wheels", and 2D origami or soft sheet robots*'*. However,
these designs often have limited degrees of freedom and control
precision or are constrained to specific morphologies, highlighting the
need for more versatile and scalable solutions in adaptive robotic
systems that can achieve complex, three-dimensional shape changes
while maintaining structural integrity and precise control.

Among the various approaches to address these challenges,
variable geometry truss (VGT) systems stand out among robotic
designs that offer morphological complexity and adaptability. VGTs,
composed of beams and joints that form tetrahedral or octahedral
truss structures, achieve diverse transformations such as rotation,
twisting, linear, and volumetric scaling through actuator beams. This
flexibility enables VGTs to perform standard robotic tasks such as
locomotion®, manipulation'®*°, and target reaching, as well as spe-
cialized activities requiring morphological adaptations”*. Despite
their advantages in degrees-of-freedom (DOFs) and versatility, current
VGTs face scalability issues due to the complexity of their control
systems, which scale exponentially with the number of beams®.
Therefore, existing VGT with physical implementations are either
having a few tetrahedral units'>**?” or only a few beams are actuable?,
restricting their achievable motions.

Previously, researchers have introduced an approach to simplify
the control of complex truss robots?, a strategy for grouping actuator
air channels into networks, termed C-networks (Control networks). By
grouping pneumatic actuators with interconnected joints, each sub-
group of actuators in the same C-network can be actuated simulta-
neously with a single air valve as the controller (Fig. 1a). Although the
total number of actuators does not change, the number of controllers
decreases. With varying combinations of the actuation states of the C-
networks, the metatruss deforms into different morphologies and the
number of possible morphologies exponentially scales as the number
of C-networks increases (Fig. 1b). Moreover, under a temporal
sequence of actuation signals, the truss transforms into a series of
morphologies and performs a sequential motion. Additionally, they
enabled each actuator to have different preset contraction ratios
through a blocker structure (Fig. 1f). This approach aims to simplify the
system and control complexities inherent in complex truss robots.
Although it introduced a design and simulation tool that allows
designers to assign the beam connectivity manually, no optimization
or automated design pipeline was introduced. As the truss becomes
more intricate and tasks grow in complexity, manually navigating
C-network assignment becomes tedious and intractable.

In nature, humans and other animals, despite having hundreds of
muscles and billions of muscle cells, execute complex movements
without consciously controlling each muscle’s contraction. Research
indicates that animals may use a control strategy known as synergy> 2,
This mechanism, also present in humans, reduces neural pathway
complexity™. With synergy in human motor control, intricate actions
such as walking or jumping are executed by periodically coordinating a
muscle network, eliminating the need for conscious control of every
individual muscle. As such, many muscles operate concurrently when
engaging in activities that require collaborative muscle actuation.
Although the topic remains under debate, several researchers argue
that this coordinated approach achieves an optimal balance between
actuator count and control complexity, significantly reducing the
computational burden of the brain**™, Inspired by biological muscle
synergy, where complex movements are achieved through efficiently
coordinated muscle groups rather than individual control, we propose
a similar principle for the metatruss. We hypothesize that there exists
an optimal number of C-networks for a given metatruss, beyond which
additional networks yield a diminishing increase in performance
across various multiple tasks.

To validate this hypothesis, we developed a multi-objective
optimization pipeline using a tailored hierarchical genetic algorithm
(Fig. 1c, d). This approach was chosen because the discrete nature of
C-network assignments (Fig. 2) and the topological constraints
(Fig. 3) of the network make traditional gradient-based optimization
methods unsuitable. Our genetic algorithm (Fig. 4) incorporates
custom operators (Fig. 5) that respect both symmetry and con-
nectivity constraints while exploring the design space. The pipeline
simultaneously optimizes three parameters: the assignment of
actuators to C-networks (determining which actuators work toge-
ther), the preset contraction levels of individual actuators (defining
actuators’ motion), and the temporal actuation sequences (control-
ling when each C-network activates). This multi-level optimization
allows us to find designs that balance the competing demands of
control simplicity and task performance while maintaining physical
feasibility.

In this work, we validate our hypothesis and approach through
multiple complementary studies. First, using a complex quadruped
metatruss robot (Fig. 1d) tasked with four distinct functions (Fig. 1i,
Supplementary Video 1), we demonstrate that a limited number of
C-networks can yield competitive performance (Fig. 1j). Our proposed
design method achieves a higher ratio of actuatable beams to control
units compared to previous VGT systems (Fig. 1k), reducing control
complexity while maintaining system capabilities (Fig. 6). To demon-
strate the diversity of our approach, we successfully apply it to five
different truss topologies with various tasks (Fig. 7). Finally, we build a
physical prototype of one metatruss to validate the physical feasibility
and compare its trajectory with the simulation, demonstrating the high
accuracy of our simulator (Figs. 1I, m, 8).

Results

Overview

Here we present our main findings, beginning with the fundamental
design of the metatruss system and its optimization framework, fol-
lowed by experimental validation across multiple studies. This over-
view first introduces the core mechanisms and design principles, then
outlines our key contributions in simulation, optimization, and phy-
sical implementation that are detailed in subsequent sections.

Our metatruss, based on the pneumatic shape-changing truss
design from PneuMesh?, is a tetrahedron-based structure composed
of pneumatic linear actuators and 3D-printed joints. Each actuator
expands to a maximum length under positive pressure P, and con-
tracts to one of four preset lengths under negative pressure P,
adjustable via a reconfigurable blocker structure (Fig. 1f). The joints
have selective inner air channels that connect incident actuators,
grouping them into subsets called C-networks (Fig. 1a, b) Actuators
within a C-network share air pressure and operate simultaneously,
independent of other networks. Each C-network has a binary state:
active (P,) or inactive (P-). The metatruss achieves various morphol-
ogies through different combinations of C-network states (Fig. 1a, b).
Detailed mechanism and fabrication information can be found in
Methods - Mechanism and Fabrication Details.

A metatruss can achieve specific shapes or perform sequential
motions through activation signals of its C-networks, enabling tasks
that require locomotion or shape changes. Whereas previous work?®
demonstrated hand-designed C-network assignments and actuation
signals for given tasks, our work automates this process for more
complex truss topologies and diverse tasks. Given a metatruss topol-
ogy, initial joint positions, tasks, number of C-networks, and C-network
symmetry, our optimizer finds the optimal C-network assignment,
contraction levels, and actuation signals to maximize the metatruss’s
multi-objective performance across the specified tasks. For a detailed
problem definition, refer to Methods - Problem Statement. The specific
truss topologies and tasks explored in this paper are described in
Methods - Truss Topologies and Tasks.
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Fig. 1| Overview of the metatruss system. a, b A metatruss with double tetra-
hedron topology consisting of 9 actuators controlled by three inter-connected air
channels (C-networks), where actuators in the same C-network expand simulta-
neously to yield 2* possible configurations through the combinations of binary
C-network actuation states. ¢ The multi-objective genetic algorithm with custo-
mized operators used for the metatruss design optimization. d The C-network
assignment, where actuators of the same color belongs to the same C-network.

e The customized joint structure features inner air channels with selective con-
nectivity, enabling unified control for actuators sharing the same air pressure.

f Each beam has a discrete contraction level within one of the four percentages

= simulation peak points simulation time (s) experiment time (s)

r € {0.0, 0.12, 0.24, 0.36}, preset manually with a blocker design. g Contraction
levels in a metatruss design. h Open-loop binary control signals in a metatruss
design. i Six-channel quadruped metatruss optimized to achieve four distinct target
motions through four open-loop controls: walking, turning, tilting, and crouching,.
Jj Experimental results showing that task performance plateaus as the number of
C-network channels increases. k Our optimizer achieves higher ratios of actuatable
beams (N,) to control units (N.) compared to previous VGT systems!’2>252737-39.66769
1 The physical prototype of the pillbug metatruss and its simulation, with tracked
joint highlighted in green circle. m The trajectories of the tracked joint in simulation
and experiment.

For clarity, in this paper, metatruss topology refers to the con-
nectivity and structural relationship between joints and beams, ana-
logous to a graph structure. The topology represents the fundamental
structure that remains fixed after design, including which beams

connect to which joints and how they’re grouped into C-networks.
Morphology refers to the physical shape and form that the structure
takes when the beams change length. As actuators in the metatruss
expand or contract, the positions of joints shift while maintaining their
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Fig. 2 | Representation and Elements of a metatruss Design. a A 1D integer array
serving as the design representation. This array encompasses C-network indices,
contraction levels, and on/off control signals. b In a quadruped robot example,
each beam designated a unique C-network index indicated by color. ¢ Preset

contraction ratios r derived from the product of contraction level and a fixed
increment, A = 0.12. d Task-specific sequences of on/off control signals assigned for
actions like walking and turning.
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Fig. 3 | Metatruss symmetry constraints. A symmetric metatruss consisting of self-symmetric (a) and inter-symmetric beams (b). ¢ Preset C-network configurations
designating individual C-network as self-symmetric or specify C-network pairs as inter-symmetric.

topological connections, creating different morphologies that enable
the robot to perform various tasks. In this paper, we have a fixed truss
topology as input, and we aim to optimize the topologies of
C-networks that comprise the entire metatruss, such that the resulting
sequential morphological change can achieve the objective behavior.

To optimize the metatruss design, we developed a highly-damped
dynamical simulator that balances computational efficiency with
physical accuracy. While existing simulators like Finite Element
Methods offer high fidelity but are computationally intensive, and pure
kinematic approaches are fast but oversimplified, our approach strikes
a middle ground necessary for evolutionary optimization. The simu-
lator approximates quasi-static behavior through significant damping
while accurately capturing essential physical interactions, including
length constraints, gravity, ground collision, and friction. This design
choice enables rapid evaluation of thousands of design iterations while
maintaining sufficient accuracy for real-world usage, as validated
through our physical prototypes. The simulator’s performance and
accuracy are thoroughly examined in Methods - Simulator, where we
demonstrate comparable accuracy to established physics engines

while achieving substantially faster computation times necessary for
our genetic optimization pipeline.

Building on our simulator, we developed an optimization frame-
work tailored to the unique challenges of metatruss design. At its core,
our approach transforms the complex problem of C-network design
into a tractable form by encoding network assignments, contraction
levels, and activation signals into a simple yet expressive integer-based
representation (see Design Representation). This optimization frame-
work addresses the essential topological constraints of C-networks
while enabling efficient evolutionary optimization (see C-network
Topology Constraints). To handle multiple competing objectives while
maintaining design diversity, we enhanced the NSGA-II algorithm with
an elite preservation mechanism (see Multi-objective Computation
Pipeline). A key innovation of our framework is its custom genetic
operators, which are designed to explore the design space while fol-
lowing the physical and topological constraints (see Tailored
Operators).

We validated our framework through three complementary stu-
dies. Using a quadruped robot as our primary test case, we
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Fig. 4 | The Optimization Pipeline for metatruss Structures. a The single-
generation optimization involving each training generation to update the active
gene pool via NSGA-Il-based selection, mutation, crossover, and initialization. (i).
The input setting includes the predefined topology, joint positions, symmetry
along the y = 0 plane, C-network configurations, and objectives. (ii). The initial
active gene pool is formulated through a tailored initialization operator. (iii). Dif-
ferent trajectories of the robotic behaviors resulted from simulation. (iv). Within
each GA iteration, simulated design trajectories undergo evaluation using specific
objective functions. (v). NSGA-II ranks and filters designs, retaining only top

performers. (vi). Retained designs generate the next generation via mutation and
crossover operators, complemented by additional designs from the initialization
operator. b The cross-generation optimization to replenish the elite pool from the
active pool. For each N generation, the remaining designs in the active gene pool
are moved to the elite pool, indicating the end of the iteration. Once the elite pool is
full, its designs are transferred back to the active gene pool. ¢ The performance
space of the updated designs, illustrating that operators can generate more
superior designs to improve the overall performance of the generation.

demonstrated that metatruss performance reaches diminishing
returns beyond a certain number of C-networks, supporting our
hypothesis that effective control can be achieved with relatively few
networks (see Performance with Varying C-network Channel Num-
bers). We then showcased the versatility of our approach by optimiz-
ing five distinct metatruss designs for diverse tasks ranging from
locomotion to shape-morphing (see Diversity in Task and Truss
Topology). Finally, we bridged the simulation-reality gap by building
and testing a physical prototype, confirming both the practical feasi-
bility of our designs and the fidelity of our simulator (see Physical
Validation). Detailed descriptions of the truss designs and their cor-
responding tasks can be found in Methods - Truss Topologies and
Tasks, with numerical results and implementation details in Methods -
Numerical Results and Implementation Details.

Metatruss simulator

Various approaches have been developed for simulating truss robots,
each with their own tradeoffs. Finite element methods (FEM), such as
Karamba3D, offer detailed analysis of load distribution and micro-
deformations but are computationally intensive®. Rigid body simula-
tors like Newton Game Dynamics®, Open Dynamics Engine*, Mujoco,
and Bullet’* provide a balance of speed and accuracy, making them
suitable for interactive use and optimization. Some researchers focus
on kinematic analysis, assuming quasi-static motion and fixed contact

points, which allows for simpler inverse kinematics solutions but limits
task diversity and dynamic scenarios”5%,

To simulate metatrusses, we employ a highly-damped dynamical
simulation model. Although rooted in dynamic simulations, this model
utilizes significant damping factors and incremental adjustments to
the rest lengths of connecting beams, effectively approximating quasi-
static behavior. This approach de-emphasizes the dynamic processes
in favor of the final, converged states. The model integrates four types
of forces: length-constraint forces, gravity, ground collision, and fric-
tion, which are calculated using explicit integration methods. The
incorporation of damping ensures that the system approaches a near-
equilibrium state at each step, approximating quasi-static behavior
while retaining computational efficiency. The model details can be
found in Supplementary Note 1: Simulator Details.

As genetic algorithm requires extensive evaluations across mul-
tiple generations of designs, and the result needs to be transferred to a
physical metatruss robot, our simulator needs to be both efficient and
accurate. To evaluate both aspects, we compared our simulator with
Mujoco. Using motor actuators and equality constraints in Mujoco, we
calculated the root mean square error (RMSE) of joint trajectories
between simulators, normalized by total displacement, showing an
average difference of 3.60%. Our simulator achieved computation
speeds over 340 times faster than Mujoco for 10,000 simulation steps
(see Supplementary Note 2: Simulator Comparison).

Nature Communications | (2025)16:8432


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63373-7

a A metatruss
example <

General graph
representation

Self-symmetric
C-network 1

Self-symmetric
C-network 2

C-network 3

Z

Growing
C-network 1

Growing
C-network 1

Growing

Fig. 5 | Metatruss Operators including C-network Initialization, Mutation, and
Crossover. a-j A four-C-network initialization process. One beam for each of the
four C-networks is randomly selected and assigned a valid C-network index,
adhering to C-network and beam symmetry constraints (a-d). Beams connected to

Inter-symmetric

\

A\

7

C-network 3

Adjacent Edges

Inter-symmetric
C-network 4

|

Growing
C-network 4

Completes
C-network configuration

Disrupting C-network
connectivity

those already assigned are also assigned with valid C-network indices through
iterative selection (e-j). k The valid mutation steps. The invalid mutations that
break symmetry (I) or disrupt C-network connectivity (m).

To validate our simulator’s accuracy, we fabricated a physical
prototype of a pillbug-like metatruss. We compared the tracked
experimental trajectory with the simulated trajectory over eight action
sequence cycles, finding a trajectory difference of 4.38% relative to the
total displacement of 86.0 cm (see Physical Validation). This close
alignment between experimental and simulation results demonstrates
the high accuracy of the sim-to-real transfer of our simulator.

Optimization framework with tailored genetic algorithm

In the field of VGT, researchers have developed various approaches to
optimize the control and motion of truss robots, focusing on the
actuation signals for individual beams or joints”'**, Some studies
have explored co-optimization of control and morphology*°*2. How-
ever, these methods typically assume independent control of each
actuator and often require continuous contraction ratios, which is not
suitable for our metatruss.

Implicit encoding methods have been used to represent element
attributes and actions in a continuous latent space. Compositional
pattern-producing networks (CPPNs) have been particularly effective
for voxel robots®*, excelling at generating complex designs with sym-
metry, repetition, and spatial continuity. These features align well with
voxel robots’ regular, Euclidean topology. However, truss structures
present challenges for CPPNs due to their non-Euclidean topology,
where the relationship between neighboring elements is not uniform or
continuous in space. Small changes in an actuator’s C-network index can
dramatically affect metatruss performance or invalidate the structure,
and the spatial properties at which CPPNs excel may not be beneficial.

Other approache,s such as the use of transformers® or
L-systems** for tree-topology robots, also face limitations when
applied to metatruss designs. These methods are well-suited for
acyclic, tree-like structures but struggle with the cyclic topology of
trusses. Moreover, the number of edges in our metatruss is sig-
nificantly larger than in typical limbed robots, adding another layer of
complexity to the encoding and optimization process.

Graph Neural Networks (GNNs) are naturally suited for cyclic
topologies like those in our metatruss system. However, information
degradation during message passing has long been a bottleneck®, and
for truss structures, which are supposed to be scalable, the general-
izability to more complex structures remains challenging for GNNs.

Given the unique challenges of metatruss optimization—including
C-network connectivity constraints, cyclic graph topology, and multi-
objective requirements—existing implicit encoding approaches prove
inadequate. Instead, we opt for discrete optimization methods, spe-
cifically genetic algorithms, which allow direct optimization on explicit
encodings. The flexibility of genetic operators enables us to tailor
them to our specific constraints. To address the multi-objective nature
of our problem, we implement the NSGA-II algorithm (see Supple-
mentary Note 4: NSGA-II Explanation), facilitating simultaneous opti-
mization of metatruss designs across multiple performance criteria.

Our optimization framework takes as inputs the truss topology,
initial joint positions, and target objectives. The framework optimizes
variables including C-network assignments, contraction levels, and
actuation sequences. Each design undergoes evaluation across multi-
ple objective functions, generating performance scores in a multi-
dimensional evaluation space. These scores then feed into the NSGA-II
algorithm, which ranks designs based on Pareto dominance and
crowding distance to guide selection. The selected designs get trans-
formed through our tailored genetic operators - specifically designed
to maintain connectivity and symmetry constraints - to generate the
next generation. To prevent premature convergence and maintain
design diversity, we implement an elite pool strategy that temporarily
preserves high-performing designs while allowing continued explora-
tion of the design space (see Methods - Elite Pool Details).

Design representation. To efficiently and concisely describe a meta-
truss design compatible with the genetic algorithm, we use a one-
dimensional integer array as its representation. We represent every
parameter, including the C-network assignment, contraction level, and
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actuation sequences in integers, and concatenate them into a 1D
integer vector. Specifically, this array is structured into three seg-
ments, each encapsulating specific design parameters of the meta-
truss (Fig. 2a):

* C-network Assignment: The initial segment of the array captures
the affiliation of each beam to a specific C-network. Integers
within this segment correspond to the indices of C-networks to
which each beam is assigned (Fig. 2b).

* Contraction Level: The second segment represents the preset
contraction levels for the beams. Each integer in this section sig-
nifies a preset level, which corresponds to a predefined contrac-
tion ratio (Fig. 2c).

* Actuation Sequences: The final section captures the dynamic
aspects of the metatruss design - the actuation sequences. Each
integer here indicates the on/off states for the air valves that
govern each C-network at every time step (Fig. 2d). The actuation
sequences are flattened into a one-dimensional array and
concatenated into the representation.

This encoding represents all the information of a metatruss
design as an integer vector that is suitable for the genetic algorithm to
optimize. The detailed definition of the representation can be found in
Supplementary Note 3: Representation Details.

C-network topology constraints. As shown in the design of the
actuators and joints(see Methods - Mechanism and Fabrication
Details), actuators within the same C-network share the same air

pressure through a continuous air channel network. This implies that a
C-network is an undirected connected graph. Any two actuators within
the same C-network need to be physically connected, and there exists
a path of actuators connecting them, where all the actuators in the
path are assigned to the same C-network. We define this as the con-
nectivity constraint to ensure the physical validity of the C-networks.

The second is symmetry constraint. Symmetry, a concept often
observed in nature, has been recognized for its ability to increase the
efficiency of robotic movements*®. By integrating symmetry into the
design and control of robots, the parameter space can potentially be
substantially reduced, thereby enhancing the search process’s effi-
ciency. Here, we define a symmetry constraint during the C-network
assignment optimization process. This involves defining symmetry at
various levels, including the joint, beam, and truss, and introducing the
C-network symmetry configuration (Fig. 3). The details of the defini-
tion of the symmetry can be found in Methods - Symmetry Definitions.

The formal definition for the constraints can be found in
Methods - Constraint Details.

Multi-objective computation pipeline. To optimize toward multiple
objectives, a weighted sum of multiple objective function evaluation
values is a straightforward solution. However, when different objec-
tives have conflicting requirements, the optimization often ends up at
a middle ground, which leads to a solution that is not performing the
best at any of the objectives.

One advantage of a genetic algorithm is that instead of optimizing
a single design, it optimizes a generation of designs where each design
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and morphologies at different times. g-i Lobster robot metrics: hypervolume,
energy efficiency, and walking distance. j Tentacle robot reaching three distinct
target positions. k, I Tentacle robot metrics: hypervolume and mean squared dis-
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has different advantages in some of the tasks. NSGA-Il is an algorithm
that encourages diversity in the designs through a non-dominated
sorting and a crowding distance sorting. Specifically, instead of sorting
in one dimension with a weight combination of performances, NSGA-II
computes a rank (R), which shows to what degree a design is not
dominated by other designs, where “dominates” means that a design
outperforms another on all objectives. Within the same rank, NSGA-II
computes a crowding distance (CD) to evaluate how many designs with
similar performance exist, and sort them later to encourage design in a
sparse performance space to enhance the diversity. The details of
NSGA-II can be found in Supplementary Note 4: NSGA-II Explanation.

Each optimization starts with the input of the given topology and
initial joint positions, the symmetry and C-network configurations, as
well as the objectives (Fig. 4a). A generation of designs is initialized,
simulated, and evaluated through multiple objective functions. The
resulting objective values are sorted through NSGA-Il. The top-
performing designs are kept while the rest are discarded. Every few
generations, the top-performing designs are moved to an elite pool.
Once the elite pool is full, all the elite designs are moved back to the
active pool and continue the evolution. The details can be found in
Methods - Optimization Process.

In generation-based optimization, a common challenge arises
when a subset of designs consistently outperforms others, leading to

their propagation through mutation, crossover, or regeneration
operators. As a result, less dominant designs may be prematurely
discarded, losing the opportunity to evolve and show their potential.
To address this issue, we introduced an elite pool mechanism (Fig. 4b).
This approach maintains a separate elite pool in addition to the tra-
ditional evolution pool. At regular intervals, the best-performing
designs are moved temporarily to the elite pool, creating space for
newer designs to evolve in the main pool. After a few iterations, these
elite designs are reintroduced to the evolution pool for further opti-
mization, allowing for a more balanced and diverse exploration of the
design space and improved Pareto performance. Details of the elite
pool mechanism can be found in Methods - Elite Pool Details.

Tailored operators. Default genetic algorithm operators do not con-
sider the relationship and constraints between the digits. They ran-
domly generate, change, or exchange the digits within the domain.
However, a metatruss representation has symmetry and connectivity
constraints, which are not explicitly expressed in the integer vector
representation. Therefore, to maintain both the validity of the two
constraints and the randomness of the search, we developed custom
initialization, mutation, and crossover operators (Fig. 5). For initi-
alization, we need to create a random C-network from an empty
metatruss. Instead of randomizing the digits and checking if the
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joint positions at the beginning and ending of each action sequence cycle are
highlighted with peak point markers. e-g Trajectories of each action sequence
cycle from the experiment and simulated trajectories (e-g: joint 1-3). All the
cycles are segmented from b-d at the highlighted points, with starting posi-
tions aligned at the zero coordinate.

constraints are valid, we developed a network growth approach. First,
it randomly generates new C-network-assigned edges on top of exist-
ing C-networks, which assures the connectivity constraint. Meanwhile,
the C-network index is filtered on the basis of the symmetry con-
straints. This ensures the symmetry constraint, connectivity con-
straints of C-networks, and the randomness of the search. The details
can be found in Methods - Operator Details.

Performance with varying C-network channel numbers

There exists a trade-off between control complexity and task perfor-
mance. In an extreme scenario, if the number of C-networks equals the
number of beams - implying that each actuator can be controlled
independently — the metatruss will possess the maximum DOFs for
control, therefore having the potential to achieve optimal perfor-
mance. However, this is likely unnecessary and generates a tre-
mendously large parameter space (e.g., the metatruss in Fig. 1 would
have had 150 air flow control units if each actuator is individually
controlled), leading to over-complicated control setup requirements.
On the other hand, a robot with too few independently controllable
actuators may struggle to perform multiple distinct tasks.

We investigated the relationship between the number of
C-networks and robot performance using a quadruped robot model
(Fig. 1d). The robot was trained to perform four tasks: walking, turning,
tilting, and crouching, with C-network numbers ranging from 2 to
64 (Fig. 6a).

Our results reveal a non-linear relationship between performance
and C-network count. For simpler tasks like tilting and crouching,
which require only a single-step action, all five robots reach the max-
imum value (Fig. 6b). In the task of tilting, the 2-C-network robot takes
378 iterations to converge, while the 8-C-network robot and others
require 230 or fewer iterations. As tasks become more complex with
longer horizons, a performance gap emerges between the 2-C-net-
work, 8-C-network, and 16-C-network robots. Nevertheless, the per-
formance difference diminishes as the number of C-networks
increases. For robots with more than 16 C-networks, there is no sig-
nificant difference in converged performance, with only a 4.8% varia-
tion in Pareto front volume among 16, 32, and 64 C-networks (Fig. 6d).

Statistical analysis using one-way ANOVA confirmed significant
differences among the five groups (p < 0.001, n* = 0.138). Post-hoc
comparisons using Tukey’s HSD showed that performance improved
significantly when increasing from 2 to 8 C-networks (p = 0.003), but
differences became statistically insignificant beyond 16 C-networks (all
p > 0.877) (Fig. 6¢).

These findings support our hypothesis that an optimized
C-network design can achieve competitive performance with a rela-
tively small number of C-networks, balancing task performance with
control system complexity. The details of the implementation and
analysis can be found in Methods - Numerical Results and Imple-
mentation Details.

Diversity in Task and Truss topology

To demonstrate the versatility of our metatruss method, we explored a
variety of truss topologies and functional objectives beyond simple
locomotion tasks. Previous work on Variable Geometry Trusses (VGTs)
has primarily focused on single-function designs or limited morpho-
logical changes due to control complexity’®*. Similarly, other
morphing robots have typically been optimized for specific tasks such
as locomotion on different terrains or in water>*. Traditional limbed
robots, while versatile in movement, are limited in their ability to
perform significant shape changes*®.

Our method, in contrast, enables the design of multi-functional,
highly adaptable structures while maintaining a simplified control
system. It allows for both complex locomotion and volumetric shape
morphing. This capability sets our approach apart from both tradi-
tional VGTs and limbed robots.

We hypothesized that our approach could optimize trusses for
diverse, potentially conflicting objectives within a single design,
including both locomotion and shape-approximation tasks. To test
this, we developed four distinct examples: a quadruped robot, a shape-
shifting helmet, a lobster-inspired walking robot, and a tentacle-like
actuator (Figs. 1b, 7).

The quadruped robot was optimized for four motion objectives:
walking, turning, tilting, and crouching (Fig. le, Supplementary
Video S1). This demonstration served two purposes: first, to show that
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the metatruss could achieve traditional robotic tasks like locomotion
and pose changes, and second, to demonstrate that our computational
pipeline enabled multiple tasks with a single physical configuration.
The robot successfully performed all four motions, with performance
improving as the number of C-networks increased up to a threshold
value (Fig. 6b).

The shape-shifting helmet (Fig. 7a-d) demonstrated our meth-
od’s capability for precise volumetric shape morphing, successfully
transforming between two distinct target shapes while maintaining
structural integrity. This capability, which is not typically achievable
with traditional limbed robots, could enable robotic functionalities
from adapting morphology to meet different environmental con-
straints and functional requirements to precisely approximating dif-
ferent shapes for esthetic purposes.

The lobster-inspired robot (Fig. 7f-i) incorporated energy effi-
ciency alongside locomotion speed, demonstrating improved walking
performance and optimization efficiency compared to single-objective
optimization. This multi-objective approach extends beyond typical
terrain-specific optimizations that focus solely on speed, demon-
strating the potential for sustainable locomotion in robots with
numerous actuators.

The tentacle-like actuator (Fig. 7j-1) achieved high precision in
reaching multiple 3D target positions, with error rates below lemm
for a 173 mm beam length, demonstrating the method’s capability for
precise shape control. This accuracy suggests promising applications
in high-precision manipulation tasks using truss robots.

These examples demonstrate our method’s ability to optimize
complex, multi-functional truss designs capable of both locomotion
and significant shape changes while maintaining simplified control.
Our results consistently met or exceeded performance expectations,
highlighting our approach’s effectiveness in creating versatile, adap-
tive robotic systems that bridge the gap between traditional limbed
robots and highly deformable structures. For detailed information
about the topologies and tasks, refer to Methods - Truss Topologies
and Tasks.

Physical validation

To demonstrate the feasibility of our metatruss design and assess the
accuracy of our simulator, we constructed and tested a physical pro-
totype called the “pillbug” (Figs. 11, 8a, Supplementary Video S5). This
prototype was designed to perform a walking task with a lowered
body, optimized for both locomotion speed and minimized average
maximum height. The design was selected from the Pareto front after
800 iterations of training and fabricated using previously established
methods®,

We compared the experimental performance of the pillbug with
our simulation predictions by tracking the trajectories of three key
joints over eight action sequence cycles (Fig. 8b-d). Our analysis
revealed a good overall agreement between the simulated and
experimental results, with an average trajectory discrepancy of 3.77 cm
and an average static position discrepancy of 1.26 cm. For context, the
fully contracted length of each beam in the prototype is 17.3 cm, and
the fully extended length is 24.5 cm. The robot achieved a locomotion
speed of 2.45 cm/s (approximately 0.048 body length per second),
demonstrating effective mobility performance that validates both our
control strategy and mechanical design. The total displacement over
eight cycles was 86.0 cm.

The prototype demonstrated high consistency in its motion pat-
terns, with an average self-trajectory cycle discrepancy of 0.54 cm. This
indicates reliable and repeatable performance despite inherent var-
iances in the physical system, such as friction differences between
pneumatic components.

Our results validate the effectiveness of our metatruss design
approach and highlight the potential for physical implementation of
optimized designs. They also reveal areas for future improvement,

such as accounting for friction variances in the simulation and
exploring closed-loop control methods for enhanced accuracy in long-
term operation. For more detailed information, please refer to the
Methods section, Methods - Physical Prototype and Simulator Accu-
racy Validation.

Discussion

In this paper, we present a metatruss design concept with a simplified
control system by introducing the C-network mechanism. We develop
a tailored multi-objective genetic algorithm to optimize the design of a
metatruss under unique design constraints of the system that are
discrete and highly relevant to the topology, such that the metatruss
can achieve multiple complex motions with a limited complexity of the
control system.

We see the potential of our metatruss design method going
beyond pneumatically-driven truss robots. Other linear actuators sui-
table as beams in a truss-robot context could be adapted, including
linear actuating beams driven by linear motors, shape memory alloy,
and soft actuators such as liquid crystal elastomer*’ or muscle-based
biohybrid actuators’®**. Another potential direction is to explore
metatruss systems without a required physical subnetwork connec-
tion. Specifically, a subset of beams can be actuated under the same
control signal but does not need to form an interconnected subnet-
work. For example, liquid crystal elastomers of different colors can be
engineered to respond to remote global lighting with specific
wavelengths®. In such cases, the constraints from connectivity are
alleviated, but the benefits of synergy and reduced control system
complexity still stand. This may give us more flexibility on the
algorithm side.

Our method shows potential for application in other emerging
fields of robotic metamaterials and structures. Recent work has
introduced strategies to design and construct classes of robotic
metamaterials and 4D printed lattice structures that incorporate
complex, multifunctional elements in discrete architectures®-¢. These
approaches create materials capable of outputting multi-DoF motions,
sensing capabilities, and programmable thermal and mechanical
responses through the manipulation of the properties of local discrete
units within 2D or 3D lattices. Our tailored multi-objective genetic
algorithm, originally developed for metatruss optimization, could be
adapted to optimize these lattice-based structures and potentially
automate and speed up the design process, optimizing the arrange-
ment and properties of discrete elements to achieve more complex
macro-scale performances or motions while respecting manufacturing
and material constraints.

Our metatruss design also shows potential for a fully mechanical
implementation of the control system. While our current imple-
mentation relies on external control signals, the optimized open-loop
control sequences could be encoded directly into mechanical logic
circuits as future work. Taking our pillbug robot as an example, its 4-bit
binary control sequence with 4 time steps can be implemented using a
2-to-4 multiplexer circuit requiring only 14 logic gates including one
clock unit Supplementary Fig. 3. Using pneumatic logic gates based on
bistable membranes®~®, where air pressure differences control the
blocking of air tubings, these control circuits could be miniaturized
and integrated directly into the metatruss structure. With mechanical
logic units potentially scalable to 1cm and metatruss beams expand-
able to 20 cm, a single metatruss robot could carry its own control
circuit board. This approach would significantly simplify the control
infrastructure, requiring only a constant air pressure source - either
tethered through a single tube or completely untethered with an
onboard compressed air tank. This demonstrates how our metatruss
design could evolve from externally controlled systems to autono-
mous, mechanically controlled robots.

Lastly, we can further explore alternative simulators and optimi-
zers using auto-differentiable simulation*? or density method*, which
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can potentially speed up optimization efficiency through gradient-
based methods and provide more design capabilities. For example, the
density method may be used to explore an optimal initial topology of
the truss structure based on a given three-dimensional mesh, as well as
explore the possibility of reconfigurable topology for multi-stage
robotic motions or tasks.

Methods

Mechanism and fabrication details

The metatruss design builds upon the PneuMesh framework?®®, con-
sisting of two key components: pneumatic linear actuators serving as
length-changeable beams and specialized joints that connect them.
Like other Variable Geometry Truss (VGT) systems, a metatruss
achieves shape changes through the coordinated expansion and con-
traction of these beams. We present the complete mechanism and
fabrication details here for comprehensiveness. The metatruss system
is fundamentally based on two designs: a discrete-preset-contraction
beam system and a selective-air-channel joint network.

Actuator design. Each actuator is a syringe-like pneumatic device
with an internal air channel and openings at both ends, allowing
bidirectional airflow (Fig. Supplementary Fig. 5a, b). Under positive
pressure, all actuators expand to their maximum length. Under
negative pressure, each actuator can contract to one of several pre-
set lengths.

As shown in Figure Supplementary Fig. 5d, the piston component
contains three positioning holes where a C-shaped ring (blocker) can
be installed (Fig.Supplementary Fig. 5¢c). When a negative pressure is
applied, the piston retracts until it reaches the blocker. This design
enables four discrete contraction ratios: 0% (no blocker), 12%, 24%, and
36%, corresponding to the three blocker positions (Fig.Supplemen-
tary Fig. 5d).

This discrete-ratio design serves two purposes. First, it simplifies
the parameter space to discrete integers, making it compatible with
combinatorial optimization methods. Second, it allows preset mor-
phological variations without increasing the control complexity.

Joint design and C-network implementation. The joints, which con-
nect multiple actuators, incorporate an innovative selective-air-channel
design (Fig. 1a, b, e). These channels enable specific groups of actuators
to share the same air source, ensuring synchronized activation. We
refer to these interconnected actuator groups as C-networks (Control
networks). Importantly, a single joint can accommodate two indepen-
dent C-networks without cross-interference, allowing for complex
control patterns while maintaining system simplicity.

The joint design process involves several stages of development.
First, actuators are assigned to specific C-networks. Then, internal air
channels are generated for each C-network passing through the joint.
The channel geometry is optimized using Kangaroo, a geometric
optimization package, with two primary considerations: maintaining
minimum separation between air channels and between channels and
outer walls to ensure air-tightness, and minimizing channel curvature
to facilitate post-processing removal of support material (Fig. Sup-
plementary Fig. 5e, f). The final joint structure is created using boolean
difference operations in Rhino, a parametric design tool (Fig.Supple-
mentary Fig. 5g).

System constraints and challenges. While these mechanisms add
flexibility to the system, they also introduce several key constraints. All
actuators within a C-network must form an interconnected group to
satisfy connectivity requirements. The C-networks must maintain
prescribed symmetry patterns, and both contraction ratios and con-
trol signals are limited to binary/discrete states. These constraints
simplify control but create significant challenges for system optimi-
zation, particularly as the metatruss scales up in size and complexity.

Navigating this discrete solution space within such a structured fra-
mework becomes increasingly challenging with scale.

Fabrication process. The fabrication process combines both 3D-
printed and off-the-shelf components. We 3D print the pistons,
blockers, end caps, and joints using Formlab 3b, while using com-
mercial syringes for actuator shells and rubber tubing for pneumatic
connections. The assembly process involves using super glue to con-
struct the actuators, with barb structures 3D-printed directly on ports
to secure the friction-fit rubber tubing connections (Fig. Supplemen-
tary Fig. 5a, b). For pneumatic actuation, we used an ASLONG AP-370
air compressor (7.73 psi maximum, 0.5-1.5 L/min) for positive pressure
and a PYP370 vacuum pump (=7.15 psi, 0.5-2.5 L/min) for negative
pressure, controlled via Arduino UNO and electromagnetic valves.
Additional components included: Z Rapid iSLA600 3D printer for
joints and pistons, silicone tubing (50 durometer, 1.5 mm inner dia-
meter), and polypropylene pipes (6 mm inner diameter) cut using a
manual electric grinder.

The completed assemblies are shown in Figure Supplementary
Fig. 5, with examples of both the quadruped (Fig. Supplementary
Fig. 5h) and pillbug (Fig. Supplementary Fig. 5i, j) configurations
demonstrating the versatility of the design.

Problem statement of metatruss optimizer

Optimizer. Given the topology of a metatruss, the initial joint posi-
tions, and optimization configurations, which include the N tasks, the
lengths of actuation sequences, the number of C-networks, and the
symmetry of the C-networks, we want to find an optimal C-network
assignment, the contraction level of each actuator, and N open-loop
control sequences.

N metatruss motion trajectories will be generated based on N
actuation sequences. Each task is a combination of one or more
objective functions. And each simulated trajectory will be evaluated by
one or more objective functions. N tasks, and N control sequences
correspond to M objective functions and M performance scores.

The number of C-networks and the C-network symmetry are given
at the beginning of the optimization, where C-network symmetry
indicates whether a C-network is self-symmetric of inter-symmetric
with respect to another C-network Topology Constraints.

We want to find the optimal C-network assignment, contraction
levels, and open-loop control sequences to maximize the
performance.

Symmetry definitions

We define the self-symmetry and inter-symmetry of joints and beams,
as well as the symmetry definition of a metatruss (Supplementary Fig.).
On top of that, we define the self-symmetry and inter-symmetry of
c-networks as the C-network symmetry configuration used for
c-network mutation and crossover.

Joint Symmetry

Joint Inter-symmetry: Two joints are inter-symmetric if they are
mirrored to each other against the mirror plane, such that the segment
connecting them is perpendicular to the plane and the distance from
the two joints to the mirror plane is equal. Inter-symmetry is denoted
by ¢ . For example, v, © v, represents for inter-symmetric joints v,
and vp.

Joint Self-symmetry: A joint is considered self-symmetric if it is
located on the mirror plane. Symbolically, we use © to represent self-
symmetry. For example, © v represents that joint v, is self-symmetric.

Beam Symmetry. The symmetry extends to beams as well:

Beam Self-symmetry: If both joints of a beam are self-symmetric,
the beam itself is deemed self-symmetric (Fig. 3a).

Beam Inter-symmetry: A pair of beams is inter-symmetric if the
corresponding pairs of joints are inter-symmetric or if one pair is inter-
symmetric and the other pair is self-symmetric (Fig. 3b).
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We categorize beams into sets E; for self-symmetric beams and £,
for inter-symmetric beams, satisfying E; + E, = E.

Truss Symmetry. A truss is defined as symmetric if there exists a
mirror plane such that every beam is either self-symmetric or inter-
symmetric. Although our paper exclusively utilizes symmetric trusses,
our algorithm has the flexibility to be applied to asymmetric trusses
as well.

C-network Symmetry. One of our goals of optimization is to have
the C-networks be either self-symmetric or inter-symmetric, which
allows symmetric motions. We represent the ith C-network by E;,
denoting the set of beams sharing the same C-network index ic, where
ic € Ic. C-network Self-symmetry: A C-network E; is considered self-
symmetricif Ve, € E;, e, € E;suchthate,, © e, or © e,. C-network
Inter-symmetry: Conversely, a pair of C-networks E; and E; is deemed
inter-symmetric if, V e,, € E;, 3 e, € E;such that e, © e,,. The sum of all
C-networks is represented by "< ' E;=E.

For each optimization task, we predefined the C-network sym-
metry configuration (Fig. 3c), meaning that we specified the total
number of C-networks as well as the count of inter-symmetric and self-
symmetric C-networks. Within the C-networks identified as self-
symmetric or inter-symmetric (Fig. 3c), we further describe relation-
ships such as i, < ic;, which signifies the C-network with index i, is
inter-symmetric with the C-network indexed i¢,, or ®i¢,, meaning the
C-network with index i, is self-symmetric.

Constraint details

Symmetry constraints. We define two types of symmetry among
joints, beams, and the truss: self-symmetry and inter-symmetry, with
respect to a given mirror plane. For joints and beams, inter-symmetry
occurs when two joints or beams mirror each other against the plane,
while self-symmetry occurs when they mirror themselves (Fig. 3a, b).
At the truss level, a truss is defined as symmetric if a mirror plane exists
such that every beam is either self-symmetric or inter-symmetric.
Although our paper exclusively uses symmetric trusses, our algorithm
has the flexibility to be applied to asymmetric trusses as well.

A C-network is also assigned with symmetry in the metatruss. A
C-network is considered self-symmetric if it mirrors itself against the
middle plane. If two C-networks mirror each other against the plane,
they are considered inter-symmetric.

For each optimization task, we predefine the C-network symmetry
configuration (Fig. 3c), which means that we specify the total number
of C-networks and the count of inter-symmetric and self-symmetric C-
networks. Empirically, we set 33% of the C-networks as self-symmetric.
For example, in a quadruped robot with six C-networks (Fig. 3c), four
C-networks are inter-symmetric, and two C-networks are self-
symmetric.

Connectivity constraint. In our optimization task, we aim to ensure
that all C-networks are connected and that they adhere to either self-
symmetry or inter-symmetry in accordance with the predefined
C-network symmetry configuration. The connectivity constraint
ensures that the C-network forms a network, enabling the transmission
of control signals through air pressure. We have three connectivity
constraints in the system:

* Adjacent Beams: Two beams are termed adjacent if they share a
common joint. This connection represents a physical connection
between the two beams at that specific joint.

Connected Beams: Building on adjacency, we introduce the
concept of connected beams. Two beams are classified as con-
nected if there is a sequence of adjacent beams starting from the
first beam and ending at the second. In other words, one can
traverse from one beam to the other through this series of adja-
cent connections.

Connected C-network: Extending the idea to a whole C-network,
a C-network is determined to be connected if every pair of beams

within that C-network is connected. This definition guarantees
that there’s a navigable path between any two beams in the C-
network, either directly through adjacency or indirectly via a
sequence of adjacent beams.

Optimization process in one generation with NSGA-II

We introduce our optimization pipeline, a tailored genetic algorithm
(GA) that is illustrated in Fig. 4 by using the previously introduced
quadruped robot (Fig. 1d, i) as an example. The design of a metatruss
is situated in a discrete combinatorial space. The truss structure is
inherently a network composed of multiple subnetworks -
C-networks - that have shared nodes, but their edges are exclusive.
The design of subnetworks involves C-network indices, contraction
levels, and binary control sequences, which are all discrete in nature.
While there are methods that treat discrete variables in a continuous
manner, often used in topology optimization, such as a density-
based approach®, they do not fit our problem due to the con-
nectivity constraint we impose: all beams within the same C-network
need to belong to the same subnetwork in a truss network to ensure
they are interconnected. This constraint is not easily expressed in a
continuous and differentiable form, which conventional optimiza-
tion algorithms would require.

Given this constraint, we turn to the GA®, a method adept at
handling discrete and combinatorial search spaces. To ensure our
specific constraints are respected, we base on the standard GA and
customize its operators, enabling it to efficiently explore the design
space while following our C-network connection constraints and the
discrete nature of parameters.

GA is first used to initialize a generation of designs
{Do,Dy, ...,Dy,} where N is the population size of one generation
(Fig. 4a i, ii). Each design is simulated following N, action sequences,
which are evaluated by the corresponding subtask objective functions
and yield N fitness values (Fig. 4a iii-v).

We use Non-dominated Sorting Genetic Algorithm II (NSGA-II)*?
for selecting designs, keeping some designs, and removing others. To
fill up the gene pool again, we use mutation and crossover on the kept
designs, and add the newly generated ones through mutation, cross-
over, and initialization into the kept pool (Fig. 4a vi). This renewal of
the gene pool increases the chance of the algorithm reaching higher-
performing designs over time, potentially moving them to a new
Pareto Front.

Elite pool strategy for optimization across generations

At this stage, we introduce two distinct gene pools: an active gene pool
with a capacity of N, designs, and an elite gene pool with a capacity of
N, designs (Fig. 4b). Each generation, the designs in the active gene
pool are assessed and sorted using the NSGA-II algorithm, based on
Pareto dominance and crowding distance. A fixed percentage p of top-
performing designs, referred to as elite designs, are preserved, while
the rest are discarded. The active gene pool is then updated with new
designs generated through crossover, mutation, and regeneration
operators.

Every N, generations, instead of simply preserving the elite
designs within the active gene pool, these elite designs are temporarily
moved to the elite gene pool. This allows the remaining non-elite
designs to continue evolving, providing them with the opportunity to
further optimize and potentially exceed the current elite designs.

Once the elite gene pool reaches its capacity, the designs it con-
tains are moved back into the active gene pool. This cyclical process
encourages competition between both elite and non-elite designs. The
elite gene pool thus serves two key purposes: initially, it protects high-
performing designs, preventing premature convergence, while pro-
moting diversity and exploration. Later, as elite designs are reintro-
duced into the active pool, it drives further exploitation of
advantageous designs for high-quality solutions.
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By alternating between the preservation of elite designs and their
reintegration, this mechanism helps balance exploration and exploi-
tation, ultimately leading to better Pareto performance (Fig. 4c).

In our paper, we use N, equal to N, and p = 20%. We move elites to
the elite pool every Ny = 5 generations. Therefore, the elite pool
becomes full and is returned to the active pool every Ng/p = 25 gen-
erations. The detailed number of N, for each metatruss can be found in
Numerical Results and Implementation Details.

Operators

With the constraints of symmetry and connectivity in place, traditional
GA operators fall short. The standard processes, such as initialization
that creates a new gene mutation that randomly selects and alters
digits within a single gene, and crossover that involves swapping digits
between two genes, do not align with the unique dependencies
introduced by the symmetry and connectivity constraints in the
metatruss. Simply applying the standard GA operators would violate
symmetry and connectivity within the C-networks and beams. There-
fore, we must employ customized operators that are tailored to these
constraints. In the following sections, we will introduce three such
operators that have been designed to function within the constraints
of our optimization problem.

Initialization of C-network Indices. Standard initialization methods in
GA are inadequate to navigate the unique challenges posed by our
system’s C-network configurations and symmetry constraints. There-
fore, we have designed a specialized initialization operator that
respects both symmetry and connectivity constraints.

The algorithm starts with an unassigned truss structure graph and
progressively employs the C-network configurations. The first step
involves earmarking a single beam for each C-network based on its
symmetry property (Fig. 5a-d). Specifically, beams selected for self-
symmetric C-networks are self-symmetric; for inter-symmetric C-net-
works, a beam and its inter-symmetric counterpart are chosen
simultaneously.

Once this anchor layer of beams is assigned, the algorithm moves
to the iterative phase (Fig. 5e-j). Here, it selects unassigned beams that
are adjacent to already-assigned beams. The C-network assignment for
these beams adheres to two key criteria: i) they must be adjacent to a
beam that shares the same C-network, and ii) their symmetry proper-
ties must align with the chosen C-network. This ensures that both
connectivity and symmetry constraints are satisfied.

This iterative process continues until no unassigned beams
remain, thereby initializing designs that are feasible and optimized for
the subsequent stages of the genetic algorithm. The detailed algorithm
for the initialization and assignments of C-network indices is explained
in Algorithm: Initialization Operator.

Mutation. The mutation process introduces randomness into the
C-network connections. It may involve changing the C-network
assignment of a beam while maintaining the connectedness of
beams in the same C-network. The aim here is to allow the exploration
of the solution space beyond the initial population and to prevent the
algorithm from getting stuck at local optima (see Algorithm: Mutation
Operator).

Given the unique constraints of our problem, a specialized
mutation operator (Fig. 5k) is necessary for effective optimization.
Governed by a pre-defined probability p,,, the mutation process aims
to explore the design space while ensuring C-network connectivity.
During the mutation process (Fig. 5k), given a design D,,, from survived
designs, a random beam e € D,, has a p,, chance to be selected for
mutation. The beam’s C-network may be altered, subject to the fol-
lowing conditions: i) The new C-network index i,, must be one of the
adjacent C-network indices, and ii) If e is self-symmetric, the new
C-network i,,, must also be self-symmetric. Otherwise, there is no inter-

symmetric beam for the inter-symmetric C-network. If e has an inter-
symmetric beam ¢, the C-network index of e will be altered
accordingly.

A fail-safe checking mechanism will be applied each time a
mutation is applied. If the mutation results in the disconnection of a C-
network, the operation will be reverted (Fig. 51, m). The iterative pro-
cess will continue until a random number r exceeds p,,. This operator
ensures that the mutation is both random and constrained, facilitating
the traversal of the design space without violating the system’s struc-
tural or functional integrity.

Constrained crossover operator for design synthesis. The crossover
operation (see Algorithm: Crossover Operator) leverages two ran-
domly selected surviving designs as parent designs, aiming to create
offspring with features from both. The process is analogous to the
mutation operator but involves the exchange of beams between two
designs instead of altering beams within a single design.

Briefly, a beam €? is randomly picked from the first parent design,
and its corresponding beam e} in the second parent is identified. If
applicable, the C-network indices of the two beams are then swapped,
along with their inter-symmetric counterparts. A fail-safe checking
ensures that the swapping adheres to the symmetry and connectivity
constraints. The operation iterates until a successful crossover is
achieved, thereby synthesizing new designs while preserving the
requisite constraints.

Truss topologies and tasks

Quadruped robot. The quadruped robot was designed with 150
actuatable beams arranged in a symmetric configuration. The robot’s
structure consists of four legs connected to a central body, maintain-
ing bilateral symmetry along its longitudinal axis. This symmetry was
reflected in the C-network assignments, with 30% of the C-networks
designated as self-symmetric and the remainder as inter-
symmetric pairs.

The quadruped was optimized for four distinct tasks: 1. Walking:
Forward locomotion along the x-axis. 2. Turning: 90-degree rotation
around the z-axis. 3. Tilting: Changing the orientation of the robot’s
top surface. 4. Crouching: Lowering the overall height of the robot.

These tasks were chosen to demonstrate the robot’s ability to
perform diverse movements using a single optimized configuration.
The performance of the quadruped across these tasks with varying
numbers of C-networks is detailed in the Performance with Varying
C-network Channel Numbers section.

Shape-shifting helmet. We designed a shape-shifting helmet with two
functional objectives. The two objectives represent specific target
shapes the robot is trained to achieve. For each objective, the goal is to
let the assigned key joints approximate the corresponding target
positions (Fig. 7a), while maintaining the rest of the non-key joints at
their original locations as much as possible. When computing, we
assign each joint a weighting factor. The value of the weight is based on
each joint’s proximity to the closest key joint along the beams. The
weight of each joint diminishes as it moves further from the key joints,
and the key joints themselves carry the maximum weight (Fig. 7b).

Figure 7c shows the resultant shape transformations. As demon-
strated, the helmet effectively approximates each target shape (Sup-
plementary Video S2). The training performance corresponding to
each objective is depicted in Fig. 7d,e. The plots show that the
morphing helmet’s ability to approximate target shapes improved
steadily over the iterations.

Lobster robot trained for energy efficiency. We use a lobster-
inspired walking robot to study how energy efficiency can be inte-
grated into the functional objective (Fig. 7f, Supplementary Video S3).
The robot that walks with energy efficiency has two subtasks. One
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subtask is to achieve high locomotion speed by evaluating the dis-
placement of the centroid after the action sequence is completed. The
second subtask is to minimize the energy consumption of the robot,
which is calculated by accumulating the axial force and displacement
of all joints along time steps (see Supplementary Note 5: Objective
Functions section for details).

Figure 7g-i shows the lobster performance with iterations. We
observed that, although all the metrics are improving, using multiple
objectives can enhance the search efficiency and quality. For example,
when searching for a solution for both the locomotion task and energy
efficiency task, the searchis faster and converges at a better result than
searching for locomotion only (Fig. 7h).

Tentacles. We also demonstrated how the metatruss method could be
utilized to design a tentacle actuator that approaches multiple target
locations in a volumetric space with its end joint (Fig. 7j), with its
training performance reported (Fig. 7k, 1).

The joint at the most distal position of the tentacle is designated
as the key joint. The tentacle is assigned three objectives, each
including one subtask of reaching the target point. The three subtasks
are to reach three different target points, each situated at the centers
of the green dots (Fig. 7j, Supplementary Video S4).

This task demonstrates the metatruss’s effectiveness in tasks
requiring precision. By the 800th iteration, the key joint is able to
achieve proximity to each target position with a distance of less than
le?mm, with each beam extending to a maximum length of 173mm.
The tentacle shown in Fig. 7j is one of the designs selected from the
Pareto front, exhibiting the closest distances to the three respective
target positions, with deviations of 6.0lmm, 2.06mm, and 3.37mm.
This design is picked based on the smallest standard deviation of the
three fitness values. It indicates the tentacle’s ability to closely
approach all three targets within a single design despite the inherent
conflict of reaching three points.

Pillbug robot. While the previous examples demonstrate the diversity
of achievable morphologies and tasks, the Pillbug robot was designed
specifically to showcase the physical feasibility of our metatruss design
and to assess the accuracy of our simulation. The Pillbug was opti-
mized for two tasks similar to those of the quadruped robot: walking
forward and lowering its body.

The robot’s structure resembles a pillbug but with four legs, fea-
turing two smaller forelegs and two larger back legs. It consists of 50
actuatable beams, arranged to allow for both locomotion and body
posture changes. We assigned an objective with two subtasks: firstly, to
achieve a high locomotion speed, and secondly, to minimize the
average maximum height of the metatruss robot. This combination of
subtasks was chosen to create a low-profile, efficient walking motion.

After optimization, we selected one design from the Pareto front
for physical fabrication. The fabrication process followed the
approach described in our previous study*. The physical prototype
was actuated to complete its action sequence across eight cycles, with
the trajectory tracked across three of its joints for comparison with the
simulated results.

Detailed information about the Pillbug robot’s design, fabrication,
and the comparison between experimental and simulated results can
be found in the Physical Prototype and Simulator Accuracy Validation
section.

Numerical results and implementation details

Implementation details. In our study, we use the notation ¢ to
indicate inter-symmetric channels and © to denote self-symmetric
channels. We implemented various metatruss designs with different
C-network configurations. The quadruped design with 8 channels fea-
tures a symmetric topology, with channels configured as 0 © 1,2 ¢ 3,
465, 06, ©7 comprising 6 inter-symmetric and 2 self-symmetric

channels. A simpler quadruped design with 2 channels maintains
symmetry with both channels being self-symmetric (® 0, © 1).

We also explored more complex quadruped designs: a 16-channel
version with 4 self-symmetric and 12 inter-symmetric channels, a 32-
channel version with 8 self-symmetric and 24 inter-symmetric chan-
nels, and a 64-channel version with 16 self-symmetric and 48 inter-
symmetric channels. The helmet design exhibits symmetry with three
self-symmetric channels (® 0, ® 1, © 2), while the lobster design is
symmetric with two inter-symmetric and two self-symmetric channels
(0 ©1, 2, ®3).Notably, the tentacle design is asymmetric, consisting
of four asymmetric channels (0, 1, 2, 3).

In our optimization process, we set the active pool size equal to
the elite pool size, with an elite percentage of 20% in every generation.
For each iteration, we retained 50% designs, generating 35% new
designs through mutation and 10% through crossover operations,
while introducing 5% new random initializations. The pool size is scaled
according to the C-network numbers: 128 for the 8-channel quad-
ruped, 48 for the helmet, 64 for both the lobster and tentacle, 32 for
the 2-channel quadruped, 256 for the 16-channel quadruped, 512 for
the 32-channel quadruped, and 1024 for the 64-channel quadruped.

We conducted our computations using Google Cloud Computing
with 224 cores, achieving an average optimization time of 8 hours and
2 minutes for the 8-channel quadruped over 1000 iterations.

Performance analysis with varying C-network numbers. To investi-
gate the relationship between the number of C-networks and robot
performance, we conducted a series of experiments using a quad-
ruped robot model. The robot was trained to perform four distinct
tasks: walking (maximizing forward distance), turning (90-degree
rotation), tilting (changing top orientation), and crouching (lowering
height). We tested configurations with 2, 8, 16, 32, and 64 C-networks,
always setting 30% as self-symmetric and the rest as inter-symmetric.
This 30% ratio was chosen empirically, and future work could explore
the optimal ratio for different robot configurations and tasks.

The genetic algorithm was run for 1000 iterations for each con-
figuration. We used the active pool size of 128, with 64 designs retained
after each iteration. New designs were generated through mutation (45
designs) and crossover (13 designs), with 6 new random initializations
per iteration. The elite pool capacity was also set to 128.

Performance was evaluated using the hypervolume of the Pareto
front at the 1000th iteration. The hypervolume metric was chosen as it
provides a scalar measure of the quality of a Pareto front in multi-
objective optimization, capturing both the spread and the proximity to
the ideal point. It was calculated using the PyGMO library’s hypervo-
lume function, with a reference point set to the worst observed values
for each objective plus a small offset. We conducted a one-way ANOVA
to compare performance between C-network numbers, with the sig-
nificance level set at 0.05. Tukey’s Honest Significant Difference (HSD)
was used for post-hoc pairwise comparisons.

The ANOVA assumptions were verified: data independence was
ensured by separate tests, homogeneity of variance was confirmed by
Levene’s test (F = 0.085, p = 0.986), and normal distribution was ver-
ified by the Shapiro-Wilk test (F = 0.962, p = 0.343).

ANOVA results showed significant differences among the five
groups (F(4,10) =12.840, p < 0.001, ? = 0.138). Tukey’s HSD revealed
significant performance improvement when increasing from 2 to 8
C-networks (p = 0.003), but no statistically significant differences
among configurations with 16 or more C-networks (p > 0.877). Com-
plete pairwise comparison results are provided in Supplementary
Table SI.

Physical prototype and simulator accuracy validation

We conducted a comprehensive evaluation of our physical prototype,
the “pillbug”, to validate our metatruss design and assess the accuracy
of our simulator.
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Experimental setup and data collection. We manufactured and
assembled the pillbug prototype following the process detailed in
Mechanism and Fabrication Details. For the experimental setup, we
placed the pillbug on a flat table covered with white photography
background paper (HUAMEI brand). The video recording setup con-
sisted of a camera positioned 85cm horizontally from the table’s center
and elevated 25 cm above the table surface, with the lens oriented
horizontally. We recorded at a 60 Hz frame rate. For lighting, we
installed two camera lighting panels approximately 70 cm from the
subject at 45 and -45" angles, positioned 40cm above the table sur-
face. The trajectory of the pillbug is through the center of the
table.ssssssssss.

The pillbug prototype was actuated to complete its action
sequence across eight cycles, with the entire process recorded on
video (Fig. 8a, Supplementary Video 5). We tracked the trajectories of
three key joints throughout the experiment, collecting 536 tracked
points for each action sequence cycle (Fig. 8b-d).

To facilitate comparison with our simulation, we overlaid the
simulated trajectory on the experimental data. We highlighted static
positions at the beginning and end of each cycle to identify key points
of motion and rest. The trajectory was then segmented into individual
cycles at these static positions for detailed analysis.

Data analysis and metrics. To quantify the similarity between simu-
lated and experimental results, we calculated several metrics:

Average Trajectory discrepancy (d,): The mean point-wise distance
between corresponding points on the experimental and simulated
trajectories, averaged across the entire trajectory.

Average Trajectory Cycle discrepancy (d.): The mean point-wise
distance between each experimental trajectory cycle and the corre-
sponding simulated cycle, averaged across all cycles and trajectories.

Average Static Position discrepancy (ds): The mean point-wise
distance between each pair of static positions across all trajectories.

Average Self Trajectory Cycle discrepancy (dp: To assess the inter-
nal consistency of the prototype, we calculated the mean trajectory
cycle for each joint and measured the distance between each experi-
mental cycle and this mean.

Results and Conclusion. Our analysis yielded the following results:

d,=3.77 cm (averaged across all three trajectories), d. = 2.68 cm,
dg=1.26 cm, dr= 0.54 cm. For reference, the fully contracted length of
each beam in the prototype is 17.3 cm, and the fully extended length is
24.5 cm. The average total body length during movement is 51.4 cm,
with an average locomotion speed of 2.45 cm/s (approximately 0.048
body length per second). The total displacement is 86.0 cm.

The larger values of d; and d. compared to d; likely result from
inherent friction differences in the pneumatic plastic syringes used
as beams, causing unsynchronized actuation times under uniform air
pressure. This factor was not accounted for in our simulation.
The smaller d, indicates good alignment at static positions, which
may be attributed to our use of a highly-damped dynamic model and
relatively low actuation pressure (+0.8 psi and -0.8 psi) in the
simulation.

The fact that d, is higher than d. suggests accumulated errors
across cycles, a common phenomenon in open-loop control systems.
The low df value indicates high consistency in the metatruss motions
despite inherent friction variances.

These results validate our metatruss design approach while
highlighting areas for future improvement, such as standardizing
linear actuators for uniform friction or integrating friction variance
into the simulator. Additionally, the findings suggest that incorpor-
ating sensors for closed-loop control could enhance long-term
accuracy, particularly given the ample interior space in the meta-
truss design.

Usage of large language model in writing

In the preparation of this manuscript, we utilized ChatGPT with GPT-4
specifically for grammar checking purposes. The prompts we
employed were structured as follows: “[the text] Please check the
grammar of this writing as a submission for a scientific journal, please
don’t change or distort the meaning or create new information”. All
edited text was reviewed and finalized by the human authors.

Data availability

All training performance histories and tracked joint trajectories used in
this study are available, along with code for loading and plotting, at:
https://github.com/morphing-matter-lab/MetaTruss-data®®. Requests
related to data can be made to L.Y. Source data are provided with
this paper.

Code availability
Codes for genetic algorithm, tracking, and data processing are avail-
able at: https://github.com/morphing-matter-lab/MetaTruss®*.
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