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LassoESM a tailored language model for
enhanced lasso peptide property prediction

Xuenan Mi 1, Susanna E. Barrett 2,3, Douglas A. Mitchell4,5 &
Diwakar Shukla 1,2,3,6,7

Ribosomally synthesized and post-translationally modified peptides (RiPPs)
are a diverse group of natural products. The lasso peptide class of RiPPs adopt
a unique [1]rotaxane conformation formed by a lasso cyclase, conferring
diverse bioactivities and remarkable stability. The prediction of lasso peptide
properties, such as substrate compatibility with a particular lasso cyclase or
desired biological activity, remains challenging due to limited experimental
data and the complexity of substrate fitness landscapes. Here, we develop
LassoESM, a tailored language model that improves lasso peptide property
prediction. LassoESM embeddings enable accurate prediction of substrate
compatibility, facilitate identification of novel non-cognate cyclase–substrate
pairs, and enhance prediction of RNA polymerase inhibitory activity, a biolo-
gical activity of several known lassopeptides.We anticipate that LassoESMand
future iterations will be instrumental in the rational design and discovery of
lasso peptides with tailored functions.

Ribosomally synthesized and post-translationally modified peptides
(RiPPs) are structurally diverse natural products. RiPP precursor pep-
tides are genetically encoded and many biosynthetic enzymes are
tolerant to alternative substrates, making RiPPs attractive engineering
targets for a variety ofmedical and other applications1. Lasso peptides
are a particularly promising scaffold for RiPP engineering due to their
modifiable and stabilized lariat knot-like structures1,2. During lasso
peptide biosynthesis, the precursor peptide is bound by the RiPP
recognition element, and a leader peptidase releases the core regionof
the substrate that undergoes conversion into the mature product. An
ATP-dependent lasso cyclase then folds the core peptide into its
characteristic threaded shape, which is kinetically trapped by macro-
lactam formation (Fig. 1A)3,4. The N-terminal amine (core position 1)
and the side chain of Asp or Glu, typically located at core position 7, 8,
or 9, form the macrolactam with large residues in the tail acting as
steric locks to maintain threadedness. Lasso peptides are pre-
dominantly derived from bacteria and in some rare cases from
archaea. In eukaryotic organisms, Niemyska et al. identified lasso-like

motifs in proteins, stabilized by disulfide bridges or amide linkages5.
These proteins, however, should not be confused with lasso peptides,
which all share the same fold, right-handed chirality, and have mole-
cular weights typically below 2 kDa.

Several lasso cyclases have shown high substrate tolerances,
such as the fusilassin cyclase (FusC: WP_104612995.1), which was
statistically shown to cyclize millions of variants with multi-site
changes to the ring6, and the microcin J25 cyclase (McjC:
WP_256498469.1), which can accommodate many diverse single-site
and multi-site changes7,8. Additionally, lasso peptides exhibit anti-
bacterial, antiviral, and anticancer activities, making them a com-
pelling scaffold for engineering macrocyclic peptides for drug
discovery purposes4,9. Despite their potential, chemical synthesis of
lasso peptides remains challenging, with only one report that has yet
to be replicated10. Therefore, designing novel lasso peptides with
desired bioactivities will require sequences that are compatible with
available lasso cyclases. However, profiling the substrate tolerance of
lasso peptide biosynthetic enzymes remains challenging, hampering
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the generation of customized lasso peptides for biomedical and
other industrial applications.

Different in silico approaches can be utilized to discover and
design novel lasso peptides. For instance, RODEO predicts the native
precursor peptides that are proximally encoded to the lasso peptide
biosynthetic enzymes using linear combination scoring and a super-
vised machine learning approach11. RODEO matches substrates with
enzymes but does not attempt to predict whether a biosynthetic
enzyme would tolerate an alternative peptide substrate. Additionally,
RODEO only predicts precursor peptides and their associated bio-
synthetic enzymes within a small local genomic context, which pre-
cludes the possibility of identifying potential hybrid peptide-enzyme
pairs. Molecular dynamics (MD) simulation is a powerful computa-
tional approach for studying how lasso peptides or other RiPPs fold
and how they interact with their biosynthetic enzymes during
folding12–14. However, MD simulations are computationally expensive,
limiting their applicability for the broadscale customization of lasso
peptides with desired properties. In addition, a recent study presented
a biophysical modeling framework to guide the design and biosynth-
esis of de novo RiPPs by systematically combining enzymes from
diverse RiPP gene clusters15.

Deep learning is a type of artificial intelligence that can learn
complex patterns and features from large datasets. It has emerged as a
useful tool for RiPP engineering and design. For example, deep
learning models have been trained on large-scale substrate specificity
profiling data of RiPP-modifying enzymes from mRNA display techni-
que. These trained models have facilitated the understanding of RiPP
enzyme substrate tolerance and enabled the design of a diverse, highly
modified variant library for selection against a target16–18. In addition to
substrate tolerance prediction, deep learning has been applied to
predict the bioactivity of RiPP variant libraries. For instance, Dee-
pLasso predicts whether a variant of the lasso peptide ubonodin will
retain RNA polymerase (RNAP) inhibitory activity19. The model
demonstrates the utility of artificial intelligence beyond substrate
compatibility prediction for lasso peptide biosynthesis. However,
these methods required uncharacteristically large datasets for model
training. In most cases, the experimental data that defines lasso pep-
tide substrate tolerance and bioactivity is severely limited, necessi-
tating methods that perform well in data scare scenarios.

Protein language models (PLMs) are a powerful framework for
improving the performance of downstream tasks in situations with
limited labeleddata20–25.Most PLMsare trainedusingmasked language

Fig. 1 | Development of a lasso peptide-specific language model, LassoESM.
A Lasso peptide biosynthesis requires a leader peptidase, RiPP recognition element
(RRE), and lasso cyclase to tie a linear core peptide into the lariat-like knot.
B LassoESMwas built upon the ESM-2 architecture and further pre-trained on lasso
peptides using a domain-adaptive approach with masked language modeling. The

resulting LassoESM embeddings were utilized for three downstream tasks: pre-
dicting lasso cyclase substrate tolerance, identifying substrate compatibility
betweennon-cognate pairs of lasso cyclases and substrate peptides, and predicting
RNAP inhibitory activity (numbers indicate enrichment values, estimating RNAP
inhibitory activity).
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modeling, in which the model is trained to predict the identity of
masked amino acids given the local amino acid sequence. PLMs have
been used to improve predictions for protein structure25, protein
properties26–28, and mutational effects20,27,29,30. Effective PLMs require
massive training datasets and large model size, which enable learning
of general patterns present in natural proteins. However, PLMs are
predominantly trained on protein sequences rather than peptides, and
their ability to represent peptides is understudied. Since peptides
differ from proteins in physical characteristics, such as shorter length,
simpler three-dimensional structures, and conformational dynamics,
we hypothesized that PLMs may have limited abilities to accurately
represent peptide sequences, particularly lasso peptides, which exhi-
bit a unique knot-like shape. As a result, the effectiveness of PLMs in
performing predictive tasks related to lasso peptides appears to be a
logical mismatch. Previous studies have demonstrated that domain-
adaptive pretraining can further enhance the performance of large
language models within a specific domain by learning the knowledge
of the given domain31–33. For example, pretraining on DNA-binding
protein sequences has improved model performance in four DNA-
binding, protein-related downstream tasks32. Similarly, pretraining on
a dataset focused on the substrate preference of one enzyme can
enable accurate prediction ofwhich substrates will be compatiblewith
another enzyme in the same biosynthetic pathway33. Due to the
diversity of RiPP classes and their unique sequence attributes, it is
possible that class-specific RiPP language models could further
improve downstream predictive tasks.

In this work, we used a domain adaptationmethod to further pre-
train ESM-2 (Evolutionary Scale Modeling) on lasso peptide datasets,
resulting in a lasso peptide-tailored languagemodel named LassoESM.
Compared to the more generic ESM-2, LassoESM showed superior
performance in predicting the substrate tolerance of a known lasso
cyclase, even with small quantities of training data. A human-in-the-
loopapproach,where a humanexpert iteratively validates new, unseen
sequences and incorporates them into the training data, was used to
further verify and improve the classification model34. To predict
compatible lasso cyclase-substrate peptide pairs, LassoESM embed-
dings were combined with a cross-attention layer to effectively model
the interactions between the lasso cyclase and peptide, leading to
better model performance than when only the generic PLM was used.
Finally, LassoESM embeddings were shown to predict lasso peptide
RNAP inhibition activity more accurately than a generic PLM and
DeepLasso19. With expanded lasso peptide property datasets, Las-
soESM could facilitate their biomedical application by guiding lasso
cyclase selection for rational engineering campaigns.

Results
LassoESM improves lasso peptide substrate tolerance
prediction
Representative PLMs like ESM25 and ProtBERT21 have been trained on
general protein sequences to learn sequence patterns across natural
proteins in a self-supervised manner. Compared to general proteins,
lassopeptides aremuch shorter (15–20amino acids) andhave aunique
lariat knot-like structure1,4. Thedevelopmentof a lassopeptide-specific
language model has the potential to enhance the lasso peptide
representation capabilities and improve the performance of down-
stream predictive tasks. To address this, we adapted the ESM-2
architecture25, which contains 650 million parameters, as a starting
point and further trained it on a dataset of 4485 unique, high-scoring
lasso core peptides identified by RODEO. Using the masked language
modeling approach, we developed LassoESM, a specialized language
model tailored to lassopeptides. Pretrained PLMs can enhance protein
property prediction from sequences through transfer learning, where
their learned weights and representations are repurposed for down-
stream tasks35. In our study, we utilized LassoESM embeddings in
various downstream lasso peptide-related predictive tasks, including

predicting lasso cyclase substrate tolerance, identifying non-natural
cyclase-substrate peptide pairs, and predicting RNAP inhibitory activ-
ity of lasso peptides (Fig. 1B).

Previous studies have shown that FusC exhibits a range of sub-
strate tolerability, from promiscuous to highly intolerant, depending
on the specific core position being varied6,14,36. However, the rules that
govern substrate compatibility are poorly understood, making sub-
strate tolerance prediction challenging. A total of 1121 fusilassin (FusA,
also known as fuscanodin37) variants were confirmed as substrate or
non-substrate sequences via cell-free biosynthesis (CFB) (Fig. 2A). This
dataset was selected to evaluate if LassoESM could improve the sub-
strate tolerance prediction for FusC. None of these fusilassin variant
sequences were used for training LassoESM. Embeddings for all
1121 sequences generated by LassoESM were fed into various down-
stream classification models, including Random Forest (RF)38, Adap-
tive Boosting (AdaBoost)39, Support Vector Machine (SVM)40, and
Multi-Layer Perceptron (MLP)41. Hyperparameter optimization was
conducted using 10-fold cross-validation (Table S1), and the perfor-
mance of the downstream classifiers was evaluated by AUROC score
and balanced accuracy. Previously, we developed PeptideESM, a
peptide-specific language model trained on 1.5 million unique peptide
sequences33. We evaluated PeptideESM embeddings for lasso peptide
substrate tolerance prediction. Among these models, SVM demon-
strated the highest performance (Figs. 2B and S2). Across the various
downstream classification models, PeptideESM and LassoESM pro-
vided superior embeddings for FusC substrate specificity prediction
compared to that from the general PLM (VanillaESM) and the one-hot
baseline representation method (Fig. 2B). To visualize the separation
of substrate and non-substrate sequences captured by these embed-
dings,we applied t-SNE42 to project them into a two-dimensional space
(Fig. S3). We also compared LassoESM embeddings with four addi-
tional representation methods, PeptideCLM (a SMILES-based Chemi-
cal Language Model)43, Extended-Connectivity Fingerprints (ECFP)44

and two biophysical descriptor sets45,46, to thoroughly assess their
effectiveness in substrate tolerance prediction (Fig. S2).

Microcin J25 (MccJ25) is a distinct lasso peptide whose biosyn-
thetic enzymes are reported to be highly substrate-tolerant. A total of
552 MccJ25 variants have been experimentally evaluated as substrates
or non-substrates in the literature (Fig. 2C)7,8,47–51. None of theseMccj25
variant sequences were used for training LassoESM. Analogous to
fusilassin, LassoESM significantly outperformed VanillaESM and one-
hot encoding to predict the substrate tolerance of McjC (Fig. 2D), and
SVM displayed the highest performance (Figs. 2D and S4). These
results show that LassoESM provides effective representations that
enhance the accuracy of substrate tolerance predictions for two dis-
parate lasso peptide cyclase, FusC and McjC, which have a sequence
identity of only 22%.

An advantage of using language model embeddings for down-
stream classification tasks is their ability to enhance accuracy in data-
scarce settings35. LassoESM, pretrained specifically on lasso peptide
sequences, has learned sequence features unique to this peptide class,
enabling it to generate informative and effective representations. This
makes it particularly valuable for applications where labeled datasets
are limited. In many biochemical tasks, including RiPP biosynthetic
enzymecompatibility prediction, researchers often face a lackof large,
well-annotated datasets due to the overwhelming size of the sequence
space. Thus, we evaluated the accuracy of the best downstream clas-
sification model, SVM, trained on datasets of differing sizes using
LassoESM embeddings. For each training dataset size, we conducted
10 random selections of samples at different random seeds and eval-
uated the AUROC score and balanced accuracy on the remaining data
samples. Even with only 20% of the training dataset (224 samples), the
average AUROC score was 0.78, and the average balanced accuracy
was 0.71 (Fig. 2E). The results indicated that the classification model
performs well even with a small dataset when using tailored language
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model embeddings. However, expanding the dataset with more
diverse samples enhances model performance.

In classification tasks, the predicted probability is often inter-
preted as a measure of model uncertainty. However, the output from
SVM is the distance from thedecision hyperplane, not a probability. To
address this, Platt scaling52 is commonly employed, where a logistic
regression model is applied to the SVM decision values, effectively
transforming distances into probability estimates ranging from 0 to 1.

These probabilities represent the likelihood of a sequence being a
substrate for the lasso cyclase. To assess whether these predicted
probabilities effectively captured the uncertainty of the downstream
classification model trained on the fusilassin dataset, we analyzed the
distribution of themodel accuracy across different probability ranges.
Specifically, we plotted the accuracy distributions for the SVMmodels
trained on LassoESM embeddings for fusilassin variant sequences
(Fig. 2F). The results indicated that the model demonstrated high

Fig. 2 | Comparison of lasso peptide substrate tolerance prediction using dif-
ferent embeddings. A Core peptide sequence of fusilassin overlaid with substrate
tolerance information. The n value is the number of sequences tested at the indi-
cated position(s) by CFB, with the percentage of n sequences tolerated by the
biosynthetic enzymes given. Bold indicates the macrolactam-forming residues.
B AUROC score and balanced accuracy of the SVMmodel for the fusilassin variant
dataset trained on embeddings from one-hot encoding (blue), VanillaESM (pink),
PeptideESM (yellow), and LassoESM (green). Data are presented as mean ± SD.
n = 5 independent repeats of 10-fold cross-validation. VanillaESM vs. PeptideESM:
AUROC, p =0.0377; Balanced Accuracy, p =0.0012. VanillaESM vs. LassoESM:
AUROC, p =0.0006; Balanced accuracy, p =0.0119. p-value was calculated using a
two-sided t-test. *p <0.05, ** p <0.01, *** p <0.001. C Core peptide sequence of
MccJ25 overlaid with substrate tolerance information. Each position was site-
saturated with all other proteinogenic amino acids (n = 20) prior to heterologous

expression7. The percentage of sequences thatwere cyclized and exported is given.
Bold indicates the macrolactam-forming residues. D Same as (B), except for
MccJ25. Data are presented as mean ± SD. n = 5 independent repeats of 10-fold
cross-validation. VanillaESM vs. PeptideESM: AUROC, p =0.8759; Balanced accu-
racy, p =0.7751. VanillaESM vs. LassoESM: AUROC, p =0.0006; Balanced Accuracy,
p =0.0013. p-value was calculated using a two-sided t-test. E AUROC score and
balanced accuracy of the SVM model trained on a fraction of the fusilassin variant
training data using LassoESM embeddings and evaluated on the remaining data.
Data arepresented asmean ± SD.n = 10 randomseeds,with a fraction of thedataset
randomly selected for training in each seed. F Model accuracy at different pre-
dicted probabilities of the SVMmodel trainedon the fusilassin variant dataset using
LassoESM embeddings. Data are presented as mean± SD. n = 10 random seeds. For
each random seed, 80% of the fusilassin variant dataset was used for training and
the remaining 20% for testing. The source data are available in the Source data file.
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accuracy when the predicted probabilities were near 0 or 1. Con-
versely, predictions with probabilities between 0.4 and 0.6 exhibited a
higher proportionof false classifications. This result suggested that the
predicted probability was faithfully representing model uncertainty.

Human-in-the-loop feedback improves fusilassin substrate spe-
cificity prediction
Next, we assessed the accuracy of LassoEM in predicting the substrate
tolerance of sequences not included in the training set. Human-in-the-
Loop validation is a strategy where human experts actively participate
in the decision-making process alongside artificial intelligence, pro-
viding oversight and iterative feedback to enhance model accuracy
and reliability34. In our study, the workflow begins by classifying new
sequences using the optimized SVM trained on LassoESM embeddings
from an initial dataset of 1121 fusilassin variant sequences. The SVM
model predicts the labels (substrate or non-substrate) of unchar-
acterized fusilassin variants. Selected sequences are then experimen-
tally validated, and the newly labeled data are incorporated into the
training set for model retraining. This iterative process continues until
the model achieves the desired performance (Fig. 3A).

A library containing all 18 randomized sites on fusilassin has 2018

(2.6 × 1023) library members, which is too large to analyze reasonably.
Therefore, two smaller librarieswere selected for investigation. Library
1 varied positions 2, 3, 4, 13, and 14 (n = 3.2 million sequences), while
library 2 varied positions 7, 8, 10, and 11 (n = 160,000 sequences).
These positions were selected because they comprise a continuous
surface on fusilassin, which could potentially engage with a target in
future lasso peptide engineering campaigns (Fig. S5). No sequences
from either library were present in our initial training dataset.

The SVM model trained on LassoESM embeddings was used to
classify all library sequences as substrates or non-substrates. A random
selection of 118 fusilassin variant sequences (round 1) was experi-
mentally validated (57 from library 1 and 61 from library 2) in CFB
containing purified fusilassin biosynthetic enzymes. Lasso peptide
cyclization was analyzed using MALDI-TOF-MS (Fig. 3B). The balanced
accuracy of round 1 was 66% (Figs. 3C, S6–S9, Tables S3–S6). This
result underscored the extrapolation capability of the classification
model with LassoESM embeddings, as the model performed well
despite not having seen sequences in libraries 1 and 2.

To improve themodel’s performance, we introduced a Human-in-
the-Loop approach. The results from round 1 were incorporated into
the initial training dataset. Embeddings for the new data were created
with LassoESM, and the SVM classification model was retrained on all

available data (Fig. 3A). To verify the accuracy of the retrained model,
24 sequences were randomly selected from each library (round 2,
n = 48) and evaluated using CFB. As anticipated, inclusion of round 1
data enhanced the model’s balanced accuracy to 75% (Figs. 3C,
S10–S11, Tables S7–S8). In contrast, restricting the training data to the
original dataset gave an accuracy of 69%.

The experimentally labeled data from rounds 1 and 2 were then
incorporated into the training dataset, and the retrained SVM model
was used to predict a more complex library (library 3), which varies
positions 10–15 to encompass the entire fusilassin loop (library size of
64 million). A total of 30 fusilassin variant sequences were randomly
selected from library 3 and evaluated using CFB. For these sequences,
the model achieved a balanced accuracy of 84% (Figs. 3C, S12, and
Table S9). The high accuracy further indicated that with the LassoESM
embeddings, the trained SVM model demonstrated robust predictive
accuracy evenwith sequences poorly represented in the initial training
dataset. Table S10 summarizes the total number of sequences tested in
CFB and the model’s balanced accuracy for each round of testing.

To further improve interpretability, we provide representative
examples of model predictions and their experimental validation. In
total, 196 fusilassin variants were tested across all rounds. Consistent
with prior experimental observations, Met is well favored in the ring
region, while Glu is not6,14. In the loop region, Leu is favored at position
14, whereas Asp is disfavored. These preferences are reflected in the
experimentally validated sequences. For example, WLMMEWGLE-
LIFHLPRFI was correctly predicted and confirmed as a substrate,
whereas WIENEWGLELIFVDPRFIwas predicted and validated as a non-
substrate (bolded residues are different from the native fusilassin
sequence). These examples demonstrate that the model not only
provides accurate predictions but also captures known
sequence–function relationships relevant to substrate tolerance.

A general model for predicting lasso cyclase-lasso peptide pairs
LassoESM embeddings can also effectively predict more general lasso
cyclase specificity tasks. For instance, diverse lasso peptides could be
screened in silico or rationally engineered to bind a target of interest.
However, extensive engineering may obscure which lasso cyclase can
produce a desired lassopeptide. Thus, we designed a generalmodel to
predict any lasso cyclase-lasso peptide pair. A set of 6599 unique lasso
cyclase-lasso peptide pairs predicted via RODEO were used as training
data11,14. To create the negative samples, an equal number of non-
natural cyclase-lasso peptide pairs were created by randomly mis-
matching cyclase and peptide pairs. Becausemost characterized lasso

Fig. 3 | Experimental verification and optimization of model accuracy.
A Human-in-the-loop workflow for optimizing the fusilassin cyclase substrate tol-
erance model. Embeddings for training data sequences were extracted from Las-
soESM. These embeddings were used to train a classifier, which then predicted the
labels of unseen library sequences. Experimental validation was through CFB and
MALDI-TOF-MS. The labeled data are then passed back into the workflow to

improve model accuracy. B Experimental method to validate unseen sequences.
The selected fusilassin variant sequences were produced using CFB and analyzed
using MALDI-TOF-MS. C Balanced accuracy of the chosen samples across three
rounds of experimental testing. The source data for (C) are provided in
Tables S3–S10 and Figs. S6–S12.
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cyclases are specific for only one acceptor residue4, the selected lasso
peptides in the negative training set were verified to have a different
acceptor residue from the native substrate (see “Methods”). In total,
this dataset includes 6333 unique cyclases, with most cyclases having
only one true peptide substrate and one mismatched peptide sub-
strate. For example, the FusC appears twice in the dataset (once with
its true substrate and once with a mismatched peptide), representing
only 0.015% of the total dataset.

The general model uses VanillaESM to extract embeddings for the
lasso cyclase sequences and LassoESM to extract embeddings for the
lasso peptide sequences. Rather than treating these two embeddings
separately and concatenating them, a cross-attention layerwas used to
effectively capture interactions between lasso cyclases and lasso
peptides (Fig. 4A). The cross-attention layer emphasizes the amino
acids in the lasso cyclase that likely interact with the lasso peptide
substrate, thereby reducing noise and enhancing the model’s focus
(see Methods). The model performance was evaluated under four
different conditions: random, unseen cyclase, unseen peptide, and
unseen cyclase & unseen peptide (Fig. 4B). In the random condition,
the dataset was randomly split into 70% for training, 15% for validation,
and 15% for testing, resulting in an accuracy of 0.8870. The other three
conditions simulate out-of-distribution scenarios, where the training
and test sets have no overlapping cyclase or peptide sequences. Spe-
cifically, in the unseen cyclase scenario, all cyclases in the test set are
absent from the training set, while in the unseen peptide scenario,
none of the peptides in the test set appear in the training set. In the

most stringent case, both cyclases and peptides in the test set are
completely absent from the training data, ensuring a rigorous eva-
luation of the model’s generalization performance. Under this condi-
tion, themodel achieved anaccuracy of 0.8281, demonstrating reliable
and strong predictive performance for out-of-distribution data.

Naturally occurring lasso cyclases predicted by RODEO exhibit
varying degrees of sequence similarity, with an average pairwise
sequence identity of 42% across the dataset. To determine if model
accuracy correlates with cyclase sequence similarity, we calculated the
maximum pairwise sequence identity for each test cyclase relative to
all cyclases in the training set. The results showed thatmodel accuracy
improves as the sequence identity of test cyclases increases compared
to those in the training set (Fig. 4C). For test cyclases with >50%
sequence identity to any training cyclase, the accuracy exceeded 0.85.
When sequence identity surpassed 70%, the model’s performance
remained relatively stable.

Ablation analysis was conducted to evaluate the role of the
important components in themodel architecture. As shown in Fig. 4D,
removing the cross-attention layer decreased accuracy from0.8870 to
0.8673, indicating the benefits of the cross-attention layer in enhan-
cing model performance. In contrast to the model employing average
pooling across all amino acids, the cross-attention layer enhances the
model’s ability to focus on the amino acids that determine enzyme
substrate specificity, thereby reducing the bias introduced by non-
essential amino acids in the cyclase. Using VanillaESM to represent
lassopeptides insteadof LassoESMalso resulted in a notable reduction

Fig. 4 | Architecture and evaluation of cyclase-peptide pair prediction. A The
model architecture utilizes VanillaESM for cyclase embeddings and LassoESM for
lasso peptide embeddings, incorporating a cross-attention layer to capture inter-
actions between them. The attention-reweighted embeddings of lasso cyclases and
peptides are averaged and then concatenated before being supplied to the MLP
model to predict cyclase compatibility. The trainedmodel is applied to predict the
compatibility of other lasso peptides with FusC. B The model accuracy was eval-
uated on four dataset splits (random, unseen cyclase, unseen peptide, and unseen

cyclase & peptide). Data are presented as mean ± SD. n = 3 random seeds for data
splitting. C The model accuracy was assessed across different cyclase sequence
similarities. The test set was divided into subsets based on maximum sequence
similarity to those in the training set. Each bar represents the accuracy for cyclases
within specific similarity ranges. D Ablation study evaluating the role of the cross-
attention layer and LassoESMembeddingsby accuracy scores of the generalmodel.
Data are presented asmean ± SD. n = 3 random seeds for data splitting. The source
data are available in the Source data file.

Article https://doi.org/10.1038/s41467-025-63412-3

Nature Communications |         (2025) 16:8545 6

www.nature.com/naturecommunications


inmodel accuracy. This demonstrates the effectiveness of LassoESM in
predicting cyclase specificity for lasso peptides.We also observed that
when the same language model was used to generate embeddings for
both lasso cyclase and lasso peptides, the cross-attention layer failed
to learn useful information, resulting in model performance that was
no better than simple concatenation of the embeddings.

To evaluate LassoESM performance on experimentally verified
cyclase-lasso peptide pairs, we used the trained model to predict the
compatibility of FusC with other predicted naturally occurring lasso
peptides. These sequences were tested using a chimeric engineering
strategy, where the fusilassin leader peptide was fused to the selected
core peptides. This enables the proper function of the RRE and leader
peptidase, which are required for full cyclase activity. The set includes
some chimeric peptides previously examined6, which were selected
basedon cyclase similarity to FusC. It also contains Glu8- andGlu9-mer
core peptides selected to maximize sequence diversity while main-
taining the loop hydrophobicity previously shown to be preferred by
FusC14. Despite FusC’s low representation in the training set, themodel
successfully predicted 24 out of 35 tested peptide pairs (69% accu-
racy), including correctly identifying all three FusC-compatible pep-
tides (Fig. S13 and Table S11). Notably, the model predicted the FusC-
compatible peptides with probabilities exceeding 0.7, indicating high
confidence. Due to competition between the cyclase and endogenous
proteases in the CFB, some of the 11 incorrectly predicted peptides
may be poor substrates that would be detected in a pure setting6.
However, testing sequences by cell-extract based CFB is fast,

significantly cheaper than pure cell-free systems, and more accurately
reflects the heterologous expression conditions required for large
scale lasso peptide production.

Prediction of RNA polymerase inhibition by ubonodin and
klebsidin variants
In addition to applying LassoESM embeddings to cyclase specificity
prediction, we evaluated performance in an RNAP inhibition predic-
tion task. Previous high-throughput screening studies explored the
RNAP inhibitory activity of ubonodin variants and developed a deep
learning model, DeepLasso, to predict RNAP inhibitory activity19.
VanillaESM, PeptideESM, and LassoESM were employed to extract
embeddings for 8885 literature-reported ubonodin variant sequences,
and an MLP regressor was trained to predict the enrichment values,
which act as estimates for RNAP inhibitory activity. The dataset was
randomly partitioned into training (70%), validation (15%), and test
(15%) sets across 10 random seeds. The LassoESM embeddings model
achieved the best performance (Fig. 5B–D), with Pearson and Spear-
man correlation coefficients of 0.83 and 0.78, respectively. LassoESM
obtained amean absolute error (MAE) of 1.31, lower than that reported
for DeepLasso (MAE of 2.20). DeepLasso uses lasso peptide sequence
and topology information as input to train amodel consisting of three
convolutional neural network layers, two bidirectional long short-term
memory layers, and one attention layer19. These results show that
LassoESM embeddings yield a scenario where a simple two-layer MLP
architecture resulted in superior model performance. To further

Fig. 5 | Comparison of RNA polymerase inhibitory activity predictions using
different embeddings. ABubble diagramof ubonodin.B–DModelperformanceof
the MLP regressor for prediction of RNAP inhibition activity for the ubonodin
variant dataset using embeddings from VanillaESM (pink), PeptideESM (yellow),
and LassoESM (green). Blue bars indicate the performance of DeepLasso19. Data are
presented as mean± SD. n = 10 random seeds for data splitting. VanillaESM vs.
PeptideESM: Pearson correlation, p =0.2425; Spearman correlation, p =0.0368;
Mean absolute error, p =0.1616. VanillaESM vs. LassoESM: Pearson correlation,
p = 6.1804 × 10�9; Spearman Correlation, p = 5.3240 × 10�6; Mean absolute error,
p = 4.4822 × 10�8. E Bubble diagram of klebsidin. F–H Model performance of the

AdaBoost regressor’s prediction of RNAP inhibitionactivity for the klebsidin variant
dataset, using embeddings from VanillaESM (pink), PeptideESM (yellow), and Las-
soESM (green). Data are presented asmean ± SD. n = 10 independent repeats of 10-
fold cross-validation. VanillaESM vs. PeptideESM: Pearson correlation, p = 4.4438
× 10�7; Spearman correlation, p =0.3622; Mean absolute error, p = 1.9884 × 10�9.
VanillaESM vs. LassoESM: Pearson correlation, p = 1.1840 × 10�12; Spearman cor-
relation, p = 4.3752 × 10�12; Mean absolute error, p = 2.0563 × 10�16. p-value was
calculated using a two-sided t-test. *p <0.05, ** p <0.01, *** p <0.001. N.S. non-
significant. The source data are available in the Source data file.
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evaluate the model’s generalization and mitigate potential data leak-
age, we implemented a position-based data splitting strategy, ensuring
thatmutationpositions in the training set didnot appear in the test set.
This approach imposes a more stringent evaluation by eliminating
sequence context overlap between train and test sets. Notably, even
under this more rigorous setup, the LassoESM model continued to
outperform VanillaESM and PeptideESM (Fig. S14).

Similarly, we utilized LassoESM embeddings for another lasso
peptide, klebsidin, to predict the RNAP inhibitory activity of its var-
iants. We collected 340 klebsidin single-site variant sequences with
enrichment values from a previous report53. By searching for the best
regression model, we trained an AdaBoost regressor on the klebsidin
dataset53. Even with the limited dataset, the LassoESM embeddings
lead to Pearson and Spearman correlation coefficients of ~0.80 and a
MAE of ~0.74. These results show significant improvement over those
from VanillaESM embeddings, namely a 9% increase in Pearson cor-
relation, 7% increase in Spearman correlation, and 14%decrease inMAE
(Fig. 5F–H).

Discussion
Lasso peptides are touted as promising scaffolds for drug develop-
ment due to their remarkable stability and diverse biological activities.
Many lasso peptide biosynthetic enzymes exhibit impressive substrate
tolerance, allowing for the de novo design or rational engineering of
novel lasso peptides with desired properties. However, predicting
substrate tolerance and exploring sequence-activity relationships
remains challenging due to the scarcity of experimentally labeled data.
In this work, we utilized languagemodels to improve the prediction of
lasso peptide-related properties. To better capture lasso peptide fea-
tures, we developed a lasso peptide-specific language model, Las-
soESM, which outperformed a generic PLM in a variety of downstream
tasks, including predicting lasso cyclase substrate tolerance, identify-
ing non-natural but compatible cyclase-substrate pairs, and predicting
RNAP inhibition activity. Our results also show that embeddings from
LassoESM enable accurate predictions even with small training sets,
highlighting the potential of language models to address data scarcity
and improve prediction accuracy. The pre-trained LassoESM offers
optimal representations for lasso peptides and will be particularly
useful for various lasso peptide-related tasks as high-throughput
methods are developed for dataset generation.

Previous research has demonstrated that ESM-2 can recognize
and store sequence motifs, which are specific patterns of amino acids
that often appear together in proteins54. Since LassoESM was pre-
trained on lasso peptide sequences, it is plausible that LassoESM
learned to recognize the lasso foldpattern. Conversely, VanillaESMdid
not learn these specific sequence patterns because it was not supplied
with the necessary sequences during training. Therefore, the under-
lying reason LassoESM outperforms VanillaESM in lasso peptide-
related predictive tasks could be the tailored language model’s ability
to learn the lasso fold.

While our computational workflow successfully characterized the
substrate preferences of lasso biosynthetic enzymes, the molecular
mechanisms that distinguish substrates from non-substrates remain
unclear. MD simulations offer a promising avenue to uncover these
mechanisms by pinpointing key amino acids that govern substrate
selectivity from both structural and dynamic perspectives. However,
the effectiveness of MD simulations is contingent upon having accu-
rate structural information for lasso peptides and their biosynthetic
enzymes. Recent advances in lasso peptide structure prediction have
significantly enhanced our ability to model these systems. For
instance, Juarez et al. developed LassoHTP—a software tool that con-
structs andmodels lasso peptide structures from input sequences and
annotations of the ring, loop, and tail regions55. Building on this work,
the same group introduced LassoPred, a web-based tool featuring an
annotator-constructor architecture. In this tool, the annotator predicts

up to three sets of sequence annotations, and the constructor converts
each predicted set into a 3D lariat-like structure56. In addition to
achieving accurate structural models, defining optimal reaction coor-
dinates is essential for applying enhanced sampling methods to
effectively capture the lasso peptide folding process57. Collectively,
these new insights and technological advancements pave the way for
future research that leverages MD simulations to deepen our under-
standing of substrate selectivity in lasso biosynthetic enzymes.

In summary, we developed a lasso peptide-tailored language
model that provides effective representations for lasso peptides and
enhances lasso peptide-related predictive tasks. Our efficient pipeline
for characterizing the substrate preferences of lasso peptide biosyn-
thetic enzymes and identifying lasso cyclase-lasso peptide pairs is a
powerful tool for chemists aiming to rationally design functional and
biocompatible lasso peptides for myriad biomedical and industrial
applications. In the future, our pipeline could be extended to predict
compatible sequences for additional enzymes in biosynthetic gene
clusters (BGCs), including those responsible for secondary modifica-
tions such as glycosylation, aspartimide formation, and biaryl cross-
linking in lasso peptide core sequences.

Methods
Dataset construction for LassoESM
A bioinformatics tool, RODEO, was developed to automate the iden-
tification of RiPP BGCs, including lasso peptide BGCs, from genomes
available in GenBank11. RODEO utilizes profile Hidden Markov Models
and a SVM classifier to locate RiPP BGCs and predict the most likely
precursor peptide, respectively. A previous study identified 7701 non-
redundant, high-scoring lasso precursor peptides using RODEO6. After
removing identical entries (if two distinct organisms encode the same
core sequence, only one was retained), 4485 unique core sequences
were retained for pre-training LassoESM.

Model architecture and Pre-training
ESM-2 is a PLM trained on ~65 million non-redundant protein
sequences using a masked language modeling approach25. Masked
language modeling has been shown as a powerful pretraining techni-
que for language models. In our work, we adapted the ESM-2 (with 33
layers and 650 million parameters) architecture as the starting point
for pretraining on lasso peptide datasets. During pre-training, 15% of
the amino acids in the sequences were randomly masked. The model
was trained to predict the identity ofmasked amino acids based on the
surrounding sequence context, as shown in Eq. (1):

LMLM = �
X
i2M

logP xijxcontext

� �
ð1Þ

where M represents a set of indices of the randomly masked amino
acids. Themodel was optimized tominimize the negative likelihood of
true amino acid xi given the surrounding context xcontext in the lasso
peptide sequences. By updating the full 650million parameters of the
ESM-2 model during pretraining, we enabled the model to learn
specialized sequence patterns unique to lasso peptides, named
LassoESM.

LassoESMwas trained for 20 epochswith a learning rate of 5 × 10−5

and a batch size of 8 on a single NVIDIA GeForce RTX 3090 GPU with
12 GB memory. To reduce the memory required, GaLore (Gradient
Low-Rank Projection) was integrated into the training process58.
GaLore is a training strategy that allows full-parameter learning but can
significantly reduce thememory requirements traditionally associated
withoptimizer states andgradients during the trainingprocess.During
training, the loss to be minimized is the mean cross-entropy loss
between the predicted and the ground truth masked amino acid. The
epoch with the least validation loss was saved as the final model.
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LassoESM is publicly available on Hugging Face (https://huggingface.
co/ShuklaGroupIllinois/LassoESM).

Fusilassin labeled dataset construction
The fusilassin substrate tolerance dataset contained substrate and
non-substrate sequences confirmed via CFB and matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-
MS) from the following previously published libraries: 5 × NNK ring
library6, 5 ×NNK loop library6,14, and three 2 ×NNK loop panels (Note:
NNK encodes for all 20 commonproteinogenic amino acids and a stop
codon)14. The dataset also contained a variety of published and
unpublished variants of fusilassin. All sequences were verified as sub-
strates or non-substrates using CFB with purified enzymes: 10 µMeach
ofmaltose-binding protein (MBP)-FusB,MBP-FusE, andMBP-FusC. The
reactions were analyzed for lasso cyclization with MALDI-TOF-MS.

Training of downstream models
Lasso peptide substrate tolerance prediction. Three language
models were used in this study: VanillaESM (650 million parameters
ESM-2)25, PeptideESM33, and LassoESM.The last layer of these language
models was utilized to generate information-rich representations, also
known as embeddings. For each amino acid in each labeled lasso
peptide sequence, the last layer of the language model generated a
1280-dimensional vector. The final embeddings for each peptide
sequence were obtained by calculating the average of all the amino
acid vectors, which were then fed into downstream models.

A total of 1121 fusilassin variant sequences were collected and
experimentally labeled as substrates (656 sequences) or non-
substrates (465 sequences). Embeddings were generated using one-
hot encoding, VanillaESM, PeptideESM, and LassoESM to represent
these sequences. The embeddings were then used to train various
downstream classification models, including RF, AdaBoost, SVM, and
MLP. Stratified 10-fold cross-validation was employed to optimize the
hyperparameters of supervised classification models. The optimized
hyperparameters for all downstream models are in Table S1.

To ensure a fair evaluation, we employed stratified 10-fold cross-
validation on the fusilassin dataset. In this approach, the dataset was
divided into 10 folds, with each fold containing 112 variant sequences.
Each fold maintained the same ratio of substrate to non-substrate
sequences as the entire dataset. The model was trained 10 times, with
each iteration using 9 folds for training and 1 fold for testing. Model
performance was evaluated using AUROC and balanced accuracy. The
average results across the 10 iterations were reported as the model’s
performance. We repeated the stratified 10-fold cross-validation pro-
cess 5 times, with a different split of the dataset in each repetition. This
approachminimizes anypotential bias introducedby specific splits. All
downstream classification models were implemented using Scikit-
learn59.

We incorporated four additional peptide representation approa-
ches: PeptideCLM (a SMILES-based Chemical Language Model)43,
ECFP44 and two sets of biophysical descriptors45,46. We applied pre-
trained PeptideCLM (full model with 23million parameters) to encode
each lasso peptide sequence into a 768-dimensional vector43. For ECFP
representations, we used 2048-bit ECFP6 fingerprints to encode the
lasso peptide sequences44. In addition, we evaluated two previously
developed biophysical descriptor sets. In the first set, each amino acid
in the lasso peptide sequence was represented by five multi-
dimensional patterns that summarize a large portion of the known
variability among amino acids45. In the second set, each amino acidwas
represented by 19 interpretable descriptors derived from AAindex via
PCA and varimax rotation46.

The same approach was applied to MccJ25 variant sequences to
predict the substrate tolerance for the microcin J25 cyclase. In this
case, 552 MccJ25 variants were collected from the literature, with
413 sequences labeled as substrates and 139 as non-substrates7,8,47–51.

The optimized hyperparameters for all downstream models are in
Table S2.

Prediction of lasso cyclase-substrate peptide pairs. A total of 6599
unique lasso cyclase-substrate peptide pairs were identified using
RODEO11. The dataset includes some class I, class III, and class IV lasso
peptides; however, the vast majority (>90%) of the pairs are class II
lasso peptides. To generate synthetic, non-natural, cyclase-peptide
pairs as negative samples, we first generated all possible non-natural
pairs for each cyclase. From these, we retained only those pairs in
which the acceptor residue of the peptide differed from the original
acceptor residue, as the acceptor residue is the most restrictive and is
exclusively either Asp or Glu (only two examples are known where a
lasso cyclase tolerates Asp and Glu60,61). Finally, one lasso peptide was
randomly selected from this pool for each cyclase, generating
6599 synthetic non-natural cyclase-peptide pairs as negative samples.

LassoESM was used to generate embeddings for lasso peptides,
while VanillaESM was employed to generate embeddings for lasso
cyclases. For each amino acid in the lasso peptide sequence, the last
layer of LassoESM produced a 1280-dimensional vector, resulting in a
matrix of dimensions d1280*m, where m is the length of the lasso
peptide. For each amino acid in the lasso cyclase sequence, the last
layer of VanillaESMgenerated a 1280-dimensional vector, resulting in a
matrix with d1280*n, where n is the length of the lasso cyclase. Padding
was added at the end of the substrate peptide and lasso cyclase
sequences to ensure that all substrate peptide embeddings had the
same dimensions and that all lasso cyclase embeddings had the same
dimensions.

These two matrices were then supplied into a cross-attention
layer, where the lasso peptide embedding matrix served as the query
(Q) and the lasso cyclase embedding matrix as the key (K) and value
(V). An attentionmaskwasapplied to everypaddingposition, aswell as
the BOS (Beginning of Sentence) and EOS (End of Sentence) tokens, to
ensure the model ignored these elements. The attention mechanism
was computed as shown in Eq. (2):

Attention Q,K ,Vð Þ= softmax
QKTffiffiffiffiffiffi
dk

p
 !

V ð2Þ

wheredk is the dimensionality ofK. The dot productQKT generates an
attention matrix, where each element represents the relevance of a
specific cyclase residue to a given peptide residue. Residues in the
cyclase that are more relevant for peptide interaction receive higher
attention scores. The attentionweightmatrix was used to reweight the
cyclase embedding matrix. The reweighted cyclase matrix was then
concatenatedwith the lassopeptidematrix and fed into anMLPmodel.
The MLP model consisted of two hidden layers with 512 and 64 neu-
rons. The full model, including the cross-attention layer, was trained
using the Adamoptimizer, with a batch size of 32 and a learning rate of
0.001. The training was conducted for 25 epochs using PyTorch62.

RNA polymerase inhibition prediction. A total of 11,363 published
ubonodin variant sequences with ameasurable enrichment value were
collected19. After removing sequences containing stop codons, 8885
ubonodin variants remained in the dataset. The last layers of Vanil-
laESM, PeptideESM, and LassoESM were used to extract embeddings
for each amino acid in the ubonodin sequences. The final embedding
for each sequence was obtained by averaging the embeddings of all
amino acids in the sequence. These averaged embeddings were then
utilized to train an MLP regressor. The MLP model consisted of two
hidden layers with 256 and 32 neurons. MLP was trained using the
Adam optimizer, with a batch size of 16 and a learning rate of 0.001.
The model was trained for 100 epochs using PyTorch62, and early
stopping was applied to monitor the validation loss.
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A similar approach was applied to another lasso peptide, klebsi-
din. A total of 340 klebsidin variant sequences were obtained from a
previous publication53. The embeddings of these sequences were
supplied to various downstream regression models, including RF,
AdaBoost, SVM, andMLP. Among these, the AdaBoostmodel achieved
the best performance on the klebsidin dataset, as determined by the
average R² score from 10-fold cross-validation. The optimal hyper-
parameters for AdaBoost were n_estimators = 200 and
learning_rate = 1.

Experimental materials and methods
Synthetic DNA primers and ultramers were ordered from Integrated
DNA Technologies. New England Biolabs supplied the Q5 DNA poly-
merase and the Gibson assembly mix. Chemical reagents were from
Sigma-Aldrich unless otherwise noted. Sequencing was performed at
the Core DNA Sequencing Facility at the University of Illinois at
Urbana-Champaign.

Molecular biology techniques
The fusilassin biosynthetic genes were previously cloned into a mod-
ified pET28 vector that provides an N-terminal MBP tag for solubility
and stability14,36. This vector was used for the expression of the fusi-
lassin leader peptidase (FusB, WP_011291590.1), RiPP Recognition Ele-
ment (RRE, FusE, WP_011291591.1), and an E. coli codon-optimized
cyclase (FusCop, WP_104612995.1). A previously reported pET28-mbp-
fusA (precursor peptide) construct was used as a template to prepare
all the fusilassin variants needed for this study36.

Protein purification
TheMBP-tagged FusB, FusE, andFusCopproteinswere expressed using
E. coli BL21(DE3) cells. MBP-FusB and MBP-FusE were expressed in LB
media containing 50 µg/mL kanamycin and induced at OD600 0.6 with
a final concentration of 0.5M IPTG for 3 h at 37 °C. MBP-FusCop was
expressed in LBmedia containing 50 µg/mLkanamycin and3%ethanol.
It was induced at OD600 0.8with a final concentration of 0.5M IPTG for
3 h at 37 °C14,36. The proteins were purified via amylose resin column
chromatography. 1 L of induced cells were harvested and then resus-
pended in lysis buffer [50mM Tris-HCl pH 7.4, 500mM NaCl, 2.5%
glycerol (v/v), and 0.1% Triton X-100], 100mg lysozyme, and 500 µL of
protease inhibitor cocktail (6mM PMSF, 0.1mM leupeptin, 0.1mM
E64)]. Cells were lysed with sonication and the lysate was clarified via
centrifugation. The clarified supernatant was applied to a pre-
equilibrated column containing 5mL of amylose resin at 4 °C. After
washing with 10 column volumes of wash buffer [50mM Tris-HCl pH
7.4, 500mM NaCl, and 2.5% glycerol (v/v)], the proteins were eluted
with 30mL of elution buffer [50mM Tris-HCl pH 7.4, 300mM NaCl,
2.5% glycerol (v/v), and 10mMmaltose] at 4 °C. Protein concentration
and buffer exchange was done using a 30,000 kDa Amicon Ultra
centrifugal filter (EMD Millipore) and protein storage buffer [50mM
HEPES pH 7.5, 300mM NaCl, 0.5mM tris-(2-carboxyethyl)-phosphine
(TCEP), 2.5% glycerol (v/v)]. Protein concentrations were determined
with a Nanodrop OneC instrument measuring the absorbance at
280 nm and by Bradford assay. Extinction coefficients were calculated
using the Expasy ProtParam tool63. Protein purity was determined by
visual inspection of a Coomassie-stained gel after separation via SDS-
PAGE (Fig. S1).

Overlap extension PCR to construct fusilassin library members
tested in CFB
DNA templates encoding the FusA variants were prepared by overlap
extension PCR64. In the first PCR round, two pieces of DNA, each
containing a complementary region, were made using the wild-type
pET28-mbp-fusA vector as a template and primers from Supplemen-
tary Data Table 1. The two DNA pieces were then purified via a Qiagen
spin column PCR cleanup kit. In the second PCR round, the two DNA

pieces were allowed to anneal together and primers CFB_F and CFB_R
were used to amplify the completed linear DNA product (Supple-
mentary Data Table 1). The PCR product was purified using the Qiagen
spin columnPCR cleanup kit. DNA concentrations were determined by
absorbance at 260nm using a Nanodrop OneC instrument.

Generation of linear DNA for chimeric lasso peptide sequences
tested in CFB
Ultramer oligos encoding the fusilassin leader peptide and the desired
core peptide were amplified by PCR and cloned into the pET28-mbp
vector using Gibson assembly (Supplementary Data Table 1). After
sequence confirmation by Sanger sequencing, the linear DNA encod-
ing the MBP-tagged chimeric peptide was amplified via PCR using
primers CFB_F and CFB_R. The DNA concentration was determined on
a Nanodrop OneC instrument at an absorbance of 260 nm.

Cell-free biosynthesis reagent preparation
E. coli cellular lysates were prepared by growing E. coli BL21(DE3) in 1 L
of 2X YTPG (10 g/L yeast extract, 16 g/L tryptone, 3 g/L KH2PO4, 7 g/L
K2HPO4, 5 g/L NaCl, 18 g/L glucose) at 37 °C while shaking. The cells
were induced at OD600 0.5 with 0.1M IPTG (final). At OD600 ~ 3.0, the
cells were harvested and washed twice with 400mL ice-cold S30A
buffer [10mM Tris, pH = 8.2, 14mM magnesium acetate, 60mM
potassium glutamate, 2mM 1,4-dithiothreitol (DTT, freshly added)].
The pellet was then resuspended in 40mL of ice-cold S30A and
transferred to a pre-weighed 50mL tube. The cells were spun down,
the supernatant removed, and the pellet flash frozen in liquid nitrogen.
The next day, the cells were thawed on ice and resuspended in cold
S30A buffer at 1mg/g cell pellet. The French Press (single pass,
10,000psi) was used to lyse the cells and then the membrane debris
was spun down at 12,000× g for 45min at 4 °C. The supernatant was
removed into a fresh tube, aliquoted into 100 µL aliquots, and stored at
−80 °C. The total protein concentration was determined via
Bradford assay.

Cell-free biosynthesis energy mix was prepared similarly to Sun
et al65. Briefly, 240mM stock concentrations were made for all amino
acids except for Leucine, which 200mM. 2.5mL of water was com-
bined with 125 µL of each amino acid stock to make a 4X amino acid
solution. 700mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) at pH8.0, 21mMATP, 21mMGTP, 12.6mMCTP, 12.6mMUTP,
2.8mg/mL tRNA (Sigma-Aldrich), 3.64mM coenzyme A (CoA),
4.62mM nicotinamide adenine dinucleotide (NAD), 10.5mM cAMP,
0.95mM folinic acid, 14mM spermidine, and 420mM
3-phosphoglyceric acid were combined to make a 14X energy solution
stock. Stock solutions of 1M maltodextrin, 4M potassium glutamate,
and 500mM magnesium glutamate were also prepared. 10mL of the
energy buffer contained 5.6mLof the 4× amino acid solution, 1.6mLof
the 14X energy solution, 780 µL of 1Mmaltodextrin, 780 µL of the 4M
potassium glutamate, 400 µL of the 500mM magnesium glutamate
and 840 µL of water. The energy buffer was vortexed well and then
aliquoted and stored at −80 °C.

GamS was prepared using E. coli BL21(DE3) pBAD-gamS similar to
previouslydescribedprotocols6,66. Briefly, a 1 L culturewas grown in LB
with 50 µg/mLampicillin at 37 °C toOD6000.45. The cellswere induced
with 0.25%w/v arabinose at 37 °C for 4 h. After harvesting, the pelleted
cells were resuspended in lysis buffer [50mM Tris pH 8.0, 500mM
NaCl, 5mM imidazole, 0.1% Triton X-100, 3mg/mL lysozyme, 2μM
leupeptin, 2μM benzamidine HCl, 2μM E64, and 30mM phe-
nylmethylsulfonyl fluoride]. After sonication, the lysate was clarified
via centrifugation and the proteins were purified using 5mL nickel-
nitrilotriacetic acid (Ni-NTA) resin. The resin was washed with 10 col-
umnvolumes ofwashbuffer (50mMTris pH8.0, 500mMNaCl, 25mM
imidazole) and eluted in 15mL of elution buffer (50mM Tris pH 8.0,
500mM NaCl, 250mM imidazole). The eluted proteins were con-
centrated using a 30 kDa Amicon Ultra centrifugal filter (EDM
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Millipore) and buffer exchanged into protein storage buffer [50mM
HEPES pH 7.5, 300mM NaCl, 0.5mM tris-(2-carboxyethyl)-phosphine
(TCEP), 2.5% glycerol (v/v)].

Cell-free biosynthesis reactions
The cell-free biosynthesis reactions were carried out at 5 µL volume.
Each reaction contained 50ngof linearDNA, 1.75 µLofE. coli cell lysate,
2.25 µL of energy buffer, 0.053 µL of IPTG (50mM stock), 0.16 µL DTT
(100mMstock), 0.25 µLGamS (125 µMstock), and afinal concentration
of 10 µM each MBP-FusB, MBP-FusE, and MBP-FusCop. The reactions
were allowed to sit at room temperature for 16-18 h (overnight) and
then were quenched with 60% (v/v) acetonitrile. The samples were
spun down and then spotted onto aMALDI-TOF-MSplate using sinapic
acid (80% acetonitrile, 0.1% formic acid) for MALDI-TOF-MS analysis.
MALDI-TOF-MSdata were acquired at the University of Illinois Urbana-
Champaign in the School of Chemical Sciences on a Bruker Ultra-
Xtreme instrument in reflector positive mode. The MALDI-TOF-MS
data was analyzed using Bruker FlexAnalysis version 3.4 software. Each
reaction containing a unique template was repeated three times. Data
in the Supplementary Information shows one representative spectrum
from the replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets (including protein accessions) used in this study are
available on GitHub at https://github.com/ShuklaGroup/LassoESM/
tree/main/data and on Zenodo at https://doi.org/10.5281/zenodo.
16429863. Source data are provided with this paper as a Source Data
file. The sequences for the proteins used in the experimental portion
can be found using the following NCBI accessions: FusB:
WP_011291590.1, FusE: WP_011291591.1, FusC: WP_104612995.1. Source
data are provided with this paper.

Code availability
The code used to train LassoESM and to perform downstream analyses
in the study are available onGitHub at: https://github.com/ShuklaGroup/
LassoESM and on Zenodo at https://doi.org/10.5281/zenodo.16429863.
The pre-trained LassoESM model is available for download on Hugging
Face at: https://huggingface.co/ShuklaGroupIllinois/LassoESM.
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