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Improvedmodelling of biogenic emissions in
human-disturbed forest edges and
urban areas

Yanli Zhang 1, Haofan Ran1,2, Alex Guenther 3 , Qiang Zhang 4 ,
Christian George 5, Wahid Mellouki 6, Guoying Sheng1, Ping’an Peng 1 &
Xinming Wang 1,2

Biogenic volatile organic compounds (BVOCs) are critical to biosphere-
atmosphere interactions, profoundly influencing atmospheric chemistry, air
quality and climate, yet accurately estimating their emissions across diverse
ecosystems remains challenging. Here we introduce GEE-MEGAN, a cloud-
native extension of the widely used MEGAN2.1 model, integrating dynamic
satellite-derived land cover and vegetation within Google Earth Engine to
produce near-real-time BVOC emissions at 10-30m resolution, enabling fine-
scale tracking of emissions in rapidly changing environments. GEE-MEGAN
reduces BVOC emission estimates by 31% and decreases root mean square
errors by up to 48.6% relative to MEGAN2.1 in human-disturbed forest edges,
and reveals summertime BVOC emissions up to 25‑fold higher than previous
estimates in urban areas such as London, Los Angeles, Paris, and Beijing. By
capturing fine-scale landscape heterogeneity and human-driven dynamics,
GEE-MEGAN significantly improves BVOC emission estimates, providing cru-
cial insights to the complex interactions amongBVOCs, climate, and air quality
across both natural and human-modified environments.

Biogenic volatile organic compounds (BVOCs) are critical drivers of
biosphere-atmosphere interactions, significantly influencing ozone
formation, secondary organic aerosol (SOA) production1,2, and
broader atmospheric chemistry3,4. These processes have profound
implications for air quality, climate, and human health. However,
despite their significance, accurately quantifying BVOC emissions
across diverse ecosystems remains a persistent challenge. This
complexity stems from the intricate interplay of biological, climatic,
and anthropogenic factors5,6, compounded by the dynamic nature of
vegetation and environmental conditions.

Existing BVOC models, such as the widely used Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN2.1)7, have made

significant strides by providing a comprehensive framework for
emission estimation. However, these models often rely on coarse
spatial data and static parameters, which limits their ability to cap-
ture the heterogeneity of urban and natural landscapes, leading to
inconsistent and inaccurate BVOC emission estimates across cities
and regions8–12. Such limitations are particularly problematic in
rapidly changing environments, such as urban areas13–15, where
vegetation types, land use, and greening strategies are highly
dynamic16–18. Furthermore, computational constraints hinder the
application of high-resolution models over large geographic scales,
leaving critical gaps in our understanding of BVOCs’ impacts on air
quality and climate19,20.
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To address these challenges, we introduce GEE-MEGAN, an inno-
vative modeling framework (Fig. 1 and Fig. S1 in the Supplementary
Information) that combines the strengths ofMEGAN2.1 with the cloud-
based computational power of Google Earth Engine (GEE)21,22. By
integrating multi-source remote sensing data (e.g., MODIS, Landsat,
Sentinel) and machine learning23,24, GEE-MEGAN dynamically refines
critical model inputs (Fig. 1) such as leaf area index (LAI) and plant
functional types (PFTs), enabling near-real-time, high-resolution BVOC
emission estimates at spatial scales ranging from 10–30m locally to
global domains. These advancements in accuracy, resolution, and
computational efficiencypositionGEE-MEGANas a transformative tool
for advancing research on biosphere-atmosphere interactions, parti-
cularly in understanding the complex feedback loops between BVOCs,
climate and air quality.

Results and discussion
Better prediction of observed LAI and BVOC fluxes
GEE-MEGAN accurately captured both daily and monthly emission
trends at regional scales compared to conventionalmodels at identical
spatial resolutions. For example, hourly isoprene emission rates for
August 2010 across South America showed that daily average emis-
sions closely aligned with trends derived from the inventory from
MEGANmodel coupled with theMOdel for Hydrocarbon emissions by

the CANopy (MOHYCAN) and constraint by Ozone Monitoring
Instrument (OMI) Formaldehyde (HCHO) observation (MEGAN2.1-
MOHYCAN-OMI, details in Fig. S2a)25, achieving a Spearman Rank
CorrelationCoefficient ofR = 0.83 (p <0.001,N = 31). Monthly regional
emissions also exhibitedminimal discrepancies when compared to the
MEGAN default and MEGAN2.1 models for South America7,25,26, with
differences ranging from 6.4% to 12% (Fig. S2c–h and Table S1). These
results validate GEE-MEGAN’s consistency with the core dynamics of
MEGAN2.1 across large temporal and spatial scales. Notably, GEE-
MEGAN consistently produced isoprene emission estimates approxi-
mately 50% higher than those derived from OMI-MEGAN and Global
Ozone Monitoring Experiment-2 (GOME2) based MEGAN model25,27.
This discrepancy is consistentwith recent studies suggesting thatOMI-
MEGAN underestimates emissions due to biases in the OMI for-
maldehyde (HCHO) column data28, which likely skew emission retrie-
vals downward.

GEE-MEGAN utilizes high-resolution Landsat data for LAI estima-
tion, outperforming conventional approaches that rely on coarser
datasets, such as MODIS (Fig. 1E vs. Fig. 1B). When compared to
observed LAI data (https://calvalportal.ceos.org/lpv-direct-v2.1), GEE-
MEGAN’s Landsat-based LAI estimates reduced the mean absolute
errors (MAE) by 12.5% at 500-m resolution and by 11.7% at a 3-km
resolution relative to MODIS-based estimates (Fig. S3), and reduced

Fig. 1 | Comparison of GEE-MEGAN and traditional biogenic volatile organic
compounds (BVOC) calculation processes. Each panel illustrates a set step in the
calculation of BVOC emissions. A Calculate the standard emission factor grid map
(EFMAP) in MEGAN2.1 based on plant functional types (PFTs) and emission factor
(EF); B Derivation of leaf area index (γLAI) and environmental activity factor (γA) in

MEGAN2.1; C Calculation of temperature (γT) and light (γP) activity factors using
meteorological data in MEGAN 2.1; D Dynamic standard emission factor grid map
construction in GEE-MEGAN, incorporating land use/cover change (LUCC) and
wildfire data. E Updated calculation of γLAI and γA in GEE-MEGAN using high-
resolution LAI data from Landsat.
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the RMSE by9.1% at 500-m resolution and by 3.6% at a 3-km resolution.
Based on these refined LAI inputs, GEE-MEGAN further improves BVOC
emission estimates, as evaluated in Table S2. In comparison to
observed BVOC fluxes across diverse ecosystems in North America,
South America, Europe, and East Asia29–33 (Table S2), GEE-MEGAN
outperformed MEGAN2.1, reducing RMSE by 21.6–48.6% and improv-
ing correlation coefficients (R) from0.83 to 0.90. Themost significant
improvementswere observed in regionswith timely captureddynamic
canopy changes.

Enhanced spatial resolution in original and disturbed forests
GEE-MEGAN captures greater spatial heterogeneity in BVOC emissions
(Fig. 2a), especially at forest edges affected by human activities, con-
taining emission hotspots and dead-zones, which are often frag-
mented or averaged out in coarser-resolution datasets34,35. Unlike
conventional models that rely on static parameters and coarse spatial
data, GEE-MEGAN dynamically integrates climatic norms and land use/
cover change (LUCC) data with high-resolution satellite observations
(Fig. 1D, Table S3), producing amoreaccurate and responsive emission
factor map (EFMAP) capable of detecting abrupt changes.

In theAmazon rainforest, a critical BVOC source contributingover
a quarter of global isoprene emission36, GEE-MEGAN reveals sub-
stantial discrepancies in BVOC emissions when compared to the
MEGANdefault with LUCCdata fromMODIS. Coarsermodels often fail
to account for critical impacts of forest loss, introducing potential
biases of Amazonian BVOC emissions. During the high-BVOC-emitting
month of August in 2019, for example, GEE-MEGAN estimated 13%
lower Amazonian isoprene emissions than the MEGAN default (Fig. 2a,
b). While the discrepancies of 3.0–8.3% occurred deep inside the for-
est, they were especially pronounced at forest edges by forest degra-
dation or deforestation (Fig. 2c). In these areas, the MEGAN default
model overestimated emissions by up to 77% (average 31%) in the

fifteen 2° × 2° grid cells along the Arc of Deforestation35,37 (red line in
Fig. 2c; e), while the overestimation became smaller, ranging 3–35%
(average 9%) in the fifteen 2° × 2° grids closer to the forest interior
(blue line in Fig. 2c; d). Moreover, the MEGAN default model under-
estimated isoprene emission by up to 250% in some southeastern
Brazil grids (yellow line in Fig. 2c; f), where recent reforestationor post-
fire vegetation recovery occurred38,39.

In paired 2° × 2° grids along the Arc of Deforestation (red grids)
and approximately ~300 km into the inner forest (blue grids, Fig. 2c),
the MEGAN default model showed an average isoprene emission dif-
ference of 6% (maximum 23%). In contrast, GEE-MEGAN estimated an
average difference of 35% on average (maximum 68%), demonstrating
its strength in capturing emission heterogeneity. Given that each grid
cell represents an area of nearly 50,000 km2, such large under- or
overestimation of reactive BVOC emissions can significantly mis-
represent their roles and broader environmental impacts, especially at
local and regional scales.

High-resolution BVOC emissions modeling in urban areas
GEE-MEGAN effectively captures the spatial variability of urban green
spaces, enabling high-resolution BVOC emission modeling at 10–30m
resolution, resampled to 100m. This ability is showcased in Fig. 3,
where BVOC emissions for July 2019 in London, Paris, Los Angeles, and
Beijing are quantified at finer urban scales by GEE-MEGAN, compared
to the coarser 500-m resolution of the MEGAN default model. In Paris,
the model identified key hotspots, and further evaluation using the
BOXMOX chemical box model showed that GEE-MEGAN emissions
achieved better agreement with observed isoprene concentrations
than the default MEGAN model under identical ERA5 meteorological
conditions9 (Fig. S4, Note S1 and Table S4). This result provides strong
evidence that enhanced spatial detail in emission inputs improves
model-observation consistency.

Fig. 2 | Isoprene emission simulations over the Amazon region in August 2019
using GEE-MEGAN andMEGAN-default. a Isoprene emission at a 30-m resolution
for the Amazon region using the GEE-MEGAN, which incorporated a total of 2,211
Landsat scenes. b Simulation results obtained with the MEGAN-default. c Relative

difference computed as [(b) – (a)]/(b). d–f Total isoprene emissions and their dif-
ferences for the 2° × 2° (220 km× 220km) grids, uniformly distributed along the
red line (Arc of Deforestation), blue line (inner Amazon edge) and yellow line (with
reforestation) as indicated in (c).
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Fig. 3 | Spatial distributionof isoprene emissions in Paris, LosAngeles, London,
and Beijing simulations for July 2019. a, d, g, jMonthly mean isoprene emissions
modeled by GEE-MEGAN, resampled to 100m resolution; each panel includes an
upper-right inset showing a magnified view of a representative urban sub-region.
b, e, h, k Corresponding 500m resolution isoprene fluxes estimated by the default
MEGANmodel, plotted over the same spatial extents and with identical inset areas

for comparison. c, f, i, l Google Earth satellite imagery for the same regions (Maps
data©2019 Google). All panels in each city share a common geographic frame. The
Paris Rive Gauche (PRG) site, marked in (j), is located on the seventh floor of the
Lamarck B building at Université Paris Cité (30m above ground level) and is
equippedwith Proton-Transfer-ReactionMass Spectrometry (PTR-MS) for ambient
isoprene monitoring.

Article https://doi.org/10.1038/s41467-025-63437-8

Nature Communications |         (2025) 16:8064 4

www.nature.com/naturecommunications


The high spatial heterogeneity captured by GEE-MEGAN, parti-
cularly in emission hotspots and high-value zones that are often frag-
mented or averaged in coarser-resolution models, consistently leads
to higher emission estimates. For cities like London, LosAngeles, Paris,
and Beijing, GEE-MEGAN estimated BVOC emissions for July 2019 to be
1.6-25 times higher than thosepredicted by theMEGANdefault (Fig. 4).
In Beijing, the larger discrepancy arises from fragmented vegetation
being poorly resolved by lower-resolution land-cover inputs. GEE-
MEGAN identifies an additional 2800.54 km² of vegetated area and a
mean patch size of 0.67 km² within the same domain (Table S5),
highlighting the critical role of spatial vegetation detail in driving
urban BVOC emissions. This is primarily due to GEE-MEGAN’s incor-
poration of fine-scale vegetation components, such as isolated trees or
smaller trees and shrubs40,41, which are often overlooked in coarser
models (Table S6).

A more specific comparison of BVOC emissions in New York
on July 2, 2018 revealed that GEE-MEGAN estimated total emissions
at 27 tons, nearly 30% higher than the 21 tons predicted by NYC-
MEGAN12. This discrepancy arises from GEE-MEGAN’s superior ability
to account for the continuous urban-to-suburban coverage of green
spaces, addressing limitations in vegetation coverage used in
NYC-MEGAN.

GEE-MEGAN provides amore accurate representation of the roles
of BVOC emissions in urban atmospheric chemistry. In West Los
Angeles, while the MEGAN default model estimated zero BVOC emis-
sions for most of the 251 communities in August 2019 (Fig. 5a), using
compound-specific OH reactivity (OHR) coefficients and SOA yield
factors20, GEE-MEGAN identified BVOC emissions that were, on aver-
age, about 23.0 times higher (Fig. 5b), along with 23.4 times greater
OHR and 25.1 times higher SOA formation potential (SOAFP) (Fig. S5).
More recent state-of-the-art airborne flux measurements in Los
Angeles during summer 202119,20 revealed that biogenic terpenoids
accounted for ~15% of VOC emissions, but contributed over 50% of
OHR and ozone/SOA formation potentials. In comparison, GEE-
MEGAN estimated these BVOCs contributed to 3.5% of VOCs, 26.3%
of OHR, and 29.4% of SOAFP, while theMEGAN default model severely
underestimated these contributions (1% of VOCs, ~15% of OHR and
SOAFP; Fig. S6). Interestingly, significant gaps still exist between
observations and GEE-MEGAN estimates. This could be due to biased
emission factors or it may reflect the substantial contributions of
volatile chemical products (VCPs) to terpenoid emissions in Los
Angeles. This suggests that more accurate BVOC emission estimates
also enable better quantification of the contribution of temperature-

sensitive VCPs42 to total terpenoid emissions, and help disentangle
their temperature-driven variability20.

Implications for air quality and climate
GEE-MEGAN provides a solid foundation for investigating the complex
interplay between BVOCs and climate by offering near-real-time high-
resolution emission modeling. BVOC emissions from forests are
the largest source of reactive organic gases released into the
atmosphere43,44, profoundly influencing radiative ozone (a potent
greenhouse gas in the lower atmosphere) formation, aerosol growth,
cloud formation, and atmospheric oxidative capacity, which controls
the lifetime of methane (CH4) and thereby radiative forcing4,45–47. GEE-
MEGAN captures BVOC emissions more accurately and efficiently
across heterogeneous landscapes, particularly at forest edges where
human disturbance is more pronounced. While GEE-MEGAN and the
default MEGAN model yield similar isoprene emissions in pristine
forests, large discrepancies emerge at forest edges, such as along the
Brazilian Amazon’s Arc of Deforestation35. For example, during the
high-BVOC-emitting month of August 2019, emission discrepancies
are more pronounced in areas affected by forest degradation or
deforestation (Fig. 2c), highlighting the need for high-resolution
emission estimates, especially along global forest edges. Although
pathways by which BVOCs influence climate are more complex than
currently recognized48, emission estimation with high spatiotemporal
resolution as provided by GEE-MEGAN is a prerequisite for better
delineating human perturbations to atmospheric compositions and
climatic impacts of BVOCs at local, regional and even global scales.

GEE-MEGAN’s high-resolution, near-real-time emission modeling
capabilities can help refine climate predictions by providing insights
into the strong and complex feedbacks between climate and BVOC36.
As temperature-driven BVOC emissions increase under global
warming20,49, GEE-MEGAN can offer critical insights into how ecosys-
tems respond to and feedback on climate change43,50–52 by providing
more accurate and timely estimates of BVOC emissions driven by both
natural and anthropogenic forces, such as deforestation and affor-
estation. Additionally, GEE-MEGAN supports the assessments of cli-
mate resilience strategies53–55, such as urban greening and
afforestation/reforestation initiatives56–58, ensuring that these efforts
balance the cooling benefits of increased vegetationwithminimization
of BVOC-related warming and pollution. This dual focus on environ-
mental and climatic impacts optimizes sustainability measures, help-
ing mitigate air quality degradation while maximizing carbon
sequestration and heat mitigation benefits.

Fig. 4 | Biogenic volatile organic compounds (BVOC) compositions in Paris, Los
Angeles, London, and Beijing as modeled by MEGAN default and GEE-MEGAN.
The basemap is derived fromGoogle Earth remote sensing satellite imagery (Maps
data ©2025 Google). The bar depict the emissions of isoprene, monoterpenes, and
sesquiterpenes for each city, focus on regions with nighttime light percentages

above 80% (nighttime light data from the National Polar-orbiting Partnership,
Visible Infrared ImagingRadiometer Suite). This thresholdwasused todefineurban
boundaries consistently across cities. For each city, the same spatial extent was
used for both models to ensure direct comparison.
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GEE-MEGAN also equips urban planners and even non-experts
with powerful tools to assess the air quality impacts of urban greening
initiatives. As BVOCs increasingly influence urban atmospheric chem-
istry due to declining anthropogenic emissions and expanding
greening spaces20,42,59, accurately capturing their emissions in urban
areas, however, becomes challenging because of complex vegetation
patterns anddynamic land-use changes. By resolving emissions atfiner
spatial scale, down to the street and community level, GEE-MEGAN
substantially outperforms the 500-m resolution MEGAN default
model. As illustrated by the examples from Los Angeles discussed
above, GEE-MEGAN provides a more precise understanding of the
contributions of biogenic emissions to total urban terpenoid emis-
sions, which is essential for evaluating their roles in air pollution,
including ozone and SOA formation19,20,42. This ability enables more
nuanced exposure assessments by accounting for interactions
between biogenic and anthropogenic sources across diverse finer-
scale microenvironments in densely populated areas58,59. Additionally,
GEE-MEGAN’s near-real-time modeling capability supports adaptive
air-qualitymanagement in response to events such as heatwaves16,60–62

or rapid urbanization63, ensuring that green infrastructure projects

maximize environmental benefits while minimizing unintended air
pollution consequences.

Despite its advancements, GEE-MEGAN does not yet fully account
for complex environmental factors influencingBVOCemissions64, such
as soil moisture, nitrogen availability, evapotranspiration, and biotic
stresses. Integrating these factors through GEE’s multisource, multi-
scale data capabilities and advanced machine learning techniques
could further refine its predictions. Although ERA5-Land hourly
meteorology (~11 km) was used in this study to ensure global applic-
ability and consistency, our results indicate that improving the spatial
representation of vegetation yields substantial gains in BVOC emission
accuracy. Nevertheless, incorporating high-resolution meteorological
reanalysis products or AI-driven weather prediction models65,66 could
further enhance GEE-MEGAN’s capacity to simulate urban-scale pro-
cesses, offering deeper insights into BVOC-related dynamics in air
quality and climate change.

In summary, GEE-MEGAN bridges critical gaps in BVOC emission
modeling by combining scalability, precision, and real-time cap-
abilities. These features make it a transformative tool for improving
our understanding of roles played by biogenic emissions in a rapidly

Fig. 5 | Comparisons of biogenic volatile organic compounds (BVOC) emissions
and community-level spatial distributions modeled by MEGAN default and
GEE-MEGAN for West Los Angeles during August 2019. a Total BVOC emissions
modeled by MEGAN default at a resolution of 500m. b Total BVOC emissions
modeled by GEE-MEGAN at a finer resolution of 30m. Red boundary lines indicate

community boundaries within West Los Angeles (https://lacounty.maps.arcgis.
com/home/index.html). c Community-average daily BVOC emissions modeled by
GEE-MEGAN. d Community-average daily BVOC emissions modeled by MEGAN
default. e Differences in community-average daily emissions between GEE-MEGAN
and MEGAN default, calculated as (c) minus (d).
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urbanizing andwarmingworld, addressing both air quality and climate
challenges. By providing actionable insights for sustainable urban
planning and climate mitigation, GEE-MEGAN sets a benchmark in
biosphere-atmosphere interaction modeling.

Methods
GEE-MEGAN model
The GEE-MEGAN framework integrates the MEGAN2.17 biogenic
emission model with the computational capabilities of GEE, providing
a flexible and scalable platform for estimating BVOC emissions
across diverse spatial and temporal scales and bridging the gap
between high-resolution emission modeling and large-scale atmo-
spheric analyses.

Data source module. This module aggregates inputs from a range of
data sources to enhance model accuracy and adaptability: Fifth gen-
eration European Centre for Medium-Range Weather Forecasts
atmospheric reanalysis (ERA5) climate data, MODIS-derived LAI, and
reconstructed PFTs are used for large-scale analysis, and higher-
resolution data such as Landsat imagery are employed for improving
LAI precision, particularly in urban and regional studies (see Table S3
and Note S2). In addition to ERA5, GEE-MEGAN can incorporate other
meteorological datasets suchasModern-EraRetrospectiveAnalysis for
Research and Applications version 2 (MERRA-2), the Climate Forecast
SystemVersion 2 (CFSv2), or the Global LandData Assimilation System
(GLDAS-2.1), and also support user-defined inputs such as WRF model
output or CESM projections (Table S7).

Preprocessing module. To ensure consistency and reliability, this
module processes the input through: (1) Temporal filtering: Aligning
data to the required timeframes for simulations; (2) Spatial reprojec-
tion: Standardizing data projections to maintain spatial consistency;
and (3) Resampling: Adjusting spatial resolution to match the scale of
the analysis. Further details are provided in Note S3.

BVOC online calculation module. This module implements the core
MEGAN2.1 computational framework within GEE, including canopy
energy balance (Fig. S7) for simulating canopy conditions to estimate
BVOC emissions, environmental correction factors for adjusting
emissions based on environmental variables such as temperature and
light, and standardized EFs7 for applying standardized emission rates
for various vegetation types. Despite improving GEE-MEGAN compu-
tational efficiency and enabling near-real-time simulations, GEE-
MEGAN produces emission activity factors and outputs consistent
with MEGAN2.1 when using identical inputs (see Fig. S8 and Note S4).

Output and post-processing module. This module supports both
online and local data processing, allowing data export for integration
into atmospheric chemistry models. Outputs are available in formats
compatible with subsequent analyses, with additional details outlined
in Note S5.

Scalability and customization. GEE-MEGAN provides three opera-
tional scales tailored to different applications: local scale (10–30m)
that utilizes high-resolution remote sensing and machine learning
(e.g., Random Forest algorithm) to refine land use and cover change
classification (LUCC), enhancing accuracy in urban and regional esti-
mates, regional scale (500m) that balances resolution and computa-
tional efficiency for broader geographic analyses, and global scale
(500–5000m) that employs coarser datasets to support global-scale
modeling of BVOC emissions (see Table S3).

Box modeling
To evaluate isoprene concentrations and validate GEE-MEGAN esti-
mates, atmospheric simulations were performed using the BOXMOX

model67, based on the Model for Ozone and Related Chemical
Tracers (MOZART-4) chemical mechanism. The simulations focused
on the Paris Rive Gauche site in southeastern Paris, where Proton-
Transfer-Reaction Mass Spectrometry measurements of ambient iso-
prene concentrations were available for comparison with GEE-MEGAN
outputs9. Key inputs for the BOXMOX simulations included
meteorological data (2-m air temperature, boundary layer height, and
photolysis rates derived from the ERA5 reanalysis data) and anthro-
pogenic emissions (pollutant data such as nitrogen oxides, VOCs and
other species obtained from Copernicus Atmosphere Monitoring
Service).

Refinement of PFTs, emission factor maps (EFMAP) and LAI in
GEE-MEGAN
PFTs (Table S8) in GEE-MEGAN were derived using a combination of
the Köppen-Geiger climate classification map68 (Table S9) and the
MODIS MCD12 land cover dataset69 (Fig. S9 and Table S10), following
established methodologies used in the evolution of the Community
LandModel (CLM)70. This integration leverages climate reanalysis data
andMODIS land use categories to ensure accurate and consistent PFTs
mapping. Detailed derivation approaches are provided in Table S11
and Note S6, with comparison of multiple PFTs classifications shown
in Fig. S10.

For local modeling at 30m and 10m resolution, high-resolution
datasets from Landsat and Sentinel satellites were used, with a
supervised machine learning algorithm, specifically a random forest
algorithm (ee.Classifier.smileRandomForest), to update near-real-time
land cover mapping (Note S7 and S8). The random forest was config-
ured with 50 decision trees, and the maximum depth and other para-
meterswere set to default values. Training labels were generated using
a combination of datasets, including MODIS MCD1269, GLC_FCS30D71,
Global Sentinel-2 10mCanopyHeight72, EAS 10mAnnual LandCover73,
and Finer Resolution Observation and Monitoring of Global Land
Cover 10m (FROM-GLC10) datasets74. Each dataset was initially map-
ped to the Annual International Geosphere-Biosphere Programme
classification69, and a hybrid sampling approach was employed to
generate training labels. This approach combines spatially uniform
sampling, which selected 5000points randomly across the target area,
and stratified sampling, which selected 1000 points from each LUCC
classification category.

The predictor variables used in the random forest model were
derived fromLandsat andSentinel satellite bands (visible, infrared, and
near-infrared) as well as from calculated indices, including the nor-
malized difference vegetation index, enhanced vegetation index, and
soil adjusted vegetation index75. Historical data were filtered to create
training labels and corresponding attributes, which were then used to
infer land use classification based on near-real-time remote sensing
data. Finally, the predicted LUCCdata were divided into PFTs based on
canopy height and climate rules, and these were subsequently used as
inputs for GEE-MEGAN.

Dynamic EFMAP. The dynamic EFMAP module adjusts BVOC
emission factors in real-time to account for environmental fluctua-
tions. This dynamic refinement enhances the accuracy of BVOC
emission estimates, as detailed in Note S7 in the supplementary
materials.

LAI. The LAI estimation was improved by combining MODIS-derived
LAI data with Landsat-based LAI interpolated on matching dates
(Note S9). This hybrid approach reduces temporal gaps and enhances
spatial resolution, achieving 9.1% reduction in RMSE at 500-m resolu-
tion and 3.6% reduction in RMSE at 3-km resolution. The refined LAI
method was validated against the global DIRECT ground-based LAI
dataset (Fig. S3A), ensuring reliability and accuracy for both local and
global applications.
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Multiscale simulation framework
To balance near-real-time applicability across spatial scales, GEE-
MEGAN uses consistent meteorological inputs from ERA5-Land
hourly while tailoring land-use and vegetation inputs across 100m,
500m, and 5 km scales, with varying data sources for LUCC and LAI
to reflect spatial heterogeneity in emissions. For scales smaller than
500m, high-resolution Landsat data were utilized to calculate LUCC
and PFTs, while the LAI was derived using an enhanced MCD15
method with Landsat observations. At the 500m scale, LUCC data
were sourced from MCD12Q1 dataset, and LAI data were obtained
using the MODIS MCD15A3H product. At the coarser 5 km scale,
LUCC inputs were extracted from the MODIS MCD12C1dataset, and
LAI was modeled using the LAI/FPAR Climate Data Record (CDR)76.
At coarser spatial resolutions (e.g., 500m), urban green space may
be underrepresented or misclassified as impervious surfaces,
resulting in negligible urban BVOC emissions. Accurate estimation
of emissions in urban areas therefore requires high-resolution LUCC
and LAI inputs, which GEE-MEGAN supports. The spatial resolution
of GEE-MEGAN outputs aligns with the resolution of the input
datasets and can be flexibly selected depending on the application.
For urban or rapidly changing landscapes, we recommend using
high resolution inputs (10–30m); for regional or global assess-
ments, coarser inputs (500m to 5 km) are more practical and
computationally efficient.

Validation
The accuracy of GEE-MEGAN was evaluated by comparing emission
estimates with those of MEGAN2.1 across multiple sites and scales.
Validationmetrics included R², root mean squared error (RMSE), MAE,
and Pearson correlation, for a comprehensive assessment of the
model’s performance. These metrics were also applied to assess
improvements in LAI estimates.

The GEE-MEGAN framework (Fig. S1) significantly improves the
computational efficiency and scalability of BVOC emission modeling
by leveraging the cloud-based capabilities of GEE21,22. This innovation
enables near-real-time, high-resolution simulations across large spatial
domains while minimizing both computational demands and data
transfer requirements. For instance, using a consistent input dataset
for South America (60° S–13°N, 35–90°W) at a 500-m resolution and
operating on a local Intel Xeon Gold 6230R CPU (2.1 GHz), MEGAN2.1
required 736.9 s per species to complete the simulation while GEE-
MEGAN achieved comparable results in just 7.2 to 9.1 s per species,
delivering an 81- to 102-fold increase in processing speed; moreover,
GEE-MEGAN reduced data transfer by 97–99% compared to traditional
models, facilitating efficient processing even for large-scale or high-
resolution applications.

GEE-MEGAN accurately replicates the coredynamics ofMEGAN2.1
while significantly improving efficiency and scalability7. Simulations
using input datasets from North America (https://bai.ess.uci.edu/
megan/data-and-code/megan21, last retrieved September 14, 2024)
revealed high consistency between MEGAN2.1 (Fig. S8a, e, i, m) and
GEE-MEGAN (Fig. S8b, f, g, n), with a correlation coefficient of 1.0 and a
total error of less than 0.1 across 16,576 data points. Minor dis-
crepancies (Fig. S8d, h, l, p) were observed due to differences in
computational environments but remained within acceptablemargins
(RMSE < 3.0 × 10−2; Fig. S8 and Table S12).

Data availability
All data supporting the findings of this study are openly available. The
datasets used in GEE-MEGAN are detailed in Table 3 of the Supple-
mentary Information. The accuracy of the LAI estimation method was
validated against the global ground-based observation dataset DIRECT
(https://calvalportal.ceos.org/lpv-direct-v2.1, last access: 21 December
2023). The access links for ERA5-Land hourly, MERRA-2, CFSv2, and
GLDAS-2.1 data are provided in Table 7 of the Supplementary

Information. The Landsat surface reflectance, Sentinel-2,
GLC_FCS30D71, Global Sentinel-2 10m Canopy Height72, EAS
WorldCover73, FROM-GLC1074 and sensor-independent LAI/FPAR
CDR76 are all accessible via the Google Earth Engine platform (https://
earthengine.google.com/). Data related toMEGAN 2.1 MOHYCAN-OMI
and IMAGESv2-GOME2 are available from https://emissions.
aeronomie.be/, and the MEGAN 2.1 test-case inputs from https://bai.
ess.uci.edu/megan/data-and-code/megan21. All the raw data support-
ing the figures and tables presented in this study are stored in: https://
doi.org/10.6084/m9.figshare.29377247 77. Source data are provided
with this paper.

Code availability
TheMEGAN2.1 model source code is available from https://bai.ess.uci.
edu/megan/data-and-code/megan21. The WRF v4.3.1 code can be
cloned fromhttps://github.com/wrf-model/WRF.git, and the BOXMOX
model framework is available for download from https://mbees.med.
uni-augsburg.de/boxmodeling/download.html. The code for GEE-
MEGAN framework, including the scripts and documentation in this
study, is publicly accessible at the following Zenodo repository:
https://doi.org/10.5281/zenodo.15714886 78.
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