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AI cancer driver mutation predictions are
valid in real-world data

Thinh N. Tran , Chris Fong, Karl Pichotta, Anisha Luthra, Ronglai Shen ,
Yuan Chen , Michele Waters , Susie Kim, Xiang Li , Ino de Bruijn ,
Gregory Riely, Michael F. Berger , Marc Ladanyi , Debyani Chakravarty ,
Nikolaus Schultz & Justin Jee

Characterizing and validating which mutations influence development of
cancer is challenging. Artificial intelligence (AI) has delivered significant
advances in protein structure prediction, but its utility for identifying cancer
drivers is less explored. We evaluate multiple computational methods for
identifying cancer drivermutations. For re-identifying knowndrivers,methods
incorporating protein structure or functional genomic data outperform
methods trained only on evolutionary data. We validate variants of unknown
significance (VUSs) annotated as pathogenic by testing their association with
overall survival in two cohorts of patients with non-small cell lung cancer
(N = 7965 and 977). VUSs identified as pathogenic drivers by AI in KEAP1 and
SMARCA4 are associated with worse survival, unlike “benign” VUSs. “Patho-
genic” VUSs also exhibit mutual exclusivity with known oncogenic alterations
at the pathway level, further suggesting biological validity. AI predictions thus
contribute to a more comprehensive understanding of tumor genetics as
validated by real-world data.

The majority of somatic tumor mutations are variants of unknown
significance (VUSs)1–3. In a pan-cancer, multi-institutional cohort of
N = 160,969 patients with tumor genomic profiling4, approximately
80% of somatic mutations detected were VUSs according to an FDA-
recognized molecular knowledge database (OncoKB5). In some genes
with known consequences for survival, such as KEAP16, 78.8% were
VUSs (Fig. 1A).

Multiple knowledge bases have been developed to annotate
pathogenic and actionablemutations5,7,8, however, these generally rely
on published literature, which is time-consuming to produce and to
compile. Computational variant effect predictors (VEPs)may automate
variant annotation. Recent tools such as Google DeepMind’s Alpha-
Missense, which leverage evolutionary, biological and protein struc-
tural features combined with high-dimensional machine learning
architectures, have gained significant interest9,10. However, these VEPs
aregenerally trained topredict germlinepathogenic variants, and their
utility in identifying somatic mutations that drive diseases such as
cancer remains uncharacterized9,11–15. The validation of such tools is

itself a challenging task; functional assays are labor-intensive and can
thus characterize only a limited number of variants3,16,17.

In this work, we develop four specific approaches to assess the
utility of computationalmethods for annotating VUSs using real-world
patient cancer data. Digital health records and widespread tumor
genomic profiling offer ameans to bypass traditional functional assays
and study the impact of tumor mutations, including VUSs, directly
using patient data18,19. Our four approaches include 1) annotating
known pathogenic somatic cancer variants as confirmed by OncoKB,
which combines literature-confirmed annotations with population-
level hotspot identification20, 2) identifying VUSs associated with
binding regions among proteins with known structures, 3) identifying
VUSs associated with overall survival (OS) in patients with lung cancer
and 4) identifying VUSs in tumors without other drivers in the same
oncogenic pathway. We apply these four approaches to evaluate 14
modern computational methods chosen based on their conceptual
advancements and demonstrated superior performance in annotating
known pathogenic mutations in databases such as ClinVar21 and
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VariBench22 compared to other methods in the same class23,24

(Table S1). Our results show that methods incorporating structural or
functional genomic features outperform those relying solely on evo-
lutionary conservation when identifying known cancer drivers. VUSs
predicted to be pathogenic—particularly in genes like KEAP1 and
SMARCA4—are consistently associated with poorer overall survival in
two nonoverlapping non-small cell lung cancer cohorts, and tend to be
mutually exclusive with other known oncogenic alterations within the
same pathways. These results reinforce the clinical and biological
relevance of the predictions, highlighting the value of computational
VEPs in advancing the interpretation of somatic variants in cancer.

Results
Association with OncoKB driver variants
Wefirst tested the utility of VEPs in discriminating literature-confirmed
or hotspot pathogenic somatic missense variants from benign ones.
OncoKB-annotated pathogenic variants in the AACR Project GENIE
dataset4 served as pathogenic cases while randomly selectedmissense
mutations from the dbSNP Human Variation Sets labeled as having no

known medical impact served as negative controls. Since germline
missense variants from dbSNPs may not fully capture the complexity
of somatic mutational processes, particularly given the differences in
mutagenesis between germline and somatic tissues, we created an
additional negative control set including simulated neutral variants
using tri-nucleotide change probabilities observed in the mutational
profiles of the specific tumor types in GENIE v14 (simulated SNPs).
Pathogenicity predictions from all methods were generally correlated
with each other at both the mutation level, where each unique muta-
tion was counted once, and at the population level, where all occur-
rences of mutations were counted to reflect actual population
frequencies of each mutation (Fig. S2).

Benign SNPs had significantly lower scores than oncogenic
mutations in all studied methods, demonstrating their ability to dis-
tinguish benign versus pathogenic mutations in cancer
(Figs. 1B and S3, SA: Predicting Established Pathogenic Variants).
Mutations in GENIE annotated as neutral or unknown by OncoKB had
significantly higher scores than known benign mutations, suggesting
potential unannotated drivers (Fig. 1B). Across all methods, oncogenic
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Fig. 1 | VEPs have variable performance in annotating known oncogenic
mutations. A Frequency of known oncogenic mutations and variants of unknown
significance (VUS) in commonly altered oncogenes and tumor suppressor genes in
GENIE as annotated by OncoKB. B Distributions of prediction scores from Alpha-
Missense and FATHMM from non-pathogenic dbSNPs (N = 7474) and missense
mutations in GENIE v.14-public, broken down by their occurrence in oncogenes
(OG, N = 408,771), tumor suppressor genes (TSG, N = 506,068) or genes that act as
both (OG/TSG, N = 57,592) at the population level, in which all occurrences of
missense mutations are included. Points higher on the y-axis corresponded with
higher predicted pathogenicity. Boxplots represent mean scores (center line) ±
interquartile range (IQR); whiskers span 1.5 × IQR from each quartile, with outliers
shown individually. See Fig. S3B for population-level distributions fromall VEPs and
Fig. S3A for mutation-level distributions. Brackets denote significance from two-
sided Tukey’s tests with FDR correction (*: q ≤0.05, ****: q ≤ 1e-04). C. AUROCs (±
95%CI) of 12 variant annotationmethods in classifying known oncogenicmutations

(N = 180,540) and non-oncogenic SNPs (N = 180,540 upsampled from 7474) at the
population level. DeLong’s test was used to compare AUROCs with FDR correction.
Within each methodological class, pairwise comparisons were performed between
the top-performing method and others (*: q ≤0.05 marked by black asterisks). Red
asterisks denote significant differences (q ≤0.05) between each class’s top per-
former and the overall best method (bolded AUROC). Tracks at left indicate how
each method was trained: “Supervised” denotes use of labeled training data;
“Human-curated” specifies whether labels originated from manually curated
resources (e.g., ClinVar); and “Cancer-trained” denotes use of cancer-specific
datasets (e.g., Cancer GenomeCensus).D. Density plots showing true positive rates
(TPR) of AlphaMissense and FATHMM over all genes. TPRs and the number of
known oncogenic mutations (N) in select commonly mutated oncogenes and
tumor suppressor genes are shown. See Supplemental Appendix for a complete list
of TPRs. Source data are provided as a Source Data file.
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mutations in tumor suppressor genes (TSGs) had higher predicted
scores and higher AUROC for correctly annotating oncogenic muta-
tions in TSGs than in oncogenes (OGs) (Fig. 1C), as expected based on
previous work25. These results were consistent when simulated SNPs
were used as the negative class (Figs. S12, S13).

We found that in general, the ensemble and deep learning-based
methods outperformed the evolution-based methods (Fig. 1C).
AlphaMissense9 significantly outperformed other deep learning-based
methods as well as other best-in-class methods in predicting onco-
genic mutations (AUROC of 0.98 for OGs and TSGs at the population
level respectively, Fig. 1C). Among ensemble methods, VARITY26 and
REVEL14, both trained on human-curated data, outperformed CADD27,
which was trained on weak population-derived labels (Fig. 1C). Among
evolution-based methods, EVE28, the only unsupervised deep learning
method in this class, outperformed others at the population level
(AUROC of 0.83 and 0.92 for OGs and TSGs respectively, Fig. 1C).
These results held when mutant alleles were each counted once, irre-
spective of population frequency (Fig. S4), and when using simulated
SNPs as the negative class (Fig. S13). Additionally, to more accurately
reflect the type and distribution of passenger mutations in tumors, we
used neutral somatic mutations as annotated by OncoKB as the
negative class to evaluate VEP performance (Fig. S17). We found that
performance declined acrossmethods, even thoughdeep learning and
ensemble methods tended to perform better than evolution-based
methods (Fig. S17). Out of all methods, AlphaMissense achieved the
best performance in this task (AUROC of 0.8 for classifying OGs and
TSGs mutations at the population level, respectively, Fig. S17B).
Beyond general VEPs, we evaluated two methods that leverage tumor
type-specific information, such as recurrence andmutations clustering
in 3D structure, to train their predictive models: CHASMplus29 and
BoostDM30, the latter of which includes predictions for a smaller
number of mutations (Figure S16). Both performed well in identifying
oncogenic mutations at the population level, although BoostDM’s
performance was lower at the mutation level (Fig. S16B), possibly
because it focused on a small number of very common mutations in
cancer. Across allmethods, sensitivity was higher in TSGs compared to
OGs, but sensitivity further varies at the gene level (Fig. 1D). Overall,
these results demonstrate that VEPs were able to identify pathogenic
mutations in cancer, with multimodal, deep learning-based methods
outperforming methods trained only on mutation frequencies.

It is possible that VEPs with different approaches may have
complementary information that could result in better performance
in predicting variant effects than any single VEP. To test this
hypothesis, we trained random forest (RF) models including the
outputs from 11 non-ensemble VEPs as inputs to predict variant
pathogenicity. Our training and test sets includedOncoKBoncogenic
variants from GENIE v14 data as the positive class and randomly
selected variants from dbSNP as the negative class. Models trained
and tested on population data perform better than those trained and
tested on mutation level data; 5-fold CV models perform better than
gene holdout models; and all models perform better in predicting
TSG mutations compared to OGs (Fig. S15). The best performing
ensemble, trainedon population-level data and validated using 5-fold
cross-validation, achieved AUCs of 0.998 on predicting both TSG and
OG mutations, outperforming the best performing VEP Alpha-
Missense (DeLong’s Test: p = 2.6e-51, ΔAUC= 0.034, 95% CI = [0.029,
0.038] in TSG, p = 4.4e-75, ΔAUC= 0.055, 95% CI = [0.049, 0.061] in
OG, Fig. S15C). Feature importance scores from all ensembles con-
sistently identify AlphaMissense, CHASMplus and PrimateAI as the
top three most important features. These results suggest that
ensemble predictors at the population level were able to incorporate
knowledge from individual methods, particularly from well-
performing VEPs, in their predictions, which resulted in improved
performance over non-ensemble methods.

Association with known binding sites
We next investigated the ability of VEPs to identify new driver muta-
tions not previously annotated by OncoKB from the large pool of
detected VUSs. In particular, we validated the potential functional
impact of VUSs labeled as pathogenic by VEPs (“reclassified patho-
genic”) in cancer through analyses of their impact on protein binding
sites, correlation with patient outcomes, and adherence to expected
driver mutual exclusivity patterns. Furthermore, we implemented
success metrics on each task and compared the performance of VEPs
in order to identify thebestmethod for studying newdrivermutations.

Pathogenic mutations can alter protein function by disrupting
interactions with other proteins and ligands31. We probed whether
reclassified pathogenic variants were enriched in residues involved in
ligand binding or protein-protein interaction (“binding residues”) for
proteins with available crystal structures. Mutations affecting binding
residues in all genes were significantly more likely to be annotated as
oncogenicbyOncoKBasexpected (Fisher’s test,q-value = 0, odds ratio
= 10.02, 95% CI = [9.45, 10.63], Fig. 2A). Mutations occurring at binding
residues were universally more likely to be reclassified as pathogenic,
whereas non-binding residue mutations were more likely to be
reclassified as benign, although the degree of enrichment varied by
method (Fig. 2A). This result suggests that the disruption of function at
these critical binding residues may contribute to the pathogenic nat-
ure of these reclassified pathogenic variants. To quantify performance
of VEPs in reclassifying VUSs at binding residues to be pathogenic by
calculating the odds ratio of reclassified pathogenic mutations
occurring in a binding domain compared to reclassified benign
mutations across all genes (ORbinding) (Fig. S14B). VARITY achieves the
highest ORbinding of 9.09 (95% CI [8.68, 9.53]) followed by Alpha-
Missense (ORbinding of 7.1, 95% CI [6.81, 7.41]), meaning reclassified
pathogenic mutations identified by these VEPs are ~7-9 times more
likely to occur at binding sites compared to reclassified benign muta-
tions (Fig. S14B). This suggests that VARITY and AlphaMissense per-
form best in distinguishing VUSs according to physical location within
the protein.

Association with survival
To further validate VUS classifications by VEPs using real-world data,
we measured the impact of mutations according to classification on
overall survival (OS), focusing on patients with non-small cell lung
cancer (NSCLC), the world’s leading cause of cancer mortality32 and a
cancer type with frequent tumor genomic sequencing. In patients with
NSCLC,mutations inmultiple genes, includingKRAS, STK11 andKEAP1,
have been associated with worse OS33–36. We investigated whether
reclassified pathogenic variants are associated with OS in NSCLC using
two cohorts of patients: 7,965 patients with MSK-IMPACT clinical
sequencing and 977 non-MSK patients from the GENIE Biopharma
Collaborative (BPC) NSCLC cohort37. To identify the association
between reclassified pathogenic variants and outcome, we stratified
patients based on gene-level pathogenicity annotations and compared
OS between groups using Cox’s proportional hazard (PH) models. To
account for potential covariate imbalances between groups with dis-
tinct genomic profiles, we calculated inverse probability of treatment
weights (IPTW) using demographic, genomic and clinical covariates
prior to fitting Cox PH models, which demonstrates effectiveness in
address these imbalances, especially in confounding genomic vari-
ables such as tumor mutational burden (SA: Survival Analysis,
Figure S5).

Known oncogenic variants3 in several genes were associated with
worse OS. VUSs in KEAP1 and SMARCA4 annotated pathogenic by
multiple methods were also associated with worse OS, while those
annotated as likely benign were associated with better outcome, sug-
gesting meaningful discrimination among VUSs by computational
methods (Fig. 2B). These findings were consistent in both the MSK-
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Fig. 2 | VEPs identify unannotateddrivermutations.A Frequency and annotation
of missense mutations occurring at binding residues (either ligand binding or
protein-protein interaction hotspots, see Supplemental Appendix) or non-binding
residues of all geneswith available binding residue information in GENIE v14-public
pan-cancer cohort (N = 209,588). Asterisks denote statistical significance from two-
sided Fisher’s exact tests with FDR correction (*: q-value ≤0.1). OncoKB groups
include all missense mutations, whereas variant effect predictor groups only
include VUSs. B. Inverse probability treatment weighted overall survival hazard
ratios (from time of diagnosis left truncated at time of sequencing) of patients
harboring reclassified oncogenic mutations compared to patients without muta-
tion in commonly mutated genes in non-small cell lung cancer (NSCLC). Patients
are from MSK-IMPACT NSCLC (N = 7965) and AACR GENIE Biopharma

Collaborative NSCLC (N = 977) cohorts. Inset: Inverse probability of treatment
weighted Kaplan Meier curves comparing overall survival from time of diagnosis
left-truncated at time of sequencing of patients based on KEAP1 mutations anno-
tation in the MSK-IMPACT NSCLC cohort. Alteration frequencies and overlap of
AlphaMissense reclassified pathogenic mutations with oncogenic alterations of
genes in the same pathway in MSK-IMPACT NSCLC cohort (N = 7965 patients).
Inset: Oncoprint of genes in the NRF2 pathway for N = 1279 samples with NRF2
pathway alteration. Asterisks denote statistical significance from two-sided Fisher’s
exact tests with FDR correction (***: q-value ≤0.01). KEAP1 reclassified mutations,
similar toKEAP1 oncogenicmutations, aremutually exclusivewith other oncogenic
mutations in NFE2L2 and CUL3. Source data are provided as a Source Data file.
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IMPACT and BPC cohorts (Fig. 2B). The higher OS risks in patients with
reclassified pathogenicmutations in these two geneswere comparable
with the risks associated with known oncogenicmutations, suggesting
high specificity for pathogenic variant detection across methods
(Fig. S6A). Conversely, patients with reclassified benign mutations in
thesegenes had somedifferences inOS risk compared to thosewith no
mutation; for example, CADD, FATHMM, and PrimateAI appeared to
have imperfect sensitivity for pathogenic KEAP1 mutations (Fig. S6B).
We quantified VEP performance in distinguishing VUSs with outcome
implications by calculating the relative risk of survival (RR), defined for
eachgene as the ratio ofOSHR for patientswith reclassifiedoncogenic
mutations vs. no mutation, compared to OS HR for patients with
reclassified benign mutations vs. no mutation38 (Fig. S14C). The higher
the RR, the better a VEP at identifying mutations that affect outcomes.
The RR for KEAP1 (RRKEAP1) showed that SIFT and PolyPhen2-HDIV
achieved the best performance (RRKEAP1 range 1.57-1.7, 95% CI [1.47,
1.81]), followed by MutationAssessor, AlphaMissense and PolyPhen2-
HVAR at (RRKEAP1 range 1.32-1.43, 95% CI [1.24, 1.52]) (Fig. S14C). This
result suggests that evolution-based methods successfully identified
prognostic mutations, even when they performed less well in anno-
tating known oncogenic mutations.

Concurrent mutations in certain gene combinations may worsen
survival in an additive manner, as is known for STK11 and KEAP1 in
NSCLC34 and observed in the MSK-IMPACT NSCLC cohort (Fig. S9B).
To test whether reclassified pathogenic variants in STK11 and KEAP1
were similarly associated with worse survival, we compared OS of
patients with double KEAP1 and STK11 reclassified mutations with
patients with single reclassified pathogenic mutation and patients
without any mutation in these two genes. We found that patients with
tumorsharboring bothKEAP1 and STK11AlphaMissensemutations had
worse OS compared to those with reclassified pathogenicmutations in
either genes, as well as those without mutation (Fig. S9A). This result
further suggests that the KEAP1 and STK11 reclassified variants from
AlphaMissense follow expected patterns of additive prognostic sig-
nificance, suggesting biologic validity. In summary, VEP annotations
suggested several VUSs with biological activity that were confirmed by
association with OS in NSCLC.

Pathway mutual exclusivity
Oncogenic mutations in genes within the same oncogenic signaling
pathway tend to not co-occur in the same patient due to functional
redundancy39,40. In NSCLC, oncogenicmutations in the RTK/RAS, NRF1
and TP53 pathways have been shown to exhibit mutual exclusivity40.
To demonstrate that reclassified pathogenic mutations have compar-
able cancer-driving effect on a pathway as known oncogenic muta-
tions, we aimed to identify whether reclassified pathogenic mutations
were mutually exclusive with other known oncogenic mutations in
these three pathways within the MSK-IMPACT NSCLC data using two-
sided Fisher’s exact tests. All methods were able to identify VUSs that
exhibit mutual exclusivity with other oncogenic mutations in all three
pathways (Fig. S10A).

Within the NRF2 pathway, KEAP1 VUSs reclassified as pathogenic
by any method were mutually exclusive with oncogenic mutations in
KEAP1, NFE2L2 and CUL3 (Fig. 2C), whereas KEAP1 VUSs reclassified as
benign by VEPs except for CADD, ESM1b, FATHMM and Mutatio-
nAssessor tended to co-occur with other oncogenic mutations in the
pathway (Fig. S10B). Similarly, all VEPs except for MutationAssessor
were able to identify reclassified pathogenic mutations in ATM and
TP53 that aremutually exclusivewith other oncogenicmutations in the
TP53 pathway, whereas reclassified benign mutations in these genes
were not mutually exclusive with other drivers in the pathway
(Fig. 2C and S10).

In the RTK/RAS pathway, reclassified pathogenic mutations in
NF1, ERBB4, and IRS2 41 identified by AlphaMissense were mutually
exclusive with other oncogenic mutations (Fig. 2C). Reclassified

benign mutations in ERBB4 and IRS2were also mutually exclusive with
known oncogenic mutations (Fig. S10B), indicating potential drivers
requiring additional annotation. ERBB4 and IRS2 pathogenicmutations
classified by AlphaMissense were frequent in high TMB samples, while
RTK/RAS oncogenic mutations were more common in TMB-low sam-
ples (Fig. S11A). Logistic regressions, controlling for TMB status,
revealed independentmutual exclusivity between RTK/RAS oncogenic
mutations and reclassified pathogenic mutations in ERBB4 (Fig. S11B).
A negative association was observed between IRS2 pathogenic muta-
tions and RTK/RAS oncogenic mutations, although not statistically
significant due to limited sample size (Fig. S11C). Similar patterns were
seen with reclassified benign mutations, suggesting potential unan-
notated drivers in ERBB4 and IRS2 (Fig. S11C). More details about the
mutational pattern of RTK/RAS pathway and TMB status of samples
with ERBB4 and IRS2 mutations are summarized in Supplemen-
tary Data 1.

We calculated the odds ratio of reclassified oncogenic mutations,
compared to reclassified benign mutations, being mutually exclusive
withother knownoncogenicmutations in the samepathway (ORmutex),
although this analysis was largely underpowered at the gene level
(Fig. S14D). The majority of these genes are oncogenes commonly
altered with gain-of-function mutations, whose effects are more diffi-
cult to predict (Fig. 1B). In summary, analysis of mutational patterns
showed that reclassified pathogenic mutations followed expected
patterns within oncogenic pathways, offering a potential benchmark
for VEP performance, even thoughmost methods could improve their
sensitivity to fully explore less common driver classes.

Discussion
Results from our benchmarks suggest that there is not one single
method that outperforms others across all tasks, although Alpha-
Missense, SIFT and PolyPhen2 demonstrate better performance than
other methods in multiple tasks related to reclassifying VUSs accord-
ing to our proposed metrics (Fig. S14). Users should compare perfor-
mance of multiple methods across specific evaluation tasks and
choose the best performing methods for the tasks they are most
interested in. Various tools exist to facilitate the comparison of dif-
ferent methods, including bioinformatics platforms, such as Ensembl
VEP42, dbNSFP43 and OpenCRAVAT44, that enable simultaneous anno-
tation of variants with many VEPs, as well as cancer data portal such as
cBioPortal45, which integrates AlphaMissense predictions along with
other cancer-specific variant annotations. Our preliminary experi-
ments suggest that ensemble approaches that combine multiple VEP
outputs can further improve the precision and robustness of patho-
genicity predictions, providing a more comprehensive tool for clinical
research and decision-making.

Our study has limitations. SNPs may have different distributions
and characteristics compared to passenger mutations; thus, using
SNPs as the negative set may overestimate VEPs performance in pre-
dicting mutation oncogenicity in tumors. Indeed, when we used neu-
tral somatic variants as annotated by OncoKB instead of SNPs as the
negative class, prediction performance declined across all methods
(Figure S17). This result, however, also highlights the challenges with
annotating true benign mutations in cancer, as annotations from
knowledge bases often rely on evidence from functional experiments,
which can be scarce or incomplete depending on the experimental
setup. We expect that beyond reclassifying VUSs, the approaches
described here can be used to review and revise existing variant
annotations, including those neutral variants. Our VUS quantification
across institutions comes from multiple contributing cancers with
their own sequencing pipelines, the majority of which are tumor-only
sequencing. Even though all data went through germline SNP filtering
pipeline before public release, it is possible that there remainedprivate
SNPs in the data, which may artificially inflate the number of more
easily characterizable VUSs in a given dataset, although this would
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reflect a clinical reality of such SNPs appearing in tumor-only
sequencing assays. The MSK-IMPACT and GENIE BPC cohorts,
though richly annotated, may not be sufficiently powered at the pre-
sent to discover rare driver variants in less commonly mutated genes
or assert the association between these putative drivers andoutcomes.

Overall, our findings underscore the potential of VEPs in identi-
fying driver mutations in cancer as evidenced through their success at
several benchmarks based on real-world data. VEPs can help to quickly
expand the set of potential driver variants in genes with potential
therapeutic significance such asKEAP146,47 and SMARCA448,49, which are
targets of therapies currently undergoing clinical trials.We expect that
VEPs will continue to improve over time, particularly with regard to
cancer driver prediction; that real-world datasets fueling these ana-
lyses will continue to grow; and that a growing number of molecularly
targeted therapies will allow for examination of not prognostic but
also predictive value for identified genomic targets, together sug-
gesting synergisticmeansbywhichdata and computation can improve
the lives of patients with cancer.

Methods
This study complies with all relevant ethical regulations as approved
by the Institutional Review Board of MSKCC.

Patients and data collection
This study analyzed patients with tumor genomic sequencing from
two sources: The MSK-IMPACT cohort and the AACR Project GENIE
cohort, which includes patients from the MSK-IMPACT cohort.

MSK-IMPACT. The MSK-IMPACT cohort comprised patients at Mem-
orial Sloan Kettering (NewYork, NY), an academic cancer hospital with
tumor genomic sequencing using MSK-IMPACT, an FDA-authorized
tumor genomic profiling assay, which uses matched white blood cell
sequencing to filter clonal hematopoietic and germline variants. All
MSK patients were enrolled as part of a prospective sequencing pro-
tocol (NCT01775072). The study was independently approved by the
Institutional Review Board of each site. Patients provided written,
informed consent and were enrolled in a continuous, nonrandom
fashion. Data here is from a February 15, 2023 snapshot, consisting of
11,649 samples from 7965 patients with non-small cell lung cancer
(NSCLC). Out of 7965 patients, 338 patients (4.2%) self-identified as
Hispanic.

For patients in theMSK-IMPACT cohort, demographic and clinical
information, including tumor stage, age, sex, race and histology were
retrieved from the electronic health records database. Breakdown of
demographic characteristics is presented in Table S5. Sex (female/
male) was available and was included as a covariate in some models,
but the primary analyses were not stratified by sex, as sex was not a
primary variable of interest. Smoking history, prior treatment and
metastatic events were abstracted from clinical notes using previously
validated natural language processing methods50–53. Tumor mutation
burden per sample was calculated as the total number of nonsynon-
ymousmutations divided by the actual number of bases analyzed, and
samples with TMB> = 10 mut/Mb were defined as TMB-high. MSI-H
status was defined for each sample by an MSIsensor score >1054.

GENIE. Details of the AACR Project GENIE cohort have been published
previously4. In short, the pan-cancer registry contains genomic and
clinical data from 11 international institutions. In this study, we ana-
lyzed data from the v.14-public release, which consists of genomic data
for 183,302 tumors from 160,965 patients. For genomic landscape
analyses involving gene-level counts, only patients with tumor
sequencing panels including a given gene of interest were included in
the respective analysis. The number of patients with each gene
sequenced is given in Supplementary Data 2.

GENIE BPC. Genomic and clinical data for a subset of patients with
non-small cell lung cancer in the AACR GENIE cohort have been
recently published aspart of theAACRGENIE BiopharmaCollaborative
(BPC)37. Out of 1846 patients from four contributing institutions in the
cohort, we included all 977patients fromDana-FarberCancer Institute,
Vanderbilt-Ingram Cancer Center and Princess Margaret Cancer
Centre-University Health Network with single-primary NSCLC in our
analysis cohort. All MSK patients were included in the MSK-IMPACT
cohort. For survival analyses involving gene-level cohorts, only
patients with tumor sequencing panels including a given gene of
interest were included in the respective analysis.

Genomic landscape
Genomic data, including mutational calls, copy number alteration and
structural variant data, for the GENIE v.14-public cohort were obtained
from Synapse. All genomic alterations were annotated with OncoKB
version 4.2 (release date February 10, 2023). Genes were labeled as
oncogenes or tumor suppressor genes using the OncoKB Cancer Gene
List (updated October 2, 2023). For genomic landscape analyses
involving gene-level counts, only patients with tumor sequencing
panels including a given gene of interest were included in the
respective analysis.

Non-oncogenic variants
Non-oncogenic missense mutations were randomly selected from the
dbSNP Human Variation Sets build 150 (April 2017) labeled as having
“no known medical impact.” This dataset includes variants with
germline minor allele frequency of ≥ 0.01 and no records of clinical
phenotypes in ClinVar. We annotated all variants with the same
methods as described below and selected 7474 variants with the
highest number of available annotations from 14 VEPs. These non-
oncogenic variants served as the negative class in subsequent receiver
operating characteristic curve analyses.

Predicting established pathogenic variants
We evaluated the performance of 14 variant function prediction
methods and one human variant archive for recapitulating known
oncogenic cancer variants as annotated by OncoKB, the first FDA-
recognized somatic molecular knowledge database for this purpose.
Methods were chosen to be included from a diverse range of
approaches based on their recent development and conceptual
advancements (including methods with recent release dates e.g.
AlphaMissense, PrimateAI and ESM1b, as well as more updated meth-
odology to an old approach, e.g. EVE’s deep generative model to
predict pathogenicity based on evolutionary conservation), superior
performance compared to othermethods in the same class (e.g. REVEL
and CADD outperformed other VEPs in multiple comparison
studies23,24, while VARITY_R_LOO’s performance was better than 12
other VEPs and comparable to AlphaMissense in certain evaluation
tasks9), specific relevance to cancer (FATHMM implements cancer-
specific pathogenicity weight55, MutationAssessor previously demon-
strated utility in annotating cancer variants12, CHASMplus29 and
BoostDM30’s cancer type-specific model of variant pathogenicity), as
well as historical significance and popularity (SIFT and PolyPhen2 are
among the earliest VEPs and have the highest number of citations to
date56). A brief description of the methods/database is presented in
Table S1.

Annotation schema
OncoKB annotations were performed with version 4.2 (released Feb-
ruary 10, 2023). Prediction scores for most VEPs, except BoostDM and
CHASMplus and ClinVar were obtained from dbNSFP43 v4.6 (released
February 18, 2024). Pre-computed BoostDM scores were obtained
from https://www.intogen.org/boostdm/search. CHASMplus
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annotations were obtained from OpenCRAVAT using the pan-cancer
model for GENIE v14 data and lung adenocarcinoma model for MSK-
IMPACTNSCLC andGENIE BPCNSCLCdata. Categorization of variants
into pathogenic, non-pathogenic or uncertain, obtained by imposing
predetermined cutoff thresholds on the predicted functional scores,
was also provided by AlphaMissense, BoostDM, FATHMM, Mutatio-
nAssessor, PolyPhen2 and SIFT. For VEPs in this category, we used off-
the-self classifications provided by these methods. CHASMplus pro-
vided p-values for statistical significance of the predicted pathogeni-
city compared to a background model29, so we corrected the p-values
for multiple hypothesis testing using the Benjamini-Hochberg proce-
dure and annotated variants with q-value ≤ 0.05 as pathogenic and the
rest non-pathogenic. The rest of the evaluated VEPs required addi-
tional steps to determine the appropriate variant classification from
predicted scores.

First, EVE provides variant classifications at different degrees of
uncertainty, aiming tomaximize accuracy by excluding variants that the
model is uncertain about. For example, a Class25 EVE classification
means that 25% of the most uncertain variants were excluded when
making predictions28. To identify the degree of uncertainty that would
maximize accuracy in our data, we compared the AUROCs for classi-
fying known oncogenic mutations from benign dbSNPs and selected
the uncertainty threshold that resulted in the highest AUROC. Finally,
for VEPs that provided prediction scores but not off-the-shelf classifi-
cation or recommended score cutoffs for classifications, including
CADD, ESM1b, PrimateAI, REVEL and VARITY, we manually identified
cutoff thresholds to classify pathogenic and non-pathogenicmutations.
To identify cutoff, for eachmethod,we set upabinary classification task
in which known oncogenic mutations from the dataset represented the
positive class, and the benign dbSNPs represented the negative class.
We then calculated the sumof sensitivity and specificity of eachmethod
at different thresholds and identified the optimal cutpoint as the
thresholdwhere this sumwasmaximized. In caseswheremore thanone
cutpoint were found, we used their median as the final threshold.

After cutoffs were determined, we applied them to the VEPs’
predicted scores to stratify variants into categories. For CADD, Pri-
mateAI, REVEL and VARITY_R_LOO, variants with scores higher than or
equal to the determined thresholds were classified as pathogenic and
vice versa. For ESM1b, variants with scores smaller than or equal to the
determined thresholds were classified as pathogenic.

We repeated this process for all datasets, resulting in data-specific
cutoff and EVE uncertainty thresholds. The cutoffs used are summar-
ized in Table S2.

Receiver operating curves (ROCs)
We performed two ROC analyses, 1. Weighting all positive variants
equally and 2. To better understandmethod performance in a manner
that reflects actual population levels of a given mutation, sampling
positive variants from the GENIE cohort, i.e. appearing proportionally
to their frequency in a real-world population. In the first analysis,
mutation-level ROC for each method was constructed using all 8033
OncoKB-oncogenic missense mutations as the positive class and 7474
dbSNPs as the negative class. In the second analysis, population-level
ROCs were constructed using all occurrences of OncoKB-oncogenic
missensemutations in theGENIE v14-public cohort as the positive class
(N = 180,540) and dbSNPs (N = 7474) as the negative class. The non-
oncogenic mutations were upsampled to match the number of onco-
genic mutations in the positive class, resulting in a balanced
N = 180,540 for each class. Area under the curve and 95% confidence
interval were calculated for each curve.

Ligand binding and protein-protein interaction residues
analysis
Residues involved in binding ligands, including small molecules, pep-
tides, DNA and RNA, were retrieved fromBioLiP257, a curated database

of biologically relevant protein-ligand interactions. Residues impor-
tant in protein-protein interactions (PPI), termed PPI hotspots and
defined as residues whose replacements decrease the binding free
energy significantly, were retrieved from PPI-HotspotDB58. We
grouped missense mutations in either the GENIE v14-public or MSK-
IMPACTNSCLC cohort into binding residues (including ligand-binding
residues and PPI hotspots) versus non-binding residues. Fisher’s exact
tests were performed to test the enrichment ofmutations occurring at
binding residues for being reclassified as pathogenic by different
methods.

Pathway analysis
Mutual exclusivity test. Pathway analyses were done on the ten
canonical oncogenic signaling pathways, including cell cycle, Hippo,
Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and
β-catenin/Wnt40. The gene lists constituting each pathway were
retrieved from https://www.cell.com/cms/10.1016/j.cell.2018.03.035/
attachment/73b4efd7-1e36-4e1f-874b-db6bc0a18ec4/mmc3.xlsx40.

For each gene within a pathway, we aimed to identify whether
reclassified pathogenic mutations in that gene are mutually exclusive
with knownoncogenicmutations in all geneswithin the samepathway.
The result of this analysis demonstrates that reclassified pathogenic
mutations have comparably pathogenic effect on a pathway as known
oncogenicmutations. To this end, we calculated one versus all mutual
exclusivity for each gene for patients with NSCLC in the MSK-IMPACT
cohort. For each test, we first set up a 2 × 2 contingency table with two
variables: the number of patients carrying reclassified pathogenic
mutations in that gene, and the number of patients carrying oncogenic
mutations in all genes within the same pathway. A two-sided Fisher’s
exact test was applied to the contingency table to test for mutual
exclusivity.

An example contingency table used to test for pathway mutual
exclusivity between KEAP1 and all genes in the NRF2 pathway, includ-
ing KEAP1, CUL3 and NFE2L2, is below:

Mutations in KEAP1

Reclassified
pathogenic

VUSs/no
mutation

Mutations in KEAP1,
CUL3 and NFE2L2

Known
oncogenic

VUSs/no
mutation

In particular, this table is used in a Fisher’s exact test for mutual
exclusivity between KEAP1 and all genes in the NRF2 pathway. Two
other tests were set up to test for mutual exclusivity of NFE2L2 and
CUL3 with oncogenic mutations in NRF2 pathway genes.

The procedure was repeated for all genes present in a given
pathway, and for all eightmethods. P-valueswere adjusted formultiple
hypothesis testing using the Benjamini-Hochberg procedure. Tests
with a logOR < 0 and adjusted p-value <= 0.1 were considered sig-
nificant formutual exclusivity. The pathway-level one versus allmutual
exclusivity rate was then calculated for each pathway by dividing the
total number of significant mutually exclusive tests by the number of
genes in the pathway.

As negative controls, we tested for mutual exclusivity between
reclassified benign mutations and known oncogenic mutations in all
genes in a given pathway using the same procedure.

The role of tumor mutational burden in observed mutual exclu-
sivity. To identify whether ERBB4 and IRS2 AlphaMissense reclassified
pathogenicmutations aremutually exclusivewith RTK/RAS oncogenic
mutations independent of TMB-high status, we performed a logistic
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regression (Eq. 1):

RTK=RAS oncogenic mutations � AlphaMissense mutations +TMB� Hstatus

ð1Þ

Where
RTK/RAS oncogenic mutations is 1 if a sample has any oncogenic

mutations in RTK/RAS pathway genes, 0 otherwise
AlphaMissense mutations is 1 if a sample has an AlphaMissense

reclassified pathogenic mutation in a gene of interest (ERBB4 or IRS2),
0 otherwise

TMB-H is 1 if a sample has TMB> = 10 mut/Mb, 0 otherwise
Two independent regressions were run for ERBB4 and IRS2.

Survival analysis
To test the association of gene-level pathogenicity annotations with
overall survival we performed a series of Cox proportional hazards
(PH) models from time of diagnosis to time of death or last follow-up,
left truncated at time of cohort entry (tissue sequencing). For patients
with multiple sequencing events, the first was used as the time of
cohort entry. To adjust for confounding variables between compar-
ison groups, inverse probability of treatment weights (IPTW) were
calculated using covariate values at baseline, including tumor stage,
age, sex, race, histology, smoking history, tumor mutational burden
(TMB), microsatellite instability status (MSI), prior treatment and
metastatic sites if any, before fitting Cox PH models. An example plot
of standardized mean differences in covariates before and after IPTW
matching to demonstrate how IPTW helps achieve balance in covari-
ates between comparison groups is presented in Fig. S5.

Hazard ratios, 95% confidence intervals and p-values for gene-
level associations between a “pathogenic” alteration vs no alteration
were computed. In theMSK-IMPACT cohort, all genes altered in >2%of
the cohort were considered. For each gene of interest, only patients
with tumor sequencing panels including a given gene in the target
region were included in the analysis. The following gene mutation
annotation schema was used: For OncoKB, any alterations annotated
as oncogenic or likely oncogenic were used. For all other databases,
any pathogenic alteration considered a variant of unknown sig-
nificance in OncoKB (i.e. a “reclassified” pathogenic alteration) was
used. q-values were computed using the Benjamini-Hochbergmethod;
a false discovery rate 0.1 across all comparisons described in this
analysis was used to determine statistical significance according to a
prespecified statistical analysis plan (see 12-245 Appendix C Project
Plan). The BPC cohort was used as a confirmation dataset in whichonly
significant associations from the MSK-IMPACT analysis were tested;
q-values were computed similarly but for only the number of
hypotheses tested in the BPC.

Kaplan-Meier curves. Weighted Kaplan-Meier (KM) curves were con-
structed to further examine the relationship between gene-level
pathogenicity annotations and overall survival for genes with sig-
nificant hazard ratios in univariate weighted Cox PHmodels. Similar to
the Cox PH regressions, KM curves were calculated from time of
diagnosis to time of death or last follow-up, left truncated at time of
cohort entry (tissue sequencing). Patients were stratified based on the
presence of OncoKB oncogenic, ‘reclassified’ pathogenic, ‘reclassified’
benign mutations or without any mutation in each gene of interest.
Only strata with ≥ 10 patients were included. KM curves wereweighted
using the same IPTWs used for the corresponding Cox PH regression.

STK11/KEAP1 concurrent mutation analysis. To test whether Alpha-
Missense reclassified pathogenic variants in STK11 and KEAP1 were
similarly associated with worse survival, we compared overall survival
of patients with double KEAP1 and STK11 reclassified mutations with
patients with single reclassified mutation and patients without any

mutation in these two genes. Patients with reclassified pathogenic
mutations in both KEAP1 and STK11 are labeled as KEAP1/STK11 double
mutant, while patients carrying only reclassified pathogenicmutations
in either gene are labeled as single mutant for the respective genes.
Patients carrying oncogenic mutations in either gene are excluded
from this analysis. Weighted KM curves were constructed as described
above to compare overall survival of patients in these four strata.

Random forest ensemble
Random forest ensembles were fitted using the R caret package to
predict variant pathogenicity. Themodels incorporated scores from 11
non-ensemble methods evaluated in this study. OncoKB oncogenic
variants served as the positive class, while variants randomly sampled
from dbSNP were used as the negative class. The dataset was split into
a 75:25 ratio for training and testing to ensure an unbiased assessment
of model performance.Additionally, we trained separate RFs on
mutation level data,where each uniquemutation is only counted once,
and on population level data, where all occurrences of mutations are
included to reflect population distribution.

Before training, scores from each method were normalized and
standardized to ensure consistency and comparability across the dif-
ferent methods. The ‘preProcess’ function in ‘caret’ was employed for
this purpose, applying z-score normalization to center and scale
the data.

Two cross-validation strategies were employed for model
training: 1. randomly sampled 5-fold cross-validation and 2. gene
holdout cross-validation. In the 5-fold cross-validation approach, the
training set was randomly partitioned into five subsets. The model
was trained on four subsets and validated on the remaining subset,
rotating this process five times to ensure each subset served as the
validation set once. In gene holdout cross-validation, variants were
grouped by gene, and entire genes were withheld during training to
serve as a validation set, assessing themodel’s ability to generalize to
unseen genes.

Model performance was evaluated using metrics including accu-
racy, sensitivity, specificity, and area under the receiver operating
characteristic curve (AUROC). Additionally, feature importance was
assessed to determine the contribution of eachmethod’s scores to the
overall model performance. The hyperparameter mtry, which repre-
sents the number of predictors that will be randomly sampled at each
split when creating the tree models, was tuned to maximize AUROC,
with mtry = 2 giving the best performance and thus selected for the
final model.

All statistical analyses were performed in R version 4.2.2 (2022-
10-21).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The processed AACR Project
GENIE v14 data is available on Synapse at https://www.synapse.org/
Synapse:syn7222066. GENIE BPC NSCLC genomic and clinical data are
available on Synapse at https://www.synapse.org/Synapse:
syn27056172/wiki/616601. The MSK-IMPACT NSCLC genomic data is
available on cBioPortal as part of the MSK-CHORD cohort at https://
www.cbioportal.org/study/summary?id=msk_chord_2024. All clinical
annotations used for analyses in this paper are available at https://
github.com/clinical-data-mining/variant-annotation to enable others
to reproduce our findings and make additional discoveries. The raw
sequencing data for theAACRProjectGENIE andMSK-IMPACT cohorts
are protected and are not broadly available due to privacy restrictions
and must be requested with appropriate institutional approv-
als. Source data are provided with this paper.
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Code availability
R codes used in the analysis of this paper are available under MIT
license on GitHub at https://github.com/clinical-data-mining/variant-
annotation. Additionally, a code container is available on Zenodo at
https://doi.org/10.5281/zenodo.1542105559.
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