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A comparative analysis of heterogeneity in
lung cancer screening effectiveness in two
randomised controlled trials

A list of authors and their affiliations appears at the end of the paper

Clinical trials demonstrate that screening can reduce lung cancer mortality by
over 20%. However, lung cancer screening effectiveness (reduction in lung
cancer specific mortality) may vary by personal risk-factors. Here we evaluate
heterogeneity in lung cancer screening effectiveness through traditional sub-
group analyses, predictive modelling approaches and machine-learning in
individual-level data from the Dutch-Belgian lung cancer screening trial
(NELSON; 14,808 participants, 12,429 men, 2377 women, 2 persons with an
unknown sex) and the National Lung Screening Trial (NLST; 53,405 partici-
pants, 31,501 men, 21,904 women). We find that screening effectiveness varies
by pack-years (screening effectiveness ranges across trials: lowest groups =
26.8-50.9%, highest groups = 5.5-9.5%), smoking status (screening effective-
ness ranges across trials: former smokers = 37.8-39.1%, current smokers = 16.1-
22.7%) and sex (screening effectiveness ranges across trials: women = 24.6-
25.3%; men = 8.3-24.9%). Furthermore, screening effectiveness varies by his-
tology (screening effectiveness ranges across trials: adenocarcinoma = 17.8-
23.0%, other lung cancers = 24.5-35.5%, small-cell carcinoma = 9.7%-11.3%).
Screening is ineffective for squamous-cell carcinoma in NLST (screening
effectiveness = 27.9% (95% confidence interval: 69.8% increase to 4.5%
decrease)mortality increase) but effective in NELSON (screening effectiveness
= 52.2% (95% confidence interval: 25.7-69.1% decrease) mortality reduction).
We find that variations in screening effectiveness across pack-years, smoking
status, and sex are primarily explained by a greater prevalence of histologies
with favourable screening effectiveness in these groups. Our study shows that
heterogeneity in lung screening effectiveness is primarily driven by histology
and that relaxing smoking-related screening eligibility criteria may enhance
screening effectiveness.

The National Lung Screening Trial (NLST) and Dutch-Belgian Lung
Cancer Screening Trial (Nederlands–Leuvens Longkanker Screenings
Onderzoek, NELSON) demonstrated that Computed Tomography (CT)
screening reduces lung cancer mortality (LCM)1,2. Lung cancer (LC)
screening effectiveness (the reduction in LCM through screening)

differed between trials, with NELSON yielding a 24% LCM reduction
(men) for CT screening compared to no screening, after 10 years of
follow-up, while NLST found a 20% reduction for CT screening com-
pared to chest radiography screening after 6.5 years of follow-up (16%
after endpoint verification process extension at 7 years of follow-up)3.
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The trials differed in number of screening rounds, screening intervals
and nodule management protocols. However, they also differed with
regards to their participants’ risk-factor prevalence and overall LC risk.

Screening effectiveness may be affected by LC risk and risk-
factors like age, sex, and smoking history1,3–8. Furthermore, LC is a
heterogeneous disease, with both screen-detectability and treatment
varying across histology3,9. Consequently, it is uncertain whether dif-
ferences in screening effectiveness are primarily driven by differences
in trial designs or whether they are also affected by heterogeneity
across risk-factors, LC risk or histology.

LC screening is in its implementation phase throughout Europe,
spearheaded by the United Kingdom’s Targeted Lung Health Checks.
Determining the factors driving heterogeneity in screening effective-
ness would improve identifying those most likely to benefit, aiding
(cost-)effective implementation of LC screening programs in Europe.
The United States Preventive Services Task Force (USPSTF) recently
recommended expanding screening eligibility to younger individuals
and those with fewer pack-years10. Moreover, the American Cancer
Society (ACS) recommended against restrictions on years since
smoking cessation, as it may exclude considerable numbers of high-
risk individuals11. However, the impact of expanding LC screening
eligibility criteria on screening effectiveness is unknown.

Heterogeneity in LC screening effectiveness hasbeen traditionally
evaluated through sub-groups based on singular characteristics, i.e.
“one-variable-at-a-time” analyses1,3,4. Yet, such analyses are subject to
low statistical power and multiplicity, making them prone to both
false-negative and false-positive results12. Instead, recommendations
like the Predictive Approaches to Treatment effect Heterogeneity
(PATH) Statement suggest using predictive-modelling approaches13.
Furthermore, novel machine-learning methods have been suggested
to provide more accurate predictions than predictive-modelling
approaches14. Nevertheless, some suggest novel machine-learning
methods may not improve prediction and may be more prone to bias
than predictive-modelling approaches15. In general, there is a dearth of
studies comparing methodologies for assessing heterogeneity in
effectiveness16. Hence, comparing multiple models/methodologies
with common inputs (comparative modelling) is recommended to
obtain more reliable conclusions17.

In this study we evaluate the causes and magnitude of hetero-
geneity in LC screening effectiveness using individual-level data from
NELSON and NLST through comparative modelling. Traditional sub-
group analyses, predictive-modelling approaches, and machine-
learning are applied to evaluate the consistency of the findings
across methodologies. Models are developed in both trials; models
developed inone trial are externally validated in theother.Wefind that
screening effectiveness varies across pack-years, smoking status, and
sex. However, these variations are primarily explained by a greater
prevalence of histologies with favourable screening effectiveness in
these groups. Overall, we show that heterogeneity in lung screening
effectiveness is primarily driven by histology and that relaxing
smoking-related screening eligibility criteria may enhance screening
effectiveness.

Results
Associations between risk-factors and LCM
Associations between risk-factors and LCM were consistent between
trials (Supplementary Data 1). The first stage risk- and effect-models
suggest age, personal history of cancer, current smoking, cigarettes
per day and years smoked were associated with increased LCM
risk (Supplementary Tables S3, S4). Female sex, body-mass index,
education level, and years since smoking cessation were associated
with reduced LCM risk. In NLST, COPD, emphysema, LC family
history, Black race and American Indian or Alaskan Native race
were associated with increased LCM risk, while Asian race and
Hispanic ethnicity reduced risk. Overall, risk-factors had similar effect

sizes in both trials and were consistent with risk-prediction models
for LCM18.

Overall screening effectiveness
Figure S1 shows relative screening effectiveness estimates for overall
LCM across methods. Estimates were similar across methodologies,
for both NELSON (median LCM reduction across methods: 27.2%, 95%
confidence interval (CI): 10.8–40.9%) and NLST (median: 15.3%, 95%CI:
3.7–25.5%) after accounting for differences in participant character-
istics between trials. This may reflect differences in trial designs, such
as differences in control arms (NELSON: no screening. NLST: chest
radiography screening) and number of screening rounds (NELSON:
four screening rounds. NLST: three screening rounds). Relative
screening effectiveness was similar across baseline risk-quintiles for all
risk-prediction models (Supplementary Figs. S2–S5; NELSON
medians = 22.7–24.6%, NLST medians = 8.9–13.4%) and second stage
risk-models (Supplementary Table S5; NELSON median = 27.4% (95%
CI: 11.7–40.3%), NLST median = 15.6% (95% CI: 3.2–26.4%)). However,
absolute screening benefits increased with quintile of baseline risk for
all risk-prediction models (C-Outcomes Supplementary Appendix
Supplementary Figs. S32–S35. NELSON LCM prevented per 1000:
Quintile 1 −0.92 to 2.31 to Quintile 5: 25.8–28.3, NLST LCM prevented
per 1000: Quintile 1 −0.04 to 1.03 to Quintile 5: 4.83–8.12).

Screening effectiveness by risk-factors
Figure 1 shows the relative screening effectiveness estimates aggregated
across methods by age-groups, smoking status, years since smoking
cessation, accumulated pack-years, and sex (estimates by methods
shown in Supplementary Figs. S6–S9; corresponding effect-models:
Supplementary Tables S6–S9). Screening effectiveness varied little by
age-group in both trials. In NELSON, the median estimated screening
effectiveness was lower for current smokers (median= 22.7%, 95% CI:
−1.8–40.0%) compared to former smokers (median= 37.8–39.0%). In
NLST, differences in median estimated screening effectiveness were
primarily found between current smokers and long-term quitters (≥10
years) (medians = 16.1% (95% CI: 2.4–29.9% and 39.1% (95% CI:
9.6–60.2%). Median estimated screening effectiveness diminished with
increasing pack-years (NELSON medians: <30 pack-years = 50.9%, 95%
CI: 16.0-84.8%; >50 pack-years = 5.5%, 95% CI: −36.3 to 38.5%. NLST
medians: 30–39 pack-years = 26.8%, 95% CI: −7.7 to 61.3%; >50 pack-
years = 9.5%, 95%CI: −5.2% to 22.8%). Finally, while themedian screening
effectiveness in NELSON did not differ by sex (medians: females = 25.3%
(95% CI: −26.9–60.1%); males = 24.9% (95% CI: 6.6–41.7%), the median
screening effectiveness was greater for females in NLST (medians:
females = 24.6% (95% CI: 6.7–40.6%); males = 8.3% (95% CI: −6.7–22.8%).
Overall LC incidence risks estimated by risk-prediction models were
lower for groups with higher estimated relative screening effectiveness
in both trials (Supplementary Figs. S10, 11).

Screening effectiveness across histologies
Figure 2 shows relative screening effectiveness varied across histolo-
gies (corresponding first-stage risk-models: Supplementary
Tables S10, S11; second stage risk-models: NELSON shown in Supple-
mentary data 2, NLST in Supplementary data 3; effect-models: Sup-
plementary Tables S12, S13). Screening effectiveness for
adenocarcinoma (median LCM reductions = 17.8–23.0%), Other lung
cancers (OTH) (24.3–35.5%), and small-cell carcinoma (9.7–11.3%) were
similar between trials (with and without adjustments for multiple
comparisons using Benjamini-Hochberg corrections). Conversely,
screening effectivenesswasbetter for squamous-cell carcinoma (for all
evaluated methods except rate-ratios) in NELSON than NLST (med-
ians = 52.2% LCM reduction (95% CI: 25.7–69.1% decrease) versus a
27.9% increase (95% CI: 69.8% increase to 4.5% decrease)).

Like screening estimates for overall LCM, histology-specific
screening effectiveness estimates were consistent across methods.
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However, in contrast to the heterogeneity in relative screening
effectiveness found for overall LCM by smoking status, accumulated
pack-years and sex, little variation was found in histology-specific
effectiveness (Supplementary Figs. S12–S14; corresponding effect-
models in Supplementary Tables S14–S19). This can be explained
by considering the histology distributions within these groups in the
CT-arms of both trials (Fig. 3). In both trials, prolonged smo-
king cessation, fewer pack-years, and female sexwereassociatedwith a
greater prevalence of adenocarcinoma and a lower prevalence of
small-cell carcinoma. Thus, variations in screening effectiveness
for overall LCM found across smoking status, accumulated pack-
years, and sex can be primarily explained by a greater prevalence of
histologies with more favourable screening effectiveness in these
groups.

Links between overall and histology-specific effectiveness
Figure 4 demonstrates the relations between histology-specific
screening effectiveness and overall screening effectiveness. Although

adenocarcinoma mortality does not show the greatest relative mor-
tality reduction in either trial, it accounts for the greatest reduction in
absolute LCM in NLST and the second greatest reduction in NELSON.
Squamous-cell carcinoma accounted for both the greatest reductions
in absolute and relative mortality in NELSON, while both absolute and
relative mortality was increased in NLST. In NLST, the greatest relative
reduction in histology-specific mortality was found for OTH,
accounting for the second greatest reduction in absolute histology-
specific mortality. Similarly, while OTH showed the second greatest
relative reduction in histology-specific mortality in NELSON, the
reduction in absolute mortality was 57% lower compared to adeno-
carcinoma. Finally, for small-cell carcinoma both the relative and
absolute reductions in histology-specific mortality were modest in
both trials. In general, the reductions in histology-specific mortality
correspond to the observed reductions in the incidence of histology-
specific late-stage disease, as shown in Fig. 5, and to the stage dis-
tribution of screen-detected cases in the CT-arms (Supplementary
Fig. S15).
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Fig. 1 | Relative screening effectiveness for overall LCM by trial and diferent
risk-factors aggregated across the considered methods. Based on N = 400 lung
cancer deaths in NELSON and N = 977 lung cancer deaths in NLST. The screening
effectiveness estimates and 95% confidence intervals were based on themedians of
the point estimates of the rate-ratios, effect models and causal forests. Similarly,
the lower and upper bounds of the 95% confidence intervals were based on the

medians of the lower and upper bounds across the considered methods. The
estimates for the individual methods can be found in Supplementary Figs. S6–S9.
Source data are provided as a Source Data file. LC Lung Cancer, LCM Lung Cancer
Mortality, NLST National Lung Screening Trial, Dutch-Belgian Lung Cancer
Screening Trial (NELSON Nederlands–Leuvens Longkanker Screenings
Onderzoek).
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C-statistics, C-for-benefit and calibration-for-benefit
Details on these outcomes are provided in the C-Outcomes Supple-
mentary Appendix (displayed in Supplementary Figs. S17–S70 and
Supplementary Tables S26–S30). In brief, overall discrimination for
LCM and screening benefit were similar across methods within both
development and validation sets, for both overall LCM and histology-
specific LCM. Calibration for relative and absolute benefits were gen-
erally good in the development datasets for bothmethods, but poor in
the validation sets.

Sensitivity analyses
We evaluated whether cancers classified under “Neoplasm, malignant”
and “non-small cell cancer, not otherwise specified” may have led to
bias. Therefore, we evaluated the impact of assigning these cancers to
one of the histology classifications (“non-small cell cancer, not

otherwise specified”) to non-small cell categories only based on
imputations (30 total) taking into account participant characteristics,
study arm and method of diagnosis (screening/clinical). In these ana-
lyses, histology-specific screening effectiveness reduced slightly for
adenocarcinoma in both trials (NELSON median= 16.3% reduction
(95% CI: −11.2–37.3%); NLST median= 21.6% reduction (95% CI:
5.3–35.5%). Squamous cell screening effectiveness remained similar for
NELSON (median: 52.0% reduction (95%CI: 26.8–68.7%)) but improved
in NLST (median = 25.6% increase (95% CI: 66.6% increase to 5.5%
decrease)). Screening effectiveness for OTH improved in both trials
(NELSON median: 44.6% reduction (95% CI: −70.3–84.2%); NLST med-
ian = 52.9% reduction (95% CI: 27.6–69.9%)). Small cell screening
effectiveness remained similar (NELSON median = 9.0% reduction
(95% CI: −37.4–41.2%); NLST median= 11.1% reduction (95% CI:
−16.7–32.6%). Finally, we performed a pooled analysis of the individual
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Fig. 2 | Screening effectiveness for histology-specificmortalitybymethodology
and trial. Based on N = 178 Adenocarcinoma deaths, N = 94 Squamous-cell carci-
noma deaths, N = 43 Other lung cancer deaths and N = 84 Small-cell carcinoma
deaths in NELSON and N = 393 Adenocarcinoma deaths, N = 184 Squamous-cell
carcinoma deaths, N = 176 Other lung cancer deaths and N = 209 Small-cell carci-
noma deaths in NLST. The screening effectiveness estimates were based on the
point estimates of each of the specific methods, by trial. The error bars reflect the
95% confidence intervals of the estimates. The adenocarcinoma-specific NLST

estimate for the risk-model approachwhich uses LLPv3 risk in itsfirst stage includes
an interaction-effect between first-stage risk and screening effectiveness. The fig-
ure represents the estimate for the screening effectiveness parameter without the
interaction effect. Source data are provided as a Source Data file. RM Risk-model-
ling, ADN Adenocarcinoma, SQM Squamous-cell carcinoma, OTH Other lung can-
cers, SCLC Small-cell carcinoma, NLST National Lung Screening Trial, Dutch-
Belgian Lung Cancer Screening Trial (NELSON Nederlands–Leuvens Longkanker
Screenings Onderzoek).
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patient-level data from NELSON and NLST to further evaluate pre-
screening differences between trials, such as differences in eligibility
criteria and trial population. Thismodel producedequivalent results as
the models in the main analyses, suggesting they appropriately
account for pre-screening differences between trials (Supplementary
Material: Pooled analysis, Supplementary Figs. S71–S72 and Supple-
mentary data 4).

Discussion
Heterogeneity in LC screening effectiveness was evaluated in
individual-level data from the two largest screening trials through
traditional sub-group analyses, predictive-modelling and machine-
learning. Estimates were similar across methodologies, for both NEL-
SON (median LCM reduction across methods = 27.2%, 95% CI:
10.8–40.9%) and NLST (median = 15.3%, 95% CI: 3.7–25.5%) after
accounting for differences in participant characteristics between trials.
The greater reduction in LCM in NELSON compared to NLST may
reflect differences in trial designs, such as differences in control arms
(NELSON: no screening. NLST: chest radiography screening) and

number of screening rounds (NELSON: four screening rounds. NLST:
three screening rounds). Screening effectiveness diminished with
increasing pack-years (LCM reductions across trials = 26.8–50.9% in
the lowest pack-year groups compared to 5.5–9.5% in the highest pack-
year groups), former smokers compared to current smokers (LCM
reductions = 37.8–39.1% versus 16.1–22.7%) and women compared to
men (LCM reductions = 24.6–25.3% versus 8.3–24.9%). LC risks esti-
mated by risk-prediction models were lower for groups with higher
estimated relative screening effectiveness. However, histology was
identified as the main effect modifier of heterogeneity in LC screening
effectiveness. Screening was effective for adenocarcinoma and OTH,
reducing mortality by 17.8–23.0% (medians NELSON&NLST) and
24.5–35.5% (medians NELSON&NLST), respectively. In contrast,
screening was less effective for small-cell cancers, reducing mortality
by 9.7–11.3% (medians NELSON&NLST) and discordant results were
found for squamous-cell carcinoma (NELSON: median reduction of
52.2% (95% CI: 25.7–69.1% decrease); NLST: median increase of 27.9%
(95% CI: 69.8% increase to 4.5% decrease)). Our findings are consistent
with natural-history models that estimate longer preclinical durations
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and greater screen-detectability for histologies for which we find
greater screening effectiveness9,19. In particular, we find greater
screening effectiveness for histologies that predominantly develop in
locations that allow for easier detection through screening. For
example, adenocarcinomas develop predominantly in the periphery of
the lungs, as opposed to small-cell cancers that tend to be centrally
located20,21. Furthermore, our findings are consistent with regards to
observed relations between histology and smoking behaviour, and
variations in survival by histology and smoking behaviour22–27. Conse-
quently, these mechanisms may drive the heterogeneity in screening
effectiveness found in our study.

Although squamous-cell carcinoma incidence has decreased, it
still represents over 20% of LC28. While analyses based on NLST have
suggested screening may not be beneficial for squamous-cell carci-
noma, our analyses suggest it was beneficial in NELSON3. This may be

in part due to differences in nodule management protocols. Semi-
automated measurements of nodule volume and volume doubling
time as applied in NELSON has been shown to be more accurate in
detecting nodule growth than the manual measurements of nodule
diameter used in NLST29. This is supported by a recent review that
demonstrates that theremay not be a significant change in volume at a
three month follow-up scan, even when the volume doubling time is
less than 400 days30. Consequently, future studies should evaluate the
impact of the differences in nodule management protocols between
the trials on histology-specific screening effectiveness.

Screening effectiveness was greater for women, those with fewer
accumulated pack-years and former smokers, due to the higher pre-
valence of histologies for which screening effectiveness was greater.
Thus, the 2021 USPSTF recommendation to lower the minimum pack-
years for screening eligibility and the ACS recommendation to relax
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restrictions on the numbers of years since smoking cessation will
improve eligibility among individuals in whomhistologies with greater
screening effectiveness are more prevalent10,11,31. These relaxations
have also been shown to improve eligibility among individuals of
African-American ancestry who are more likely to develop squamous-
cell carcinoma compared to individuals of European ancestry28,32,33.
Consequently, lung cancer screening effectiveness for African-
Americans should be further evaluated. Our analyses suggest a
potential relation between family history of LC and adenocarcinoma
(Supplementary Tables S11 and S15). This is of particular importance
for regions with high LC incidence in never-smokers, whom pre-
dominantly develop adenocarcinomas. Consequently, studies investi-
gating screening in never-smokers should further evaluate the impact
of heterogeneity in screening effectiveness by histology34.

Integrating smoking cessation support has been shown to
enhance the effectiveness of LC screening in reducing LCM through
reducing the risk for developing LC. Our analyses suggest that inte-
grating smoking cessation support further enhances the effectiveness
of LC screening in reducing LCM through two additional pathways.
Firstly, our analyses suggest that screening effectiveness is greater for
former smokers compared to current smokers, particularly for long-
term former smokers. Secondly, successful smoking cessation pre-
vents the further accumulation of additional pack-years, which our
analyses suggest is associated with reduced screening effectiveness.
Consequently, the findings of our study may be used to further
improve the uptake of smoking cessation services in LC screening
programs.

Our study suggests that relaxing eligibility criteria improves
selection of individuals in whom histologies with greater screening
effectiveness aremore prevalent. However, this also expands eligibility
to lower-risk individuals. Consequently, criteria relaxations may yield
diminishing returns in additional deaths prevented and reduce

screening efficiency (screens required per LC detected). Currently
ongoing implementation efforts, like the United Kingdom’s targeted
lunghealth checks, are predominantly focusedon regionswith high LC
rates to optimize screening efficiency and available healthcare
resources35,36. However, as these areas are more likely to be populated
with high-risk (heavier smoking) individuals, LC screening effective-
ness could be lower than anticipated. While studies indicate that
extending screening to lower risk individuals may be cost-effective in
the U.S., this requires additional health-care resources37. Conse-
quently, full evaluations of the trade-offs between screening effec-
tiveness, efficiency, health inequities and required health-care
resources are essential to guide implementation efforts. Furthermore,
studies should evaluate how information on heterogeneity in screen-
ing effectiveness can be included and impact shared decision-making
processes.

Previous studies evaluated heterogeneity in LC screening
effectiveness3,5–8. Wille indicated greater effectiveness for individuals
with Chronic Obstructive Pulmonary Disease who smoked ≥35 pack-
years5. Infante suggested greater effectiveness for those with <40
pack-years, current smokers and a Forced Expiratory Volume in 1 s
(FEV1)% ≥ 808. Nevertheless, these studies evaluated trials with non-
significant results and should be interpreted with caution13. Pinsky
found heterogeneity in screening effectiveness by histology and
potential heterogeneity by sex in NLST3. However, their analysis
considered one-variable-at-a-time rather than predictive approaches,
precluding the identification of effect modification by patient char-
acteristics. Our study confirms heterogeneity in screening effec-
tiveness between histologies, but also accounted for confounding
and effect modification by patient characteristics. For example,
Pinsky et al. found greater screening effectiveness for current smo-
kers compared to former smokers. Our results are consistent when
smoking status alone is considered (Supplementary Fig. S16).
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Fig. 5 | Differences in lung cancer incidence rates between the screen and
control arms of NELSON and NLST by histology and stage. Based on N = 372
Adenocarcinomas, N = 174 Squamous-cell carcinomas, N = 93 Other lung cancers
andN = 103 Small-cell carcinoma inNELSON andN = 985Adenocarcinomas,N = 461
Squamous-cell carcinomas, N = 298 Other lung cancers and N = 287 Small-cell car-
cinomas in NLST. The lung cancer incidence rate differences represent the differ-
ence in lung cancer incidence rate per 1000 person-years in the CT arm compared

to the control armby stage andhistology in each trial. The error bars reflect the 95%
confidence intervals of the incidence rate differences. Sourcedata areprovided as a
SourceDatafile. ADNAdenocarcinoma, SQMSquamous-cell carcinoma,OTHOther
lung cancers, SCLC Small-cell carcinoma, NLST National Lung Screening Trial,
Dutch-Belgian Lung Cancer Screening Trial (NELSON Nederlands–Leuvens Long-
kanker Screenings Onderzoek).
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However, our results indicate greater benefits for long-term former
smokers when time since smoking cessation is also taken into con-
sideration, demonstrating the importance of including sufficient
granularity in former smoking behaviour. Furthermore, our study
expands on these findings by identifying groups in which histologies
with greater screening effectiveness are more prevalent, providing
important guidance to clinicians. Kovalchik evaluated screening
effectiveness across risk-groups in NLST6. Similarly to our findings,
they found relative screening effectiveness was constant across risk-
groups and absolute effectiveness increased with risk, however their
approach did not evaluate screening effectiveness across different
risk-factors nor consider histology. Kumar evaluated the cost-
effectiveness of risk-based screening in the NLST through a multi-
state model7. Similarly to Kovalchik, they found absolute screening
effectiveness increased with risk, but did not consider histology6.
Our results indicate that while screening effectiveness does not vary
by overall risk, it does vary across individual components of risk.
Therefore, future studies should not only consider overall LC(M) risk,
but also consider individual components of risk with sufficient
granularity.

In contrast to previous studies, we evaluated heterogeneity in LC
screening effectiveness in two trials with statistically significant
results. We performed a comprehensive analysis that accounted
for participant risk-factors, LC risk, and histology. The definitions of
the risk-factors were aligned between trials and showed similar effect
sizes in both trials. We considered both relative and absolute effec-
tiveness through various methods. We equalized post-screening fol-
low-up and accounted for differences in participant characteristics
between trials.

We evaluated different methods with different strengths and
limitations, as outlined in Supplementary Table S2. These strengths
vary from straightforward interpretation (one-variable-at-a-time, risk-
prediction models), explicitly accounting for different covariates
(predictive modelling and machine-learning approaches) to not
requiring assumptions for linearity (machine learning). However, they
are also subject to limitations such as no or limited accounting for
other covariates (one-variable-at-a-time, risk-prediction models), not
allowing interactions between screening effectiveness and covariates
(risk-modelling), overfitting (effect-modelling) or non-straightforward
interpretation (machine-learning). However, despite the differences in
their underlying assumptions, differences in strengths and limitations,
the results were consistent across methodologies, demonstrating the
robustness of our findings. Furthermore, we evaluated calibration and
discrimination, which are often poorly reported for both predictive-
modelling and machine-learning approaches13,15.

Our findings are based on two trials. While overall screening
effectiveness was greater in NELSON than NLST after accounting for
participant characteristics and post-screening follow-up, the trials also
differed in number of screening rounds and screening interval
lengths1,2. Furthermore, while NELSON compared CT screening to no
screening, NLST compared CT screening to chest-radiography
screening1,2. Nodules detected at incidence screening rounds vary in
LC risk from those detected at baseline, which may affect screening
effectiveness across screening rounds38. Furthermore, it is uncertain
whether there were differences in LC treatment patterns between the
trials. Finally, while NELSON compared CT screening to no screening,
NLST compared CT screening to chest-radiography screening. The
Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial
found a non-significant LCM reduction of 9% for chest-radiography
screening39. Consequently, CT screening effectiveness in NLSTmay be
underestimated. However, smoking exposure in PLCO was lower (20%
of PLCO participants were NLST-eligible; 45% were never-smokers),
which our investigation suggests would lead to greater prevalence of
LC with favourable screening effectiveness. This is supported by
comparing the NLST and PLCO chest-radiography arms LC histology

distributions (Supplementary Table S20). Thus, chest-radiography
screening in PLCO may have been more effective than NLST due to a
greater prevalence of LC with favourable screening effectiveness.
Hence, future studies should evaluate whether and how differences in
trial designs, nodule growth patterns and LC treatments affected
screening effectiveness across histologies.

Participants of both trials weremore likely to be younger andhave
ceased smoking, but were generally representative of the general
population meeting their inclusion criteria40,41. Still, it is well known
that the individuals eligible for lung cancer screening aremore likely to
have comorbidities such as COPD than those included in the trials42,43.
These comorbidities increase the overall risk of lung cancer, reduce
life-expectancy and may affect both treatment effectiveness and the
histological type of lung cancer that develops18,22,23,44–49. Thus, future
research should further evaluate the interplay between comorbid
conditions and screening effectiveness.

Our analysis was limited to 4–4.5 years post-screening to equalize
follow-up between trials. Consequently, our estimates should be
interpreted as representative for the evaluated follow-up period in
both trials. However, while the number of life-years gained through
screening may increase with prolonged post-screening follow-up, the
effect on LCM may be diluted. Indeed, this was shown in extended
follow-up analyses of NLST, although dilution wasmodest50. However,
limited information on histology was available for cancers detected
during the extended follow-up process (<8%), precluding evaluation of
heterogeneity in screening effectiveness by histology. The analyses
considered population characteristics at baseline. However, 10–24% of
current smokers at baseline in the trials ceased smoking post-
enrollment51–53. Consequently, this may have affected the estimates
of smoking cessation on LC screening effectiveness.

Misclassification of histology can occur and recommendations for
the pathological classification of LC have changed over time54. How-
ever, sensitivity analysis regarding LC misclassification similar to
Pinsky, did not affect our findings with regards to variations in
histology-screening effectiveness and prevalence of histologies across
risk-factors3. Furthermore,we applied penalised estimation tomitigate
the potential for overfitting as well as non-parametric methods. Given
the consistency of our findings across different methodologies, the
consistency between the risk-factors included in ourmodels and those
included in well validated risk-prediction models for LC(M), and the
good calibration performance of the models, we believe the potential
for model misspecification to be modest. Targeted therapy and
immunotherapy use was limited during the trials, but their uptake has
increased considerably since then. In addition, histology-specific inci-
dence has changed in past decades and may change further28. Thus,
the effects of the increased uptake of novel therapies and changes in
histology-specific incidence on LC screening effectiveness should be
monitored.

Overall, our study shows that heterogeneity in LC screening
effectiveness is primarily driven by histology. The 2021 USPSTF and
2023 ACS guidelines are more likely to include individuals with higher
prevalence of histologies with high screening effectiveness compared
to their previous guidelines, due to relaxation of smoking-related
eligibility criteria. Integrating risk-reduction interventions in LC
screening programs may further enhance screening effectiveness.

Methods
Trial oversight
The NELSON trial (Netherlands Trial Register number NL580) was
approved by the Dutch Minister of Health and the medical ethics
committee at each participating site. The NLST (ClinicalTrials.gov
number NCT00047385) was approved by the institutional review
board at each of the 33 participating medical institutions. Partici-
pants in both trials provided written informed consent before
randomisation.

Article https://doi.org/10.1038/s41467-025-63471-6

Nature Communications |         (2025) 16:8060 8

www.nature.com/naturecommunications


Study population
An overview of the trials is provided in Supplementary Table S11,2. In
brief, the NELSON trial enrolled, from December 2003 through July
2006, individuals between the ages of 50–74, who smoked at least 15
cigarettes per day for ≥25 years or 10 cigarettes per day for ≥30 years
and were current smokers or former smokers who quit <10 years ago.
The intervention arm received four rounds of computed tomography
screening with different intervals: at baseline, year 1 (1-year interval),
year 3 (2-year interval) and year 5.5 (2.5-year interval). The participants
in the control arm received no screening. The NLST enrolled, from
August 2002 through April 2004, individuals between the ages of
55–74,who smoked at least 30pack-years andwere current smokers or
former smokers who quit <15 years ago. The intervention arm received
three rounds of computed tomography screening with a one-year
interval each: at baseline, year 1 and year 2. The participants in the
control armreceived three roundsof chest radiography screeningwith
the same schedule as the intervention arm. For Belgian NELSON par-
ticipants, only summarised information on LC incidence andmortality
was available. Consequently, they were excluded (NELSON: n = 934).
Furthermore, inadvertently randomised never-smokers (NELSON:
n = 17), individuals diagnosed with LC before randomisation (NELSON:
n = 10), and individuals without known LC incidence dates (NELSON:
n = 23, NLST: n = 47) were excluded. The final analyses included 14,808
NELSON (12,429 men, 2377 women, 2 persons with an unknown sex)
and 53,405 NLST participants (31,501 men, 21,904 women). The med-
ian age of the participants was 58 in NELSON and 60 in NLST. In
NELSON, LC diagnoses (n = 743) and LC deaths (n = 400) occurring
between randomisation and December 31st 2015, or 10 years of follow-
up since randomisation (whichever came first) were considered. In
NLST, LC diagnoses (n = 2055) and LC deaths (n = 977) occurring
between randomisation and 7 years of follow-up were considered. For
NLST, information on stage and histology was derived through the
follow-up of individuals with positive screens, annual status update
andmedical records, including pathology and tumour staging reports,
for all suspected LC2. For NELSON, data on cancer diagnosis, histology
and stage, vital status, and cause of death were obtained through lin-
kages with the Dutch Center for Genealogic and Heraldic Studies,
Statistics Netherlands, and the Dutch Cancer Registry1. In NELSON,
randomization by screening center was applied. In NLST, blocked
randomization stratified by age, sex, and screening center was applied,
with blocks of length six or eight (with order of assignment being
random within each block). Overall screening adherence rates were
similar across the trials (NELSON: 90%, NLST: 95%)1,2. Risk-factor data
were collected through epidemiologic questionnaires administered at
study entry and harmonised across trials (Data Harmonisation Sup-
plementary Appendix, Supplementary Tables S21, S22). The risk-
factors considered in developing and validating the different (model-
ling) methods are shown in Supplementary Table S2. The analyses
considered both sexes (with sex as defined by biological attributes;
based on self-reported data). We refer the reader to the original trial
protocols of the NELSON and NLST trials for the reporting of sex-
disaggregated data. Sex was considered as an explanatory variable in
all applied modelling methods.

Statistics & reproducibility
Screening effectiveness. The outcome assessed by the models was
screening effectiveness, which was defined as the reduction in LCM
achieved through CT screening. LCM was evaluated rather than sur-
vival, as survival estimates for screen-detected cases may be affected
by lead-time and length-time bias55,56. Screening effectiveness was
evaluated by comparing the difference in LCM between each trial’s
screening and control group (NELSON: no screening; NLST: chest
radiography screening) from randomisation until the end of each
trial’s respective follow-up period since randomization (10 years in
NELSONand7 years inNLST). Heterogeneity in screening effectiveness

was evaluated through traditional sub-group analyses, predictive-
modelling approaches and machine-learning.

Traditional sub-group analyses considered one-variable-at-a-time
analyses, in which the trial population is serially divided into different
groups (e.g. men and women) and the difference in LCM between
groups is evaluated through exact univariable rate ratio tests based on
the Poisson distribution. In addition, effectiveness across risk-levels by
different risk-predictionmodels, namely PLCOm2012 and LLPv3 (Risk-
Prediction Model Supplementary Appendix, Supplementary
Tables S23–S25)45.

Predictive-modelling approaches, as suggested by the PATH
statement, considered risk-modelling and effect-modelling, evaluated
using penalised (elastic net) logistic regressions applying 10-fold cross-
validation (Statistical Methodology Supplementary Appendix)13. The
penalised regressions applied 10-fold cross-validation to determine
the tuning parameters using the algorithms of Friedman et al.57. In
brief, risk-modelling applies a two-stage approach. The first-stage
model estimates the baseline LCM risk (as a linear predictor) of an
individual without including information on whether they received
screening. The second-stage model estimates the LCM risk by includ-
ing both information on whether the person received screening, as
well as an interaction term between the linear predictor derived from
the first-stagemodel and screening assignment. Effectmodels attempt
to model screening effect heterogeneity explicitly by including both
baseline characteristics as well as interaction terms between baseline
characteristics and screening assignment.

Risk-modelling approaches also evaluated substituting the
baseline-risk estimates with estimates from the aforementioned risk-
prediction models to provide insights into potential variation in
screening effectiveness across LC incidence risk. In the risk-modelling
approaches, screening effectiveness by risk interactions were tested
through likelihood-ratio tests. Effect-modelling approaches evaluated
a limited number of interaction-effects due to their high potential for
overfitting (even when true interaction-effects are present)58. Interac-
tions between sex and screening effectivenesswas considered, as both
LC preclinical duration (and thus the potential for screen-detection)
and screening effectiveness have been suggested to differ by sex and
histology1,3,4,9. In addition, interactions between age and screening
effectiveness, and pack-years smoked and screening effectiveness
were considered to evaluate the impacts of the 2021 USPSTF recom-
mendations versus their 2013 recommendations10,31. Finally, screening
effectiveness by smoking status and years since smoking cessation
were considered to evaluate the impacts of the recent ACS
recommendations11. The machine-learning approach considered cau-
sal forests, which define the overall screening effectiveness as the
average predicted screening effect across all individuals14. Each forest
was estimated using 2000 trees.

Supplementary Table S2 provides an overview of the considered
methods, while full descriptions of each methodology and how esti-
mands were harmonised to provide relative estimates for LCM
reduction are provided in the Statistical Methodology Supplementary
Appendix. All methods, except the rate-ratios, account for differences
in participant characteristics between trials13. Thus, the screening
effectiveness parameter in these models represents the effect of
screeningon reducing LCMafter accounting for confounders. For each
applicable method, calibration-for-benefit (through calibration plots),
concordance-statistic for LCM (C-statistic) and concordance-statistic
for benefit (C-for-benefit) were evaluated in accordance with the PATH
statement13,59. In brief, calibration-for-benefit demonstrates how well
models predict the absolute or relative benefit for an individual, while
the C-statistic&C-for-benefit demonstrate whether models can distin-
guish those who die from LC/benefit from screening from those who
do not, respectively. The C-for-benefit does not have an established
benchmark, but generally ranges between 0.40 and 0.6059. For all
methods, heterogeneity byquintile of themethod’s estimatedbaseline
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risk distributionwas assessed. Eachmethodwas used to derive relative
and absolute screening effectiveness estimates by baseline risk quin-
tile (chosen to allow comparison to previous studies) within each trial6.
For methods capable of external validation, models developed in
NELSON were externally validated (i.e. without model recalibration) in
NLST and vice versa. R version 4.2.0 and R-package predmod (version
1.0.0) were used for the analyses60. For the one-variable-at-a-time
approaches, continuous variables were categorized to create groups.
For the predictive modelling and machine-learning approaches, con-
tinuous variables were kept continuous while a linear functional rela-
tionship was assumed. However, for comparisons with the one-
variable-at-a-time approaches, models with similarly categorized ver-
sions of these variables were used.

It is not known which histology a person will develop. How-
ever, LC survival and screen-detectability varies across histology9.
Thus, evaluating whether there is heterogeneity in screening
effectiveness by histology is important for both clinical and
public health decision-making. Therefore, we evaluated screening
effectiveness by histology-specific mortality, similar to Pinsky3.
An overview of the histology-specific mortality is provided in
Supplementary data 1.

Missingdata. The overall level of missing data was 4.5% in NELSON
and 0.5% in NLST. Overall, missing data across participant char-
acteristics varied from 0 to 3% (Supplementary data 1). However,
race/ethnic group (NELSON: not inquired: NLST: <2%), BMI
(NELSON: 4–5%; NLST: ~1%), COPD and emphysema (NELSON: 35%
missing due to not being asked during the first recruitment
round:NLST: <1%), and family history of LC (NELSON: not
inquired; NLST: <2%) had higher rates of missing data. These
variables are primarily used in the risk-prediction models; as such
we believe the impact of these missing data to be modest. Missing
data were handled through multiple imputation (k-nearest-
neighbour approach) using R-package “VIM” (version 6.2.2). All
candidate predictor variables (including the LCM outcome vari-
able) were included in the imputation and the number of nearest
neighbours (k) was set to 5. Analyses were performed using 30
imputations, pooled through Rubin’s rules.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated to create the main and Supplementary Figs. are
available in the Source Data file. Access to the deidentified participant
data from the National Lung Screening Trial can be obtained for
research purposes from the United States National Cancer Institute
Cancer Data Access Center at https://biometry.nci. nih.gov/cdas.
Access to the deidentified participant data from the Dutch-Belgian
lung cancer screening trial can be obtained for research purposes
through the NELSON data access board (https://umcgresearch.org/w/
nelson-dataset). Source data are provided with this paper.

Code availability
The Predmod package used to perform the analyses in this study can
be found at: https://github.com/mwelz/predmod.

References
1. de Koning, H. J. et al. Reduced lung-cancer mortality with volume

CT screening in a randomized trial. N. Engl. J. Med. 382,
503–513 (2020).

2. The National Lung Screening Trial Research Team. Reduced Lung-
Cancer Mortality with Low-Dose Computed Tomographic Screen-
ing. N. Engl. J. Med. 365, 395–409 (2011).

3. Pinsky, P. F., Church, T. R., Izmirlian, G. & Kramer, B. S. The National
Lung Screening Trial: Results stratified by demographics, smoking
history, and lung cancer histology. Cancer 119, 3976–3983 (2013).

4. Becker, N. et al. Lung cancer mortality reduction by LDCT
screening-Results from the randomized German LUSI trial. Int. J.
Cancer 146, 1503–1513 (2020).

5. Mathilde, M. W. W. et al. Results of the randomized Danish lung
cancer screening trial with focus on high-risk profiling. Am. J.
Respir. Crit. Care Med. 193, 542–551 (2016).

6. Kovalchik, S. A. et al. Targeting of low-doseCT screening according
to the risk of lung-cancer death. N. Engl. J. Med. 369, 245–254
(2013).

7. Kumar, V. et al. Risk-targeted lung cancer screening. Ann. Intern.
Med. 168, 161–169 (2018).

8. Infante, M. et al. Lung cancer screening with low-dose spiral com-
puted tomography: evidence from a pooled analysis of two Italian
randomized trials. Eur. J. Cancer Prev. 26, 324–329 (2017).

9. Ten Haaf, K., van Rosmalen, J. & de Koning, H. J. Lung cancer
detectability by test, histology, stage, and gender: estimates from
the NLST and the PLCO trials. Cancer Epidemiol. Biomark. Prev. 24,
154–161 (2015).

10. U. S. Preventive Services Task Force Screening for lung cancer: US
preventive services task force recommendation statement. J. Am.
Med. Assoc. 325, 962–970 (2021).

11. Wolf, A. M. D. et al. Screening for lung cancer: 2023 guideline
update from the American Cancer Society. CA Cancer J. Clin.
https://doi.org/10.3322/caac.21811 (2023).

12. Burke, J. F., Sussman, J. B., Kent, D.M.&Hayward,R. A. Three simple
rules to ensure reasonably credible subgroup analyses. Br. Med. J.
351, h5651 (2015).

13. Kent, D. M. et al. The predictive approaches to treatment effect
heterogeneity (PATH) statement: explanation and elaboration. Ann.
Intern. Med. 172, W1–W25 (2019).

14. Athey, S., Tibshirani, J. & Wager, S. Generalized random forests.
Ann. Stat. 47, 1148–1178 (2019).

15. Christodoulou, E. et al. A systematic review shows no performance
benefit of machine learning over logistic regression for clinical
prediction models. J. Clin. Epidemiol. 110, 12–22 (2019).

16. Rekkas, A. et al. Predictive approaches to heterogeneous treatment
effects: a scoping review.BMCMed. Res.Methodol. 20, 264 (2020).

17. Weinstein, M. C. et al. Principles of good practice for decision
analytic modeling in health-care evaluation: report of the ISPOR
Task Force on Good Research Practices–Modeling Studies. Value
Health 6, 9–17 (2003).

18. Katki, H. A., Kovalchik, S. A., Berg, C. D., Cheung, L. C. &Chaturvedi,
A. K. Development and validation of risk models to select ever-
smokers for CT lung cancer screening. J. Am. Med. Assoc. 315,
2300–2311 (2016).

19. de Nijs, K. et al. Stage- and histology-specific sensitivity for the
detection of lung cancer of the NELSON screening protocol—a
modeling study. Int. J. Cancer https://doi.org/10.1002/ijc.70045
(2025).

20. Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung
cancer. Nat. Rev. Dis. Prim. 7, 3 (2021).

21. Hollings, N. & Shaw, P. Diagnostic imaging of lung cancer. Eur.
Respir. J. 19, 722–742 (2002).

22. Borghaei, H. et al. Nivolumab versus docetaxel in advanced non-
squamous non-small-cell lung cancer. N. Engl. J. Med. 373,
1627–1639 (2015).

23. Gould,M. K. et al. Comorbidity profiles and their effect on treatment
selection and survival among patients with lung cancer. Ann. Am.
Thorac. Soc. 14, 1571–1580 (2017).

24. Gray, J. E. et al. Three-year overall survival with durvalumab after
chemoradiotherapy in stage III NSCLC—update from PACIFIC. J.
Thorac. Oncol. 15, 288–293 (2020).

Article https://doi.org/10.1038/s41467-025-63471-6

Nature Communications |         (2025) 16:8060 10

https://biometry.nci
https://umcgresearch.org/w/nelson-dataset
https://umcgresearch.org/w/nelson-dataset
https://github.com/mwelz/predmod
https://doi.org/10.3322/caac.21811
https://doi.org/10.1002/ijc.70045
www.nature.com/naturecommunications


25. Kenfield, S. A., Wei, E. K., Stampfer, M. J., Rosner, B. A. & Colditz, G.
A. Comparison of aspects of smoking among the four histological
types of lung cancer. Tob. Control 17, 198 (2008).

26. Pesch, B. et al. Cigarette smoking and lung cancer—relative risk
estimates for the major histological types from a pooled analysis of
case–control studies. Int. J. Cancer 131, 1210–1219 (2012).

27. Adler, S. et al. Comparison of lung cancer aggressiveness in
patients who never smoked compared to those who smoked. Lung
Cancer 171, 90–96 (2022).

28. Meza, R., Meernik, C., Jeon, J. & Cote, M. L. Lung cancer incidence
trends by gender, race and histology in the United States,
1973–2010. PLos One 10, e0121323 (2015).

29. Han, D., Heuvelmans, M. A. & Oudkerk, M. Volume versus diameter
assessment of small pulmonary nodules in CT lung cancer
screening. Transl. Lung Cancer Res. 6, 52–61 (2017).

30. Jiang, B. et al. Lung cancer volume doubling time by computed
tomography: a systematic review and meta-analysis. Eur. J. Cancer
212, 114339 (2024).

31. Moyer, V. A. & Force, U. S. P. S. T. Screening for lung cancer: U.S.
Preventive Services Task Force recommendation statement. Ann.
Intern Med. 160, 330–338 (2014).

32. Aredo, J. V. et al. Racial and ethnic disparities in lung cancer
screening by the 2021 USPSTF guidelines versus risk-based criteria:
the multiethnic cohort study. JNCI Cancer Spectr. 6, pkac033
(2022).

33. Aldrich, M. C. et al. Evaluation of USPSTF lung cancer screening
guidelines among African American adult smokers. JAMAOncol. 5,
1318–1324 (2019).

34. Chang, G.-C. et al. Low-dose CT screening among never-smokers
with or without a family history of lung cancer in Taiwan: a pro-
spective cohort study. Lancet Respir. Med. 12, 141–152 (2024).

35. O’Dowd, E. L. et al. Defining the road map to a UK national lung
cancer screening programme. LancetOncol. 24, e207–e218 (2023).

36. Targeted Lung Health Check protocol, https://www.england.nhs.
uk/wp-content/uploads/2019/02/B1646-standard-protocol-
targeted-lung-health-checks-programme-v2.pdf (2024).

37. Toumazis, I. et al. Risk model-based lung cancer screening: a cost-
effectiveness analysis. Ann. Intern. Med. 176, 320–332 (2023).

38. Walter, J. E. et al. Occurrence and lung cancer probability of new
solid nodules at incidence screening with low-dose CT: analysis of
data from the randomised, controlled NELSON trial. Lancet Oncol.
17, 907–916 (2016).

39. Oken, M. M. et al. Screening by chest radiograph and lung cancer
mortality: the prostate, lung, colorectal, and ovarian (PLCO) ran-
domized trial. JAMA 306, 1865–1873 (2011).

40. The National Lung Screening Trial Research Team, Aberle, D. R.
et al. Baseline characteristics of participants in the randomized
national lung screening trial. JNCI J. Natl. Cancer Inst. 102,
1771–1779 (2010).

41. Yousaf-Khan, U. et al. Baseline characteristics and mortality out-
comes of control group participants and eligible non-responders in
the NELSON Lung Cancer Screening Study. J. Thorac. Oncol. 10,
747–753 (2015).

42. Howard, D. H., Richards, T. B., Bach, P. B., Kegler, M. C. & Berg, C. J.
Comorbidities, smoking status, and life expectancy among indivi-
duals eligible for lung cancer screening. Cancer 121, 4341–4347
(2015).

43. Lebrett, M. B. et al. Analysis of lung cancer risk model (PLCOM2012

and LLPv2) performance in a community-based lung cancer
screening programme. Thorax 75, 661–668 (2020).

44. Cheung, L. C., Berg, C. D., Castle, P. E., Katki, H. A. & Chaturvedi, A.
K. Life-gained–based versus risk-based selection of smokers for
lung cancer screening. Ann. Intern. Med. 171, 623–632 (2019).

45. Tammemägi, M. C. et al. Selection criteria for lung-cancer screen-
ing. N. Engl. J. Med. 368, 728–736 (2013).

46. Rivera, M. P. et al. Incorporating coexisting chronic illness into
decisions about patient selection for lung cancer screening. An
official American Thoracic Society Research Statement. Am. J.
Respir. Crit. Care Med. 198, e3–e13 (2018).

47. Papi, A. et al. COPD increases the risk of squamous histological
subtype in smokers who develop non-small cell lung carcinoma.
Thorax 59, 679 (2004).

48. Gendarme, S. et al. Impact of comorbidities on the mortality ben-
efits of lung cancer screening: a post-hoc analysis of PLCO and
NLST trials. J. Thoracic Oncol. https://doi.org/10.1016/j.jtho.2025.
01.003 (2025).

49. Warkentin, M. T. et al. Brief report: evaluating early-stage lung
cancer survival patterns in patients at the upper age limit for lung
cancer screening. J. Thoracic Oncol., https://doi.org/10.1016/j.jtho.
2024.12.025 (2024).

50. Lungcancer incidenceandmortalitywith extended follow-up in the
national lung screening trial. J. Thoracic Oncol. 14, 1732–1742
(2019).

51. Clark, M. A. et al. The relations between false positive and negative
screens and smoking cessation and relapse in the national lung
screening trial: implications for public health.Nicotine Tob. Res. 18,
17–24 (2016).

52. Tammemägi, M. C., Berg, C. D., Riley, T. L., Cunningham, C. R. &
Taylor, K. L. Impact of lung cancer screening results on smoking
cessation. J. Natl. Cancer Inst. 106, dju084 (2014).

53. van der Aalst, C. M., van den Bergh, K. A. M., Willemsen, M. C., de
Koning, H. J. & van Klaveren, R. J. Lung cancer screening and
smoking abstinence: 2 year follow-up data from the Dutch–Belgian
randomised controlled lung cancer screening trial. Thorax 65,
600 (2010).

54. Travis, W. D. et al. International association for the study of lung
cancer/American thoracic society/European respiratory society
international multidisciplinary classification of lung adenocarci-
noma. J. Thorac. Oncol. 6, 244–285 (2011).

55. Zelen, M. & Feinleib, M. On the theory of screening for chronic
diseases. Biometrika 56, 601–614 (1969).

56. Duffy, S. W. et al. Correcting for lead time and length bias in esti-
mating the effect of screen detection on cancer survival. Am. J.
Epidemiol. 168, 98–104 (2008).

57. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for
generalized linearmodels via coordinate descent. J. Stat. Softw.33,
1–22 (2010).

58. van Klaveren, D., Balan, T. A., Steyerberg, E.W. & Kent, D.M.Models
with interactions overestimated heterogeneity of treatment effects
and were prone to treatment mistargeting. J. Clin. Epidemiol. 114,
72–83 (2019).

59. van Klaveren, D., Steyerberg, E. W., Serruys, P. W. & Kent, D. M. The
proposed ‘concordance-statistic for benefit’ provided a useful
metric when modeling heterogeneous treatment effects. J. Clin.
Epidemiol. 94, 59–68 (2018).

60. Welz, M., ten Haaf K. & Alfons, A. predmod: Predictivemodeling for
heterogeneous treatment effects. R package, https://github.com/
mwelz/predmod. https://doi.org/10.5281/zenodo.
15065276 (2023).

Acknowledgements
The NELSON trial was supported by the Netherlands Organisation of
Health Research and Development, the Dutch Cancer Society (KWF
Kankerbestrijding), the Health Insurance Innovation Foundation (Inno-
vatiefonds Zorgverzekeraars), G.Ph. Verhagen Stichting, the Rotterdam
Oncologic Thoracic Study Group, the Erasmus Trust Fund, Stichting
tegen Kanker, Vlaamse Liga tegen Kanker and Lokaal Gezondheids
Overleg (LOGO) Leuven. Siemens Germany provided four workstations
and software for volume measurements. This work was supported by
TRANSCAN-2 Joint Transnational Call 2016 (JTC 2016) project code

Article https://doi.org/10.1038/s41467-025-63471-6

Nature Communications |         (2025) 16:8060 11

https://www.england.nhs.uk/wp-content/uploads/2019/02/B1646-standard-protocol-targeted-lung-health-checks-programme-v2.pdf
https://www.england.nhs.uk/wp-content/uploads/2019/02/B1646-standard-protocol-targeted-lung-health-checks-programme-v2.pdf
https://www.england.nhs.uk/wp-content/uploads/2019/02/B1646-standard-protocol-targeted-lung-health-checks-programme-v2.pdf
https://doi.org/10.1016/j.jtho.2025.01.003
https://doi.org/10.1016/j.jtho.2025.01.003
https://doi.org/10.1016/j.jtho.2024.12.025
https://doi.org/10.1016/j.jtho.2024.12.025
https://github.com/mwelz/predmod
https://github.com/mwelz/predmod
https://doi.org/10.5281/zenodo.15065276
https://doi.org/10.5281/zenodo.15065276
www.nature.com/naturecommunications


TRANSCAN-045 CLEARLY (H.J.d.K.), a Convergence (Erasmus MC,
Erasmus University Rotterdam and Delft University of Technology) Open
Mind grant (Convergence for Individualising TReatment Using Statistical
approaches (CITRUS)) (M.W., A.A., K.t.H.), a VENI grant from the Dutch
Research Council/ Netherlands Organisation of Health Research
(ZonMW) (grant number 09150161910060) (K.t.H.) and a VIDI grant from
the Dutch Research Council (grant number VI.Vidi.195.141) (A.A.). We
thank the NELSON and NLST participants for their contributions to this
study. We also thank dr. M.A. den Bakker (Maasstad Hospital Rotterdam)
for their advice regarding the lung cancer histology classifications. We
thank the National Cancer Institute (NCI) for access to NCI’s data col-
lected by the NLST. The statements contained herein are solely those of
the authors and do not represent or imply concurrence or endorsement
by NCI.

Author contributions
M.W.: conceptualisation, data curation, investigation, formal analysis,
methodology, software, writing – original draft. C.M.vdA.: data curation,
investigation, writing – review & editing. A.A.: supervision, investigation,
writing – review & editing. A.A.N.: supervision, investigation, writing –

review& editing.M.H.: investigation, writing – review&editing. H.J.M.G.:
investigation, writing – review & editing. P.A.d.J.: investigation, writing –

review & editing. J.A.: investigation, writing – review & editing. M.O.:
investigation, writing – review & editing. H.J.d.K.: conceptualisation,
funding acquisition, supervision, writing – review & editing. K.t.H.: con-
ceptualisation, data curation, investigation, formal analysis, funding
acquisition, methodology, software, supervision, writing – original draft.

Competing interests
C.M.v.d.A. declares roles in the WHO-IARC European Code Against
Cancer working group, B3care user committee and Expert Mission
Cancer Screening in Georgia outside of the submitted work. H.J.G.
declares consulting fees from Eli Lilly outside of the submitted work.
P.A.d.J. research support from Philips Healthcare to their institute out-
side of the submitted work. J.A. declares speakers fees from Eli Lilly,
MSD and BIOCAD, patents from Pamgene and Amphara, data safety
monitoring/advisory board participation for Eli-Lilly, Amphara, BIOCAD
and MSD, boardmembership of the IASLC and stock ownership in
Amphera outside of the submitted work. H.J.d.K. declares consulting
fees fromBayer andhonoraria fromTEVA/Menarini/AstraZenecaoutside
of the submitted work. K.t.H. declares grants from NIH, Horizon 2020,

University of Zurich, Cancer Research UK, Cancer Australia and the
Australian Ministry of Health, speakers fees from Johnson&Johnson and
Centre Hospitalier Universitaire Vaudois paid to their institute and travel
support from the Rescue Lung Society outside of the submitted work.
The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-63471-6.

Correspondence and requests for materials should be addressed to
Max Welz or Kevin ten Haaf.

Peer review informationNatureCommunications thanksMichaelGould,
Tim Eisen, and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Max Welz1,2 , Carlijn M. van der Aalst1, Andreas Alfons 2, Andrea A. Naghi2,3, Marjolein A. Heuvelmans4,5,6,
Harry J. M. Groen 7, Pim A. de Jong8, Joachim Aerts 9, Matthijs Oudkerk 5, Harry J. de Koning 1,10,
Kevin ten Haaf 1,10 , On behalf of the NELSON trial consortium

1Department of Public Health, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands. 2Econometric Institute, Erasmus University
Rotterdam, Rotterdam, the Netherlands. 3Department of Business Analytics and Applied Economics, School of Business and Management, Queen Mary
University of London, London, UK. 4University of Groningen. UniversityMedical Center Groningen, Department of Epidemiology,Groningen, theNetherlands.
5Institute for DiagnosticAccuracy,Groningen, theNetherlands. 6Department of RespiratoryMedicine, AmsterdamUniversityMedical Center, Amsterdam, the
Netherlands. 7Rijksuniversiteit Groningen, Groningen, the Netherlands. 8Department of Radiology, University Medical Center Utrecht, Utrecht, the Nether-
lands. 9Department of Pulmonary Medicine, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands. 10These authors contributed
equally: Harry J. de Koning, Kevin ten Haaf. e-mail: welz@ese.eur.nl; k.tenhaaf@erasmusmc.nl

the NELSON trial consortium

Carlijn M. van der Aalst1, Marjolein A. Heuvelmans2,3,4, Harry J. M. Groen5, Pim A. de Jong6, Joachim Aerts7,
Matthijs Oudkerk3, Harry J. de Koning1 & Kevin ten Haaf1

Article https://doi.org/10.1038/s41467-025-63471-6

Nature Communications |         (2025) 16:8060 12

https://doi.org/10.1038/s41467-025-63471-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2513-3788
http://orcid.org/0000-0002-2513-3788
http://orcid.org/0000-0002-2513-3788
http://orcid.org/0000-0002-2513-3788
http://orcid.org/0000-0002-2513-3788
http://orcid.org/0000-0002-2978-5265
http://orcid.org/0000-0002-2978-5265
http://orcid.org/0000-0002-2978-5265
http://orcid.org/0000-0002-2978-5265
http://orcid.org/0000-0002-2978-5265
http://orcid.org/0000-0001-6662-2951
http://orcid.org/0000-0001-6662-2951
http://orcid.org/0000-0001-6662-2951
http://orcid.org/0000-0001-6662-2951
http://orcid.org/0000-0001-6662-2951
http://orcid.org/0000-0003-2800-4110
http://orcid.org/0000-0003-2800-4110
http://orcid.org/0000-0003-2800-4110
http://orcid.org/0000-0003-2800-4110
http://orcid.org/0000-0003-2800-4110
http://orcid.org/0000-0003-4682-3646
http://orcid.org/0000-0003-4682-3646
http://orcid.org/0000-0003-4682-3646
http://orcid.org/0000-0003-4682-3646
http://orcid.org/0000-0003-4682-3646
http://orcid.org/0000-0001-5006-6938
http://orcid.org/0000-0001-5006-6938
http://orcid.org/0000-0001-5006-6938
http://orcid.org/0000-0001-5006-6938
http://orcid.org/0000-0001-5006-6938
mailto:welz@ese.eur.nl
mailto:k.tenhaaf@erasmusmc.nl
www.nature.com/naturecommunications

	A comparative analysis of heterogeneity in lung cancer screening effectiveness in two randomised controlled trials
	Results
	Associations between risk-factors and LCM
	Overall screening effectiveness
	Screening effectiveness by risk-factors
	Screening effectiveness across histologies
	Links between overall and histology-specific effectiveness
	C-statistics, C-for-benefit and calibration-for-benefit
	Sensitivity analyses

	Discussion
	Methods
	Trial oversight
	Study population
	Statistics & reproducibility
	Screening effectiveness
	Missing data

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




