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Prediction of cellular morphology changes
under perturbations with a transcriptome-
guided diffusion model

Xuesong Wang 1,2,5, Yimin Fan 1,2,5, Yucheng Guo 1,5, Chenghao Fu 2,
Kinhei Lee 2, Khachatur Dallakyan 2, Yaxuan Li 2, Qijin Yin 1, Yu Li 2,3 &
Le Song 1,4

Investigating cell morphology changes after perturbations using high-
throughput image-based profiling is increasingly important for phenotypic
drug discovery, including predicting mechanisms of action (MOA) and com-
pound bioactivity. The vast space of chemical and genetic perturbations
makes it impractical to explore all possibilities using conventional methods.
Here we propose MorphDiff, a transcriptome-guided latent diffusion model
that simulates high-fidelity cell morphological responses to perturbations. We
demonstrateMorphDiff’s effectiveness on three large-scale datasets, including
two drug perturbation and one genetic perturbation dataset, covering thou-
sands of perturbations. Extensive benchmarking shows MorphDiff accurately
predicts cell morphological changes under unseen perturbations. Addition-
ally, MorphDiff enhances MOA retrieval, achieving an accuracy comparable to
ground-truth morphology and outperforming baseline methods by 16.9% and
8.0%, respectively. This work highlights MorphDiff’s potential to accelerate
phenotypic screening and improve MOA identification, making it a powerful
tool in drug discovery.

Characterizing and predicting cell states under genetic and drug per-
turbations remains one of the most challenging and meaningful direc-
tions in the single-cell biology domain. By understanding how individual
cells respond to specificgenetic anddrugperturbations, researchers can
better map the pathways that contribute to particular cell states and
identify potential targets for therapeutic intervention. Multiple aspects
of cell statesmay change under perturbations, including but not limited
to gene expression profile, proteomic composition, metabolic status,
and cell morphology. Among the various modalities of cell states, the
investigation of cell morphology responses to perturbations through
high-throughput image-based profiling has gained significant interest
due to its wide applications in phenotypic drug discovery. These appli-
cations encompass the prediction ofMOAs (Mechanism of Actions), the
prediction of compound bioactivity, and drug repurposing1.

However, considering the vast number of synthesizable chemical
compounds and genes in the perturbation space, it is infeasible to
profile the cell morphology for all possible perturbations. Therefore,
developing an in-silico method to simulate cell morphological
responses to perturbations emerges as a challenging and meaningful
topic2. With a powerful and reliable tool to infer the cell morphology
change under perturbations, the exploration of the vast perturbation
space can be significantly accelerated, further promoting downstream
drug discovery pipelines, such as MOA prediction. Computational
approaches have been proposed to predict the cell morphology3,4.
However, the precision and fidelity of these methods remain inade-
quate. First, as indicated by existing work IMPA (IMage Perturbation
Autoencoder)3, prediction on unseen perturbations will only perform
well if themodel has seen a similar perturbation with a similar effect in
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the training dataset. As structurally similar drugs or co-expression
genetic perturbations may have different effects5, it is critical to
faithfully encode and represent perturbations to improve the gen-
eralizability of prediction in unseen perturbations. Second, in addition
to the perturbations, cellularmorphology is influencedby awide range
of factors, including but not limited to batch andwell position effects6,
which leads to a high noise level in the cell morphology data.

Therefore, we developed MorphDiff, a scalable transcriptome-
guided diffusion model for predicting cell morphology responses to
unseen perturbations. MorphDiff predicts the perturbed cell morphol-
ogy with the perturbed L1000 gene expression profile as the condition.
The following motivations inspire the choice of using gene expression
profiles as the condition. First, gene expression plays a crucial role in
determining cellmorphology by directing the synthesis of proteins that
regulate cellular structure and dynamics7,8. Although the relationship
between cell morphology and gene expression is complex, there
remains shared and complementary information between them9, mak-
ing the prediction between gene expression and cell morphology
feasible9–12. Therefore, perturbed gene expression is more informative
in determining cell morphology than the prior knowledge-guided
encoding of the perturbation, such as drug SMILES (Simplified Mole-
cular Input Line Entry Specification) representation and Gene2vec13

embedding. Second, the L1000 assay offers a much larger pool of
publicly available datasets compared to cell morphology profiling10.
Thus, obtaining the gene expression of cells treated with unseen per-
turbations is much easier than obtaining the cell morphology, enabling
our tool to be potentially applicable in broader scenarios.

The architecture of MorphDiff is based on the Latent Diffusion
Model14, an advanced generative model inspired by thermodynamics
that learns to reverse the data from an unordered state to an ordered
state. Intuitively, by learning to recursively addGaussiandistributions to
noisy images, diffusion models could generate high-quality images.
Concretely, we utilize theMorphology Variational Autoencoder (MVAE,
seeMethods Section) to compress thehigh-dimensionalmorphologyof
cells into low-dimensional embeddings, and then train a latent diffusion
model14 using these embeddings with gene expression profiles as the
condition. Compared to traditional generative models such as the
Generative Adversarial Network (GAN)15 used in MorphNet4 and IMPA3,
the diffusion-based architecture has the following advantages. First, the
latent diffusion model is highly robust to noise, as, by design, diffusion
models transform data into a noisy state and learn to reconstruct the
original data, which makes it highly suitable for cell morphology data-
sets. Second, the latent diffusion model supports flexible conditioning,
further enhancing the utility of MorphDiff. In addition to relying solely
on the perturbed transcriptome as input, the pre-trained MorphDiff
model can also take an unperturbed cell morphology as input while
using the perturbed cell transcriptome as the condition. This allows
MorphDiff to infer the continuous transition of cell morphology from
unperturbed to perturbed without requiring additional training. Third,
diffusion models usually perform better on general image synthesis
tasks than GAN-based generative models16.

To evaluate MorphDiff’s capability for predicting cell morphology
responses to novel perturbations, we established a comprehensive
assessment framework. Our methodology tested the model’s perfor-
mance across three extensive datasets encompassing a wide range of
genetic and drug perturbations. We assessed the model using both
standard imagegenerationmetrics andmeasures of biological relevance
by analyzing interpretable morphological features extracted through
established computational tools such asCellProfiler17 andDeepProfiler18.
Furthermore, we examined MorphDiff’s effectiveness in capturing cor-
relations between transcriptional and morphological responses to per-
turbations, potentially providing insights into how changes in gene
expression manifest as alterations in cellular morphology.

A key application we aim to investigate is MorphDiff’s potential in
phenotypic drug discovery, particularly for MOAs retrieval. While

traditional approaches focus on drug structure analysis and tran-
scriptome response analysis19,20, we emphasize that cell morphology
information-whether directly observed or computationally inferred-
provides complementary and valuable signals for MOA identification.
Through our designed MOA retrieval pipeline, we demonstrated that
MorphDiff-generated morphologies achieve comparable performance
to ground-truth morphologies and outperform existing baseline meth-
ods and gene expression-based approaches. Furthermore, we explored
the potential of our approach todiscover drugswithdifferentmolecular
structures but similarMOA. In summary,MorphDiff is a powerful tool in
phenotypic drug discovery by accurately generating cell morphology
under unseen perturbations, with promising applications in facilitating
the explorationof the vastphenotypicperturbation screening space and
assisting in determining the MOAs of structurally diverse drugs.

Results
Method overview
MorphDiff maps L1000 gene expression to cell morphology images
through a Latent Diffusion Framework14. Concretely, as shown in
Fig. 1a, paired L1000 gene expression and cell morphology images are
curated for the same perturbations. The cell morphology images are
acquired by the Cell Painting21 platform and are usually composed of
five channels, including DNA, ER, RNA, AGP, and Mito (Supplementary
Table 1). MorphDiff is made up of two main components (Fig. 1b),
Morphology VAE (MVAE) and Latent Diffusion Model (LDM). MVAE
consists of the encoder anddecoder parts. The encoder takes the high-
dimensional cell morphology images composed of five channels as
input and outputs the low-dimensional latent representations, while
the decoder reconstructs the original input images based on the latent
representation. This step compresses the cell morphology images into
meaningful low-dimensional representation so that training the diffu-
sion models can be easier. The latent diffusion model is trained to
generate cell morphology low-dimensional representation condi-
tioned on the perturbed gene expression profiles. The Latent Diffusion
Model (LDM) consists of the noising process and denoising processes.
In the noising process, Gaussian randomnoise is sequentially added to
the latent representation of morphology for multiple steps, from 0 to
T. The final ZT follows the standard Gaussian distribution. In the
denoising process, in each step t, LDM is trained to recursively remove
the noise from Zt conditioned on the L1000 gene expression as t
decreases from T to 0. LDM is implemented with denoising U-Net
architecture (based on convolutional neural networks) augmented
with an attention mechanism22. As the input condition, L1000 gene
expression is combined with the model parameters of LDM, specifi-
cally the key and value of the attentionmechanism in LDM.Training an
LDM minimizes the variational upper bound, which serves as a proxy
for reducing noise prediction error and ensures the generated samples
match the ground-truth distribution. More technical details are
described in theMorphDiff Model section. As illustrated in Fig. 1c, pre-
trained MorphDiff can be applied in two ways. In the first mode
(referred to as MorphDiff(G2I)), it takes the L1000 gene expression as
the condition anddenoises the corresponding cellmorphology images
from random noise distribution. In the second mode (referred to as
MorphDiff(I2I)), it takes the L1000 gene expression for one specific
perturbation as the condition and transforms the morphology images
from the control cell morphology to the predicted perturbed mor-
phology images. Compared to previous works in generating cell
morphology images, MorphDiff is the only tool that supports gen-
eration fromgene expression tomorphology and transformation from
unperturbed morphology to perturbed morphology. In Fig. 1d, we
outlined the key applications of MorphDiff in practice. Primarily,
MorphDiff can predict cell morphology resulting from unseen per-
turbations not encountered during training, which fulfills our main
objective of exploring the vast perturbation space through in-silico
inference. Furthermore, our framework incorporates CellProfiler17 and
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DeepProfiler18 to generate biologically meaningful morphological
features and embeddings, respectively. This integration enables
researchers to probe specificmorphological feature changes following
perturbation, thereby enhancing interpretability and practical applic-
ability. As a critical application, the generated morphological profiles
can be utilized for retrieval and identification of drug MOA, estab-
lishing MorphDiff as a powerful tool in phenotypic drug discovery.

For model evaluation and applications, we collected three large-
scale cell morphology image datasets for model training, evaluation,
and analysis, which include 1028 drug perturbations from the CDRP
dataset23, 130 genetic perturbations from the JUMP dataset24 on the
U2OS cell line, and 61 drug perturbations from the LINCS dataset on
the A549 cell line25. After pre-processing and splitting these datasets,
we obtained the following datasets for training and evaluation: JUMP
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Training set, JUMP ID (in-distribution) set, and JUMP OOD (out-of-
distribution) set; the CDRP Training set, CDRP ID set, CDRP OOD set,
and CDRP Target_MOA set; the LINCS Target leave-one-out set and
LINCSMOA leave-one-out set. Details of the dataset splits are provided
in the Datasets section.

For benchmarking and downstream tasks, we generated gene
embeddings and drug embeddings as conditions for baseline meth-
ods, respectively, for genetic perturbation and drug perturbation
prediction tasks, following the implementation described in IMPA3.
The gene embeddings are generated with Gene2vec13, and drug
embeddings are generated with RDKit26.

MorphDiff accurately predicts changes in cell morphology with
genetic perturbations
To illustrate the superiority of MorphDiff, we benchmarked the gen-
eral generative performance on the JUMP OOD dataset. We compared
MorphDiff with a wide range of baseline methods, including
MorphNet4, DMIT (Disentanglement for Multi-mapping Image-to-
Image Translation)27, DRIT++ (Disentangled Representation for
Image-to-Image Translation)28, StarGANv129, IMPA3, VQGAN (Vector
Quantized Generative Adversarial Network)30, and MDTv2 (Masked
Diffusion Transformers)31. For some baseline methods, including
IMPA, DRIT++, DMIT, StarGANv1, VQGAN, andMDTv2, we followed the
implementation in IMPA3, using gene embeddings (Gene2vec13) as
conditions. In contrast, MorphNet4 generates morphology images
based on gene expression profiles that have been corrected using
scVI32. The details of these methods can be found in Supplementary
Notes 1.

First, we conducted a visual assessment of the generation quality
betweenMorphDiffmethods and baseline approaches, as illustrated in
Fig. 2a. For this visual comparison, we presented results from the
SREBF1 genetic perturbation, which represents an out-of-distribution
(OOD) perturbation. Visualizations for the additional nine OOD
genetic perturbations are available in Supplementary Figs. 1–3. The
specific criteria used for selecting these images for visualization are
detailed in Supplementary Notes 2. The generated outputs of both
modes of MorphDiff display colors and morphological structures that
closely resemble the ground truth. DMIT, IMPA, and MDTv2 produce
reasonably good images that adequately capture the general mor-
phological features, but they fall short in detail and clarity. MorphNet
shows promise in generating reasonable images with some detail, but
it lacks diversity. StarGAN produces diverse outputs with good mor-
phological structures, but it exhibits subtle color bias compared to the
ground truth. ForDRIT++ andVQGAN, the visual quality appearsworse
than other methods, with either reduced clarity or noticeable color
bias. Overall, MorphDiff (I2I), MorphDiff (G2I), IMPA, and DMIT
demonstrate the highest image generation quality, with both Morph-
Diff variants producing images that closely resemble the ground truth.

Quantitatively, we evaluated thesemethods using severalmetrics,
including FID33, IS (Inception Score)34, CMMD35, as well as density and
coverage36. FIDmeasures the distance between the distributions of the
ground-truth and generated images in the feature space, using fea-
tures extracted from Inception V334. The IS assesses the quality of the

generated images based on how effectively they can be classified by
the Inception V3model. Both FID and IS utilize Inception V334, which is
pre-trainedon ImageNet37. Toenhance the reliability and robustness of
our comparisons, we incorporated CMMD, which calculates the Max-
imumMean Discrepancy (MMD) distance based on features extracted
by aCLIPmodel pre-trainedon400million image-text pairs containing
more complex scenes35. We also included density and coverage
metrics, as these metrics are robust against outlier samples and could
better measure the diversity and fidelity of the generated samples36. In
general, lower FID and CMMD values indicate better performance,
while higher density, IS, and coverage scores reflect better generation
quality. For convenience of presentation, we used the reciprocals of
FID and CMMD, denoted as FID(-1) and CMMD(-1), for comparison and
analysis. To ensure statistical reliability and robustness of our results,
we employed different sampling approaches based on method
requirements. For methods requiring reference control DMSO mor-
phology images as input (Supplementary Table 2), we generated out-
puts using 10 distinct groups of control images, each group derived
from an independent plate (n = 10 biological replicates). Each plate
represented a separate experimental unit, indicating that the statistical
analysis derived from 10 independent biological replicates (10 distinct
plates). For methods that do not rely on reference control DMSO
images, we conducted 10 separate sampling iterations, each with a
different random seed. We performed the one-sidedWilcoxon signed-
rank test for each comparison with Bonferroni correction to further
enhance the statistical significance of our tests. It should be noted that
star (“∗”) means that MorphDiff surpasses the baseline method with a
p value <0.05. The “ns” represents the situation of no significant dif-
ference. The same notation for performance tests is used in the fol-
lowing sections. As depicted in Fig. 2b, MorphDiff (I2I) and MorphDiff
(G2I) rank as the top two methods across these evaluation metrics
compared with other baseline approaches, highlighting the effective-
ness of our model. We also observed that all methods relying on
reference control DMSO morphology images exhibit larger perfor-
mance variance compared to those that do not, as the quality of the
control cellmorphology imagesmay impact themodel performance in
terms of general evaluation metrics (Supplementary Notes 3). The
results also show thatMorphNet achieves a nearly zero coverage score,
demonstrating that the generative output ofMorphNet lacks diversity,
which aligns with the visualization in Fig. 2a. Based on both qualitative
visualizations and quantitative metrics, MorphDiff (both modes)
demonstrates more superior performance in terms of generalization,
fidelity, and diversity compared to other generativemodels, ultimately
resulting in superior generation quality.

Furthermore, we performed an in-depth analysis of whether
MorphDiff can accurately predict changes in cell morphology under
genetic perturbations. We performed a quantitative analysis using the
CellProfiler features to demonstrate the effectiveness of MorphDiff.
CellProfiler features are a set of morphological features extracted with
CellProfiler related to cell morphology, which measure the texture,
intensity, and granularity within each morphology channel and the
correlation between different morphology channels. In Fig. 2c, we
usedUMAP to project themorphological features into two dimensions

Fig. 1 | Overview of the MorphDiff framework. a In this study, the multimodal
dataset consists of themorphology imageswithfive channels collectedusingCP (Cell
Painting), and the gene expressions collected using L1000 assays. CellProfiler is then
used to segment the cells and extract CellProfiler features at the single-cell level.
Morphology images and gene expression together characterize the cell morphology
responses to specificperturbations. The scale bar is 20μm.bMorphDiff is composed
of two main components: Morphology VAE (MVAE) and Latent Diffusion Model
(LDM). The MVAE encoder encodes the multi-channel cell morphology images into
latent representation, and the decoder reconstructs the original cell morphology
images based on the latent representation. LDM is trained to denoise from Gaussian
randomnoiseZT tomorphology latent representationZ0, recursively conditionedon

L1000 gene expression. The scale bar is 20μm. c MorphDiff can be applied in two
ways to generate cellmorphology imageswithperturbations: L1000gene expression
to cell morphology generation (G2I, Gene to Image) and perturbed L1000 gene
expression combined with control morphology images to perturbed cell morphol-
ogy images generation (I2I, Image To Image). I2I is implemented with SDEdit62

without re-training. The scale bar is 20μm. d Illustration of the downstream appli-
cations ofMorphDiff, including prediction on unseen perturbations, feature analysis
with CellProfiler, as well as morphology-based MOA retrieval with DeepProfiler.
DMSO stands for Dimethyl sulfoxide, which is considered as control group without
perturbation. The scale bar is 20μm. a, b, c, d are created in BioRender. Group, A.
(2025) https://BioRender.com/nu1zlqw.
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for visualization. We selected the 10 most important CellProfiler fea-
tures discriminative of the perturbation types to form the morpholo-
gical feature vector. The details of the feature selection strategy are
discussed in the Evaluation Setup section (Morphological feature
selection based on discriminability of perturbations). For ARAF and
STAT3 genetic perturbations, we can observe that the distribution of
ground-truth perturbed cell morphology has an apparent variance.

The generated outputs of IMPA form a dense cluster and are far away
from the ground-truth distribution. In contrast, the outputs of
MorphDiff(G2I) aremuchmorediverse and resemble the ground-truth
distribution. We conducted the same analysis on other genetic per-
turbations, and the results in Supplementary Fig. 4 display a consistent
effect. We also evaluated MorphDiff(I2I) using similar methods in
Supplementary Fig. 5 and found a higher overlap between the ground-
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truth feature distribution and the MorphDiff (I2I) generated feature
distribution.

Then, we turned to a more fine-grained analysis of how well the
generated morphology aligns with the ground-truth morphology
regarding the values of individual CellProfiler features. In Fig. 2d, we
visualized the values of the 10 most important cell morphology fea-
tures from the ground-truth perturbation morphology, the morphol-
ogygeneratedbyMorphDiff(G2I),MorphDiff(I2I), and themorphology
generated by IMPA on RAC1 genetic perturbation. We can see that the
MorphDiff-generated morphology aligns well with the ground-truth
morphology compared with the IMPA-generated morphology. The
results of more perturbations on the top 20 most important CellPro-
filer features are shown inSupplementaryFigs. 6 and 7. Tohave amore
holistic view of how closely the MorphDiff-generated morphology
aligns with the ground-truth distribution, we performed statistical
tests for a more quantitative comparison. Concretely, for each feature
out of all CellProfiler features extracted, we conducted the two-sided
Wilcoxon signed-rank test across the CellProfiler features of the
ground-truth and the generated output. If the p value of the Wilcoxon
signed-rank test is larger than 0.05, we conclude that insufficient evi-
dence shows significant differences between the generated perturba-
tion morphological features and the ground-truth perturbation
morphological features. As shown in Fig. 2e, the proportion of the
generated CellProfiler features that align with the ground-truth fea-
tures ofMorphDiff(G2I) is much larger than IMPA. ForMorphDiff(G2I),
more than seventy percent of the generated CellProfiler morphology
features align with the ground-truth perturbation CellProfiler features,
which demonstrates the effectiveness of MorphDiff in accurately
predicting the perturbation morphology. We also repeated the analy-
sis in Fig. 2ewithother types of statistical tests andmetrics, including t-
test, Kolmogorov-Smirnov test, and KL-divergence, in Supplementary
Fig. 8 for MorphDiff(G2I), MorphDiff(I2I), and IMPA to further
demonstrate the robustness and consistency of our conclusion.

Subsequently, we validated the effectiveness of MorphDiff in
capturing the correlation between perturbed gene expression and
perturbed morphology. For better clarity, we selected the CellProfiler
features thatMorphDiff(G2I) and IMPA can best recover. The details of
feature selection are described in the Evaluation Setup Section (Mor-
phological feature selection based on predictability). Figure 2f shows
the correlation between gene expression and CellProfiler features of
the ground truth,MorphDiff(G2I), and IMPA, respectively. In Fig. 2f, we
observed that several groups of genes and CellProfiler features have a
high correlation with each other. For example, the group on the top
left of the heatmap mainly consists of features related to Correlation
and Intensity associated with ER, Mito, and AGP channels (Supple-
mentary Fig. 9). Another group on the bottom right mainly consists of
features related to the intensity of DNA and ER channels (Supple-
mentary Fig. 9). The detailed correlation of MorphDiff(G2I) and IMPA
can be found in Supplementary Figs. 10 and 11. We computed the

correlation between the correlationmapof the generated samples and
ground-truth samples. We observed that the samples generated with
MorphDiff(G2I) have a much higher correlation (0.47) than the sam-
ples generatedwith IMPA (0.27). Therefore,MorphDiff(G2I) effectively
captures the pattern of cell morphological feature changes across
different genetic perturbations, while IMPA fails to capture the cor-
relationpatternbetweengeneexpression and cell CellProfiler features.
We performed a similar analysis for MorphDiff(I2I) and IMPA in Sup-
plementary Fig. 12 and also validated the superiority ofMorphDiff(I2I).

MorphDiff captures morphological changes in cells across
thousands of drug treatments
We first benchmarked all methods on the CDRP OOD set with the
general evaluationmetrics, inwhich themeanings of stars are the same
as in the previous section, and the hashtag (‘#’) indicates the situation
where the baseline performs significantly better. As shown in Fig. 3a,
both modes of MorphDiff substantially outperform other methods in
most cases. While DMIT and MDTv2 achieve high scores in IS, density,
and coverage, they obtain relatively lower scores in FID(-1) and
CMMD(-1) compared to MorphDiff (both modes). This suggests that
DMIT andMDTv2 struggle to produce high-quality samples. Similar to
the results on the JUMP dataset, MorphNet performs well in terms of
density score, but it is nearly ineffective in terms of coverage,
demonstrating its lack of generalizability and diversity. Ideally, an
effective generative model should achieve low FID, CMMD, and high
scores in IS, density, and coverage to ensure that it produces outputs
of high quality and fidelity, while also generating diverse outputs that
closely align with the ground-truth distribution. MorphDiff (both
modes) outperforms baseline methods considering these criteria,
demonstrating its comprehensive generative capability and stability.
To further demonstrate the generalizability of our model, we per-
formed evaluation in a stricter setting. We conducted leave-one-out
validation on the LINCS dataset (A549 cell line) for 10 different targets
and 10 different MOAs. We selected targets and MOAs with sufficient
cell morphology images for a robust evaluation. The detailed valida-
tion setting can be found in the Datasets section (LINCS dataset). The
results displayed in SupplementaryFig. 13 demonstrate thatMorphDiff
consistently achieves the most comprehensive generative perfor-
mance for different MOAs and targets in the leave-one-out setting.

We further investigated the responses of cellmorphology to small
molecular compounds by validating whether the generated output
aligns well with the ground truth on the CellProfiler features. We
extracted the CellProfiler features from the generated morphologies
and compared themwith the features extracted from the ground-truth
morphologies. Concretely, we extracted CellProfiler features from
3000ground-truth images sampled from theCDRP ID set and from the
corresponding images generated by MorphDiff(I2I), MorphDiff(G2I),
and IMPA.Over 200 informativeCellProfiler features are extracted and
analyzed. We calculated R2 scores between the ground-truth

Fig. 2 | MorphDiff predicts changes in cell morphology with genetic pertur-
bations. a Visualization of the generated outputs from MorphDiff and baseline
methods for the SREBF1. The corresponding information for the original channels
and fluorophores can be found in Supplementary Table 1, and the weights of
composition are detailed in the Evaluation Setup part of the Methods section. The
scale bar is 20μm. b Performance benchmarking on the JUMP OOD set. Each
method was evaluated 10 times for robust assessment. Methods requiring refer-
ence control DMSO morphology as input used 10 distinct control image groups
from independent plates (n = 10 biological replicates), while methods without this
requirement used 10 sampling iterations with different random seeds. Linear nor-
malization was conducted on the reciprocals of FID, CMMD, and on the other three
metrics separately to convert their values to the range of 0–1. A larger value indi-
cates better performance. One-sided Wilcoxon signed-rank test with Bonferroni
correctionwas conductedbetweenMorphDiff(I2I) and othermethods. “*” indicates
that MorphDiff(I2I) surpasses the baseline method with a p value <0.05. The “ns”

represents the situation of no significant difference. Data are presented as mean
values ± SD. c UMAP visualization of CellProfiler features for IMPA and Morph-
Diff(G2I) under twogeneticperturbations. DMSO (Dimethyl sulfoxide) serves as the
untreated control.dCellProfiler feature distributions comparing ground truth with
IMPA, MorphDiff(G2I), and MorphDiff(I2I) outputs for RAC1 perturbation. Abbre-
viations: E ERSyto, EB ERSytoBleed, H Hoechst, Pg Ph_golgi, LQ lower quartile, Var
variance, Tex texture, Corr correlation, Int intensity. e The two-sided Wilcoxon
signed-rank test results to test the difference between the generated and ground-
truth CellProfiler features. The y-axis indicates the proportion of generated Cell-
Profiler features not significantly differ from the ground-truth CellProfiler features
through a Wilcoxon signed-rank test (p value >0.05). 232 features are tested in
total. f The heatmap of the correlation between the CellProfiler features of the
ground-truth morphology, MorphDiff(G2I)-generated morphology, and IMPA-
generated morphology with L1000 gene expression. Source data are provided as a
Source data file for (b–f).
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CellProfiler feature vectors and the corresponding generated Cell-
Profiler feature vectors. A higher R2 score indicates better proximity
between the generated and the ground-truth CellProfiler feature vec-
tors. We compared the R2 score of MorphDiff versus ground truth (y-
axis) and IMPA versus ground truth (x-axis) in Fig. 3b, with each point
indicating a unique cell morphology. Figure 3b shows that MorphDif-
f(I2I) and MorphDiff(G2I) both outperform baselines significantly with
a p value < 0.0001 through the one-sidedWilcoxon signed-rank test. In
more detail, 89% of the generated samples fromMorphDiff(I2I) exhibit
an R2 score greater than 0.5, with 27.2% surpass 0.8. For Morph-
Diff(G2I), 87.6% of the samples have an R2 score greater than 0.5, and
16.2% exceed 0.8. In contrast, 78.3% of the samples from IMPA exceed
0.5, but none reach 0.8. This indicates that MorphDiff (both modes)
can well capture the feature distribution of the drug perturbation
dataset. We conducted the same analysis for the CDRP OOD set
(Supplementary Fig. 14a) and for the LINCS leave-one-out set (Sup-
plementary Fig. 16a), and found that both modes of MorphDiff con-
sistently outperform the baseline method with the p value < 0.0001,
demonstrating the generalizability of our method.

Furthermore, we performed a fine-grained analysis on the effec-
tiveness of our tool in predicting the features that undergo the most
significant changes after perturbation. For eachCellProfiler feature, we
conducted a chi-square test between the ground-truth control Cell-
Profiler features and ground-truth perturbed CellProfiler features to
determine which features change significantly after perturbation. We
picked the features with p value < 0.05 as significantly changed and
calculated the R2 score between the ground-truth and generated
samples for each feature across 3000 images. To intuitively demon-
strate the superiority of MorphDiff, we displayed 10most significantly
changed features (with the lowest p value) by using a scatter plot to
illustrate the degree of proximity between the ground truth and the
generated images as shown in Fig. 3c and Supplementary Fig. 14b, c.
The x-axis represents the difference between the ground-truth Cell-
Profiler features and control CellProfiler features, while the y-axis
represents the difference between the generated CellProfiler features
and control CellProfiler features. Considering the high density on the
diagonal and the corresponding R2 scores, it is evident that Morph-
Diff(I2I) can accurately predict morphological changes on these

Fig. 3 | MorphDiff captures morphological changes across thousands of drug
treatments. a General generative evaluation of pre-trained MorphDiff and IMPA.
Methods requiring reference control images used 10 distinct control image groups
from independent plates (n = 10 biological replicates), while other methods used
10 sampling iterations with different random seeds. Linear normalization con-
verted FID andCMMDreciprocals, plus three othermetrics, to 0–1 range. Statistical
comparisons used one-sided Wilcoxon signed-rank tests with Bonferroni correc-
tion (p value < 0.05). “*” indicates MorphDiff(I2I) superiority; “ns” indicates non-
significance; hashtag (“#”) indicates the baseline performs better significantly. Data
are presented as mean values ± SD. b The R2 score between the ground-truth
CellProfiler feature vectors and the generated CellProfiler feature vectors on the
CDRP ID set. The x-axis represents theR2 scores between IMPAandground truth for
each sample. The y-axis represents the R2 scores of MorphDiff(G2I) and

MorphDiff(I2I) against ground truth respectively. The p values calculated by one-
sidedWilcoxon signed-rank test indicate the significance of the distribution of the
y-axis being greater than that of the x-axis. c The difference between control and
perturbations for specific CellProfiler features on the CDRP ID set. The x-axis dis-
plays the difference between the ground-truth perturbations and the control, while
the y-axis displays the difference between the generated perturbations and the
control. The higher the point density along the diagonal, the closer the generated
difference is to the ground truth. More results can be found in the Supplementary
Fig. 14b, c. The R2 score measuring the similarity between the predicted difference
and ground-truth difference.dThe x-axis represents the ground-truth classification
accuracy scores between different pairs of perturbations, and the y-axis means the
classification accuracy scores of the corresponding samples generated by different
methods. Source data are provided as a Source data file for (a–d).
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significantly changed CellProfiler features. To further evaluate the
generalizability of MorphDiff, we performed the same analysis on the
CDRP OOD set and LINCS leave-one-out set in Supplementary Fig. 15
and 16c, respectively. Our conclusion is consistent across different
settings and datasets.

Moreover, it is crucial to evaluate whether the model can capture
the diversity among different perturbations and generate cell mor-
phology with specificity to perturbations. We utilized DeepProfiler18 to
extract morphological embeddings from 10 CDRP OOD perturbations
with the most images, and we term them as DeepProfiler embeddings.
Subsequently, we trained an SVM binary classifier38 for each pair of
perturbations on the ground-truth cell morphology and calculated the
classification accuracy for the DeepProfiler embeddings generated by
MorphDiff(I2I), MorphDiff(G2I), and IMPA. The results in Fig. 3d clearly
show that MorphDiff(G2I) achieves the highest accuracy among the
three methods, which indicates that it best captures the perturbation-
specific cell morphology patterns. We showed the SMILES of the corre-
sponding drugs in Supplementary Fig. 17a. We conducted the same
analysis on 10 drugs selected from the LINCS leave-one-out set with the
most ground-truth images. The results shown in Supplementary Fig. 16b
further confirmthe superiorityofMorphDiff. TheSMILES for thesedrugs
canbe found in Supplementary Fig. 17b. The results also indicate that the
generated output of MorphDiff(G2I) has higher perturbation specificity
than that of MorphDiff(I2I) at the drug level. This is because MorphDif-
f(I2I) additionally uses control images as input, which can be influenced
by technical variations thatmay introduce substantial biases and further
affect the detection of perturbation-specific change, especially when the
phenotypic changes caused by the perturbation are subtle18.

Pre-trained MorphDiff as a promising tool in phenotypic drug
discovery
Small-molecule compounds are agents thatmodify a target to affect its
functionality39. These compounds can either reduce or accelerate the
activity of a target, which is typically a biomolecule like a protein,
enzyme, receptor, or gene. These biomolecules are involved in sig-
naling or metabolic pathways, often specific to diseases40. Biomole-
cules play a pivotal role in disease development and progression,
primarily through communication facilitated by interactions between
proteins and nucleic acids or proteins themselves. These interactions
often lead to signal amplification or metabolic process alterations,
further affecting disease development. Typically, a target can be
associated with multiple drugs. For instance, amcinonide, dex-
amethasone, and betamethasone can all impact the gene NR3C1, while
LFM-A12, RG-14620, WHI-P154, and chrysophanol can affect the gene
EGFR. Based on these observations, we aim to investigate whether
drugs acting on the same target will exhibit similar influences on
morphological changes compared to control images, and we wonder
whether MorphDiff can capture such patterns. We selected 10 targets
(CDRP Target_MOA set, see the Datasets section) with sufficient cor-
responding compounds to include enough cell morphology for ana-
lysis, and these data are not present in the CDRP Training set for
MorphDiff and IMPA. Firstly, we assessed the models’ generative per-
formance. We conducted a benchmark test with the pre-trained
MorphDiff(I2I), MorphDiff(G2I), and IMPA on the CDRP Target_MOA
dataset in the same way as in the previous section. These models were
pre-trained on the CDRP Training set. As illustrated in Fig. 4a,
MorphDiff(I2I) significantly outperforms IMPA across all image gen-
eration quality metrics, with a corrected p value of <0.05, as deter-
mined by the one-sided Wilcoxon signed-rank test and Bonferroni
correction. For the comparison between MorphDiff(I2I) and Morph-
Diff(G2I), there is no significant difference. We further investigated
how the performance of MorphDiff methods varies across different
MOAs and targets. Specifically, we evaluated how performance is
affected by the distance between the CDRP Training set and the eval-
uated CDRP Target_MOA dataset. As detailed analysis in

Supplementary Notes 4, we found that model performance is influ-
enced by the similarity between training and evaluation datasets, with
performance degrading as the evaluation compounds become more
distant from the training data. Consequently, when applying Morph-
Diff methods, researchers should consider potential performance
limitations for test compounds that differ significantly from those in
the training set.

To determine whether the images of perturbations related to
these targets are significantly different from the control images, we
extracted CellProfiler feature vectors from the ground-truth and the
generated images, then projected the CellProfiler features through
UMAP41, as depicted in Supplementary Figs. 18 and 19. We observed
that the ground-truth CellProfiler feature vectors induced by various
drugs are clearly distinct from the ground-truth control set in the
CellProfiler feature space. The CellProfiler feature vectors generated
by the pre-trained MorphDiff (both modes) drive a consistent effect
with the ground truth after UMAPprojection. On the other hand, IMPA
generates multiple clusters of perturbations targeting the same gene,
while these perturbations should have a similar effect according to the
ground truth, which indicates its poor generalization performance.
Additionally, the Wasserstein distance computed between the per-
turbed and control CellProfiler features quantitatively demonstrates
the advantages of MorphDiff.

Moreover,we investigatedwhether ourmethod could identify the
significantly changed CellProfiler features after being treated with
drugs that target different genes. First, we adopted the chi-square test
between the ground-truth control and the perturbed morphology to
identify significantly changed CellProfiler features with the p value
threshold at 0.05. Then, we calculated the F1 score between the sig-
nificantly changed CellProfiler features identified with the generated
and ground-truth morphology. We also sampled 10 times for each
model to determine the significance of the results. Figure 4b demon-
strates that MorphDiff(I2I) effectively identifies significantly changed
CellProfiler features, outperforming IMPA for 6 of 10 targets with
corrected p value < 0.05. MorphDiff(I2I) also outperforms Morph-
Diff(G2I) for 5 targets, while MorphDiff(G2I) outperforms MorphDif-
f(I2I) for 2 targets significantly. In addition, we also validated whether
the relative distance between cell morphology from different targets
could be preserved with our generativemodel. We used DeepProfiler18

to extract DeepProfiler embeddings of cell morphology from different
targets, and computed Wasserstein distance to measure the pairwise
distance between them. We found that the Wasserstein distance
computed from the generated morphology by MorphDiff(I2I) and
MorphDiff(G2I) is highly consistent with the ground truth, as Fig. 4c
shows, where the correlation score is up to 0.97. These results
demonstrate that MorphDiff, in both modes, exhibits strong general-
ization ability. It effectively learns complex and in-depth relationships
between drug perturbations and morphology, predicting morpholo-
gical changes and capturing diversity at the target level.

To further explore the potential utility of MorphDiff as a valuable
tool in advancing drug discovery, we then focused on an important
direction in drug discovery: identifying the MOA of a compound. We
investigated whether cellmorphology provides necessary information
in the identification of drug MOA and whether the cell morphology
inferred by MorphDiff also contains such information. Concretely, as
demonstrated in Fig. 4d, we designed a framework for MOA retrieval
with cell morphology images. Given query cell DeepProfiler embed-
dings, we retrieved possible MOAs based on the minimum distance
between query morphology images and known morphology images
corresponding to certain MOAs. Due to the highly diverse and noisy
properties of cell morphology, we adopted for DeepProfiler embed-
ding retrieval to better account for the variance of cell morphology.
The same framework can also be applied to MOA retrieval with gene
expression by simply replacing the DeepProfiler embeddings with
gene expression vectors and using the Euclidean distance metric.
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Fig. 4 | Pre-trained MorphDiff potentially promotes drug discovery. a General
generative evaluation of pre-trained MorphDiff and IMPA. Methods requiring
reference control images used 10 distinct control image groups from independent
plates (n = 10 biological replicates), while other methods used 10 sampling itera-
tions with different random seeds. Statistical comparisons used one-sided Wil-
coxon signed-rank tests with Bonferroni correction (p value < 0.05). b F1 scores
measure performance in identifying whether more than 200 CellProfiler features
undergo significant changes under drug perturbations across various targets
(n = 10 biological replicates). The tests are one-sided Wilcoxon signed-rank tests
with Bonferroni correction (p value < 0.05). For a, b, “*” indicates significance; “ns”
indicates non-significance; hashtag (“#”) indicates the situation that the baseline
performs better significantly. Data presented as mean values ± SD. c Wasserstein
distance between different pairs of target-level perturbations for the ground-truth
and generated cell morphology, computed with DeepProfiler embeddings. For

eachpair of target-level perturbations, the ground-truthWassersteindistance is the
x-axis, and the corresponding generated Wasserstein distance is the y-axis.
d Schematic overviewof retrievalworkflow. Created in BioRender. Group, A. (2025)
https://BioRender.com/492h3v7. e Top 5 MOA retrieval results across modalities.
Sixty-nine drugs were randomly divided into reference (47) and query (22) sets
across 10 iterations. Boxplots show median, quartiles, and range. The whiskers in
the boxplots mark the minima to maxima. f MOA matching performance using
generated cell morphology DeepProfiler embeddings: Mean Average Precision (x-
axis) versus Folds of Enrichment (y-axis). Points represent means across all query
morphologies using 0.90 threshold (top 10%). g UMAP projections by drug MOAs
across modalities: drug structure embeddings, gene expression, and DeepProfiler
embeddings from ground-truth and generated cell morphology. BML-259, RG-
14620, and BRD-A72066420 structures shown in Supplementary Fig. 23. Source
data are provided as a Source data file for (a–g).
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The retrieval experiments were conducted on the CDRP Target_-
MOAdataset. For the 69 drugs that act on 10 targets, we used different
random seeds to divide them into two groups: one group of 47
(reference set) and another of 22 (query set).We retain the caseswhere
the MOAs corresponding to the query drugs are present in the refer-
ence set for validation purposes. These 69 drugs correspond to 35
distinct Mechanisms of Action (MOAs), with some drugs associated
with multiple MOAs. This complexity makes the retrieval task chal-
lenging. By calculating the Wasserstein distance (DeepProfiler
embeddings) and MSE (Gene Expression) between the query set and
the reference set, we selected the top k closest drugs in the reference
set as retrieval results for each query drug. If the correct MOA(s) are
the same as or intersectwith theMOA(s) of the top k nearest drugs, we
consider it a correct retrieval. We conducted the top 5 retrieval of
MOA(s) on ground-truth DeepProfiler embeddings, MorphDiff(I2I)-
generated DeepProfiler embeddings, MorphDiff(G2I)-generated
DeepProfiler embeddings, IMPA-generated DeepProfiler embeddings,
gene expression, and random retrieval results. To assess the sig-
nificance of the experimental results, we randomly split the dataset 10
times with different random seeds. Figure 4e demonstrates that
MorphDiff not only outperformsgene expression but also significantly
eclipses IMPA regarding retrieval accuracy, as indicated by p value of
<0.05, based on one-sided Wilcoxon signed-rank test with Bonferroni
correction. The average accuracy of MorphDiff-generated output
outperforms IMPA and gene expression-based retrieval by 16.9% and
8.0% respectively. To further validate the robustness of our methods,
we also experimented with k = 6, 7, 8, 9, 10 as Supplementary Fig. 20
shows and found that both modes of MorphDiff consistently outper-
form the baseline methods.

In addition to the above evaluation for MOA retrieval, to further
demonstrate the effectiveness of themethods, we also evaluatedMOA
matching. We used two metrics, folds of enrichment18 and mAP42. The
details of these two metrics are shown in the Evaluation Metrics sec-
tion. Intuitively, for each generated cell morphology, these metrics
measure whether the top similar ground-truth cell morphology is
treatedby thedrugbelonging to the sameMOA.As shown in Fig. 4f, we
found that both modes of MorphDiff consistently outperform the
baseline methods when the threshold is set to the top 10%. We also
provided the results for different thresholds in Supplementary Fig. 21
to validate the robustness of our method. As the L1000 gene expres-
sion database is much larger than the current cell morphology data-
base, we further explored the potential application of our model to
generate the morphology images using the L1000 gene expression
data without the corresponding ground-truthmorphology images.We
constructed a reference set of existing ground-truth morphology
images covering 60 types of MOAs and 26112 images, which covers all
drugs with available MOAs in the collected CDRP dataset and does not
overlap with the CDRP Training set. Subsequently, we generated 2930
cell morphology images for 8 drugs whose MOAs are included in the
reference set, but the ground-truth cellmorphology images are not yet
profiled, allowing us to evaluate the exploration capabilities through
MOA matching. Detailed information on these drugs can be found in
the Datasets section. The results shown in Supplementary Fig. 22
indicate that MorphDiff, in bothmodes, achieves higher scores on two
metrics in different threshold settings, demonstrating its potential to
explore the massive perturbed gene expression space.

Furthermore, drugs with similar structures usually have the same
target and MOA(s) in most cases43. However, it would be more inter-
esting to investigate the drugs with the same MOA(s) but that are
structurally dissimilar44,45 to improve biological safety and drug
development flexibility. Therefore, we explored whether other mod-
alities, such as gene expression and cell morphology, can provide
complementary information to identify these drugs, and we also
investigated whether the cell morphology generated by MorphDiff on
specific perturbations contains such complementary information.

As shown in Fig. 4g, we showed that dimethylfraxetin and dichlor-
phenamide both belong to Carbonic anhydrase inhibitor, yet their
structures aredistinctlydissimilar.Meanwhile, thedrugembeddings and
gene expression of dimethylfraxetin and dichlorphenamide are of sub-
stantial distances. In the drug embedding space, BML-259, annotated
with the CDK inhibitor, and RD-14620, annotated with the EGFR inhi-
bitor, exhibit structural similarities to dichlorphenamide. Meanwhile,
BRD-A72066420, with the PPAR receptor antagonist, is closer to dime-
thylfraxetin. The structures of these drugs can be found in Fig. 4g and
Supplementary Fig. 23. In contrast, in the cell morphology space char-
acterized by the DeepProfiler embeddings, we observed that cell mor-
phology treated with dimethylfraxetin and dichlorphenamide have
similar feature distributions and can be clearly separated from cell
morphology treated with drugs from other MOAs, which indicates that
cell morphology could provide complementary information in addition
todrug structure andgeneexpression to identify theMOAsof drugs.We
also observed that the cell morphology generated with both modes of
MorphDiff also exhibited these patterns, with an overlapping distribu-
tion of cell morphology features treated with dimethylfraxetin and
dichlorphenamide. The baseline method IMPA, as it only relies on the
drug structure to generate the perturbed cell morphology, only gen-
erates biased predictions with cell morphology treated with dimethyl-
fraxetin and dichlorphenamide separated far away. An additional
example is bezafibrate, BRD-K54708045, and ciglitazone, which are all
PPAR receptor agonists. In Supplementary Fig. 24, we observed that
their drug embeddings and gene expression are not closely distributed,
but BRD-K64402243, belonging to Caspase inhibitor, is closer to cigli-
tazone, annotated with PPAR receptor agonist. However, in the cell
morphology space, we can see that the DeepProfiler embeddings of
these three drugs from the sameMOA clustered together. Similar to the
previous example, MorphDiff(I2I) and MorphDiff(G2I) both successfully
capture this pattern, while IMPA generates biased cell morphology.
Based on these observations, we found that the relationship between
MOAsandgeneexpression, drug structure, andmorphology is complex.
None of thesemodalities alone can perfectly predict theMOA; thus, the
retrieval and prediction of MOAs is still a challenging task10. Integrating
shared and complementary information across thesemodalitieswill be a
key to improving the identification of MOAs of drugs9 and further
advancing drug discovery. In summary, we validated the potential cap-
ability of MorphDiff to retrieve and identify MOAs of specific drug per-
turbations, with consistently better accuracy than IMPA and gene
expression and comparable performance with the ground truth. Fur-
thermore, we showed that cell morphology contains complementary
information to identify structurally dissimilar drugs with the sameMOA,
with potential application in advancing phenotypic drug discovery.

Discussion
The exploration of cellular state transformation under genetic and
drug perturbations enables numerous applications in drug discovery
and biological research. Morphological profiling can cost-effectively
capture thousands of features across perturbations by disease, muta-
tion, or drug treatments and provide a unique view of cell state.
Therefore, we proposeMorphDiff, a diffusion-based generativemodel
that can generate high-quality perturbed cell morphology conditioned
with perturbed gene expression, efficiently leveraging the shared
information between gene expression and cell morphology. We com-
pared MorphDiff with several baseline methods and demonstrated its
superiority with extensive experiments on three large-scale datasets.
For genetic perturbation datasets, we analyzed the correlation
between genes and morphological features, and the results show that
MorphDiff effectively captures the pattern between gene expression
and morphological profile, establishing a bridge to study the shared
information between them. In the case of drug perturbations,
MorphDiff successfully predicts themorphological changes caused by
various drug perturbations. Furthermore, we applied the pre-trained
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MorphDiff model to unseen perturbations affecting specific targets
and demonstrated its ability to capture diversity at the target level.
This showcases the generalizability of MorphDiff and its potential to
facilitate the discovery of drug targets. Moreover, our experiments
demonstrate further applications in drug discovery, enabling the
investigation of drug MOAs through our advanced retrieval pipeline.

MorphDiff operates in two distinct modes: I2I and G2I. The G2I
mode utilizes gene expression data exclusively as input, whereas the I2I
mode incorporates both gene expression data and control cell mor-
phology images. We have observed that the I2I mode exhibits greater
variance in performance compared to the G2I mode. This variability can
be attributed primarily to the quality and distribution characteristics of
the selected control cellmorphology sets used as input for the I2Imode.
Our analysis indicates that the quality of the control cell morphology
may potentially influence the quality of the generated output. Detailed
analysis and tips forfilteringDMSOcontrol images canbe referred to the
Supplementary Notes 3 and Supplementary Fig. 25. Both modes of
MorphDiff satisfy the criteria for effective generative modeling, achiev-
ing low FID, CMMD, and high scores in Inception Score, density, and
coverage metrics. For most application scenarios, either mode is
appropriate. However, when users specifically aim to analyze morpho-
logical feature changes relative to certain control cells-as discussed in
Figs. 3c and 4b MorphDiff (I2I) represents the more suitable option.
Nevertheless, users shouldcarefully examine thequality anddistribution
of selected control morphology images, as these factors can potentially
impact the generative performance.

Due to the data heterogeneity and lack of high-quality and mas-
sive datasets with matched time-point and concentration information,
we do not explicitly encode these properties in our framework. In the
future, if there are new datasets with massive L1000 gene expression
profiles and cell morphology datasets with high-quality matched time-
point and concentration information, our framework can also be easily
extended to support explicit encodings of this information. As our
model is based on the latent diffusion framework14, which supports
flexible conditioning, we can also add time-point and concentration
embeddings as input conditions alongwith the gene expressionprofile
so that our model could explicitly encode this information as input.

For future work, first, MorphDiff is conditioned on perturbed
gene expression, which means that MorphDiff cannot directly be
applied to perturbations unmeasured by transcriptomic profiling
experiments. Although the L1000 assay46 already profiles a vast num-
ber of diverse perturbations, there are still expectedly diverse new
perturbations in thedrugdevelopment process. Therefore, integrating
MorphDiff with methods that can predict changes in gene expression
under unseen perturbations, such as GEARS47, is a possible extension.
Second, the inference of MorphDiff is still costly as it is based on the
diffusionmodel,which is known tobe relatively slow in generatingnew
samples. Therefore, the adaptation of more advanced sampling tech-
niques for diffusion models in the future may further improve the
efficiency of MorphDiff. Furthermore, though existing works9–12 and
the analyses in this paper have demonstrated remarkable precision in
the prediction between gene expression and cell morphology, this
problem still remains challenging in some cases. Some perturbations
only significantly affect either the transcriptome or cell morphology,
while having only subtle and difficult-to-observe effects on the other10.
This phenomenon may arise from the underlying mechanisms of the
cell responses to perturbations and various technical confounders in
the experimental setup. Such complexity increases the difficulty of
accurate prediction and analysis between gene expression and cell
morphology, so addressing this challenge could be a meaningful
future direction. Thus, incorporating more diverse input conditions,
including but not limited to text description, drug structure, and
chromatin accessibility in addition to gene expression, may further
enhance the utility and generalizability ofMorphDiff, making it amore
powerful tool in predicting the cell morphology response under

various perturbations. In addition, while extensive benchmarks have
demonstrated that MorphDiff outperforms other baseline methods in
predicting out-of-distribution perturbations, we observed that its
performance may degrade when applied to perturbations that deviate
significantly from the training dataset distributions (Supplementary
Notes 4). Although this limitation is expected for most deep learning
methods in predicting perturbation response, including previous
works such as CellOT48 and IMPA3, the curation of large-scale, high-
quality, comprehensive datasets and the development of advanced
learning paradigms may further enhance generalization performance
when predicting responses to distant perturbations, and could be a
promising direction for future research. Lastly, MOA prediction
remains “notoriously challenging” as a major bottleneck in drug dis-
covery, and there is no assay that can reliably be used to identify a
majority of known MOA classes successfully10. Therefore, integrating
multimodal information, including but not limited to gene expression,
morphological profile, and drug structures, may improve MOA iden-
tification accuracy, and combining MorphDiff-generated cell mor-
phology profile is a possible direction in achieving this goal.

The recent explosion of generative AI (GenAI)14,49,50 has sig-
nificantly transformed many areas. Vivid and high-resolution images
and videos cannowbegeneratedwith simple text descriptions atultra-
speed and impressive quality. We anticipate that cell morphology, as a
particular type of image, will also benefit significantly from the
advancements of GenAI. Our work MorphDiff, has demonstrated the
potential of large-scale generativemodels to generate high-quality and
high-fidelity cell morphology and has explored several potential bio-
logical applications. It is anticipated that large-scalepre-training on the
increasingly available high-throughput cell morphology profiling
datasets6, combined with rapidly advancing GenAI methods, will
enhance the precision and fidelity of cell morphology generation and
further advance phenotypic drug discovery.

Methods
Problem definition
We collected M cell morphology fYigMi= 1 corresponding to N unique
perturbations fpjgNj = 1 that can either be genetic perturbation or drug
treatment. DMSO refers to cells cultured in Dimethyl sulfoxide, which
serves as the control group without perturbation. We use YDMSO as the
cell morphology for the control group. The perturbation for cell mor-
phologyYi is denoted as qi, thus qi 2 fpjgNj = 1. The L1000gene expression
corresponds to perturbation qi is denoted as lqi . Ourmain objective is to
train amodel f that generates the cellmorphology conditionedonL1000
gene expression with high fidelity. Concretely, we aim to

min
XM
i= 1

DistanceðYi, f ðlqi ÞÞ ð1Þ

The cell morphology of the control group may serve as prior
information formodeling thecellmorphologyafterperturbation. Thus, f
can also take YDMSO as input, which can be written as f ðlqi ,YDMSOÞ.

MorphDiff model
Following14, MorphDiff is composed of two parts: Morphology VAE
(MVAE) and Latent Diffusion Model (LDM). MVAE compresses the
high-dimensional multichannel cell morphology images to low-
dimensional latent representation with minimal information loss.
LDM is trained to denoise from random Gaussian noise to low-
dimensional latent representation by recursively adding Gaussian
noise. In practice, a random vector is sampled from the Gaussian dis-
tribution and then passed to LDM for the denoise process. Subse-
quently, the predicted high-quality cell morphology can be decoded
from the denoised output of LDM using the MVAE decoder. Such an
approach offers a unique advantage: by compressing the high-
dimensional cell morphology image to a low-dimensional latent
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representation, MorphDiff is computationally efficient, as sampling is
performed on a low-dimensional space.

Morphology VAE (MVAE). Morphology VAE (MVAE) comprises two
parts, encoder E and decoder D. Given the cell morphology
Y 2 RH ×W × 5, the encoder E encodes Y into a latent vector z= E(Y) and
the decoder D reconstructs the cell morphology Ŷ=DðzÞ. Thus, a
reconstructive loss Lrec can be calculated between Y and Ŷ. MVAE is
trained in an adversarial manner following30, where a patch-based dis-
criminator Dϕ is optimized to classify the original cell morphology from
the reconstructed morphology D(z). The patch-based discriminator is
implemented with a multilayer convolutional neural network. On the
other hand, it is a common practice in VAE training to regularize the
latent z to be zero-centered and enforce small variance by introducing a
regularizing loss term Lreg. A Kullback-Leibler term Lreg between
qE ðzjYÞ=N ðz; Eμ, Eσ2 Þ and the standard normal distributionN ðz;0, IÞ is
adopted to regularize the latent representation z. Additionally, a LPIPS
loss51 (Llpips) is applied to minimize the difference between the latent
features of ground-truth images and those of generated images. The
overall objective of training MVAE can be summarized as follows:

LMVAE = min
E,D

max
ϕ

ðLrecðY,DðEðYÞÞÞ+ logDϕðYÞ + LregðY; E,DÞÞ+ LlpipsðY,DðEðYÞÞÞ

ð2Þ
Learned perceptual image patch similarity (LPIPS) loss in MVAE.
The origin framework of VAE in the Stable Diffusion model14 employs
LPIPS loss51 to minimize the difference between ground-truth images
and generated images. The principle of LPIPS loss is to extract features
of images with 5 conv layers from a pre-trained VGG network52, and
compute l2 distance between ground-truth features and the generated
features output from each layer. The integration of LPIPS will sig-
nificantly improve the fidelity of VAE generation. However, as the pre-
trained VGGmodel was trainedwith 3-channel images (RGB input), it is
inconsistentwith our 5-channel input (DNA, ER, RNA, AGP,Mito input).
Therefore, we duplicate each channel from a shape of (128, 128) to (3,
128, 128) to ensure that the images from each channel are compatible
with the input shape required by VGG.We compute LPIPS loss for each
channel, respectively, and average the sumof loss across five channels.
The formulation can be written as:

diðxi,x0iÞ =
X
l

1
HlWl

X
h,w

jjwl � ðŷl
ihw � ŷl0ihwÞjj22 ð3Þ

dðx,x0Þ=
1
5

X
i

diðxi,x0iÞ ð4Þ

l represents lth layer in 5-layer VGG, and wl is the parameter used to
scale the activations. xi and x0i represent the ground-truth image and
the generated image in ith channel, respectively, while ŷl

i and ŷl0i are
adopted as corresponding features obtained from the lth layer. Hl and
Wl are height and width of embeddings output from the lth layer.

Latent diffusionmodel (LDM). Latent diffusionmodel (LDM) contains
a noising and denoising process. Given a sample z0∈ q(z) where q(z) is
the distribution of cell morphology latent representation. The noising
process progressively adds Gaussian noise for T steps and obtains
z1, z2,…, zT. The formulation of the noising process can be written as:

qðzt jzt�1Þ=N ðzt ;
ffiffiffiffiffi
αt

p
zt�1, ð1� αtÞIÞ ð5Þ

qðz1:T jz0Þ=
YT
t = 1

qðzt jzt�1Þ ð6Þ

where q(zt∣zt−1) can be interpreted as obtaining zt by adding Gaussian
noise to zt−1 parameterized by 1 − αt. We denote αt =

Qt
i = 1αi. The

denoising process aims to train a denoising network to recursively
remove the noise from zt ðzt =

ffiffiffiffiffi
αt

p
zt�1 + ð1� αtÞϵÞ and ϵ � N ð0, IÞ.

Concretely, the denoising process can be formulated as follows, where
pθ(zt−1∣zt) denotes the probability distribution of zt−1 given zt:

pθðzt�1jztÞ=N ðzt�1;μθðzt , tÞ,Σθðzt , tÞÞ ð7Þ

pθðz0:T Þ=pðzT Þ
YT
t = 1

pθðzt�1jztÞ ð8Þ

μθ(zt, t) and Σθ(zt, t) are the Gaussian mean and variance by the
denoising network θ. Similar to other generative models, the loss
function of LDM can be formulated asmaximizing the log-likelihood of
the samples generated belonging to the original data distribution
(logðpθðz0ÞÞ). However, direct optimization is intractable, as we need to
integrate theT steps into the latent space. For L1000gene expression l,
we encode it as an intermediate representation and map it to UNet
through cross-attention. Note that the encoding process is not
learnable and is a simple linear transformation, which is different from
the training method in conditional latent diffusion14. This is because
L1000 gene counts are already processed in ref. 9, so we believe it is
better to map it to UNet directly. The encoder is represented as EC.
Following DDPM53, we can simplify the learning objective as:

L=Ez, ϵ�N ð0, IÞ, t jjϵ� ϵθðzt , t, ECðlÞÞjj22 ð9Þ

zt is a noisy version of z0 at step t and ϵθ(zt, t, EC(l)) is a denoising
network intended to predict ϵ from zt conditioned on L1000 gene
expression l. The cross-attention for the intermediate layer ith in UNet
can be represented as AttentionðQ,K,VÞ= softmaxðQKTffiffiffi

d
p Þ � V, where

Q =WðiÞ
Q � φiðztÞ,K=WðiÞ

k � ECðlÞ,V=WðiÞ
V � ECðlÞ. φi(zt) denotes an inter-

mediate representation in UNet, and WðiÞ
Q ,WðiÞ

K and WðiÞ
V are learnable

matrices. Following DDPM53, the detailed LDM training and sampling
algorithm is shown as Algorithm 1 and Algorithm 2:

Algorithm 1. Training Algorithm of MorphDiff
1: repeat
2: z0 ~ q(z0)
3: t ~ Uniform({1, …, T })
4: ϵ � N ð0, IÞ
5: Take the gradient descent step on ∇θ k ϵ� ϵθffiffiffiffiffi

αt

p
z0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt

p
ϵ, t, ECðlÞ� �k2

6: until converged

Algorithm 2. Sampling Algorithm of MorphDiff
1: zT � N ð0, IÞ
2: for t = T, …, 1 do
3: if t > 1 then
4: z � N ð0, IÞ
5: else
6: z = 0
7: end if
8: zt�1 =

1ffiffiffiffi
αt

p zt � 1�αt

1�
ffiffiffiffi
αt

p ϵθðzt , t, ECðlÞÞ
� �

+ σtz
9: end for
10: returnz0

Implementation of LDM. LDM (ϵθ(zt, t, l)) is implemented with the
UNet54 architecture augmented with an attention mechanism
following14. Concretely, the base UNet architecture uses a stack of
residual layers and downsampling convolutions, followed by a stack of
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residual layers with upsampling convolutions, with skip connections
connecting the layers with the same spatial size. We use the UNet
variant from16 and replace the self-attention layer with alternating
layers of (a) self-attention, (b) position-wise MLP, and (c) cross-
attention layer. To inject the L1000 gene expression l as a condition in
the denoising UNet, we use the encoder(EC) same as when training to
project l into an intermediate representation EC(l). The intermediate
representation EC(l) is then mapped to each cross-attention layer

(AttentionðQ,K,VÞ= softmax QKTffiffiffi
d

p
� �

V) of UNet with

Q =WðiÞ
Q � ϕiðzt Þ,K=WðiÞ

K � τθðlÞ,V=WðiÞ
V � ECðlÞ ð10Þ

ϕi(zt) is the learnable intermediate representation in the latent spaceof
the denoising UNet and WðiÞ

Q , WðiÞ
V and WðiÞ

K are learnable matrices.

Datasets
Image processing. The images collected from CDRP23, JUMP24, and
LINCS25 are all bulk-level cell plate images. To enable fine-grained
analysis at the single-cell image level. We used the CellProfiler
software17 version 4.2.5 to segment bulk-level cell plate images and get
the single-cell level images. Concretely, we used the IdentifyPri-
maryObejects and IdentifySecondaryObjects functions to
identify individual objects(cells) in the images. The threshold strategy
is set to global, and the thresholding method is set to minimum cross-
entropy.

JUMP dataset (U2OS cell line). We collected cell morphology images
of cells treated with 130 different gene overexpression perturbations
from the JUMP Cell Painting dataset24 with the script from https://
github.com/jump-cellpainting/datasets/. Each image consists of five
channels, namely mitochondria (MitoTracker; Mito), nucleus
(Hoechst; DNA), nucleoli and cytoplasmic RNA (SYTO 14; RNA),
endoplasmic reticulum (concanavalin A; ER), Golgi and plasma mem-
brane (wheat germ agglutinin (WGA); AGP) and actin cytoskeleton
(phalloidin; AGP). Meanwhile, we collected the bulk gene expression
from the database46 with the same cell line and perturbations. L1000
gene expression in this dataset contains 12328 genes. The gene
expression and the cell morphology images can thus be aligned
according to perturbation information. The total number of categories
is 131, including 130 perturbations and control set. After that, we split
the dataset into three sets, which are the training set, ID (in-distribu-
tion) set, and OOD (out-of-distribution) set. Firstly, we randomly
picked 10 percent of perturbations as OOD sets, resulting in 13 per-
turbations. The remaining parts were randomly split into training set
(90 percent) and ID set(10 percent), which indicates that the training
set and the ID set contain both control and perturbation data. We
termed them as JUMP Training set, JUMP ID set, and JUMP OOD set.
Detailed information on these genes and their related pathways can be
found in Supplementary Data 1.

CDRP dataset (U2OS cell line). We collected cell morphology images
of cells treated with 959 different small molecules on 10 different
plates (plate 25593, 25594, 25598, 25599, 26128, 26133, 26135, 26601,
266607, 26608) from CDRP23, by script https://github.com/
gigascience/paper-bray2017/blob/master/download_cil_images.sh. All
images consist of five channels, recording information from nucleus,
Endoplasmic reticulum, Nucleoli and cytoplasmic RNA, Golgi and
plasma membrane, and Mitochondria. The concrete correspondence
between dye names, cell structures, and CellProfiler names can be
found in Supplementary Table 1. We also collected the bulk gene
expression from https://broad.io/rosetta/ and L1000 gene expression
in this dataset containing 977genes. After aligning the gene expression
data with morphological images for the same perturbations at iden-
tical concentrations, we identified a total of 960 categories, compris-
ing 959 perturbations and a control set. Following the same split

principle as the JUMP dataset, we obtained 96 perturbations of the
OODset and863perturbations plus control for the training set and the
ID set. We termed them as CDRP Training set, CDRP ID set, and CDRP
OOD set. Detailed information on these drugs can be found in Sup-
plementary Data 2.

To assess our model’s ability to capture features on target and
MOAs levels, we collected data with target and MOA labels. We addi-
tionally selected 10 targets (69 drugs annotated with 35 MOAs) from
CDRP23 (from plate 24277, 24278, 24294, 24301, 24305, 24310, 24319,
25739), for which enough corresponding drugs, gene expression9, and
images could be collected for analysis and test. These data do not
overlap with the CDRP Train set mentioned above. The targets are
NR3C1, EGFR, PPARG, CASP3, CDK2, CDK1, HMGCR, CA12, PRKACA and
TOP2A. After the matching and cropping process, we got 2222 images
forNR3C1, 707 images for EGFR, 793 images for PPARG, 466 images for
CASP3, 435 images for CDK2, 342 images for CDK1, 475 images
forHMGCR, 327 images forCA12, 496 images for PRKACA, 51 images for
EGFR. We termed this set as CDRP Target_MOA set. Detailed informa-
tion on these compounds can be found in the Supplementary Data 3.

LINCS dataset (A549 cell line). We collected the bulk gene profiles
from9 (LINCS part) and downloaded the corresponding images from25.
In this dataset, we selected 61 drugs that have sufficient images, along
with availableMOA and target labels. The components of these images
are the same as those in the U2OS dataset. We matched the gene
expression and morphology images in the same way as CDRP. To
construct the dataset for model validation, we first divided the data
into 10 folds according to the 10 targets corresponding to 21 drugs.We
termed it as LINCS Target leave-one-out set. For each experiment, we
trained themodel on another 9 folds and validated it on the remaining
fold. We performed the same operation for the 10 MOAs (42 drugs)
and termed it as LINCSMOA leave-one-out set. The details of the drug
can be found in the Supplementary Data 4 and 5.

Exploratory analysis on L1000 dataset without corresponding
morphology images. As the L1000datasets covermoreperturbations
compared with the Cell Painting datasets, we added additional eva-
luation on datasets containing L1000 perturbed gene expression
profiles, and the perturbations covered in the dataset have not been
applied to Cell Painting assays. Thus, there are no ground-truth cell
morphology datasets regarding these perturbations. For evaluation
purposes, we only retained the drugs whose MOA annotations are
present in our collected CDRP dataset.

We constructed a reference set containing perturbedmorphology
images, comprising 251 drugs annotated with 60 MOAs, containing
26,112 single-cell images. These images were downloaded fromCDRP23

and processed using CellProfiler. In particular, these drugs do not
overlap with the CDRP training set used to pre-train the model. For
L1000 gene expression data without corresponding annotations
(query drugs), we collected 8 drugs annotated with 6 MOAs (293 gene
expressions) from14, with their MOAs available in the reference set to
facilitate validation of the MOAmatching performance. We generated
2930 single-cell images for querydrugs.Detailed information on query
drugs and reference drugs can be found in the supplementary files
Supplementary Data 6 and 7.

Statistical tests for assessing the distribution difference. We per-
formed statistical tests to assess whether the OOD set and leave-one-
out set exhibit statistically significant distribution differences from the
training set. Specifically, we conducted two statistical tests: Energy
Distance tests55, and Maximum Mean Discrepancy tests56 to evaluate
the distribution differences between the DeepProfiler embeddings of
the training set and the ID/OOD sets. For the Energy Distance test, we
employed the dcor.homogeneity.energy_test function from the dcor
package55. The energy test assesses whether multiple groups originate
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from the same distribution by examining the Euclidean distances
between data points. This method compares point-pairwise distances
within each group to those between different groups. If points are
more closely clustered within their own groups than with points from
other groups, this pattern indicates that these groups likely stem from
different underlying distributions. For the Maximum Mean Dis-
crepancy (MMD) tests56, we determined if two groups come from dif-
ferent distributions by measuring their distance in a high-dimensional
feature space. The key steps are: (1) transform data using an RBF ker-
nel, (2) calculate the MMD statistic by comparing within-group simi-
larities to between-group similarities, and (3) assess significance
through permutation testing-repeatedly shuffling labels and recalcu-
lating MMD statistic to generate a null distribution. Due to the com-
putational complexity of these two analysis, we randomly sampled
2000 cell morphology images from each dataset and conducted tests
using 999 permutations. To ensure robustness and stability, we repe-
ated all statistical tests for 10 rounds. The statistic values and p values
for the JUMP dataset, CDRP dataset, LINCS Target leave-one-out set,
and LINCS MOA leave-one-out set across all three types of tests are
presented in Supplementary Tables 3–10. The statistical testing results
consistently demonstrate that the training set and the OOD or leave-
one-out sets derive from distributions with statistically significant
differences, while the training set and the ID set derive from distribu-
tions with no significant differences. This validation confirms that our
performance evaluation on the OOD set and leave-one-out set effec-
tively assesses model performance on distributions outside the
domain of the training set.

Evaluation setup
Evaluation setup across baseline methods. Among all the baseline
methods evaluated in the manuscript, only MorphDiff and IMPA sup-
port training and generation with the original five-channel input ima-
ges, while the other baselinemethods only support three-channel RGB
images as input and output. Therefore, to fairly assess different
methods, we devised the following evaluation strategy following pre-
vious works3. During training, methods that directly support five-
channel cell morphology images as input (MorphDiff and IMPA) were
trained using these five-channel images. For methods that originally
could only process RGB three-channel images, we modified their
implementations to enable them to accept and generate five-channel
images. For performance benchmarking, the five generative metrics
can only be applied to three-channel RGB images. Therefore, we con-
verted the five-channel output to three-channel images for bench-
marking, following the methodology outlined in CellProfiler17. The
weights assigned to the different channels are as follows: ER(1, 0, 0),
RNA(0, 1, 0), DNA(0, 0, 1), Mito(0.5, 0.5, 0), AGP(0.5, 0, 0.5). Conse-
quently, the resulting composited image is calculated as:
(1∗ER + 0.5∗Mito + 0.5∗AGP, 1∗RNA + 0.5∗Mito, 1∗DNA +0.5∗AGP).

Morphological feature extraction. To evaluate the fidelity of the
generated single-cell morphology images, we utilized widely used
single-cell morphology feature extraction methods, including
CellProfiler17 and DeepProfiler18. CellProfiler is based on traditional
image feature extractionmethods, which could produce interpretable
morphological features, while DeepProfiler is based on a trained deep
neural network to extract low-dimensional dense embeddings of cell
morphology images. CellProfiler is used to extract features from
single-cellmorphology images, allowing for a comparison between the
features of ground-truth cell morphology and those of generated cell
morphology. This evaluation is mainly for assessing the similarity
between ground truth and generated cell morphology images on the
interpretable feature sets because these features are usually involved
in downstream analysis with respect to cell morphology images, such
as BioMorph57 and Cytominer58. Some functions provided by CellPro-
filer are merely used for the extraction of bulk-level image

characteristics, thus, we selected several functions that can extract
meaningful features from single-cell images. We employed Measur-
eColocalization (Measuring the correlation between any two
channels), MeasureGranularity (Measuring the size and intensity of
granular structures), MeasureImageIntensity (Measuring the
intensity), MeasureTexture (Measuring the smoothness, coarseness,
and regularity). Features with NaN values and zero variance are
removed. Meanwhile, features with duplicated meaning and functions
are also removed (e.g., sum and mean of intensity). After these pro-
cessing andfiltering steps,more than 200CellProfiler features arekept
for further analysis.

DeepProfiler18 is a tool that can extract dense embeddings from
morphology images with a five-channel input. We used it following the
handbook provided by the authors. The handbook can be found at
https://cytomining.github.io/DeepProfiler-handbook/docs/00-
welcome.html.

Morphological feature selection based on discriminability of per-
turbations. CellProfiler Morphological features measure the cell
morphology from multiple perspectives. Some morphological fea-
tures may be highly correlated with the gene expression, while some
may not depend on gene expression or perturbation. Thus, to select
the most informative morphological features related to gene expres-
sion and perturbation for downstream analysis, we trained a random
forest classifier from morphological features to predict the corre-
sponding perturbations. We set the number of estimators to 100 and
selected the top 10 features of the highest importance. The features of
the highest importance in the classifier are considered the most dis-
criminative features of perturbations.

Morphological feature selection based on predictability. We selec-
ted the most predictable morphological features to visualize the
relationship between gene expression and cellmorphological features.
Concretely, we computed the R2 score of each predicted cell mor-
phological feature with respect to ground-truth cell morphological
feature. Only features with R2 score higher than 0.5 were kept. 36
features from the prediction of MorphDiff and 8 features from IMPA
meet this criteria, and 42 most predictable features are kept con-
sidering the overlap between two feature sets.

Evaluation metrics
Wedenote the ground truth images and the generated images asX and
X0 respectively, and the number of images is N.

Fréchet Inception Distance (FID). The Fréchet Inception Distance
measures the similarity between two sets of images. It wasproposedby
ref. 33 to quantify the similarity of the generated images to the ground-
truth ones. Concretely, the generated images and ground-truth images
are passed to the Inception V3 model pre-trained on ImageNet. The
output encodings of ground-truth images and generated images are
denoted as E and E0 with dimension (N, 2048), respectively (N is the
number of images in the dataset, and 2048 is the dimension of
Inception V3model encodings). The mean embedding vector of E and
E0 are denoted as m and m0, and the covariance matrices E and E0 are
denoted as C and C0. The final FID score is computed as
FIDðE,E0Þ= jjm�m0jj22 + TrðC+C0 � 2ðCC0Þ1=2Þ. Tr denotes the trace of
the matrix. A lower FID score indicates better performance of the
generative model.

Inception Score. Inception Scorewas introduced in ref. 34 tomeasure
the diversity and quality of the generated images. Mathematically,
the Inception Score can be written as InceptionScoreðX0Þ=
expðEX0DKLðpðyjX0Þjjpð yÞÞÞ. y is the marginal distribution of the Incep-
tion V3 model. First, the generated images are passed through the
Inception V3 model to get the conditional distribution pðyjx0Þ,x0 2 X0,
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then the marginal distribution p(y) is also computed by averaging
pðyjx0Þ over all the images. The KL divergence between pðyÞ and pðyjx0Þ
is calculated and averaged on all images. The exponential of the
averaged KL divergence is used as the Inception Score. A higher
Inception Score means better performance of the generative model.

Density and coverage. Density and coverage introduced by36 provide
additional measures for assessing the fidelity and diversity of the
generated images. Basically, we assume that E = {E1, E2, …, EN} and
E0 = fE0

1,E
0
2, . . . ,E

0
Ng are the Inception V3 model encodings of the

ground-truth images and generated images, respectively. We can
approximate a manifold of E as

manifoldðE1,E2, . . . ,ENÞ=
[N
i = 1

BðEi, NNDkðEiÞÞ ð11Þ

The sphere, denoted as B(x, d), is characterized by its center at the
point x and its radius d. NNDk(x) denotes the distance from point x to
the kth nearest neighbor x among excluding itself. Then, we can define
density as

Density =
1
kN

XN
j = 1

XN
i= 1

1E0
j2BðEi , NNDk ðEiÞÞ ð12Þ

Density quantifies the concentration of generated sampleswithin high-
probability regions of the real data distribution. Specifically, it
measures how well the generated samples populate the neighbor-
hoodsof realdatapoints, reflecting the local consistency andquality of
the generated distribution.Meanwhile, coverage assesses the extent to
which the generated samples span the full support of the real data
distribution. It evaluates whether the generative model captures all
major modes of the true data, ensuring diverse and comprehensive
generation. Coverage is defined as:

Coverage =
1
N

XN
i = 1

1E0
i2BðEi , NNDk ðEiÞÞ ð13Þ

Intuitively, the density and coverage score will be higher if the gener-
ated distribution effectively aligns with the ground-truth distribution
while of great diversity.

CLIP embeddings and maximum mean discrepancy. The CMMD
(CLIP-MMD) metric represents the squared MMD (Maximum Mean
Discrepancy) distance between the CLIP embeddings59 of the ground-
truth image set and those of the generated image set35. CLIP embed-
dings are effective in representing the diverse and intricate content in
images, benefitting from training an image encoder and a text encoder
together using 400 million image-text pairs.

Intuitively, given the E = {E1, E2, …, Em} as CLIP-encoded embed-
dings of ground-truth images, and E0 = fE0

1,E
0
2, . . . ,E

0
ng representing

CLIP-encoded embeddings of generated images, and k denoted as
kernel function, an unbiased estimator of dist2MMDðE,E0Þ is given by:

dist2MMDðE,E0Þ= 1
mðm� 1Þ

Xm
i= 1

Xm
i≠j

kðEi,EjÞ+
1

nðn� 1Þ
Xn
i= 1

Xn
i≠j

kðE0
i,E

0
jÞ

� 1
mn

Xm
i = 1

Xn
i= j

kðEi,E
0
jÞ

ð14Þ
Note that a lower CMMD score means better generative

performance.

Mean average precision. Mean average precision (mAP) is an eva-
luation metric assessing the probability that samples of interest will

rank highly on a list of samples rank-ordered by some distance or
similarity metric42, such as cosine similarity, Euclidean, Mahalanobis,
etc. The mAP framework is agnostic to the choice of this distance
metric. Given qth sample as q (generated cell morphology image),
annotated with lq (drug, MOA, or genetic perturbation). Assume that
there are n ground-truth cell morphology images. TPk represents true
positive when ranking the top k ground-truth samples by distancewith
q, while TNk, FPk, and FNk are defined similarly. Then the precision and
recall at each rank can be calculated as Pk =

TPk
TPk

+FPk and Rk =
TPk

TPn + FNn
.

We can then calculate AP and mAP:

APq =
X
k

ðRk � Rk�1PkÞ ð15Þ

mAP=
XN
q= 1

APq

N
ð16Þ

Folds of enrichment. Folds of Enrichment is an evaluation metric
assessing whether the perturbed cell morphology and ground-truth
cell morphology belonging to the same MOA or genetic perturbation
will have high similarity18. Concretely, for each generated cell mor-
phology image, we calculated the odds ratio of a one-sided Fisher’s
exact test. The test is calculated using a 2 × 2 table. The first row con-
tains the number of ground-truth cell morphology treated with the
same treatment (drug, drug with the same MOA, or genetic pertur-
bation) (positive matches) and different treatments (negative mat-
ches) at a selected threshold of the list of results. The second row is the
same, but for the treatments below the threshold (the rest). The odds
ratio is the sumof the first rowdivided by the sumof the second row. It
estimates the likelihood of observing the generated cell morphology is
top similar to the ground-truth cell morphology with the same
perturbation.

Coefficient of determination (R2 score). The coefficient of determi-
nation (R2 score)60 was created to evaluate prediction of various
models and testing of hypotheses. It can evaluate how well the gen-
erated results fit the ground truth. Consider a ground truth set of n
values marked y1, y2, …, yn, each associated with a predicted (or gen-
erated) value g1, g2, …, gn. Define residuals as ri = yi − gi and �y as the
mean of ground-truth set:

�y=
1
N

XN
i = 1

yi ð17Þ

Then we can measure the variability of the data with two sums of
squares formulas. The sum of square of residuals can be calculated as:

Sres =
X
i

ðyi � giÞ2 =
X
i

r2i ð18Þ

The total sum of squares is:

Stot =
X
i

ðyi � �yÞ2 ð19Þ

The general definition of R2 score is:

R2 = 1� Sres
Stot

ð20Þ

In the best case, the Sres = 0 and R2 = 1. Generally, the R2 located in the
interval [0, 1] means the degree of fitting, and the closer the value is to
1, the better the performance of themodel. Values of R2 being negative
occur when the predicted data doesn’t fit the ground truth at all.
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Wasserstein distance. Wasserstein distance61 canmeasure the distance
between different distributions. Intuitively, the origin of theWasserstein
distance lies in the optimal transport problem,which can be imagined as
moving a pile of stones represented by probability distributions to form
another target shape, while minimizing the cumulative distance of the
movements. This is the central concern of the optimal transport pro-
blem. Let μ and ν be two distributions, and let d be a way of calculating
the distance, then the Wasserstein distance can be defined as:

Wpðμ, νÞ= inf
γ2Γðμ, νÞ

ðEðx, yÞ�γdðx,yÞpÞ
1
p ð21Þ

where Γ(μ, ν) is the set of all couplings of μ and ν.

Pearson correlation. Pearson correlation measures the linear rela-
tionship between two vectors. Concretely, given two vectors X and Y,
Pearson correlation ρ can be computed as

ρX,Y =
covðX,YÞ
σXσY

ð22Þ

where cov (X,Y) is the covariance betweenX andY and σX denotes the
standard deviation of X.

F1 score. In this study, we adopt balanced F-score (F1 score). After the
chi-square test on CellProfiler features extracted from ground truth
morphology, we term the features with p values <0.05 as positive
samples (regarded as significantly changed features), and term other
features as negative samples. For generated morphology, we conduct
the same test on generated CellProfiler features, then we acquire pre-
dicted positive samples and negative samples generated by each
method. In this way, we can calculate true positive (TP), false positive
(FP), and false negative (FN) for each method. The F1 score can be
calculated as:

F1 =
2TP

2TP +FP+FN
ð23Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data used in this work is publicly available. The morphology
images of CDRP dataset are from23 and can be downloaded with the
scripts from https://github.com/gigascience/paper-bray2017/blob/
master/download_cil_images.sh. The corresponding L1000 gene
expression data is collected from https://broad.io/rosetta/. The mor-
phology images of JUMP dataset are collected from24 and can be
downloaded with the script from https://github.com/jump-
cellpainting/datasets/. The corresponding L1000 gene expression
data is collected from46. For LINCS, the bulk morphology images are
collected from25 and the corresponding gene expression data is
downloaded from https://broad.io/rosetta/. For all the genes and
related pathways involved in the aforementioned genetic perturba-
tions, as well as the drug names, SMILES (Simplified Molecular Input
Line Entry System), targets (if applicable), and MOAs (if applicable)
related to drug perturbations, we have provided detailed information,
which is included in the Supplementary Data 1–7. Source data is pro-
vided with this paper. Source data are provided with this paper.

Code availability
Code is available at: https://github.com/biomap-research/MorphDiff.
Notebooks for parts of analysis can be found at Code Ocean (https://
doi.org/10.24433/CO.4389762.v1).
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