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Understanding complex physical systems often requires integrating data from

multiple diagnostics, each with limited resolution or coverage. We present a
machine learning framework that reconstructs synthetic high-temporal-
resolution data for a target diagnostic using information from other diag-
nostics, without direct target measurements during the inference. This mul-
timodal super-resolution technique improves diagnostic robustness and
enables monitoring even in case of measurement failures or degradation.
Applied to fusion plasmas, our method targets edge-localized modes (ELMs),
which can damage plasma-facing materials. By reconstructing super-
resolution Thomson Scattering data from complementary diagnostics, we

uncover fine-scale plasma dynamics and validate the role of resonant magnetic
perturbations (RMPs) in ELM suppression through magnetic island formation.
The approach provides new observation supporting the plasma profile flat-

tening due to these islands. Our results demonstrate the framework’s ability to
generate high-fidelity synthetic diagnostics, offering a powerful tool for ELM

control development in future reactors like ITER. The approach is broadly
transferable to other domains facing sparse, incomplete, or degraded diag-
nostic data, opening new avenues for discovery.

In complex physical systems, diagnostic measurements are often
intricately interconnected through fundamental physical principles.
These connections arise from the laws of nature that govern the
behavior of matter and energy. Electromagnetic phenomena can
couple measured signals, while equations of state link variables such as
pressure, volume, and temperature, enabling one quantity to be
inferred from another. Similarly, coupled differential equations in fluid
dynamics or plasma physics describe how multiple parameters evolve
interdependently over time. Such relationships are particularly evident
in fusion energy, the focus of this work, which is defined by the
interplay of diverse physical processes.

Fusion energy and diagnostics: Achieving controlled fusion
requires precise, real-time knowledge of plasma conditions to guide
and optimize reactor performance. Modern fusion experiments meet
this need by deploying a wide array of diagnostics and actuators, each
measuring or influencing a different aspect of the plasma state. Recent
advances have shown that Artificial Intelligence (Al) can effectively
leverage these data streams to enhance plasma control'*. Facilities such
as DIII-D’ integrate diverse diagnostics to support such Al-driven con-
trol strategies®. However, limitations in the spatial and temporal reso-
lution of many diagnostics continue to obscure fast-evolving plasma
dynamics that are critical for achieving robust and optimized control’™’.
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For example, a multi-diagnostic approach is essential to construct
a complete picture of electron transport, confinement, and stability in
DIII-D discharges. Thomson Scattering (TS)'>", which employs a high-
powered laser beam that scatters off plasma electrons, measures the
local electron temperature and density from the scattered light spec-
trum. Electron Cyclotron Emission (ECE)*” provides spatially localized
measurements of the electron temperature, whereas a CO,
Interferometer™ offers line-integrated measurements of the global
electron density. Additionally, some diagnostics, though primarily
designed for other purposes, can yield indirect yet valuable informa-
tion on electrons. For instance, the Motional Stark Effect (MSE)*, used
to determine the internal magnetic field pitch angle and current dis-
tribution, enhances equilibrium reconstructions, which in turn facil-
itate deeper insights into electron transport and confinement. Each
different measurement captures different physical properties, and
together form a complementary set for extracting as much informa-
tion from the plasma as possible. Although it is likely that there is some
kind of correlation or coupling between the measurements of different
diagnostics (examples in section “Discussion” subsection “Physical
basis for multimodal diagnostic coupling”), our current scientific
understanding is still not capable of specifying some of these rela-
tionships analytically. Utilizing machine learning (ML) to identify such
hidden relationships among different diagnostics would be a great
asset to enhance their measurements, and it may also help to find a
minimal set of diagnostics for a future reactor in which the availability
of diagnostics is limited due to cost and hardware constraints.

Diagnostic challenges in capturing plasma instabilities: One of the
most critical issues for fusion reactors is the edge-localized mode
(ELM), an instability that occurs at the plasma edge under high-
confinement conditions. This edge instability delivers transient and
intense heat flux outward, which can cause unacceptable levels of
erosion of plasma-facing materials in a reactor-scale device. Therefore,
understanding and controlling this phenomenon is a major challenge
that must be resolved’. However, the detailed physical mechanism of
ELMs and the structure of the response to the external field occurring
within milliseconds are still subjects of ongoing debate. High-
frequency diagnostics like ECE and Interferometer possess sufficient
time resolution to track these fast dynamics, but their limited spatial
resolution and measurement conditions pose challenges in clearly
observing the structural characteristics of ELMs. On the other hand, TS
offers high spatial resolution near the plasma edge capable of obser-
ving detailed structures, but its temporal resolution is too low to elu-
cidate the exact mechanism of ELMs.

The current remedy to this issue is a specific operational method
for TS, known as “burst mode,” to increase the sampling rate of up to
10 kHZz"¢, Despite its high pulse repetition, firing TS in “burst mode” is
limited by the heat capacity of the laser medium and limited mea-
surement repetition (see the section “Methods” subsection “Diag-
nostic constraints in ELM measurements” for more details). Therefore,
such an approach is typically reserved for very short periods of time or
specific experiments where high-resolution temporal data is crucial®.

Need for new approaches: Overcoming these diagnostic limita-
tions calls for methods capable of generating high-resolution mea-
surements from the limited and imperfect diagnostics already
available. Various fields have developed ML-based spatial or temporal
resolution enhancement techniques, but these mostly involve resolu-
tion enhancement by learning linear or nonlinear interpolation within
single or limited types of data’’?. These are (1) applicable only to
regularly sampled data, (2) largely dependent on the availability of the
target sensor measurement for interpolation, and (3) challenging to
generate finer-scale phenomena undetectable at the time resolution of
the target sensor (more details in the section “Discussion” subsection
“Relation to previous super-resolution methods”).

Contribution: We hypothesize that a data-driven ML model, so-
called Diag2Diag, with multimodal inputs comprising the high-

frequency diagnostics can effectively make use of internal correla-
tions in order to estimate TS accurately. This can enhance the temporal
resolution of the existing TS diagnostics without upgrading hardware,
so-called Multimodal Super-Resolution TS (SRTS) diagnostics, which
enable deeper physical analysis of plasma behavior.

Figure 1 summarizes the main methodology for this work. DIII-D is
a well-diagnosed tokamak equipped with more than eighty distinct
diagnostic systems. Many of these systems include multiple mea-
surement channels or chords, collectively producing several hundred
data streams that monitor different aspects of the plasma. These
diagnostics measure various characteristics of plasma at different
spatial and temporal resolutions. A potential ML model can learn the
intrinsic correlations among diagnostic data and thus generate one
from the others. This works for both time series and spectrograms,
although different variants of artificial neural network (ANN) are used.
The design choices, the optimization, and training strategies are
described in the following sections.

In this work, we demonstrate that a multimodal super-
resolution framework can reconstruct missing or low-resolution
diagnostic signals with high fidelity by learning underlying corre-
lations among multiple diagnostics. We show that this method
enables synthetic SRTS signals, an inferred representation of TS,
revealing experimental evidence of plasma profile flattening due to
magnetic islands. These findings provide crucial insights into the
mechanisms of ELM suppression via resonant magnetic perturba-
tion (RMP), support robust ELM control strategies for future reac-
tors like ITER, and establish a generalizable framework for
diagnosing complex systems with limited sensor resolution. Our
approach extends beyond interpolation by reconstructing and
enhancing the resolution of a target diagnostic using com-
plementary data from multiple other diagnostics. Specifically, the
model learns the underlying physical correlations among different
measurements in the fusion device, enabling it to generate a syn-
thetic, high-resolution representation of the target diagnostic
without requiring that diagnostic’s own data as input. As a result,
this method remains effective even if the target diagnostic is una-
vailable or not reliable during inference (e.g., due to hardware
degradation or failure). Moreover, because the input diagnostics
measure different aspects of plasma at higher resolutions, the
model can recover events that the target diagnostic might miss due
to its intrinsic resolution limits. To our knowledge, this constitutes
the first multimodal super-resolution framework of its kind in the
context of fusion diagnostics.

Results
Learning diagnostic correlations: ECE to Interferometer
reconstruction
Before investigating a multimodal ML-based model to generate syn-
thetic SRTS using other diagnostics, it is crucial to first verify the
existence, strength, and robustness of their underlying correlations.
We therefore begin by demonstrating a fundamental capability of ML:
leveraging one diagnostic’s measurements to reconstruct another’s.
Specifically, we use ECE spectrograms, spatially resolved measure-
ments with about 40 channels from edge to core, to reconstruct the
line-integrated density fluctuation signals of the Interferometer.
Because certain plasma instabilities and modes, such as Alfvén Eigen-
mode (AE), manifest in both temperature and density measurements,
it is reasonable to expect that correlations exist between ECE and
Interferometer measurements during such events. Here, we show that
a convolutional neural network (CNN) can learn these correlations and
reconstruct Interferometer spectrograms from ECE spectrograms, as
illustrated in Fig. 2.

Figure 2a shows the measurement positions and paths of ECE and
Interferometer, as well as example spectrograms obtained from their
raw signals (Fig. 2b, d). We designed and trained a CNN that takes 40
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Fig. 1| Overview of the Diag2Diag multimodal super-resolution framework.
DiagA is essential to capture fast transient events near the edge of plasma. But due
to its low temporal resolution and accuracy, it fails to track the evolution of such

events. Diag2Diag solves this problem by generating a synthetic super-resolution of
DiagA by learning the correlation between DiagA data and other diagnostic mea-
surements with higher resolutions and better accuracy.

ECE spectrograms as input and reconstructs 4 target Interferometer
spectrograms. The reconstructed synthetic Interferometer spectro-
grams visually confirm the plausible reconstruction of features such as
frequency chirping and harmonics, especially during the AE events?,
as seen in Fig. 2d.

To evaluate how well the underlying physical content is preserved
in the reconstructed spectrograms, we employ both quantitative and
physics-based assessments. First, achieving an .#1 loss of 1.2 x107 on
the validation set determines how closely the CNN reconstructions
match the Interferometer’s amplitude and time-frequency distribution
(see the section “Methods” subsection “Spectrogram model develop-
ment” for more details). Second, to verify that the essential physics is
captured, we apply a previously published AE detection algorithm?,
originally designed for interferometer data, to both the original and
reconstructed spectrograms. The resulting average F1 score of 0.82 on
the validation set after applying a threshold of 0.15, as suggested in
ref. 23, indicates that the model largely reproduces the AE modes,
reflecting a high degree of physics fidelity in the reconstructed signals.
These findings confirm that neural networks can extract and retain the
intrinsic correlations among diagnostic data, even when only one
diagnostic serves as input.

Having established the efficacy of this unimodal-to-unimodal
reconstruction using spectrogram data, we next extend our approach
to raw time-series inputs and expand to multimodal cases. In the
subsequent sections, we focus on generating TS signals from a diverse
set of diagnostics, illustrating the broader potential of our method for
super-resolution diagnostic reconstruction.

Generating super-resolution Thomson Scattering from com-
plementary diagnostics

In this section, we switch from spectrograms to time-series signals and
show that the amplitude of a diagnostic can be reconstructed from
other diagnostics, while preserving intrinsic physics. More impor-
tantly, we will show that if the input diagnostics are of much higher
temporal resolution compared to the target one, such a model can be

used to increase the time resolution of the target signals in a much
more intelligent way compared to the conventional unimodal inter-
polations. As a use case, we target TS, one of the most important
diagnostics that measures the electron density and electron tem-
perature profile of plasma. However, as mentioned earlier, its low
temporal resolution is a bottleneck in studying the plasma evolution in
the rapidly changing events such as ELM.

Figure 3 demonstrates a diagram of the data processing pipe-
line during training and inference of Diag2Diag. We consider a suite
of input diagnostics available at DIII-D, including Interferometer,
ECE, Magnetic probes (Magnetics), Charge Exchange Recombina-
tion (CER), and MSE with typical sampling rates of 1.66 MHz,
500 kHz, 2 MHz, 200 Hz, and 4 kHz, respectively. Since our aim is
not only to enhance TS but also to reconstruct it from other diag-
nostics, we do not use the available measurement of TS as input to
Diag2Diag. To obtain a dataset that can be used to train and validate
the model with the available TS measurements, all the included
diagnostics are aligned with the TS sampling time steps by matching
their most recent measured sample.

Since the sampling steps of TS, which is also used to align the
inputs for training the model, are not always uniform in time, we
opted for a feed-forward neural network instead of recurrent neural
networks, which are commonly used in time-series analysis. How-
ever, we included the first and second derivatives of the high-
resolution input diagnostics, ECE and Interferometer, to include the
temporal evolution information. During the inference, the input
diagnostics are aligned to a fixed sampling rate of 1 MHz to generate
synthetic SRTS. The neural network consists of three dense layers
with 512, 256, and 128 nodes per hidden layer. More details about the
dataset preparation, model optimization, and uncertainty quantifi-
cation are provided in sections “Methods” subsection “Time-series
model development” and “Discussion” “Assessing model and mea-
surement uncertainty”.

Figure 4 shows, in blue, synthetic SRTS signals generated through
the inference of Diag2Diag for the DIII-D discharge 153761, and the
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Fig. 2 | Reconstructing Interferometer spectrograms from ECE spectrograms
using convolutional neural networks. a The configuration of four Interferometer
chords (RO, V1-3) and 40 ECE probes at DIII-D. b A tensor of (40 x time x frequency)
is supplied to CNN. ¢ The configuration of CNN. d Visual comparison of measured

and reconstructed spectrograms for DIII-D discharge 170669. e Comparison of the
Alfven Eigenmode detector output® supplied with the measured and recon-
structed spectrograms.

original TS measurements are also shown with black dots. For this
discharge, TS was fired in the highest possible temporal resolution, so-
called “burst mode” (see section “Methods” subsection “Diagnostic
constraints in ELM measurements” for more details). We can observe
that the synthetic signals closely follow the original measurements,
achieving an R? score of 0.92 in reconstructing the available TS mea-
surement on the validation set. Diag2Diag’s ability to reconstruct TS
from other diagnostics ensures that crucial information is not lost,
even in the absence of direct measurements. Furthermore, while the
original TS measurement sometimes fails to capture ELM events, the
synthetic SRTS accurately captures the events missed by TS.

Here, we note that our objective is not to replicate the entire
physics of Magnetohydrodynamics (MHD) turbulence in plasma®
from first principles, but rather to learn empirically grounded corre-
lations among multiple diagnostics. Our aim is to show that even a
modestly sized neural network can reliably capture significant non-
linear relationships, for instance, shared fluctuations or mode sig-
natures, by training on experimental data where these diagnostic
measurements overlap in time and space. Crucially, the model does
not need a complete, fundamental understanding of turbulence;
instead, it identifies and exploits observed patterns that consistently
appear across diagnostics, as confirmed by its alignment with known
plasma behaviors and successful performance on held-out data. Thus,
while the network’s architecture may be relatively straightforward, it
remains effective in generating physically meaningful reconstructions
in a manner that is both computationally efficient and broadly adap-
table, complementing (rather than replacing) fundamental physics-
based models of MHD turbulence.

Benchmarking super-resolution TS against ELM cycle dynamics
at DIII-D

When ELM instability occurs, a large amount of plasma quickly escapes
from the boundary within milliseconds, and then the plasma gradually
recovers. TS diagnostics can observe the density and temperature
structure at this edge region, but are limited in capturing dynamics
occurring over milliseconds. Recent research overcame these resolu-
tion limits by statistical analysis and aggregating the measurements
from multiple repeated cycles of the fast activity under almost iden-
tical conditions to observe a complete evolution®. In that work, over
20 highly reproduced cycles of ELM crash and recovery were aggre-
gated from DIII-D discharge 174823 to assume a ground truth of a
complete evolution of an ELM cycle.

The aggregated density and temperature evolution measured by
TS in three locations of plasma near the edge are shown in Fig. 5a, b
with transparent crosses, while measurements from a single cycle are
shown with circles and different colors for different measurement
locations. In a more typical tokamak discharge, the plasma state con-
tinually changes, and ELMs occur more irregularly, as shown in Fig. 4.
In such cases, it is not possible to reconstruct a single ELM cycle by
aggregating multiple cycles, and our SRTS method will be highly
beneficial.

We used the Diag2Diag model to generate synthetic SRTS, shown
with solid lines in Fig. 5a, b. The SRTS signal from a single cycle around
time 3795 ms not only follows the trend of the aggregated multiple TS
measurements but also well overlays the TS measurements within that
cycle. Fig. 5c, d shows the detailed evolution of plasma density and
temperature across the plasma location captured by SRTS in the same
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Fig. 3 | Data processing pipeline and inference architecture for super-
resolution Thomson Scattering. a During the training, the inputs are aligned and
resampled with respect to TS timing, to have a ground truth for training and vali-
dation of the model. b During the inference, the inputs are resampled to 1 MHz,

which will be the resolution of synthetic SRTS. Since there is no ground truth for
data-driven validation, we validate the SRTS by studying its behavior during fast
physics phenomena, which are challenging to analyze with measured TS due to its
low temporal resolution.

ELM cycle at 3795 ms, which is missed by TS between its two con-
secutive measurements at 3791 ms and 3800 ms.

Science discovery: unveiling diagnostic evidence of the RMP
mechanism on the plasma boundary

In what follows, we investigate whether the synthetic super-resolution
diagnostics can help to verify the hypotheses on the mechanism of
plasma response to external field perturbations in fusion plasma
physics that have been proposed theoretically or by simulations but
have never been visualized with experimental data due to the lack of
diagnostic resolution.

One promising strategy to control ELMs is employing RMPs
generated by external 3D field coils depicted in Fig. 6a. These fields
effectively reduce the temperature and density at the confinement
pedestal, stabilizing the energy bursts in the edge region. Conse-
quently, ITER will rely on RMPs to maintain a burst-free burning plasma
in a tokamak, making it essential for the fusion community to under-
stand and predict its physics mechanism®. However, this issue has
remained a challenge for decades.

The leading theory®~* for explaining the reduced pedestal by
RMPs is the formation of magnetic islands by an external 3D field.
The magnetic island is a ubiquitous feature in an electromagnetic
system with plasmas* formed by field reconnection®®*. This
structure allows rapid heat (or temperature) and particle (or den-
sity) transport between adjacent magnetic field lines, strongly

26-31

reducing the gradient of local heat and particle distribution, or, in
other words, profile flattening*’. The existing theories explain that
RMP forms static magnetic islands at the pedestal top and foot
region, therefore reducing the pedestal by local profile flattening.
As illustrated in Fig. 6a, the theory predicts that RMPs can create
magnetic islands near the plasma boundary where the pedestal sits.
This model has been successful in quantitatively explaining and
predicting the RMP-induced pedestal degradation in real
experiments®*, reinforcing magnetic islands as a promising
mechanism for RMP-induced pedestal degradation. Nevertheless,
measuring evidence of island or local profile flattening still remains
a challenge. Extensive experimental efforts have been conducted
for this reason and were able to capture the local flattening electron
temperature profile*? near the pedestal top, strongly supporting
this theory. However, simultaneously measuring electron tem-
perature and density both at the pedestal top and foot was not
possible. In a previous study, rough evidence was observed in TS,
but it was insufficient to derive a concrete conclusion, mainly due to
a large uncertainty of measurement originating from the narrow
structure (expected from theory, see Fig. 6a) and oscillatory nature
of the plasma boundary. To address the diagnostic uncertainties
caused by such system oscillation, one method is to increase the
time sampling rate and use time averaging. However, in conven-
tional TS, increasing the time resolution results in a trade-off with
measured accuracy, eventually leading to observational limitations.
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nostics, and examples only captured by SRTS are highlighted in green and red,
respectively.

Interestingly, the SRTS has once again illuminated the profile
evolution by RMP application, providing the novel evidence of
“simultaneous” flattening of temperature and density profile at both
the top and the foot of the pedestal, strongly supporting the theore-
tical prediction of the magnetic islands effect. This is possible by
capturing the statically reliable time trace of the profile with the Che-
byshev time filter, leveraging the enhanced temporal resolution
by SRTS.

Figure 6b-g illustrates the recovery of temperature and density
pedestals within 10 ms after deactivating RMP, as captured through
numerical modeling (Fig. 6b-d) and SRTS (Fig. 6e-g). The simulations
reveal that the recovery of temperature and density pedestals begins
at the top and foot, coinciding with the disappearance of islands. As
depicted in Fig. 6d, g, the profile gradient recovers at these island
locations, enhancing the overall profile. For instance, the measured
temperature pedestal shows recovery at both the top and the foot
through an increasing gradient, displaying qualitative alignment with
the simulation results. However, some discrepancies are noted, parti-
cularly in the density evolution at the pedestal foot in the SRTS, even
though its gradient remains consistent with the modeling. These
quantitative differences may stem from the TS’s limited spatial reso-
lution at the boundary and the modeling assumptions, such as fixed
boundary conditions*. Nevertheless, the gradient evolution directly
indicates a change in transport due to the RMP-induced islands during
this perturbative profile evolution, highlighting that the SRTS suc-
cessfully reveals the experimental island effect. This provides the new
diagnostic evidence of profile flattening at magnetic islands, a key
mechanism of RMP-induced pedestal degradation.

The strength of the SRTS in unveiling profile flattening during
ELM suppression can be further highlighted with additional cases.
Fig. 7 shows the time traces of plasma for DIII-D discharge 136219 when
the edge safety factor (gos), the magnetic pitch angle at the plasma
edge, gradually decreases. Here, all other plasma operation para-
meters, including the RMP field, remain the same. From D, emission
looking perturbation of plasma edge (see Fig. 7a), the bursty spikes
disappear during gos = 3.5-3.6, corresponding to the ELM-suppressed
phase followed by the transient ELM-free phase. This shows the strong
dependence of ELM suppression on ¢gos. The modeling work based on
the island physics** was able to explain this behavior through the
sensitivity of island width at the pedestal top, where its width abruptly
increases at certain gos values due to nonlinear RMP response**. When
the island becomes bigger, it leads to local flattening of electron
pressure (P, product of temperature and density), resulting in ELM
suppression. This explanation has successfully predicted this gos
dependency in multiple devices*. However, its experimental

validation remains challenging as plasma becomes perturbative while
gos changes, making the pedestal diagnostic oscillatory. Such diag-
nostic oscillation can be overcome by time filtering, but the temporal
resolution of TS was limited for resolving pedestal evolution with gos
with filtering processing.

The SRTS has once again derived the profile evolution by gos
change, providing novel evidence of profile flattening of the pressure
profile at the top of the pedestal, leveraging the enhanced temporal
resolution by SRTS. Fig. 7b illustrates the strong flattening of the
pressure profile during the ELM-suppressed phase, coinciding with the
location and width of the magnetic island from numerical modeling.
Fig. 7c shows the electron pedestal height measured in both TS and
SRTS of the nearest channel to the pedestal top, where the filtered
SRTS (orange solid line) follows TS while overcoming diagnostic
oscillations. This successfully extracts a prominent impact (profile
flattening) on the pedestal caused by island widening from evolving
plasma, leveraging the enhanced temporal resolution. This successful
application of SRTS underscores its potential to reveal new physics
beyond the limitations of conventional diagnostic techniques.

Discussion

Relation to previous super-resolution methods

In recent years, different kinds of ANN have been used for upsampling
visual data***® and for radar data**". Conceptually, our methodology
shares some resemblance with such inbetweening techniques, which
nonlinearly interpolate missing frames in a video*. However, tradi-
tional inbetweening is typically a unimodal technique that relies on
partial information from the same data stream (e.g., adjacent video
frames). In contrast, our approach is intrinsically multimodal, synthe-
sizing data from multiple diagnostics (spatially resolved and path-
integrated) to reconstruct a higher-fidelity representation of the
plasma. Crucially, we do not use the target diagnostic’s own mea-
surements as inputs, allowing us to generate a synthetic super-
resolution version of that diagnostic even if it fails during operation.
This capability distinguishes our method from standard inbetweening
algorithms and underscores its robustness and broader utility in real-
world complex systems.

More examples for ML-based upsampling were proposed for
medical data*” and for audio data®**. Similar to the video upsampling
approaches, these approaches can be considered a subcategory of
nonlinear interpolation as well. Yoon et al.** suggested an alternative to
interpolation for estimating the gaps in temporal data streams. It is to
some extent a multimodal approach, because it fuses different kinds of
information. However, the algorithm is limited towards estimating
missing data or dealing with irregularly sampled data. Approaches like
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Fig. 5 | Benchmarking synthetic super-resolution Thomson Scattering against
ELM cycles. a, b Aggregating the measured TS density and temperature in three
locations of plasma near the edge for several ELM cycles of the DIII-D discharge
174823. The circle highlights the measures TS for one selected ELM cycle, and the
solid lines present the SRTS, which agreeably match the measured TS. =0
represents the time when ELM is identified by D,. ¢, d The evolution of SRTS
between two consecutive measured TS near one ELM cycle across the plasma
location.

these work well for enhancing existing sequences, which are quasi-
stationary in a way such that consecutive frames or samples do not
change very fast.

However, in fusion energy, many spurious events like ELM can
happen between two TS samples. By interpolating between con-
secutive TS samples, regardless of linear or nonlinear, it is likely that we
would miss such spurious events. In our work, we thus develop a novel
method to generate additional TS samples based on other diagnostics.
This is roughly inspired by other multimodal ML approaches, such as
ref. 56, where it was proposed to fuse Radar and camera data for an
enhanced distance estimation. This is a multimodal approach and thus
related to our approach, or ref. 57, where ML was used to reveal the
control mechanics of an insect wing hinge. This was also a multimodal
approach in a way that the ML algorithm received different features
recorded from flying insects. However, similar to the other approa-
ches, no attempts to upsample or estimate missing/in-between data
are made. Also*® presents an ANN method to enhance historical elec-
tron temperature data from the decommissioned C-2U fusion device.
The model significantly increases the effective sampling rate of TS
temperature measurements, utilizing data from multiple diagnostics,
including the measured TS. The method’s effectiveness is demon-
strated through comparisons with ensemble-averaged data for the
micro-burst instability study. The model’s main drawbacks include
limited generalization to only the temperature profile study for one
specific plasma regime. Notably, the work does not explore the mod-
el’s potential for discovering new physics in fusion plasmas.

Physical basis for multimodal diagnostic coupling

Diagnostics of electromagnetic systems involve measuring photons or
waves to determine the physical quantities of these systems through
post-processing. Due to the nature of the systems, these diagnostics
are connected. Firstly, the measured signals are interconnected
through electromagnetic interactions during system events. Addi-
tionally, the physical quantities obtained from signal processing are
closely linked through momentum balances. Electromagnetic plasma
quantities are governed by a series of momentum equations that

encompass variables such as density, flow, temperature, and higher-
order terms. Figure 8 illustrates the momentum equations for plasma
density (n) and temperature (T), where D represents particle diffu-
sivity, v is plasma flow, S,, is the particle source, g denotes heat flux, B
stands for magnetic field, j is plasma current, S7is the heat source, and
(o, B) are constant coefficients determined by plasma properties®.
These equations demonstrate how the measured plasma quantities are
interrelated both spatially and temporally. For instance, the line-
averaged density obtained from Interferometer diagnostics is geo-
metrically linked to the local density measured by TS by its definition.
Simultaneously, temperatures measured by TS and ECE diagnostics,
which are positioned differently, are spatially coupled through the
gradient term in the momentum equations. Although the TS density
and temperature do not directly interact in the equations, they are
tightly linked via diffusive fluxes influenced by turbulence, flow, and
sources in a self-consistent manner. This intricate physical coupling of
various diagnostic measurements allows ML to identify and predict
their interconnections effectively.

Assessing model and measurement uncertainty

To quantify the uncertainty in SRTS, we integrate a Bayesian Neural
Network (BNN) with a similar architecture described in section
“Methods” subsection “Time-series model development.” The model is
designed with Bayesian Dense Variational layers, where each layer
approximates a posterior distribution over weights using Variational
Inference®. Aleatoric uncertainty, which accounts for inherent error in
TS measurement, is modeled through a heteroscedastic output that
predicts both the mean and log-variance of the target variable at each
time step. During inference, we perform Monte Carlo sampling by
drawing multiple predictions from the Bayesian posterior, and we
compute epistemic uncertainty as the variance of the outputs®. In
order to have a fair comparison of the epistemic and aleatoric uncer-
tainties, we calculated the uncertainty of the BNN outputs per channel
on the validation set only on the time steps where the ground truth
(measured TS) is available.

Figure 9a, b illustrates the average uncertainty of the neural net-
work outputs for electron density (ne) and temperature (Te) per TS
channel over the validation set of discharges, depicted as red error
bars (Epistemic uncertainty). The TS channels are represented by their
distance from the mid-plane of the tokamak (2). For comparison, we
also show the empirically measured diagnostic errors in gray (Aleatoric
uncertainty). Given that the epistemic uncertainty is, on average,
relatively smaller than the aleatoric uncertainty inherent in the mea-
surements, it indicates that the model has effectively learned the data-
generating patterns and is relatively confident in its predictions.

To ensure that our estimated epistemic uncertainty is meaningful,
we conducted an analysis where we trained the model with progres-
sively larger subsets of the dataset and examined how epistemic
uncertainty evolved on the validation set. Figure 9¢ shows the average
and deviation of uncertainty across all TS channels as a factor of the
percentage of training data used to train the model. The results
demonstrate the expected trend where uncertainty decreases as the
size of the training dataset increases. At the smallest dataset size, the
epistemic uncertainty is highest, indicating that the model lacks suf-
ficient information to make confident predictions. As the training data
size increases, epistemic uncertainty steadily declines, reflecting
improved model confidence and reduced variability in predictions.
This behavior is characteristic of BNNs, where more data helps to
refine the posterior distribution over weights, leading to reduced
model uncertainty. Notably, the uncertainty reduction follows a
diminishing returns pattern; while initial dataset increments lead to
significant reductions, the improvements become less pronounced at
larger dataset sizes. This suggests that beyond a certain dataset size,
additional data contributes less to resolving uncertainty, and the
model approaches its inherent learning capacity. The asymptotic
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Fig. 6 | Experimental evidence of RMP-induced magnetic island formation revealed by SRTS. Structure of 3D coils and islands by perturbed field (a), along with the
evidence in the simulation (b-d) and SRTS diagnostic (e-g) for RMP-induced island mechanism on the plasma boundary in DIII-D discharge 157545.

nature of this trend highlights the fundamental limit of epistemic
uncertainty reduction through data alone, emphasizing the impor-
tance of training dataset coverage, model architecture, feature repre-
sentation, and priors in further improving prediction confidence.

With regard to the source of aleatoric uncertainty and according
to the DIII-D diagnostics documentation, the uncertainty in TS mea-
surements arises from fundamental photon counting statistics (dis-
charge noise), imperfect background subtraction, and detector dark
noise, all of which are random and inherent to the measurement
process®.

During the hyperparameter optimization of our models, we con-
sidered both accuracy and uncertainty of the model’s performance.
Nevertheless, as shown in Fig. 9, there is epistemic uncertainty, though
statistically smaller than the aleatoric uncertainty. A hypothesis could
come from the ambiguous or conflicting training data. For example,
there have been reports on discrepancies between ECE and TS mea-
surements of electron temperature at JET tokamak® and such inves-
tigations are ongoing at DIII-D as well.

Conclusions

This study introduces a transformative approach in the field of signal
processing and diagnostics through the development of a multimodal
neural network, Diag2Diag, which significantly enhances temporal

resolution. By leveraging the intrinsic correlations among various
diagnostic measurements, we have demonstrated the potential to
increase the temporal resolution of the TS diagnostics in fusion plasma
from a standard 0.2 kHz to an unprecedented 1 MHz. This improve-
ment has unlocked new potentials in analyzing fast transient phe-
nomena in plasma, such as the ELMs and the effects of RMPs on
pedestal degradation, which were previously blurred or missed in
lower resolution data. The ability to inspect these dynamics in greater
detail provides new insights into plasma behavior, particularly in
conditions where key physics is hidden in the milliseconds. This
enhancement is not merely a technical improvement but a crucial
enabler for deeper insights into plasma behaviors that are pivotal for
advancing fusion reactors. Furthermore, the model’s ability to recon-
struct and predict diagnostics from other available diagnostics opens
new avenues for measurement failure mitigation, cost-effective and
less hardware-dependent diagnostic systems. This is particularly ben-
eficial for experimental setups where space and resources are limited,
such as in smaller fusion test facilities or in environments where
installing multiple high-resolution diagnostics is impractical.

Looking ahead, several promising extensions and refinements
stand out. First, incorporating additional physics knowledge, such as
through physics-informed neural networks (PINNs), may further
improve accuracy by constraining the solution space and guiding the
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Fig. 7 | Observation of pedestal profile flattening during ELM suppression
through island widening. a Time evolution of edge safety factor (gos) and D,
emission at plasma edge for DIII-D discharge 136219. b Contour of electron pres-
sure versus normalized plasma radius and time. The numerically derived width of
the magnetic island at the pedestal top is illustrated as green contours.

¢ Comparison of TS (blue), SRTS (red), and filtered SRTS (orange solid line).

network with relevant plasma dynamics. Second, although our current
work focuses on temporal resolution enhancement of TS, the same
framework can be applied to other diagnostics, potentially improving
their temporal or spatial resolution. By generalizing to a broader set of
diagnostics and refining the method to capture spatial structure, we
can further strengthen this data-driven paradigm for a wide range of
fusion applications. Ultimately, these future directions will help realize
more comprehensive and high-fidelity diagnostic capabilities, offering
deeper insights into complex plasma phenomena.

The implications of this work extend well beyond the immediate
application to magnetic fusion. The multimodal super-resolution
capabilities developed here can significantly impact areas such as
laser fusion data analysis, accelerator data analysis, and molecular
dynamics research. In these fields, similar challenges exist where the
time and space resolution of diagnostics is inadequate to capture fast
phenomena effectively. By applying our method, researchers can
potentially uncover new physical phenomena or confirm theoretical
predictions that were previously unverifiable through experiments
due to resolution constraints.

In conclusion, the Diag2Diag model not only addresses a critical
need within the fusion community but also sets a precedent for the
broader application of Al and ML in physical sciences. By pushing the
boundaries of what can be observed and measured, this work con-
tributes to the foundational technologies necessary for the realization
of fusion energy and advances our understanding of complex physical
systems across various scientific domains.

Methods

Data acquisition

For this experiment, we used discharges from the DIII-D tokamak that
include all data from the key diagnostics of interest (CER, Inter-
ferometer, ECE, MSE, and TS). We randomly selected 4000 discharges
recorded between the years 2017 and 2022 to ensure a diverse and
representative dataset. The diagnostic data were collected using the
DIII-D MDSplus®* system. These diagnostics are generally provided as
time-series data streams with varying sampling frequencies, ranging
from 200 Hz for TS up to 2MHz for Magnetics. The specific pre-
processing steps applied to the data for the different experiments
conducted in this study are detailed in the following sections.

Feature extraction
For the spectrogram experiments, we consider the Interferometer and
ECE diagnostics. We compute a logarithmic magnitude spectrogram
from a time series of the raw diagnostics. For each channel (40 ECE
channels and 4 Interferometer channels), we therefore used Hamming
windows of 1 ms with 0.5 ms overlap. In this way, it was ensured that
the different magnitude spectrograms are aligned in time. The spec-
trograms were afterwards converted to a logarithmic scale, clipped,
and rescaled to the range of [0, 1]. Given the noisy nature of the ECE
signals and after rescaling the spectrograms to the range of [0,1], the
spectrograms are enhanced using a pipeline of image processing filters
that includes

* Quantile Filtering with a threshold of 0.9,

* Gaussian Blur Filtering on patches of size 31 x 3,

* Subtracting the average per frequency bin.

We used the ECE spectrograms as inputs to our model. Since we
treated every ECE channel independently during feature extraction, we
obtained one spectrogram per channel, resulting in 40 input spec-
trograms. Since our model is designed to estimate the Interferometer
spectrograms, it predicts four output spectrogram channels corre-
sponding to the four Interferometer interferometer channels.

For the time-series models, the different diagnostic mea-
surements have varying sampling rates, and some are even non-
uniformly sampled in time. Since the aim of time-series data
analysis was to increase the resolution of TS, we used its time-
stamps as a reference and aligned all diagnostic modalities to TS
by matching their most recent measured samples in time. We
considered the first 5s of each discharge, which resulted in
approximately 3.4M data-points, split into 80%, 20% respectively,
for training and validation of the models. As described in the
main text, to test the model, we evaluated SRTS during the ELM
and RMP mechanisms.

For Interferometer and ECE inputs of the time-series models, we
also included the first and second temporal derivatives. Therefore, we
smoothed the signals with a moving average window of 1 ms (1660
Interferometer samples and 500 ECE samples), and then computed the
first and second temporal derivatives of the smoothed signal also with
a window of 1ms.

The diagnostics CER and MSE have relatively lower temporal
resolution (200 Hz and 4 kHz, respectively). In this paper, we assume
that they evolve only slowly in time. For the upsampling experiments,
we thus pad these diagnostics after a measured sample with constant
values until the next measured sample arrives.

The input diagnostics (CER, Interferometer, ECE, Magnetics, and
MSE) consist of 58, 4, 40, 8, and 38 channels, respectively, which,
together with the first and second derivatives of ECE and Inter-
ferometer, form an input feature vector of 236 elements per time step.
The outputs are 80 channels of TS measurements for electron density
and temperature (40 each).

Spectrogram model development

The multi-channel ECE spectrograms were used as the input to a CNN,
and the multi-channel Interferometer spectrograms were used as the
target outputs. We optimized all important hyperparameters based on
the #1 loss to minimize the difference between the ground truth and
the estimated outputs on the validation set.

The optimization process of the model involved several key steps:

* The model underwent training for up to 500 epochs.

* We implemented early stopping with a patience threshold of 20
epochs, during which we monitored the validation loss for any
improvements.

* The AdamW optimizer®, known for decoupling weight decay
from the learning rate, was utilized to minimize the .#1 loss
function.
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Fig. 8 | Underlying physical coupling among fusion diagnostics enabling mul-
timodal learning. The diagnostics are connected through electromagnetic inter-
actions between signals. Simultaneously, derived quantities from these signals are

coupled via geometric definitions, momentum balances, and high-order physics,
including turbulence, flow, and source in the system.

* We conducted a comprehensive hyperparameter optimization
through a randomized search across 1000 iterations for all
hyperparameters such as batch size, kernel size, and the
learning rate.

To reduce the amount of training time, we randomly selected 518
discharges from the entire dataset to conduct the hyperparameter
optimization. The model with the best-performing hyperparameter
setting (achieving an #1 loss of 1.2x107 on the validation set) was
then re-trained on all available discharges.

The best-performing model is a CNN that transforms the ECE
spectrograms with 40 channels subsequently to 32, 16, and 8 feature
maps, and finally to the Interferometer spectrograms with 4 channels.
For each feature map, 2D filter kernels with a size of 7x7 are used.
Batch normalization was used separately for each channel, and para-
metric ReLU activation functions were used after each batch normal-
ization layer. The model had in total of 95,823 trainable parameters
(i.e., filter kernels for each feature map, batch normalization para-
meters, and negative slope of the parametric RelLU activation
function).

Time-series model development

For the time-series prediction task, we employed a Multilayer Per-
ceptron (MLP) model. The input data to the MLP comprised the CER,
Interferometer, ECE, MSE, and magnetic diagnostics, along with the
first and second temporal derivatives of the Interferometer and ECE
signals, resulting in a total input size of 236 dimensions. The target
output was the TS diagnostic data, which had 80 dimensions repre-
senting electron temperature and density across various spatial loca-
tions. To take the uncertainty of TS measurements into account, the
target data were augmented by factor 2 by using the upper and lower
intervals of each sample as additional targets.

The MLP model was trained for a maximum of 500 epochs, with
an early stopping mechanism implemented to halt the training process
if the validation loss did not improve for 20 consecutive epochs. The
AdamW optimizer® was employed to minimize the #1 loss function
during training.

Similar to the approach for optimizing the spectrogram model, a
comprehensive hyperparameter optimization was undertaken using a
randomized search approach spanning 2000 iterations. The hyper-
parameters jointly optimized included the batch size, hidden layer
size, dropout rate, and learning rate. The final MLP comprises three

hidden layers with 512, 256, and 128 nodes, which leads to a total of
295,888 trainable parameters.

In principle, incorporating additional physical constraints in the
form of a loss function or adopting a PINN framework®® could further
refine such a model by reducing the solution space and enhancing
accuracy. However, our primary objective is to demonstrate a broadly
applicable methodology rather than a domain-specific approach.
Therefore, we employed a conventional network architecture with a
straightforward #1 loss function, underscoring that the central con-
cept, exploiting inter-diagnostic correlations for super-resolution,
does not hinge on specialized physics priors. This design choice also
preserves the generality of our method, making it adaptable to other
domains (e.g., astrophysical observations, medical imaging) where
detailed physical models may be less readily available. By showing that
even a standard ML approach can yield physically meaningful results
when carefully formulated, we set the stage for future improvements
that may incorporate more explicit physics constraints as needed.

Validation methodology and limitations

Validating synthetic, high-resolution diagnostic reconstructions in
fusion plasmas presents unique challenges. Specifically for this work,
no MHz-level TS measurements exist in any tokamak, and full-
discharge gyrokinetic or extended MHD simulations at MHz tem-
poral fidelity are computationally prohibitive and not yet sufficiently
reliable for validation of long-pulse behavior. Such a limitation is, in
fact, a motivating factor behind our approach: to develop new data-
driven inference capabilities that can extend diagnostic insights
beyond what is currently achievable via direct measurement or
physics-based modeling. Given these constraints, we employed a
multifaceted validation strategy using the best available experimental
and simulation data. This includes quantitative comparison with
existing TS data using R* score, benchmarking against the highest-
resolution burst-mode TS signals, and consistency checks against
known plasma phenomena such as ELMs, RMP-induced magnetic
islands, and gos profile evolution. These steps collectively support the
physical relevance and robustness of the super-resolved reconstruc-
tions produced by our model.

While we do not claim that the SRTS signals are identical to the
actual measurements, as reflected by an R? score that is very high but
not equal to 1, our validation results demonstrate that the synthetic
outputs are sufficiently accurate to provide high-value insights. These
reconstructions offer practical utility for addressing diagnostic
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limitations such as low resolution, degradation, and failure, supporting
plasma analysis, and enabling potential new physics discovery.

Diagnostic constraints in ELM measurements

In order to let fusion energy be a viable energy source, it must achieve
significant fusion gain through continuous fusion reactions. A promi-
nent method to reach this objective is operating a tokamak in high-
confinement mode (H-mode), which has a narrow edge transport
barrier, also known as the pedestal. This feature significantly boosts
plasma confinement within the reactor, enhancing fusion power and
efficiency. However, operating in H-mode introduces a steep pressure
gradient at the pedestal, leading to substantial operational risks. This
gradient drives hazardous edge energy bursts due to a plasma
instability known as ELMs. These bursts lead to sudden drops in the
energy at the pedestal, causing severe, transient heat fluxes on the
reactor walls. This results in damaging material, potential surface
erosion and melting, with heat energy reaching approximately
20 MJm™, which is an unacceptable level for fusion reactors. From
ITER, future machines will not allow even the first ELM. Therefore, to
advance tokamak designs toward practical application in fusion
energy, it is crucial to develop dependable methods to consistently
suppress these edge burst events.

A limitation of some diagnostics, such as TS, is the low temporal
resolution of only 200 Hz, which does not allow for detecting and
tracking fast events like ELM (<1 ms). Nevertheless, it is still important
to detect such events reliably, as they can have a strong impact on
plasma behavior.

To accurately resolve the fast transient dynamics, the TS lasers
can be fired in a burst mode, which enables temporal resolution of up
to 10 kHz. This increase in temporal resolution is achieved by using

multiple lasers in the same path with pulses interleaved closely in time.
Normally, the lasers are phased to produce pulses at fairly regular
intervals (exact regularity is not possible with the specific combination
of 20 Hz and 50 Hz lasers being used at DIII-D). Continuous burst mode
operation is also not possible because the laser system would over-
heat, the optics would be stressed, and the components would wear
out very quickly. Therefore, the phase shifts are adjusted so that all
lasers fire in rapid succession, followed by a cool-down. This burst
mode encompasses between 3 and 7 laser pulses, depending on the
time in the discharge.

On the other hand, diagnostics like Interferometer and ECE
have much higher temporal resolution with continuous sampling
frequencies around MHz, which allows for a much more detailed
analysis of the plasma. However, these diagnostics have different
characteristics compared to TS. While TS offers detailed insights
into both electron density and temperature with high accuracy, it
requires complex setups and is usually more resource-intensive.
Interferometer provides a more straightforward approach to mea-
suring electron density, excelling in situations that require rapid
response and continuous monitoring. Furthermore, ECE and TS are
both pivotal diagnostic tools used in tokamaks for measuring
electron temperature, yet they operate on distinctly different
principles and offer unique advantages. ECE utilizes the natural
microwave emissions from electrons gyrating around magnetic
field lines to provide excellent temporal resolution, allowing for the
monitoring of rapid plasma changes and instabilities, though its
effectiveness can be limited by variations in magnetic field strength.
On the other hand, TS involves firing a laser into the plasma and
analyzing the scattered light, which provides robust, absolute
measurements of both electron temperature and density with less
susceptibility to magnetic influences. While ECE excels in con-
tinuous data collection and fine temporal analysis, TS offers
superior spatial resolution and is less dependent on external con-
ditions, making it invaluable for comprehensive, though typically
less frequent, plasma evaluations. If it would be possible to find a
correlation between the measurements of those high-resolution
diagnostics and TS, this would be useful for developing new phy-
sical analyses.

Radial plasma profile

The radial profiles for electron temperature, density, and pressure
in this study are obtained using TS and SRTS with a reconstruction
for plasma equilibrium. This equilibrium is calculated from the
magnetic reconstruction using the EFIT code®’. Normalized poloidal
magnetic flux is used as a representation of normalized radial
coordinates.

Workflow and bias mitigation

To avoid any bias during model development and evaluation, each of
the following steps in this research was conducted independently by
separate researchers in a feed-forward manner as follows:

1. The data scientists developed a diagnostic dataset for training the
neural network, aiming for generating synthetic SRTS. In this
phase, the evaluation metric was simply the similarity between the
model’s output and the measured TS, whenever the measurement
was available.

2. For physics validation, we generated the super-resolution
diagnostic for a known ELMy discharge and asked an ELM-
expert physicist to validate the behavior of the super-resolution
diagnostic.

3. The data scientist then delivered the generated super-resolution
diagnostic for the target plasma discharge to an experimental
physicist to extract the plasma profile from that.

4. We then asked another physicist with expertise in simulation to
obtain the simulation results for the target plasma discharge.
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In the final step, we compared the plasma profiles from our gen-
erated diagnostics with the simulation results and found a
strong match.

This indicates that our results are not biased based on prior

physics knowledge, and we also did not rework our ML model to match
our results with the simulation.

Data availability

All relevant DIII-D data supporting the findings of this study are
available from the DIII-D National Fusion Facility, which is operated
by General Atomics for the U.S. Department of Energy. Access to DIII-
D data requires following the user protocols described on the DIII-D
website. Specific questions regarding data availability can be direc-
ted to the corresponding author of this paper. Also, the source data
and a Python script to reproduce the figures can be found on
Figure Data.

Code availability
The source code for the models developed in this work is publicly
available®s,
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