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Next-generation graph computing with
electric current-based and quantum-inspired
approaches

Yoon Ho Jang1,2, Janguk Han1,2, Soo Hyung Lee1,2 & Cheol Seong Hwang 1

Graph data is crucial for modeling complex relationships in various fields, but
conventional graph computing methods struggle to handle increasingly
intricate and large-scale graph data. Electric current-based graph computing
and Quantum-inspired graph computing offer innovative hardware-based
solutions to these challenges. Electric current-based graph computing has
progressed from Euclidean graph data to non-Euclidean ones using the
memristive crossbar arrays. This Perspective introduces various crossbar
array-based electric current-based graph computings, which offer flexibility in
representing complex graphs, enabling a wide range of graphical applications
in materials, biology, and social science. It also discusses quantum-inspired
graph computing, employing probabilistic bits, oscillatory neural networks,
and related architectures to solve complex optimization problems. Electric
current-based and quantum-inspired graph computing remain in their early
stages of evolution, requiring further work to advance materials, devices, and
architectures to fully realize their potential. These advancements will open
opportunities for more diverse and complex real-world applications.

Graph data represent complex relationships across various domains of
modern big data, such as social networks and biological pathways. A
graph consists of nodes (representing entities) and edges (represent-
ing the connections between them), whereas the adjacency matrix
typically represents graph data structure (Fig. 1a). In contrast, scalar or
tabular data do not have inter-entity relationships and conventional
hardware architectures have been optimized for linear operations to
process this type of data efficiently. As the importance of graph data
continues to grow, the ability to efficiently process and analyze graph
structures is becoming increasingly crucial, advancing the field of
graph computing1,2. Graph computing has focused on deterministic
graphs, where the relationships between nodes are fixed and well-
defined3,4. These graphs have been instrumental in extracting static
and meaningful information from datasets, typically using adjacency
matrices. However, as data becomes more complex and voluminous,
conventional linear models often fall short of analysis capacity when
dealing with vast and intricate graphs5,6.

New paradigms in graph computing are emerging to address
these challenges, one of which is electric current-based graph com-
puting (EGC). In EGC, electrical currents flowing through the hardware
represent the optimal paths in the graph, enabling efficient compu-
tation of graphical similarity and facilitating the solution of more
complex graph problems. Early efforts in this area involved using grids
of electrodes and lateral memristors or nanowires to create hardware-
based representations of graphs7–11. While these methods demon-
strated the potential of hardware-based graph computing, their
application was limited to Euclidean graphs; thus, they are inap-
propriate for handling more complex, non-Euclidean structures. Sub-
sequent advancements used volatile memristors to implement delay-
based small-world graphs (left panel of Fig. 1b)12,13. However, the range
of graphs these methods could represent was limited. Recent devel-
opments using memristive crossbar array (CBA) structures have sig-
nificantly expanded the graph computing capability to represent non-
Euclidean graphs14–18.
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To date, CBA structures have primarily been utilized as accel-
erators for vector-matrix multiplication in neural network
computations19. However, CBA structures suffer from sneak currents,
prompting research into various unit devices such as transistors, high-
nonlinearity selectors, and self-rectifying memristors20. Moreover,
CBAs intended for in-situ training require high endurance and sym-
metric potentiation/depression characteristics. While unit devices for
graph-representing CBAs share similar retention and endurance
requirements to those used in inference CBAs, CBA-based EGC addi-
tionally demands directional properties. Consequently, self-rectifying
memristors are typically employed for scalability and three-
dimensional integration advantages.

The advancements in device and structure enabled the hardware-
based representation of more graph types, including directed and
weighted graphs14–17, which were unfeasible in the conventional EGC.
This advancement is primarily due to the flexibility of CBA structures,
which enable more sophisticated graph mappings (middle panel
of Fig. 1b).

Furthermore, recent studies utilized multi-CBA setups to model
probabilistic graphs and calculate connection probabilities for com-
plex paths21, expanding its applicability to systems with inherent
uncertainties22,23 (right panel of Fig. 1b). EGC excels at capturing graph
connectivity and can represent various graph types. However, it faces
limitations in analyzing the time-dependent evolution of node states.

This Perspective explores three other graph-based computing
approaches: those designed to handle time-dependent node evolu-
tion, namely probabilistic bits (p-bits)24–40, oscillatory neural networks
(ONNs)41–54, and Hopfield neural networks (HNNs)55–60. While these
approaches differ from quantum computing in their computing
methods, they share common graph structures based on nodes

represented as two-level systems. These methods are designed to
address optimization and machine learning problems that are other-
wise intractable using classical techniques. Inspired by quantum
mechanics or developed in conjunction with quantum computing-
based Ising machines, these architectures are collectively referred
to here as quantum-inspired graph computing (QGC) (Fig. 1c).

In this Perspective, the theoretical foundations of EGC and QGC,
as well as the physical graph representation (PGR) of each method,
were first introduced. Subsequently, various applications and perfor-
mance evaluations were examined. Finally, potential advancements
and future directions from an integration perspective were discussed
to enable their practical use.

Results
Graph computing theory
When modeling a space or circumstance in a graph, nodes represent
each entity, and edges represent the relationships between the nodes.
A graph G= ðV , EÞ, which consists of N nodes V = vi, j, 0 < i<N

� �
and a

set of edges E = evu, j, v,u 2 V
� �

, can be represented as an adjacency
matrix A 2 RjNj× jNj. When euv ≠ evu, G is considered a directed graph,
and when a characteristic value, such as weight, wvu exists for evu, G is
regarded as a weighted graph.

A graph is classified as either Euclideanor non-Euclideanbased on
its spatial characteristics, with distinct methodologies applied to
interpret them. Each node in the Euclidean graph belongs to a metric
space, situated in physical space or on a plane where Euclidean geo-
metric concepts, suchas distance and angles, are applied. For example,
the graph is located on a two-dimensional coordinate plane, and the
relationship between two points ((x1, y1) and (x2, y2)) can be obtained
through metric calculation, aiming to obtain the Euclidean or
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Fig. 1 | Overview of graph structures and computing approaches.
a Representation of basic graph structures. The upper panel illustrates a simple
graph with four nodes and edges, while the lower panel represents its adjacency
matrix. b Electronic-based graph computing. Electrical properties are extracted

from the mapped graph on various physical devices. c Quantum-inspired graph
computing. The time evolution of the graph structure is extracted to solve various
problems. Various circuit elements and coupling matrices represent the nodes
and edges.
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Manhattan distance. The distance d between two nodes satisfies the
following relationships for any x, y, and z nodes.

x, yð Þ=0 () x = y

dðx, yÞ≥0
dðx, yÞ=dðy, xÞ

dðx, yÞ+dðy, zÞ≥dðx, zÞ

8>>><
>>>:

ð1Þ

The quantified distance implies the strength of the relationship
between nodes and can be used for analyzing geographic distances.

A non-Euclidean graph is defined as one that cannot be explained
using standard Euclidean geometry. Specific position vectors cannot
represent any two nodes in a non-Euclidean graph. Therefore, the
relationship between two nodes is abstractly expressed (for example,
in a social network, the “distance” between two people refers to the
degree of connection rather than actual physical distance).

Graph embedding is required to map the graph to a lower-
dimensional vector space (Euclidean space) to interpret complex,
high-dimensional non-Euclidean graphs more easily. In this case, the
embedded graph must reflect the relationships of the original high-
dimensional space as much as possible. The embedding vectors gen-
erated through themapping function ENCðvÞmust represent the local
and global information that the nodes in the original graph had, which
must be preserved within the embedding space61. The node v can be
embedded into a lower-dimensional Euclidean vector space through
the mapping function ENCðvÞ. Ideally, when the connection strength
with a node in the original graph is high, it should be embedded close
to each other. When the connection strength is low, it should be
embedded farther apart.

Recently, embedding vectors have been effectively extracted
using random walk-based graph embedding methods, such as Deep-
Walk and Node2Vec62,63. These methods do not require separate
labeled data but have several inherent limitations64,65. First, they
cannot reflect real-time characteristics of nodes that change over time
or in response to environmental inputs. Second, the unavoidable
loss of information during the graph embedding process is also a
problem.

Quantum-inspired graph computing
Quantum computing employs qubits that exhibit superposition and
entanglement, enabling exploration of exponentially large solution
spaces. While these properties offer theoretical speed-ups over clas-
sical methods66,67, practical quantum computing remains limited by
decoherence and error-correction overhead, restricting its usability
for near-term, large-scale graph problems.

In this regard, QGC has emerged as a class of approaches that
share conceptual elements from quantummechanics, such as energy-
based optimization and state transitions, while implementing them
through classical or stochastic hardware. In QGC, problems are map-
ped onto graph structures, where nodes represent two-level systems
and coupling edges encode their interactions. This enables hardware
to directly utilize the graph’s connectivity for efficient computation,
eliminating the need for coherent quantum states.

Among the approaches in QGC, probabilistic computing (p-com-
puting) is closely aligned with quantum computing and follows similar
researchdirections. As an intermediate between classical deterministic
bits and qubits, p-bits fluctuate between 0 and 1. Various nanodevices
are used for p-bit implementation, and the p-computing system is
explained through the following relationships24.

si = sign tanh βIi
� �� rand

� � ð2Þ

Ii =
X
j

W ijsj +hi ð3Þ

In these relationships, the state of a two-level system si is deter-
mined by the nonlinear activation of input Ii, and inverse temperature
β, with an additional random number from [−1,1]. The input Ii to each
node si (p-bit) is calculated considering the coupling matrix W and
external bias field h. Here, the coupling matrix is analogous to the
adjacencymatrix in EGC,whichexplains edge interactions between the
nodes. The p-computing framework is widely adopted in optimization
and probabilistic inference problems24,40. Specifically, the Ising model
description of the system’s energy is adopted to solve classically
intractable optimization problems as follows:

E = �
X
i < j

W ijsisj +
X
i

hisi

 !
ð4Þ

Expanding upon the Ising model, other variants of QGC, such as
ONN and HNN, also use graph structures to address optimization
problems. Oscillatory nodes in ONN represent a multi-level system
through phase difference, physically coupled according to the cou-
plingmatrix. On the other hand, HNN directly calculates the derivative
of the energy (Eq. 4) to solve optimization problems. Recent studies on
HNN directly map the graph to extract connectivity information56–58.
The physical implementation of nodes and edges in quantum com-
puting and QGC differs, as discussed in the following section, but they
all physically organize graphs for efficient computation.

Advancements in structures for physical graph representation
In EGC, memristive characteristics are used to represent and interpret
high-dimensional graphs without preprocessing (Fig. 2). Unlike con-
ventional methods that require converting the graph into a vector
format for interpretation (graph embedding), the goal is to represent
the high-dimensional graph physically. The proposed structures
commonly employ electrical signal responses to applied voltages to
infer critical connectivity in graph interpretation.

For instance, nanowire graph networks are constructed in pre-
vious works8,10,11, where memristive junctions are randomly generated
in self-assembled metal nanowires (Fig. 2a). The metal nanowires are
electrically insulated via resistive-switching coatings (metal oxide,
polyvinylpyrrolidone), and crossed wires form metal-insulator-metal
junctions. When voltage is applied through additional metal pads on
the nanowire graph, conductive pathways are formed within the
nanowire graph, generating dynamic behavior within the random
graph. This structure was used to find the shortest path in nanowire
graphs, enabling applications such as associative memory. Moreover,
the neuromorphic dynamics of the nanowire graph were applied in
reservoir computing for data processing8,68.

Another example includesMottmemristor neurondevices (nodes
of the graph), which are placed in a CBA to induce thermal conduction
between them (Fig. 2b). They integrate spatiotemporal thermal infor-
mation for network communication18. When the oscillation of Mott
memristor neurons increases the local temperature, adjacent neurons
oscillate even below their critical voltage. This thermal diffusion
between neurons enables fundamental graph representation. The
arrangement of neurons within the crossbar was also used to solve
optimization problems such as Max-cut, providing a new perspective
on graph representation through thermal conduction.

However, as the interactions between nodes are constrained by
their physical positions, the structures shown in Fig. 2a, b are limited to
representinggridgraphs. In contrast, Fig. 2c–f shows theEGCstructures
capable of representing non-Euclidean graphs. Figure 2c illustrates a
structure that utilizes the dynamic characteristics and inherent prob-
abilistic behavior of a single memristor to form a complex virtual net-
work. Appeltant et al. proposed amethod to interpret a single dynamic
node as a virtual cyclic graph through time multiplexing12. Guo et al.
advanced this approach by utilizing the spontaneous resistance varia-
bility of memristors to implement a virtual small-world network that
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reflects non-uniform topological properties13. Reservoir computing
using virtual graphs was demonstrated by applying time-domain inputs
to memristors with such dynamic characteristics68. This method effec-
tively generates non-Euclidean graphs by adopting the fading memory
of the memristor, but its expressive capacity remains limited.

Other recent research focused on mapping the adjacency matrix
of graphs to the CBAs. A two-dimensional N ×N self-rectifying mem-
ristive CBA with modified diagonal components can store adjacency
matrix data of a graph with N nodes14–17,21. Each (u, v) element of the
adjacency matrix can be mapped based on the conductance of the
memristor at uth word line (WL) and vth bit line (BL) of the CBA. The
first self-rectifying memristor-based EGC hardware utilized a shorted
diagonal structure14,17 (Fig. 2d). This array maps the graph by allowing
reverse current flow (from BL to WL) in the diagonal devices (orange
curve of Fig. 2d) while restricting current flow to the forward direction
(from WL to BL) in the off-diagonal devices (black curve of Fig. 2d).
Two approaches were explored to implement shorted diagonals:
metal-at-diagonal CBA (m-CBA)14 and soft breakdown-at-diagonal
CBA17. The latter approach offers an advantage over the former, as it
allows for dynamic changes in the state of the nodes.

In another self-rectifying memristor-based EGC structure, the
cross-wired CBA (cw-CBA) introduces a cross-wiring process to the
conventional CBA, where the diagonal elements are connected
through crossedWL and BL (Fig. 2e)15. Since the diagonal components
are still composed of self-rectifying memristors, they retain the ability
to modify the node states of the graph. This structure also allows the
diagonal elements to flow reverse current while blocking forward
current, suppressing undesired current within the array, and further
enhancing the precision of graph representation15.

Research on probabilistic graph processing using probabilistic
switching devices in the m-CBA was also proposed21. In this work,
multiple m-CBA structures were used to implement probabilistic
connectivity (Fig. 2f). When the identical adjacency matrix mapping is
applied to the individual m-CBAs in Fig. 2f, probabilistic state changes
occur due to device property, resulting in a probabilistic graph
representation. Such a physically implemented probabilistic graph
modeling system enables probabilistic graph algorithms such as
steady-state estimation and PageRank69.

Moreover, methods for extracting connectivity from the self-
rectifying memristor-based EGC have been proposed (Fig. 2g). The

Fig. 2 | Hardware structures for EGC. aA self-assembledmetal nanowire network.
Metal wires coated with ion-conductive materials are crossed, exhibiting memris-
tive properties. Random graph dynamics arise from conductive pathways deter-
mined by the random arrangement of metal wires. b A spatiotemporal thermal
conduction network based on Mott memristors. Connections between nodes are
formed through thermal diffusion. c The dynamic and stochastic characteristics of
memristors form a virtual circulatory network driven by applied voltage. d A CBA
with a shortened diagonal. Using a self-rectifying memristor as an individual ele-
ment in the array enables the physical mapping of the graph’s adjacency matrix.
The right panel illustrates the represented graph and the electrical characteristics
of the devices. Current flows bidirectionally through the shorted device (orange
line), while it flows unidirectionally through the self-rectifying device (black line).

e A CBA with a cross-wired diagonal. Similar to m-CBA, self-rectifying memristors
are used as individual elements in the array. The right panel illustrates the repre-
sented graph and the electrical characteristics of the diagonal devices (orange line)
and off-diagonal devices (black line). The cross-wiring configuration enables rec-
tification along the diagonal direction, allowing for more accurate graph repre-
sentation. f A module utilizing probabilistic switching devices in the diagonal
shorted CBA. The right panel illustrates the probabilistic graph and the electrical
characteristics of probabilistic switching devices. g, h A schematic for applying
voltage to extract connectivity from the graph mapped onto the crossbar. A 9 × 9
graph can be directlymapped onto a 9 × 9 diagonal shorted CBA. The connectivity
between the two nodes is determined by applying voltage and grounding to the
word line and bit line of the crossbar.
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example graph contains nine nodes (left panel) and can be mapped
onto a 9 × 9 shorted diagonal crossbar (right panel). To determine the
connectivity between two nodes (red nodes) in the original graph,
voltage and ground are applied to the WL and BL of the CBA, respec-
tively (red boxes in Fig. 2g). Selected WL and BL correspond to the
source and target node in the example graph, respectively. The
amount of current output to the ground is interpreted as ameasure of
the node pair’s connectivity strength. Thismethod is referred to as the
single-ground method (SGM). SGM efficiently extracts information
from the original graph without preprocessing. Moreover, when the
ground is applied to all BLs of CBA (red boxes in Fig. 2h), a parallel
circuit is formed by the devices connected to the selected WL, and
information regarding the edges connected to the selected node is
converted into current. The magnitude of the output current enables
the estimation of the degree and 1-hop connection of the selected
node. This method of quantifying the direct connectivity of individual
nodes using CBA is referred to as themulti-groundmethod, which can
be effectively used with the SGM to describe the graph’s structural
characteristics.

The system needs to be designed with a structuremore advanced
than theperipheral circuits of conventional CBA. CBAs for high-density
memory typically require random access to a single memory element.
In particular, for applying CBAs in EGC, a TIA-ADC capable of current
sensing in the analog domain and a multi-channel DAC structure are
required for implementing a voltage scheme during the writing pro-
cess.Moreover, the inclusionof a switchmatrix to allowamoreflexible
selection of WLs and BLs should be considered.

In summary, previously reported EGC structures include
nanowire8,10,11, thermal interaction, delay18, and self-rectifying mem-
ristor-based EGCs14–17,21. Nanowire and thermal interaction approaches
are generally limited to grid or Euclidean graphs, while delay-based
EGCs offer less flexibility in non-Euclidean graph representation
(Table 1). Therefore, the following sections will focus primarily on self-
rectifying memristive CBA-based approaches in further discussion of
the EGC.

Figure 3 shows three different QGC structures: probabilistic
computing (p-computing), ONN, and HNN. Although each structure
differs in its specific design choice, they can be interpreted as graph
structures with physical nodes and edges (coupling) between them.
The right panels of each structure depict the implementation of nodes
and edges in graphs.

P-computing offers a promising approach using p-bits—binary
units with tunable stochasticity that mimic qubit behavior without
requiring environmentally sensitive superposition (Fig. 3b)26,27. Various
methods were adopted to generate p-bit, including digital com-
plementary metal-oxide-semiconductor (CMOS) devices26–32, stochas-
tic magnetic tunnel junction (MTJ)33,39, bistable resistors34, and volatile
memristive devices35–38. Although their functional operations are
similar, each design choice requires a different p-bit structure for
nonlinear activation and thresholding. Then, these p-bits form a net-
work in which each p-bit is interconnected with others, with the con-
nections represented by a weight matrixW. Even though these edges
encode synapticweights between p-bits, they are usually implemented
as theoretical edges and calculated inperipheral CMOScircuits suchas
field programmable gate arrays (FPGAs). P-computing proved efficient
for logic operations and combinatorial optimization problems, as
discussed in the next section.

The structures of ONN, another variant of QGC, utilize oscillator-
based computing for low-power computation by using the phase and
frequency of oscillation as information carriers41 (Fig. 3c). Recently,
Ising machines based on ONN showed promising results in computa-
tionally demanding problems solvable in nondeterministic polynomial
time. These works implemented oscillatory circuits such as CMOS ring
oscillators42,46, phase-transition devices48–51, and single electron
transistors53 as nodes (upper panel of Fig. 3c). Then, a network was Ta
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constructed by coupling the oscillators according to the problem type.
For instance, capacitive coupling of electrical oscillators tends to
increase the probability of out-of-phase behavior, which can guide the
system toward a stable state determined by the problem’s
constraints62. Coupledoscillatorynetworkswere alsodemonstratedby
coupling the nodes with acoustic vibration or magnetic interaction54.

Lastly, the hardware structure of HNN, a recurrent neural network
used for various optimization and content-addressable memory
applications, is illustrated in Fig. 3d. The upper panel shows that a
memristive CBA is employed for network mapping and parallel com-
putation through vector-matrix multiplication55–58. Specifically, the
edges of the given network are mapped to the conductance of mem-
ristiveCBA, and read voltages are applied todetermine the binary state
of the nodes. These nodes are “theoretical” because they are not

physically manifested but are defined by thresholding multiplication
results. Table 1 summarizes the graph representation capabilities of
the various reported QGC approaches.

Various applications of EGC and QGC
EGC offers unique advantages for implementing graph algorithms and
solving real-world problems across various fields. Figure 4a–c illus-
trates how EGC-based graph algorithms perform compared to con-
ventional approaches in pathfinding, link prediction, and community
detection tasks.

Pathfinding algorithms rely on estimating the distance from the
current node to the target node. In EGC, since electrical current
naturally flows along the shortest path in the graph, the inverse of the
current between nodes can be used as a measure of distance. The
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Fig. 3 | Hardware structures for QGC. aHardware structure for p-computing. The
upper panel shows nodes of p-computing, p-bit, which are usually composed of
nanodevices.bHardware structure forONN.Oscillatorynodes are coupled through

various physical interactions. The left panel shows an injected signal for phase
locking. cHardware structure for HNN. It shows a hardware implementation based
on CBA, where memristive devices are used for graph mapping.
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upper panel of Fig. 4a compares the performance of the CBA-based
EGC to that of traditional landmark (LM) algorithms70. In this case, a
graph with nine nodes and a density of 0.3 is used to evaluate the
average number of attempts required to find the shortest path. The
results show that EGC’s SGM current-based pathfinding outperforms
the LM algorithm when the LM algorithm uses up to four LM nodes.
This outperformance results from the fact that EGC does not require
graph embedding. While LM accuracy improves with the number of
LM nodes, it comes at the cost of increased computational complexity
and the risk of information loss during the embedding process. In
contrast, EGC stores the graph structure directly in the hardware and
utilizes electrical current along the shortest paths to estimate distance,
providing higher accuracy and lower computational load compared to
LM methods.

The lower panel of Fig. 4a presents a more complex task: on-
condition pathfinding in a graph with 40 nodes and a density of 0.1,
where several nodes may become unavailable during the pathfinding
process (dynamic graph). In LM, every time a node becomes unavail-
able, the graphmust be re-embedded, leading to ahighprocessing cost.
On the other hand, EGC only requires modification of the graph data
stored in the CBA, making it far more suited to dynamic pathfinding.
Among the EGC methods, cw-CBA is more effective than m-CBA
because it allows direct modification of node states, while m-CBA
requires physically turning off the edges of the unavailable node.

For link prediction tasks, which aim to forecast potential future
connections between nodes, EGC offers a distinct advantage. The key
to effective link prediction is the ability to evaluate multi-hop con-
nections between nodes, typically based on their similarity71. In EGC,
the SGM current between two nodes serves as a similarity measure.

The lower panel of Fig. 4b compares the link prediction performance
of SGM current with conventional similarity indices such as Common
Neighbor72, AdamicAdar73, and Jaccard74 across three datasets14,75. In all
datasets, the SGM current consistently outperforms the other models,
attributed to SGM’s ability to reflect the continuous nature of graphical
topology. In contrast, conventional similarity indices are discrete and
may lack the resolution to distinguish subtle differences between
node pairs.

Similarly, community detection algorithms, which identify clus-
ters of nodes that are more densely connected than the rest of the
graph, also benefit from EGC’s capabilities. The process typically
involves creating a similarity matrix for all node pairs and merging
highly connected nodes into clusters to maximize modularity76.
Community detection is considered successful when the maximum
modularity is high, as this reflects the quality of the identified clusters.
EGC’s SGM provides a comprehensive assessment of direct and indir-
ect connections, making it an effective similarity measure for com-
munity detection. The lower panel of Fig. 4c compares the modularity
achieved by the SGM current with other algorithms across three
datasets. The results show that EGC’s SGMcurrent is comparable to the
latest models, indicating that it effectively captures the high-
dimensional information of the graph, while still consuming much
lower computational costs.

Additionally, EGC can address real-world problems, such as
protein-protein interaction (PPI) prediction or the PageRank algo-
rithm. PPIs are fundamental to understanding the molecular mechan-
isms underlying various biological processes, which are essential for
drug discovery and disease modeling4,77 The PPI follows the key-lock
principle, where proteins with complementary structures interact
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Fig. 4 | Comparison of the performance of EGC in various applications with
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selectively, requiring specialized similarity measures for accurate
modeling78,79. EGC is suited for this because SGM current paths can be
adjusted to match PPI characteristics (upper panel of Fig. 4d). It has
been shown that SGM using EGC hardware outperforms traditional
similarity measures in predicting PPIs across diverse datasets15.

The PageRank algorithm ranks nodes in a graph based on the
likelihood that a random walker would land on a particular node69.
PageRank is mathematically represented as a steady-state problem
(lower panel of Fig. 4d). To implement PageRank with EGC, it is
necessary to map probabilistic networks onto the hardware. Recent
research implemented PageRank using a multiple m-CBA-based
probabilistic graph21. It utilized device-to-device variations in multi-
ple m-CBAs for probability-voltage mapping, achieving steady-state
estimation with reduced time complexity.

Building on EGC’s demonstrated high performance across various
tasks, its advantages extend beyond accuracy to include significant
hardwareefficiency.One areawhere this is particularly evident is graph
embedding, a notoriously resource-intensive process on conventional
CPU-based hardware64. As graph sizes increase, the energy consump-
tion and latency required for embedding grow substantially. Figure 4e,
f compares the energy consumption and latency of various graph
embedding algorithms63,80,81 implemented on CPU hardware with the
memristive PGR approach. By simplifying the embedding process, the
memristive PGR method achieves not only superior energy efficiency,
far surpassing traditional CPU-based algorithms, but also competitive
latency performance, especially for graphs with fewer than 5000
nodes. Also, EGC offers efficient similarity computation after embed-
ding,where the SGMretrieves node-pair similaritywith a single voltage
application. In contrast, conventional hardware typically relies on
vector-based distance formulas, where the latency scales with the
embedding dimension. While EGC latency may increase when the
current path spans multiple devices due to increased R-C delay, this
effect is typicallyminimal in real-world graphs, which tend tomaintain
short average path lengths owing to their small-world characteristics.
When such hardware delays do occur, they can be mitigated by
enhancing the on-state performance of the device, particularly by
reducing resistance and ensuring Ohmic behavior.

In contrast, QGC is widely used for different applications from
EGC by computing the time evolution of the networks. Figure 5 shows
three representative applications of QGC. First, the invertible calcula-
tion was extensively researched using p-computing (Fig. 5a). Invertible
Boolean logic and integer factorization were achieved by the energy-
based representation of the problem. The right panel of Fig. 5a shows
themaximumnumber factorized using networks of p-bits. The integer
factorization of larger numbers requires complex graphs and a finely
tuned annealing schedule. Subsequently, p-computing based on
mature CMOS technology achieved a higher number of factorizations
more effectively than emerging memories.

ONN and p-computing are also used in stochastic network
implementation (Fig. 5b). Although these methods aim for general
computing purposes using network implementation, most works have
focused on Ising machines for combinatorial optimization. It shows
that the number of nodes in p-computing is generally larger than that
of ONN due to the difficulty in the physical coupling of oscillators in
ONN. Moreover, nodes based on CMOS technology, such as ring
oscillator and linear-feedback shift register31,46, could achieve more
complex networks than phase-transition nano-oscillators, memristors,
and MTJs did33,35,48.

The third example illustrates the combinatorial optimization of
QGC, further expanding the application of stochastic networks (Fig. 5c,
d). The left panel of Fig. 5c shows the phase difference used for Max-
Cut problem-solving through ONN, while the left panel of Fig. 5d
depicts the iterative process to find the global minimum in HNN. Two
qualitative parameters of energy-to-solution (ETS) and time-to-
solution (TTS) are shown in the right panel of Fig. 5c, d, respectively,
which refer to energy and time to obtain the global minimum in the
given optimization problems. CMOS implementation59 consumes
higher energy than emerging memory devices48,56–58. In addition, var-
ious works on ONN and HNN demonstrate TTS on the scale of nano-
seconds to microseconds. However, determining the optimal
approach remains challenging because the TTS is often calculated
based on theoretical switching speeds or predicted clock speeds in
scaled devices and is highly sensitive to the specific tuning of the
algorithms employed.
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Opportunities and technical challenges for future development
of EGC and QGC
This section discusses the achievements and potential enhancements
in device technology and integration for EGC and QGC. These
improvements aim to enhance performance or broaden the scope of
solvable problems for both graph computing methods.

Currently, self-rectifying memristors are predominantly used as
the fundamental units for EGC (upper left panel of Fig. 6a). These self-
rectifyingmemristors typically exhibit nonlinear current–voltage (I–V)
characteristics, posing challenges for analyzing large-scale graphs.
Nonlinear I–V behavior makes it difficult to extract information from
graph paths with longer distances. In such cases, multiple memristors
arranged in series along a graph path can cause voltage division,
resulting in SGM currents that fall belowmeasurable levels. Even when
measurable, the excessively high resistance can significantly increase
hardware latency. Although lower currents can enhance the energy
efficiency of the CBA, the energy consumption in ADCs and DACs
within peripheral circuits is much higher than that in the CBA. There-
fore, decreasing latency in theCBA’s unit devices ismorebeneficial. To
accurately capture information from distant graph paths with low
latency, devices must possess rectifying and Ohmic characteristics,
enabling linear I–V behavior and high current flow under specific bia-
ses,while exhibiting nonlinear I–V behavior and restricted current flow
under opposite biases. This performance can be achieved by inte-
grating a diodewith amemristorwithOhmic properties (uppermiddle
panel of Fig. 6a).

Furthermore, the hardware becomes reconfigurable by develop-
ing devices that manipulate rectification direction, thereby enhancing
area efficiency. By allowing each device to function interchangeably as
a node or an edge, processes such as metal vias or cross-wiring are
unnecessary. This reconfigurability enables the same CBA hardware to
represent planar, multilayer, and hierarchical graphs. Developing such
devices may involve integrating ferroelectric materials, which enable
polarization-based resistive switching, with memristors (upper right
panel of Fig. 6a).

Also, expanding the range of solvable problems within EGC is
essential. Although various graph structures exist, current EGC
research ismainly limited to planar graphs (lower left panel of Fig. 6a).
Representing multilayer and hierarchical graphs requires expanding
CBAs laterally or vertically and utilizing crossbar tensor architectures,
where multiple CBAs are arranged in a tensor structure (lower middle
panel of Fig. 6a). Moreover, existing EGC hardware has only been able
to verify the current value. If current path information could be
obtained physically, it would enable one-shot pathfinding and appli-
cations to complex problems, such as the traveling salesperson pro-
blem. This goal could be achievedusing physical elements suchas light
or charge. For example, incorporating light-emitting diodes at node
devices would allow optical verification of current paths, or connect-
ing parallel capacitors to node devices could enable the detection of
current paths by measuring the charge on each capacitor immediately
after SGM operations (lower right panel of Fig. 6a).

As discussed in Fig. 3, QGC utilizes nanomaterials to achieve high
energy efficiency. As FPGA-based approaches benefit from high inte-
gration density and flexibility, QGC should utilize the massive paral-
lelism and dynamics of nanomaterials, similar to AI accelerators19.
However, QGC requires CMOS peripheral circuits, which account for
most of the energy consumption and hinder achieving the theoretical
switching and reading speeds. Consequently, current research focuses
more on increasing the number of two-level nodes to enhance paral-
lelism rather than improving individual devices.

Nevertheless, many real-world optimization problems require
more complex nodes and interactions than the quadratic interactions
of binary nodes typically handled by QGC. For example, satisfiability
problems can be modeled as hypergraph problems, requiring nodes
with multiple levels as the clause number increases. Furthermore,

nodes interact at higher orders in these problems, which conventional
QGC cannot implement without external CMOS calculations (middle
panel of Fig. 6b). Recently, third-order interactions have been
demonstrated by duplicating memristive devices with limited
functionality55. Moreover, auxiliary nodes were used to translate a
multi-level node into binary nodes for complex optimization problems
in QGC40.

In the long term, the device itself should implement additional
functionalities to decrease area overhead and increase integration
density (right panel of Fig. 6b). For instance, three-terminal devices
showed improved solution quality through continuous modulation of
an additional terminal to implement adiabatic annealing60. The
increased functionality will also enable parallel calculation of high-
order coupling of p-computing, whichwas calculated in an FPGA in the
previous works. In ONN, both complex nodes and edges can be rea-
lized through device engineering. The number of levels of oscillatory
nodes is determined by dividing the phase into several subgroups;
therefore, more precise edge coupling weights and uniform oscilla-
tions can expand the range of solvable problems using ONN. More-
over, as the edges in ONN need to correspond to those in the problem
graph each time, their coupling strengths must be reconfigurable and
programmable. Although electrically programmable devices, such as
ferroelectric materials, are available, their practical implementation
requires further development, particularly in improving the on-off
ratio and endurance.

While EGC and QGC hardware have been implemented with up to
tens to thousands of nodes, the ultimate goal for both hardware is to
solve large-scale real-world graph problems. However, denser inte-
gration with scaled devices cannot support millions of nodes because
the edge connection and coupling will increase quadratically. Conse-
quently, full-stack research, in addition to device integration, is
required.

One practical approach is clustering, which divides large graphs
into manageable units by separating them into inter-cluster and intra-
cluster graphs. This hierarchical analysis enables handling complex,
large-scale graphs without the need for infinitely expanding hardware.
It was also adopted in p-computing to realize asynchronous parallel
computing42. Moreover, clustering helps address the inefficiency of
mapping sparse graph data onto dense CBAs, wheremapping N nodes
requires an N²-sized CBA. Decreasing node numbers through cluster-
ing mitigates the discrepancy between the graph’s sparsity and the
CBA’s density, enhancing area efficiency. To implement clustering-
based analysis, hardware must support time-multiplexing or spatial-
multiplexing operations. Achieving this would require device engi-
neering to enable computing cores with plausible performance and
architecture-level engineering to control them efficiently. Specifically,
device latency and variation should be diminished to calculate on
larger clustered graphs.

Outlook
If advancements in performance, the range of solvable problems, and
integration, as proposed in Fig. 6, are successfully achieved, EGC and
QGC could become general-purpose systems capable of addressing
real-world graph tasks (Fig. 7). EGC excels at effortlessly extracting
connectivity information from graphs. Utilizing the characteristic of
current flowing only from higher to lower potentials, SGM naturally
eliminates redundant paths that revisit specific nodes, thereby isolat-
ing meaningful graph connections. This capability represents an
intractable function that classical computing systems cannot effi-
ciently perform through matrix operations.

One significant real-world application where EGC can be effec-
tively utilized is analyzing knowledge graphs. Knowledge graphs are
structured representations of information that model entities and
their interrelationships, typically based on ontologies that define the
types and properties of these entities and relationships82. To mitigate
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persistent issues in large language models, such as a lack of inter-
pretability, low reliability, and hallucinations, there is a growing effort
to integrate knowledge graphs with large language models83. Knowl-
edge graphs are extensive graphs composedof inter-domain and intra-

domain connections, making them challenging to analyze using clas-
sical computers. Hierarchical and multilayer EGC hardware can pro-
cess knowledge graphs rapidly, facilitating their integration with large
language models.
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The expanding field of deep learning opens opportunities to
integrate EGC into graph convolutional networks84. Traditional graph
convolutional networks rely on matrix operations that can cause over-
smoothing and limit performance85. EGC’s SGM, with its multi-hop
connectivity and exclusion of backtracking paths, simplifies feature
extraction and mitigates over-smoothing. EGC hardware can use
intermediate propagation data to improve graph convolutional net-
works’ accuracy and employs timemultiplexing for scalable analysis of
larger graphs.

QGC, on the other hand, can be adopted in various applications,
from cryptography to physics simulation and machine learning.
Although QGC also aims to implement general-purpose processors
such as oscillator-based computing, it is more likely to have specific
purposes. For instance, p-computing will be used in quantum simula-
tion and optimization, whereas ONN andHNNwill bemore specifically
used in machine learning or optimization problems. Either way, all
graph computing methods will be first demonstrated as area-specific
computing architectures along with CPU, and eventually developed to
implement more general logic and computations to enable power-
efficient graph computing. It will require research in various aspects of
programming languages, algorithms, hardware-software interfaces,
and device technologies.

References
1. Ortega, A., Frossard, P., Kovacevic, J., Moura, J. M. F. & Vander-

gheynst, P. Graph signal processing: overview, challenges, and
applications. Proc. IEEE 106, 808–828 (2018).

2. Shi, X. et al. Graph processing on GPUs: a survey. ACM Comput.
Surv. 50, 1–35 (2018).

3. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. The physics
of spreading processes in multilayer networks. Nat. Phys. 12,
901–906 (2016).

4. Aittokallio, T. &Schwikowski, B.Graph-basedmethods for analysing
networks in cell biology. Brief. Bioinform. 7, 243–255 (2006).

5. Graph Algorithms in the Language of Linear Algebra. Society for
Industrial and Applied Mathematics https://doi.org/10.1137/1.
9780898719918 (2011).

6. Latapy, M. Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theor. Comput. Sci. 407,
458–473 (2008).

7. Stathis, D., Vourkas, I. & Sirakoulis, G. C. Shortest path computing
using memristor-based circuits and cellular automata. in Lecture
Notes in Computer Science (including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) https://
doi.org/10.1007/978-3-319-11520-7_41 (2014).

8. Milano, G. et al. In materia reservoir computing with a fully mem-
ristive architecture based on self-organizing nanowire networks.
Nat. Mater. 21, 195–202 (2022).

9. Lilak, S. et al. Spoken digit classification by in-materio reservoir
computing with neuromorphic atomic switch networks. Front.
Nanotechnol. https://doi.org/10.3389/fnano.2021.675792 (2021).

10. Zhu, R. et al. Information dynamics in neuromorphic nanowire
networks. Sci. Rep. 11, 13047 (2021).

11. Diaz-Alvarez, A. et al. Emergent dynamics of neuromorphic nano-
wire networks. Sci. Rep. 9, 4920 (2019).

12. Appeltant, L. et al. Information processing using a single dynamical
node as complex system. Nat. Commun. 2, 468 (2011).

13. Guo, Y. et al. Generative complex networks within a dynamic
memristor with intrinsic variability. Nat. Commun. 14, 6134 (2023).

14. Jang, Y. H. et al. Graph analysis with multifunctional self-rectifying
memristive crossbar array. Adv. Mater. 35, e2209503 (2023).

15. Jang, Y. H. et al. Cross-wiredmemristive crossbar array for effective
graph data analysis. Adv. Mater. 2311040, 1–14 (2023).

16. Jang, Y. H. et al. Spatiotemporal data processing with memristor
crossbar array-based graph reservoir. Adv. Mater. 36,
e2309314 (2023).

17. Woo, K. S. et al. Memristors with Tunable Volatility for Reconfigur-
able Neuromorphic Computing. ACS Nano 18, 17007–17017
(2024).

18. Kim, G. et al. Mott neurons with dual thermal dynamics for spatio-
temporal computing. Nat. Mater. 23, 1237–1244 (2024).

19. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired
computing. Nat. Mater. https://doi.org/10.1038/s41563-019-0291-x
(2019).

20. Woo, K. S., Williams, R. S. & Kumar, S. Localized conduction chan-
nels in memristors. Chem. Rev. 125, 294–325 (2024).

21. Jang, Y. H. et al. Memristive crossbar array-based probabilistic
graph modeling. Adv. Mater. 36, 2403904 (2024).

22. Carpinone, A., Giorgio, M., Langella, R. & Testa, A. Markov chain
modeling for very-short-termwind power forecasting.Electr. Power
Syst. Res. https://doi.org/10.1016/j.epsr.2014.12.025 (2015).

23. Nagargoje, P. & Baviskar, M. Uncertainty handling in big data ana-
lytics survey, opportunities and challenges. Int. J. Comput. Sci. Eng.
https://doi.org/10.26438/ijcse/v9i6.5963 (2021).

24. Chowdhury, S. et al. A full-stack view of probabilistic computing
with p-bits: devices, architectures, and algorithms. IEEE J. Explor.
Solid State Comput. Devices Circuits https://doi.org/10.1109/
JXCDC.2023.3256981 (2023).

25. Kaiser, J. & Datta, S. Probabilistic computingwith p-bits. Appl. Phys.
Lett. 119, https://doi.org/10.1063/5.0067927 (2021).

EGC
Server

Knowledge Graph Graph Convolutional Network

Physics Simulation Quantum Machine
Learning

User

...

...

...

QGC

Fig. 7 | Future applications of EGC and QGC. Four possible applications of EGC
andQGCare shown. EGCcanbe applied toKGandGCN,whereasQGChaspotential
usage in physics simulation and quantum machine learning. While EGC excels at

extracting connectivity and path information from various types of graphs, QGC is
more adequate in describing complex systems’ time evolution and optimization.

Perspective https://doi.org/10.1038/s41467-025-63494-z

Nature Communications |         (2025) 16:8029 11

https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1007/978-3-319-11520-7_41
https://doi.org/10.1007/978-3-319-11520-7_41
https://doi.org/10.3389/fnano.2021.675792
https://doi.org/10.1038/s41563-019-0291-x
https://doi.org/10.1016/j.epsr.2014.12.025
https://doi.org/10.26438/ijcse/v9i6.5963
https://doi.org/10.1109/JXCDC.2023.3256981
https://doi.org/10.1109/JXCDC.2023.3256981
https://doi.org/10.1063/5.0067927
www.nature.com/naturecommunications


26. Smithson, S. C., Onizawa, N., Meyer, B. H., Gross, W. J. & Hanyu, T.
Efficient CMOS invertible logic using stochastic computing. IEEE
Trans. Circuits Syst. I Regul. Pap. 66, 2263–2274 (2019).

27. Patel, S., Canoza, P. & Salahuddin, S. Logically synthesized and
hardware-accelerated restricted Boltzmann machines for combi-
natorial optimization and integer factorization. Nat. Electron. 5,
92–101 (2022).

28. Aadit, N. A. et al. Massively parallel probabilistic computing with
sparse Ising machines. Nat. Electron. 5, 460–468 (2022).

29. Yamaoka, M. et al. A 20k-spin Ising chip to solve combinatorial
optimization problems with CMOS annealing. IEEE J. Solid State
Circuits 51, 303–309 (2016).

30. Baity-Jesi, M. et al. Janus II: a new generation application-driven
computer for spin-system simulations. Comput. Phys. Commun.
https://doi.org/10.1016/j.cpc.2013.10.019 (2014).

31. Sutton, B. et al. Autonomous probabilistic coprocessing with
petaflips per second. IEEE Access 8, 157238–157252 (2020).

32. Singh, N. S. et al. CMOS plus stochastic nanomagnets enabling
heterogeneous computers for probabilistic inference and learning.
Nat. Commun. 15, 2685 (2024).

33. Borders, W. A. et al. Integer factorization using stochastic magnetic
tunnel junctions. Nature 573, 390–393 (2019).

34. Kim, J. et al. Fully CMOS-based p-bits with a bistable resistor for
probabilistic computing. Adv. Funct. Mater. 2307935, 1–9 (2024).

35. Woo, K. S. et al. Probabilistic computing using Cu0.1Te0.9/HfO2/Pt
diffusive memristors. Nat. Commun. 13, 5762 (2022).

36. Milozzi, A., Ricci, S. & Ielmini, D.Memristive tonotopicmappingwith
volatile resistive switching memory devices. Nat. Commun. 15,
1–9 (2024).

37. Choi, S. et al. Controllable SiOx nanorod memristive neuron for
probabilistic Bayesian inference. Adv. Mater. 34, e2104598 (2022).

38. Park, T. J. et al. Efficient probabilistic computing with stochastic
perovskite nickelates. Nano Lett. 22, 8654–8661 (2022).

39. Hamerly, R. et al. Experimental investigation of performance dif-
ferences between coherent Ising machines and a quantum annea-
ler. Sci. Adv. 5, eaau0823 (2019).

40. Nikhar, S., Kannan, S., Aadit, N. A., Chowdhury, S. & Camsari, K. Y.
All-to-all reconfigurability with sparse and higher-order Ising
machines. Nat. Commun. 15, 8977 (2024).

41. Csaba, G. & Porod, W. Coupled oscillators for computing: a review
and perspective. Appl. Phys. Rev. 7, https://doi.org/10.1063/1.
5120412 (2020).

42. Ahmed, I., Chiu, P.W., Moy,W. & Kim, C. H. A probabilistic compute
fabric based on coupled ring oscillators for solving combinatorial
optimization problems. IEEE J. Solid State Circuits https://doi.org/
10.1109/JSSC.2021.3062821 (2021).

43. Wang, T., Wu, L., Nobel, P. & Roychowdhury, J. Solving combina-
torial optimisation problems using oscillator based Ising machines.
Nat. Comput. 20, 287–306 (2021).

44. Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture
for solving constraint satisfaction problems. Nat. Commun. https://
doi.org/10.1038/ncomms9941 (2015).

45. Bashar, M. K. et al. Experimental demonstration of a reconfigurable
coupled oscillator platform to solve the Max-Cut problem. IEEE J.
Explor. Solid State Comput. Devices Circuits 6, 116–121 (2020).

46. Moy, W. et al. A 1,968-node coupled ring oscillator circuit for
combinatorial optimization problem solving. Nat. Electron. 5,
310–317 (2022).

47. Wang, T., Wu, L. & Roychowdhury, J. Late breaking results: new
computational results and hardware prototypes for oscillator-
based Ising machines. In Proc. Design Automation Conference
https://doi.org/10.1145/3316781.3322473 (2019).

48. Dutta, S. et al. An Ising Hamiltonian solver based on coupled sto-
chastic phase-transition nano-oscillators. Nat. Electron. 4,
502–512 (2021).

49. Maher, O. et al. A CMOS-compatible oscillation-based VO2 Ising
machine solver. Nat. Commun. 15, 1–11 (2024).

50. Dutta, S. et al. Experimental demonstration of phase transition
nano-oscillator based ising machine. In Proc. Technical Digest—
International Electron Devices Meeting, IEDM https://doi.org/10.
1109/IEDM19573.2019.8993460 (2019).

51. Rhee, H. et al. Probabilistic computing with NbOx metal-insulator
transition-based self-oscillatory pbit. Nat. Commun. https://doi.
org/10.1038/s41467-023-43085-6 (2023).

52. Honjo, T. et al. 100,000-spin coherent Ising machine. Sci. Adv. 7,
eabh0952 (2021).

53. Fahmy, H. A. H. & Kiehl, R. A. Complete logic family using tunneling-
phase-logic devices. In Proc. International Conference on Micro-
electronics, ICM https://doi.org/10.1109/ICM.2000.884828 (1999).

54. Xu, Y. & Lee, J. E. Y. Mechanically coupled SOI Lamé-mode reso-
nator-arrays: Synchronized oscillations with high quality factors of 1
million. InProc. 2013 Joint European Frequency andTime Forumand
International Frequency Control Symposium, EFTF/IFC 133–136
https://doi.org/10.1109/EFTF-IFC.2013.6702184 (2013).

55. Hizzani, M. et al. Memristor-based hardware and algorithms for
higher-order Hopfield optimization solver outperforming quadratic
Ising machines. In Proc. IEEE International Symposium on Circuits
and Systems 1–5. https://doi.org/10.1109/ISCAS58744.2024.
10558658 (2024).

56. Jiang, M., Shan, K., He, C. & Li, C. Efficient combinatorial optimiza-
tion by quantum-inspired parallel annealing in analoguememristor
crossbar. Nat. Commun. 14, 5927 (2023).

57. Cai, F. et al. Power-efficient combinatorial optimization using
intrinsic noise inmemristor Hopfield neural networks.Nat. Electron.
3, 409–418 (2020).

58. Lee, S. H. et al. In-materia annealing and combinatorial optimization
based on vertical memristive array. Adv. Mater. 2410191,
1–12 (2024).

59. King, A. D., Bernoudy, W., King, J., Berkley, A. J. & Lanting, T. Emu-
lating the coherent Ising machine with a mean-field algorithm.
Preprint at arXiv https://doi.org/10.48550/arXiv.1806.08422 (2018).

60. Yi, S. I., Kumar, S. & Williams, R. S. Improved hopfield network
optimization using manufacturable three-terminal electronic
synapses. IEEE Trans. Circuits Syst. I Regul. Pap. 68,
4970–4978 (2021).

61. Arsov, N. & Mirceva, G. Network embedding: an overview. Preprint
at arXiv https://doi.org/10.48550/arXiv.1911.11726 (2019).

62. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: online learning of
social representations. In Proc. ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining https://doi.org/
10.1145/2623330.2623732 (2014).

63. Grover, A. & Leskovec, J. Node2vec: scalable feature learning for
networks. In Proc. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining https://doi.org/10.1145/
2939672.2939754 (2016).

64. Cai, H., Zheng, V. W. & Chang, K. C. C. A comprehensive survey of
graph embedding: problems, techniques, and applications. IEEE
Trans. Knowl. Data Eng. 30, 1616–1637 (2018).

65. Hamilton,W. L. GraphRepresentation LearningHamilton. Synthesis
Lectures on Artificial Intelligence and Machine Learning https://doi.
org/10.2200/S01045ED1V01Y202009AIM046 (2020).

66. Grover, L. K. Quantum computers can search arbitrarily large
databases by a single query. Phys. Rev. Lett. 79, 4709 (1997).

67. Shor, P. W. Algorithms for quantum computation: Discrete loga-
rithms and factoring. In Proc. Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS https://doi.org/10.1109/SFCS.
1994.365700 (1994).

68. Jang, Y. H., Han, J.-K. & Hwang, C. S. A review of memristive
reservoir computing for temporal data processing and sensing.
Infoscience 1, 1–19 (2024).

Perspective https://doi.org/10.1038/s41467-025-63494-z

Nature Communications |         (2025) 16:8029 12

https://doi.org/10.1016/j.cpc.2013.10.019
https://doi.org/10.1063/1.5120412
https://doi.org/10.1063/1.5120412
https://doi.org/10.1109/JSSC.2021.3062821
https://doi.org/10.1109/JSSC.2021.3062821
https://doi.org/10.1038/ncomms9941
https://doi.org/10.1038/ncomms9941
https://doi.org/10.1145/3316781.3322473
https://doi.org/10.1109/IEDM19573.2019.8993460
https://doi.org/10.1109/IEDM19573.2019.8993460
https://doi.org/10.1038/s41467-023-43085-6
https://doi.org/10.1038/s41467-023-43085-6
https://doi.org/10.1109/ICM.2000.884828
https://doi.org/10.1109/EFTF-IFC.2013.6702184
https://doi.org/10.1109/ISCAS58744.2024.10558658
https://doi.org/10.1109/ISCAS58744.2024.10558658
https://doi.org/10.48550/arXiv.1806.08422
https://doi.org/10.48550/arXiv.1911.11726
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
www.nature.com/naturecommunications


69. Page, L., Brin, S., Motwani, R. &Winograd, T. The PageRank Citation
Ranking: bringing order to the web. The Web Conference (1999).
https://api.semanticscholar.org/CorpusID:1508503.

70. Goldberg, A. & Harrelson, C. Computing the Shortest Path: A*
Search Meets Graph Theory. https://www.microsoft.com/en-us/
research/publication/computing-the-shortest-path-a-search-
meets-graph-theory/ (2004).

71. Ahmad, I., Akhtar, M. U., Noor, S. & Shahnaz, A. Missing link pre-
diction using common neighbor and centrality based para-
meterized algorithm. Sci. Rep. 10, 1–9 (2020).

72. Lü, L., Jin, C. H. & Zhou, T. Similarity index based on local paths for
link prediction of complex networks. Phys. Rev. E Stat. Nonlinear
Soft Matter Phys. 80, 046122 (2009).

73. Adamic, L. A. & Adar, E. Friends and neighbors on the Web. Soc.
Netw. 25, 211–230 (2003).

74. Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for
social networks. J. Am. Soc. Inf. Sci. Technol. https://doi.org/10.
1002/asi.20591 (2007).

75. Rossi, R. A. & Ahmed, N. K. The network data repository with inter-
active graph analytics and visualization. Proceedings of the AAAI
conference on artificial intelligence. Vol. 29, No. 1 (AAAI Press, 2015).

76. Dabaghi Zarandi, F. & Kuchaki Rafsanjani, M. Community detection
in complex networks using structural similarity. Phys. A Stat. Mech.
Appl. 503, 882–891 (2018).

77. Abbas, K. et al. Application of network link prediction in drug dis-
covery. BMCBioinform. https://doi.org/10.1186/s12859-021-04082-y
(2021).

78. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting protein-protein
interactions from the molecular to the proteome level. Chem. Rev.
116, 4884–4909 https://doi.org/10.1021/acs.chemrev.
5b00683 (2016).

79. Szilágyi, A., Grimm, V., Arakaki, A. K. & Skolnick, J. Prediction of
physical protein-protein interactions. Phys. Biol. 2, 1–16 https://doi.
org/10.1088/1478-3975/2/2/S01 (2005).

80. Tang, J. et al. LINE: Large-scale information network embedding. In
Proc. WWW 2015—24th International Conference on World Wide
Web https://doi.org/10.1145/2736277.2741093 (2015)

81. Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation
learning on large graphs. in Advances in Neural Information Pro-
cessing Systems 30, https://proceedings.neurips.cc/paper_files/
paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.
pdf (2017).

82. Ji, S., Pan, S., Cambria, E., Marttinen, P. & Yu, P. S. A survey on
knowledge graphs: representation, acquisition, and applications.
IEEE Trans. Neural Netw. Learn. Syst. 33, 494–514 (2022).

83. Yang, L., Chen, H., Li, Z., Ding, X. & Wu, X. ChatGPT is not enough:
enhancing large language models with knowledge graphs for fact-
aware language modeling. Preprint at arXiv https://doi.org/10.
48550/arXiv.2306.11489 (2023).

84. Zhang, S., Tong, H., Xu, J. & Maciejewski, R. Graph convolutional
networks: a comprehensive review.Comput. Soc. Netw. https://doi.
org/10.1186/s40649-019-0069-y (2019).

85. Zhang, X., Xu, Y., He, W., Guo, W. & Cui, L. A comprehensive review
of the oversmoothing in graph neural networks. inCommunications
in Computer and Information Science https://doi.org/10.1007/978-
981-99-9637-7_33 (2024).

Acknowledgements
Y.H.J. is supported by the Sejong Science Fellowship of the National
ResearchFoundationof Korea (GrantNo. RS-2024-00342455). Thiswork
was also supported by theNational Research Foundation of Korea (Grant
No. 2020R1A3B2079882).

Author contributions
Y.H.J., J.H., and S.H.L. contributed equally to this work. Y.H.J., J.H., and
S.H.L. initiated the paper and developed its outline. Y.H.J., J.H., and
S.H.L. wrote the first draft. C.S.H. revised themanuscript and supervised
the entire project. All authors approved the submission.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Cheol Seong Hwang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Perspective https://doi.org/10.1038/s41467-025-63494-z

Nature Communications |         (2025) 16:8029 13

https://api.semanticscholar.org/CorpusID:1508503
https://www.microsoft.com/en-us/research/publication/computing-the-shortest-path-a-search-meets-graph-theory/
https://www.microsoft.com/en-us/research/publication/computing-the-shortest-path-a-search-meets-graph-theory/
https://www.microsoft.com/en-us/research/publication/computing-the-shortest-path-a-search-meets-graph-theory/
https://doi.org/10.1002/asi.20591
https://doi.org/10.1002/asi.20591
https://doi.org/10.1186/s12859-021-04082-y
https://doi.org/10.1021/acs.chemrev.5b00683
https://doi.org/10.1021/acs.chemrev.5b00683
https://doi.org/10.1088/1478-3975/2/2/S01
https://doi.org/10.1088/1478-3975/2/2/S01
https://doi.org/10.1145/2736277.2741093
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.48550/arXiv.2306.11489
https://doi.org/10.48550/arXiv.2306.11489
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1007/978-981-99-9637-7_33
https://doi.org/10.1007/978-981-99-9637-7_33
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Next-generation graph computing with electric current-based and quantum-inspired approaches
	Results
	Graph computing theory
	Quantum-inspired graph computing
	Advancements in structures for physical graph representation
	Various applications of EGC and QGC
	Opportunities and technical challenges for future development of EGC and QGC

	Outlook
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




