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Predicting rhizosphere-competence-related
catabolic gene clusters in plant-associated
bacteria with rhizoSMASH

Yuze Li 1,2,3,4, Mingxue Sun 1,2,3,4, Jos M. Raaijmakers 4,5, Liesje Mommer 6,
Fusuo Zhang 1,2, Chunxu Song 1,2 & Marnix H. Medema 3,5

Plants release a substantial fraction of their photosynthesized carbon into the
rhizosphere as root exudates that drive microbiome assembly. Deciphering
howplantsmodulate the composition and activities of rhizospheremicrobiota
through root exudates is challenging, as no dedicated computationalmethods
exist to systematically identify microbial root exudate catabolic pathways.
Here, we integrate published information on catabolic genes in bacteria that
contribute to their rhizosphere competence and develop the rhizoSMASH
algorithm for genome-synteny-based annotation of rhizosphere-competence-
related catabolic gene clusters (rCGCs) in bacteria with 58 curated detection
rules. Our analysis reveals heterogeneity in rCGC prevalence both across and
within plant-associated bacterial taxa, indicating extensive niche specializa-
tion. Furthermore, we demonstrate the predictive value of the presence or
absence of rCGCs for rhizosphere competence in machine learning with two
case studies. rhizoSMASH provides an extensible framework for studying
rhizosphere bacterial catabolism, facilitating microbiome-assisted breeding
approaches for sustainable agriculture.

The rhizosphere, the narrow soil zone surrounding and influenced by
plant roots, exhibits physicochemical properties distinct from bulk
soil, shaped by root-mediated carbon deposition and metabolic
activity. Plants release a significant amount of photosynthesized car-
bohydrates into their rhizosphere1,2. These exudates comprise a com-
plex blend of chemical compounds, including sugars, organic acids,
amino acids, biogenic amines, and secondary metabolites, which can
vary substantially across plant species, genotypes within a plant spe-
cies, developmental stages, and physiological conditions3–5. Acting as
nutrients, chemoattractants, and antimicrobials, root exudates shape
the composition and activities of microbial communities in the
rhizosphere4,6,7. Bacteria adapted to colonizing this niche, collectively

termed rhizobacteria, form part of the plant beneficial microbiome
and can enhance nutrient acquisition, regulate phytohormone home-
ostasis, and mitigate (a) biotic stresses8–18.

Given the vast and dynamic chemical diversity of root exudates,
deciphering how plants metabolically modulate rhizosphere commu-
nity composition and activity remains a major challenge19. Under-
standing rhizobacterial catabolic pathways is crucial for predicting
host selection of their microbiota and the subsequent rhizobacterial
colonization success20–24. Some studies have shown that the dysfunc-
tion of a single catabolic pathway can directly affect rhizosphere
competence, i.e., the ability of microbial taxa to colonize the rhizo-
sphere in competition with other microorganisms25–28. Thus, linking
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bacterial catabolic capacities to plant root exudate profiles is instru-
mental for predicting rhizosphere competence.

Predicting bacterial catabolic capacities from genomic data
remains challenging due to functional diversification within enzyme
families.Homology-based approaches often fail to accurately annotate
enzyme-coding genes, as evolutionarily divergent enzymes within
shared protein families frequently exhibit high sequence similarity yet
catalyze distinct reactions. For example, inPseudomonas spp. genomic
annotations, genes encoding L-lysine mono-oxygenases tend to be
misannotated as L-tryptophanmonooxygenase, because they are from
the same protein family (PF01593) and have high mutual sequence
similarity15,29,30. The annotation accuracy of metabolic genes can be
improved by leveraging their genomic synteny context31. Genes
encoding enzymes from a catabolic pathway often co-localize in the
genome, forming operons or larger gene clusters. This arrangement
not only facilitates coordinated gene expression in polycistronic
mRNAs, but also enables related genes being translocated together as
a whole mobile unit32,33. This phenomenon enables distinguishing the
above-mentioned L-lysine and L-tryptophan-monooxygenase-coding
genes based onwhether they cluster with a carbon-nitrogen hydrolase
family (PF00795) or an amidase family (PF01425) gene15. The ability to
accurately and systematically identify rhizosphere-competence-
related catabolic gene clusters (rCGCs) would facilitate establishing
functional links between plant metabolic diversity and their micro-
biome composition and thus enable breeding strategies to steer plant
microbiome composition through specific constituents in the root or
shoot exudates.

Here, we leveraged synteny-based annotation principles to
address this challenge, and developed rhizoSMASH (rhizosphere-
competence-related cataboliSM Analysis SHell), a bioinformatic tool
which applies a rule-based gene cluster detection algorithm based on
the successful principles developed in antiSMASH34 to facilitate the
prediction of gene clusters related to the catabolism of root exudate
metabolites. The first distribution of rhizoSMASH contains over 50
rCGC detection rules, carefully manually curated based on sequence
similarity network analysis and covering a wide range of gene clusters
encoding pathways that catabolize specific carbohydrates, organic
acids, amino acids, biogenic amines, phytohormones, and aromatic
compounds found in root exudates. We screened soil- and rhizo-
bacterial genomes with rhizoSMASH and revealed patterns in taxo-
nomic and genomic distribution of rCGCs. Our analyses on two case

studies also verified the connection between catabolic capacities and
the genomic presence of rCGCs, indicating that the predictive value of
rhizoSMASH-based rCGC absence/presence profiles on rhizosphere
competence is ‘on par’with that of experimentallymeasured substrate
utilization assays.

Results and discussion
Development of rhizoSMASH
We introduced a first working version of the rhizoSMASH algorithm
that predicts rCGC in bacterial genomes. As a member of the anti-
SMASH software family34,35, rhizoSMASH also predicts gene clusters
using a set of detection rules. Each of these rules describes the com-
bination(s) of functional domains captured by profile hidden Markov
models (Fig. 1a, for more details see and Methods).

The development of rhizoSMASH started with an initial set of
detection rules summarized from known rCGCs with genetic, and/or
biochemical evidence for their function in literature (Supplementary
Fig. 1, Supplementary Table 2). The detection rules then underwent
three rounds of manual calibration using sequence similarity network
analysis to improve their prediction accuracies based on detailed
literature-guided assessment of detected gene cluster families to
identify putative false positives and false negatives (Fig. 1b, final ver-
ification results are available at https://www.bioinformatics.nl/~li286/
rhizosmash-demo, and more details are in Methods)36. The final set
consists of 58 detection rules, covering pathways that catabolize six
chemical classes of substrates commonly found in root exudates,
which are carbohydrates, organic acids, amino acids, amines, phyto-
hormones and aromatic compounds. The explanations of these sub-
strates, their catabolism in bacteria, examples of known rCGCs, and
evidence for their relevance in rhizosphere competence are docu-
mented at https://www.bioinformatics.nl/~li286/rhizosmash-doc.

In the working version of rhizoSMASH, we largely focused on
catabolic pathways of soluble primary metabolites (with several
exceptions). However, macromolecules, plant-derived poly-
saccharides, volatile compounds, and plant-species-specific secondary
metabolites have also been shown to affect rhizosphere bacteria-plant
interactions2,7,37–41. RhizoSMASH is an extendable software similar to
the other members from the antiSMASH family, and more detection
rule covering catabolism pathways utilizing the above-mentioned
metabolite repertoires will be added into rhizoSMASH in the future
versions.

Diversity of rCGC profile in soil and rhizosphere bacteria
We constructed a collection of 1,226 genome assemblies from BAc-
teria in the Rhizosphere and Soil (the BARS collection, see details in
Methods and Supplementary Table 1) to study the distribution of
rCGCs across bacterial taxonomy. These genomes exhibited both
between- and within-clade diversity in their rCGC presence/absence
profiles (Supplementary Fig. 2). We summarized the prevalence of
each rCGC type in 20 bacterial families with at least 8 complete
assembled genomes in the BARS collection (Fig. 2a). Our results
showed that several rCGC types have high prevalence across almost all
bacterial families (e.g., glutamate synthase glt cluster, 79.3% and glu-
tamine synthetase gln cluster, 93.6%), indicating that these gene
clustersmay encode pathways of fundamental roles in catabolism that
are present in most rhizobacterial genomes. Other rCGC types are
specific to a limited range of clades: the L-proline catabolizing put
clusters are almost only found in Pseudomonadota (previously known
as Proteobacteria) and a few Bacillota (previously known as Firmicutes)
genomes, and the D-proline racemase pathway prd clusters are almost
limited to Clostridiaceae42. Some gene cluster types encoding path-
ways with the same substrate, such as the sucrose hydrolase, phos-
phorylase, and the levansucrase detour pathways, share overlapping
distributions across taxonomy. However, for someother cases, such as
the trehalose phosphotransferase and the trehalase pathways, they

domain A

domain B

domain C

catabolic 
enzymes

gene
clusters

pHMMs

A and  
( B or C )

detection
rules

.gbk

bacterial genome 
sequences

a b

initial rules

literature
study

rCGC families

rKnownCGCs

updated rules

x3 rounds

Fig. 1 | Development of rhizoSMASH. a The gene cluster prediction workflow of
rhizoSMASH. RhizoSMASH takes a genome sequence file as input (GenBank or
FASTA) and recognize potential catabolic enzymes by scanning the sequence
profile hidden Markov models. Gene clusters encoding relevant pathways were
then detected using a set of detection rules. b The tuning procedure used for
curation of rCGC detection rules. An initial set of detection rules was first sum-
marized from a comprehensive literature study. Then, genome sequences in our
BARS collection were scanned using this set of detection rules. The output gene
clusters were grouped into cluster families with BiG-SCAPE together with our
known cluster database, rKnownCGCs. Wemanually curated the detection rules by
visually investigating the gene cluster family network generated by BiG-SCAPE for
putative false positives/negatives, aided by further literature searches when nee-
ded. This calibration, validation andfinetuningwas performed three times to arrive
at more and more optimal detection rules. Created with BioRender.com.
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display complementary distribution, suggesting niche differentiation
across different taxa (phi = −0.27, Fisher’s exact, P = 4 × 10−7). Note that
the absence of an rCGC in a genome does not necessarily mean the
genome does not carry any genes encoding the pathway; in rare cases,
these genes may be scattered in the genome and, therefore, not
recognized as a gene cluster in rhizoSMASH. Also, because the rCGC
detection rules were designed based on known studies, catabolic
pathways encoded by undocumented gene cluster may also exist.

Non-metricmultidimensional scaling (NMDS) of the prevalenceof
the rCGC of 20 bacterial families (Supplementary Fig. 3) showed tax-
onomically related families to share similar rCGC repertoires (PER-
MANOVA of the null: familywise rCGCprevalences are the same across
all phyla, P =0.001). Specifically, Bacillota genomes contain more
carbohydrate-catabolism-associated rCGCs (Wilcoxon, P = 0.0219;
Bacillota sectors in Fig. 2a and Supplementary Fig. 3), consistent with a
previous phylogenetic study on the distribution of carbohydrate-
activate enzymes in bacteria43. In contrast, aromatic-compound- and
phytohormone-catabolizing rCGCs are more frequently found in
Pseudomonadota and Actinomycetota (Wilcoxon, P < 2.2 × 10−16; Cor-
responding sectors in Fig. 2a and Supplementary Fig. 2). Indeed, most
known bacterial aromatic catabolic pathways44,45, as well as auxin
biosynthesis and degradation pathways46,47, were characterized within
these two phyla.

Subsequently, we want to zoom from a broader taxonomic rank
into eachbacterial family. To this end,wefirst investigated the richness
and diversity (detailed definitions inMethods: Family-wise distribution
of rCGCs) of rCGC types in each family (Fig. 2b, c, Supplementary
Fig. 2). The results showed that families with the highest richness of
rCGCs generally belong to Pseudomonadota. Within Pseudomonadota,
the familiesBurkholderiaceae and Pseudomonadaceae have the highest
richness and diversity in rCGC types in their genomes, indicating that
many of these organisms are metabolic generalists able to grow on a
wide array of root exudate components. These two families are also

frequently found as members of the most dominant bacteria families
in various rhizosphere microbiomes48,49. Especially, the family Pseu-
domonadaceae harbors a large number of known plant growth-
promoting rhizobacterial strains9,50–56. In contrast, genomes in the
families Desulfitobacteriaceae, Listeriaceae and Legionellaceae dis-
played both the lowest richness and diversity in rCGC types (Fig. 2b, c,
Supplementary Fig. 2). These families are generally not enriched in the
rhizosphere: Desulfitobacteriaceae spp. bacteria are strict anaerobic
sulfate or organohalide reducers commonly found in anoxic
sediment57,58; Listeriaceae and Legionellaceae are families whose
members are known as food-borne or environmental pathogens59,60.
All genome accessions from these three families belong to the RefSoil
subcollection, indicating their presence in various soil samples based
on metagenomic reads that were mapped to their 16S rDNA
sequences61, but a detailed inspection of these strains showed that
none of them were originally isolated from plant-associated environ-
ments including the rhizosphere (Supplementary Table 3). These
results suggest that rhizosphere-dwelling bacteria carry more abun-
dant and diverse rCGCs than bacteria adapted to ecosystems other
than plants.

Subsequent focus on the family Nocardiaceae, which showed the
highest diversity of rCGC types across all tested families (Fig. 2a, d),
suggested that members of this family may have different catabolic
strategies to adapt to their local environments.Nocardiaceae strains in
our study were originally isolated from various ecosystems, including
human patients, soil, rhizosphere and root (Supplementary Table 3)
which was reflected in their phylogeny (Fig. 2d). In general, environ-
mental strains tend to carry more rCGC types compared to clinical
Nocardiaceae strains (Wilcoxon, P = 0.018). Soil-derived strains are
abundant in aromatic compound degradation pathways (Fig. 2d),
which enable them to utilize lignin-derivedmaterials that are abundant
in soil62,63. The existence of auxin-metabolizing pathways in Nocar-
diaceae spp. has been reported in several studies17,64–68. RhizoSMASH
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family that an rCGC type has been detected by rhizoSMASH (defined as prevalence
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completely assembledgenome in BARS for each family.bThe richness (the average
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also predicted a group of putative rCGCs encoding both auxin bio-
synthesis and degradation pathways that were enriched in environ-
mental strains (Fig. 2d), including the phenylacetate degradation paa
cluster68 and the indole-3-acetate (IAA) to catechol iac gene cluster17.
The aldoxime dehydratase gene clusters (detected by the IAA bio-
synthesis IAN pathway rule) were also reported to have certain level of
substrate specificity for indole-3-aldoxime (IAOx) in other Rhodo-
coccus strains65,66. This intra-family diversity of rCGCs suggests roles of
related catabolism in local adaptation to different environments.

Zooming further into the sub-genomic level, we also observed
unevenly distributed localization of rCGCs within various bacterial
genomes (Supplementary Fig. 4). They form sub-chromosomal
regions that were enriched with rCGCs, including cases where
rCGCs encoding pathways down- or upstream of each other (e.g., a
benzoic acid catabolic gene cluster and the downstream catechol 2,3-
cleavage gene cluster), suggesting they may form genomic islands
(GI) which can facilitate rapid niche adaptation through concerted
horizontal gene transfer69, though we did not have clear statistical
evidence supporting the relationship between these rCGC-rich
regions and tRNA genes (one of the GI markers, Supplementary
Fig. 4). To further study this intra-genomic diversity of rCGC, we
focused on the genus Burkholderia, which typically possesses a
multipartite genome containing three large circular replicons70,71.
The nomenclature of these replicons varies in different study fields,
and in our study, we classified them into three types, “chromosome”,
“chromid” and “megaplasmid”, according to their sequence length in
descending order in each genome. We analyzed all the replicons
from completely assembled Burkholderia genomes in BARS with
NMDS using the rCGC presence/absence profile in each replicon
sequence (Fig. 3a). The result showed that chromosomes, chromids
and megaplasmids from different genomes were grouped together
according to their types instead of their source genomes, indicating
nonrandom localization of certain rCGC classes within the same
replicon types (Fig. 3a). Permutational analysis of variances also
confirmed that rCGC presence/absence profiles are significantly dif-
ferent among chromosome, chromid and megaplasmid

(PERMANOVA; P = 0.001) but not among genome sources (P = 1.00)
or species (P = 0.985). Meanwhile, rCGCs with different substrate
categories also show significant preferences in one or two replicons
(Fig 3b, c). For example, aromatic compound rCGCs being enriched
in megaplasmids and chromids compared to chromosomes, con-
sistent with replicon functional biases reported in previous
studies71,72. As secondary replicons (chromid and megaplasmids)
have faster evolutionary rates73, the enrichment of rCGCs in chromid
and megaplasmids indicates their importance in environment
adaptation70.

So far, we have analyzed the diversity of rCGCs across different
taxonomic and sub-genomic levels. Our results indicate that variation
in rCGC profiles of bacterial genomes is related to their lifestyles.
Therefore, we hypothesize that the rhizosphere competence of a
bacterium can be predicted by its genomic rCGC presence/absence
profile. To explore this hypothesis, we conducted two case studies.

Predicting rhizosphere competence with genomic rCGC profiles
Many studies have aimed to predict rhizosphere competence with
various approaches and features4,49,74,75. Metabolome analyses4, whole-
genome functional annotations49,74,75 or experimental studies with
synthetic communities76,77 have paved the way to predict rhizosphere
behaviors of bacterial groups and have shown clear host-specific
connections with specific catabolic activities or genes. However, most
of these approaches are quite laborious and do not yet establish direct
functional links between root exudate composition and the associated
microbial catabolic pathway genes. Here, we use two of these
studies4,20 to demonstrate the value of rhizoSMASH for advancing
rhizosphere competence analysis based on rCGC profiles.

For our first case study, we adopted the catabolic capability data
(measured with Biolog phenotype microarray) of 60 phenazine-
producing Pseudomonas spp. strains and their rhizosphere coloniza-
tion data inArabidopsis thaliana andpotato rhizospheres publishedby
Zboralski et al. in 2020 (more details inMethods). TheNMDSaccording
to both genomic rCGC profiles and assay-measured catabolic cap-
abilities show separation of strains with various rhizosphere coloni-
zation levels (Fig. 4a). PERMANOVA also confirmed that both rCGCs
profiles and catabolic capabilities were significantly different between
high and low (PrCGC = 0.001, Pcat = 0.001), and between medium and
low (PrCGC = 0.001, Pcat = 0.001) rhizosphere colonizers, but not sig-
nificantly different between high and medium colonizers
(PrCGC = 0.354, Pcat = 0.061). Therefore, we merged the rhizosphere
competence levels “high” and “medium” into one level “med-high” in
the subsequent analysis. Then, we trained random forest models to
predict colonization levels in A. thaliana and potato rhizospheres with
either catabolic capabilities or rCGC profiles as predictors (hereafter
referred to as catabolism-based models and rCGC-based models
respectively). According to an 8-fold nested cross-validation, for rhi-
zosphere colonization in A. thaliana, prediction accuracy of the rCGC-
based model was 0.884 (SD =0.106), while the accuracy of the
catabolism-based model was 0.848 (SD =0.115) (Fig. 4c). For rhizo-
sphere colonization in potato, prediction accuracies of the rCGC-
based model and the catabolism-based model were 0.783 (SD =0.122)
and 0.681 (SD = 0.110) (Fig. 4d). Models trained on rCGC profiles were
in general at least as accurate as models trained on experimentally
measured catabolism capabilities (Fig. 4cd).

For our second case study, we broadened the taxonomic scope of
bacteria using the dataset published by Zhalnina et al. in 2018, which
contains the rhizosphere competence data in Avena barbata for a
smaller collection of 39 bacterial isolates but from a wider range of
phyla compared to the first case study. This dataset also contains the
root exudate metabolite uptake profiles in a subset of 16 isolates
measured using exometabolite profiling with 2 to 4 valid repetitions
per isolate (more details in Methods). For this more diverse set of
isolates, the NMDS plots did not show obvious separation of
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Fig. 3 | Biased distribution of rCGC in Burkholderia spp. replicons. a NMDS plot
of Burkholderia spp. replicons according to the presence/absence of rCGCs in each
replicon sequences. Each point represents a replicon in a strain, while the color of
the dot represents the type of replicon (manually labeled according to their
sequence lengths). The ellipse represents the 1-SD range for each type of replicon.
Each triangle marker represents a rCGC type, colored according to the same
schema used in Fig. 2. b The average number of rCGCs present per million bases in
each replicon type (lengths of error bar = 1-SD). The P-valuewas from the result of a
Kruskal-Wallis rank sum test on the equality of three replicon types. c Similar to (b),
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rhizosphere competence levels according to either rCGC profiles or
root exudate metabolite uptake data (Fig. 4b), and the PERMANOVA
results also reported that no significant differences can be found in the
rCGC profiles (PrCGC = 0.128 with Jaccard index) nor for the root

exudate metabolite uptake profiles (Pcat = 1.00 with Binomial index,
stratified using bacterial isolate labels) between negative and positive
rhizosphere response groups. We also trained random forest models
predicting the rhizosphere competence for bacterial isolates with
either genomic rCGC profiles or with root exudate metabolite uptake
profiles (for convenience, hereafter also referred as catabolism-based
models and rCGC-based models respectively). For the rCGC-based
model, we achieved an accuracy of 0.729 (SD =0.177), which is lower
than the rCGC-based models in the Pseudomonas limited cases
(Fig. 4c–e). For the catabolism-based model, we only obtained an
accuracy of 0.577 (SD =0.169) (Fig. 4e), and averaging the predictions
from repeated measurements did not increase its accuracy (0.542,
SD =0.173, Fig. 4f).

In general, we observed lower prediction accuracies in the second
case study, compared to those in the previous one. An obvious
explanation is because of the smaller number of (independent)
observations available inmodel training (60 vs. 39or 16). Our grouped-
cross-validation method (more details in Methods) accounted for the
mutual dependency among repeated measurements in the exometa-
bolite profiling data. Without proper treatment, this could cause
overestimationof theprediction accuracy. For example, theprediction
accuracy of the catabolism-based model for Avena barbata was esti-
mated as high as 95.6% with the built-in out-of-bag (OOB) method
(which does not account for sample dependencies) in our study. This
also explains why our cross-validated accuracy was not comparable to
the accuracy implied by the learning curve of the principal component
regression (PCR) model published in the original study of Zhalnina
et al., which also did not correct for this.

We evaluated the performancemetrics of ourmodels with out-of-
sample predictions in cross-validation (Supplementary Table 4). All
models showed sensitivity values above 0.8, but only the Arabidopsis
models achieved specificity values above (or equal to) 0.8. One prob-
able explanation couldbe that rhizosphere-competent bacteria consist
of a narrower group of bacteria compared with the diversity of other
groups of bacteria in nature, and our training data may not have suf-
ficiently captured this variation. We also compared the out-of-sample
predicted probabilities of each pair of rCGC-based and catabolism-
based models (Supplementary Fig. 6, Fig. 4f). Overall, the model pre-
dictions from the two models were largely consistent (Arabidopsis
models: Cor = 0.964, P < 2.2 × 10−16; potato models: Cor=0.796,
P = 1.5 × 10-14; A. barbata models: Cor = 0.560, P = 0.012). However,
prediction consistency declined in strains with low rhizosphere com-
petence for certain models, specifically, low-colonizing strains in the
potato models (Cor = 0.560, P =0.012) and negative-responding
strains in the A. barbata models (Cor = 0.304, P = 0.348), which is in
line with the lower specificity observed. In addition, we also made
predictions with our models on 4 isolates showing a non-significant
rhizosphere response which Zhalnina et al. used to test their PCR
model (Fig. 4d, gray zone). Although two models in our study made
consistent predictions, they were not in line with the PCR model
published by Zhalnina et al.

By comparing the rankings of variable importance (Supplemen-
tary Fig. 4), we found that for rCGCs with high predictive value in the
rCGC-basedmodels, their substrate or relatedmetabolites usually also
appear, if available in the catabolism data, on the list of important
variables in the corresponding catabolism-based models. These mat-
ched pairs include the hemicellulose component xylose, the auxin
phenylacetate, the biogenic monoamine phenylethylamine, and the
ascorbate degradation downstream organic acid threonate (Supple-
mentary Fig. 4). The xylose-catabolizing rCGC appears in the top 10
important variables in the prediction models for both A. thaliana and
potato in the first case study and the phenylacetate-catabolizing rCGC
appears in the top 10 important variables for all three plants. Xylose
was found as one of the major sugars in seed, seedling and root exu-
dates of various plant species, while although phenylacetate is not
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Fig. 4 | Predicting rhizosphere competence with rCGC profiles. aNMDS plots of
bacterial strains according to their catabolism assay results or genomic rCGC
presence/absence profiles in the first case study (Pseudomonas spp. isolates) and
b in the second case study (soil bacterial isolates from Mediterranean grassland).
Each point represents a bacterial strain, where the color indicates rhizosphere
competence and the shape indicates its Pseudomonas subgroup in (a) and Phylum
in (b). Repeated measurements from the same isolate are represented by lines
linking datapoints in (b). c–e Accuracies estimated with cross-validations for pre-
dictionmodels constructedwith different datasets. Bar heights represent themean
accuraciesderived from8cross-validation folds. Cross signs indicate the accuracies
estimated in each fold (length of error bar = 1-SD). Labels on the bottom indicates
the types of predictors and plant rhizospheres. Note that the catabolism-based
model in the Mediterranean grassland dataset (the orange bar in the right group)
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abundant in root exudates, its biological precursor phenylalanine is
present also as one of the core metabolites in various plant root
exudates78–80. Our findings suggested that their role in mediating rhi-
zosphere colonization may be universal in many plants. In contrast,
metabolites with plant-specific predictive value, such as L-proline in
the A. barbata study, which was also identified as one of the metabo-
lites with elevated exudation during 6–9 weeks of plant growth4. As
important osmolytes in both bacteria and plants, L-proline and its
catabolic downstream metabolites have been reported to mediate
rhizobacteria-dependent drought resistance in several studies81–83. But
it should be pointed out that high variable importances in random
forest models do not always imply a positive correlation, and the size
of our case study datasets were also limited to make too general
conclusions.

Also, the bacterial strains in these two datasets exhibit a strong
phylogeneticbias in rhizosphere competence (Fig. 4a, b, point shapes).
Especially, in the second case study, Bacillota, Pseudomonadota and
Acidobacteriota spp. strains were exclusively positive or negative rhi-
zosphere responders. This bias makes a simple taxonomy-based pre-
diction also performed well for both datasets (Fig. 4c–e, gray bars). In
general, we believe that catabolic gene cluster profiles should not be
used as the single source of evidence for predicting rhizosphere
competence in general, where other factors such as mobility, biofilm
formation, biosynthesis of antibiotics and plant immune response84–86

also contribute to determining rhizosphere competence, but the data
show that these profiles do contain information with significant
predictive value.

After all, competence can be predicted with relatively high accu-
racy based on a very limited number of binary features without any
taxonomic information (Fig. 4c–e). Combining rhizoSMASH results
withmetagenomic and/ormetatranscriptomicmapping (facilitated by
software such as BiG-MAP software, which can directly take output
from any antiSMASH family software as input87) in the rhizosphere
microbiota when exposed to root exudates with different composi-
tions can be a key next step in unraveling how evolutionary changes in
root exudate profiles can lead to shifts in the recruitment of beneficial
and non-beneficial microbes by plant hosts, for example during
domestication trajectories88–91.

In conclusion, RhizoSMASH is a bioinformatic software package
designed to discover catabolic gene clusters in bacterial genomes that
are associated with rhizosphere competence. We studied rCGC pre-
sence/absence profiles predicted by the working version of rhi-
zoSMASH across a broad range of bacterial taxonomic groups and
found functional diversification at various depths of taxonomic ranks.
We also found uneven local distribution and replicon biases of rCGCs
throughout genomic sequences in several groups of bacteria. To link
rhizoSMASH-detected rCGCs with rhizosphere competence, we per-
formed two case studies, in which we compared the prediction
accuracies of rhizosphere competence between rCGC-based and
catabolism-based random forest models. Results from these two
datasets confirm that the presence/absence profiles of the limited
collection of rCGCs carry a comparable amount of niche-specific
information compared to the catabolism assays that involve a con-
siderably larger number of metabolites. On the whole, these results
indicate an important role of these rCGCs in the adaptation to the
rhizosphere niche across the phylogenetic tree.

Methods
Construction of the BARS genome collection
In order to facilitate rhizoSMASH analyses of catabolic diversity across
bacterial taxa, we compiled the BARS (Bacteria in theRhizosphere Soil)
genome assembly collection, containing genome accessions for soil-
and rhizosphere-associated bacteria that are available in the NCBI
GenBank database. The version until this manuscript has 1226 genome
accessions in total. RhizoBase consists of seven subcollections

(REFSOIL, RHIZATHA, SOILATHA, RHIZHVUL, RHIZOSAT, RHIZTAES,
RHIZSLYC), with a few overlapping accessions. Among these, the
REFSOIL collection contains 842 bacterial entries cited from the
RefSoil database61; RHIZATHA and SOILATHA came from the at-
RSPHERE project which has genome assemblies of 194 Arabidopsis
rhizosphere bacteria and 32 bulk soil bacteria92; RHIZHVUL, RHIZO-
SAT, RHIZTAES and RHIZSLYC have 46, 45, 48 and 21 genome acces-
sions respectively, covering bacteria isolated from barley, rice, wheat
and tomato rhizosphere. Detailed references and collection sizes are
listed in Supplementary Table 1. These genome accession collections
and assembly files (GenBank and FASTA files) can be downloaded and
locally reconstructed using scripts at https://git.wur.nl/rhizosmash/
rhizosmash-case-studies/-/tree/main/RhizoBase.

rKnownCGC
The rKnownCGC is a database of annotated known rCGCs that areused
as reference gene clusters in the KnownClusterBLAST module in rhi-
zoSMASH. The database was manually compiled: known rCGCs were
first summarized in YAML formatted text files, which contain infor-
mation including the genome accession, genomic position, gene
function annotations; then a script was used to automatically down-
load source genome sequences, clip the gene cluster region and add
extra annotations to the records. A database file for KnownCluster-
BLAST can be downloaded using the download-rhizosmash-databases
command during the installation of rhizoSMASH. Alternatively, a raw
database can be reconstructed using scripts at https://git.wur.nl/
rhizosmash/rhizosmash-dev/-/tree/main/rKnownCGC. The version
used in the analysis of this manuscript contains 92 hand-curated
known rCGC sequences and their annotations, comprising 395
protein-coding genes from 56 GenBank records.

Workflow of rhizoSMASH
RhizoSMASH adopted the biosynthetic gene cluster detection algo-
rithm fromantiSMASHversion634. Similar toother antiSMASHvariants
such as gutSMASH35, rhizoSMASH takes a bacterial genome sequence
as input. If the sequence is not annotated, rhizoSMASH will use pro-
digal to determine the position of gene open reading frames93. A
curated set of 271 profile hidden Markov models (pHMMs) is used to
screen the genome for functional domains in catabolic pathway
enzymes94. Then a set of “detection rules”, which are logical combi-
nations of pHMMs, is used to identify genome regions that potentially
contain any rCGC. Detection rules are divided into 6 categories based
on the properties of each pathway’s substrate(s), which are carbohy-
drate, amino acid, organic acid, amine, phytohormone and aromatic
compound. By default, rhizoSMASH knits the outcome into an HTML
page that the user can interact with and visually investigate. In the
version until this manuscript, the user can activate the KnownClus-
terBLAST module to identify close matches of rhizoSMASH-identified
gene clusters to known rCGCs in the rKnownCGCdatabase. The source
code and installation guide for rhizoSMASH canbe found athttps://git.
wur.nl/rhizosmash/rhizosmash. The specific working version used to
produce results in this manuscript can be found under release tag at
https://git.wur.nl/rhizosmash/rhizosmash/-/releases/rhizo-0.3.1. Infor-
mation of the set of pHMMs used in this version can be found in
Supplementary Data 1.

Creating and Tuning rCGC detection rules
To create detection rules for rCGCs, we underwent three rounds of
rule calibration and curation. We first constructed an initial set of
detection rules based on known rCGCs in a preliminary literature
search. The detection rules contain logical combinations of pHMMs
from various sources (193 from Pfam, 64 from TIGRFAM, 4 from
NCBIfam, 5 from PANTHER and 5 custom pHMMs). For custom
pHMMs, we first used the gene cluster function on the KEGG GENES
database to identify genes with conserved genomic contexts, and then
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manually selected sequences from distinct clades to build custom
pHMMs with the hmmbuild tool of the HMMER software package.
Initial thresholding of custom and PANTHER pHMMs was performed
with hmmsearch against the Reference Proteomes (RP-35 or PR-55)
databases. This set of ruleswere installed into rhizoSMASHandused to
screen RhizoBase genomes. The predicted gene clusters were col-
lected from the output and sent to BiG-SCAPE (a customized version 1
was used the first round; version 2 was used in the second and third
rounds) together with known rCGCs. BiG-SCAPE groups gene clusters
into cluster families based on their mutual similarities and generates
interactive sequence similarity networks. The outputs fromBiG-SCAPE
were then manually analyzed and verified; we visually investigated if
the detected gene clusters were grouped with any known clusters or if
they had similar genomic context with any known clusters. Hinted by
the outcome, further literature studies were performed to refine the
detection rules: removing, adding, splitting or merging them, espe-
cially in the first round. Then, the logic operators of the rules and the
bit-score thresholds were modified according to the structural char-
acteristics and distinctions of the gene cluster families identified based
on analysis of the networks and associated visual alignments. The
updated rules were re-installed into rhizoSMASH and underwent
another round of verification repeatedly.

The final round of verification used a deduplicated subset of the
BARS collections. The mutual similarity of genome sequences in BARS
was estimated using mash95, BARS genomes were first indexed using
mash sketch with additional options -k 32 (k-mer size 32); their mutual
similarities were then estimated using mash dist. BARS genomes
showing mash similarity indexes less than 0.15% were merged, where
the most completely assembled genome was kept as representative.
Details can be found in the documentationof this repository at https://
git.wur.nl/rhizosmash/rhizosmash-case-studies/-/tree/main/gene-
cluster-distribution.

Family-wise distribution of rCGCs
To summarize the taxonomic distribution of rCGCs across BARS gen-
omes, we first selected BARS entries for bacterial families that have
sufficient number ( ≥ 8) of completely assembled genomes. An rCGC
presence/absence table of these genomes in these families was
obtained from the rhizoSMASH output in the final rule verification
round. Based on the presence/absence table, we calculated in each
family the prevalenceof each rCGC type, the richness of all rCGC types,
and the diversity of rCGCs between genomes. The prevalence of an
rCGC in a family is defined as the percentage of genomes where the
rCGC type is found (Fig. 2a). The rCGC richness of a family is repre-
sented by the average count of rCGC types present per genome in the
family (Fig. 2b). The diversity of rCGCs in a family is reflected by the
average differences in the presence/absence profiles between each
pair of genomes in the family.

Phylogenetic trees
Thephylogenetic tree for bacterial families were built based on lineage
informationobtained fromNCBIwith a script using thepythonmodule
ete3. The lineage information was loaded into R and converted into a
data.frame. And the tree was made by applying the as.phylo
function in the ape package on that data.frame. The phylogenetic
tree forNocardiaceae spp. strainswas built according to their 16S rDNA
sequences. We first detected and extracted 16S rDNA from the geno-
mic DNA sequences of eightNocardiaceae spp. strains (combined with
an outgroup strain Pseudomonas putida NBRC 14164) with barrnap96.
Multiple sequence alignment of these 16S rDNA sequences was per-
formed with MUSCLE97. We used FastTree to generate a phylogenetic
tree from the multiple sequence alignment98. The phylogenetic tree
was loaded into R and rootedwith the root function in the ape package
with the parameter resolve.root set to TRUE. The outgroup tip was
removed before final visualization. To make a phylogenetic tree of all

BARS genomes, we utilized GTDB-tk (version 2.4.199 with reference
data release R226100). The genome sequences were first analyzed using
the gtdbtk classify_wf workflow. The phylogenetic inference was
performed on the multiple alignment of user-provided sequences in
the output using the gtdbtk infer command. The tree was rooted
with the phylum Chloroflexota and visualized using iToL101.

Case study datasets
The dataset of 60 phenazine-producing Pseudomonas isolates used in
case study 1 was published by Zboralski et al. in 2018. All 60 isolates in
this dataset have complete genome assemblies available in GenBank.
Their catabolic capacity data were measured using Biolog phenotype
microarrays. Their rhizosphere colonization strength data were mea-
sured in gnotobiotic systems for two plant species (Arabidopsis thali-
ana and potato) using quantitative PCR targeting DNA from a
conserved phenazine biosynthesis gene. The results were categorized
into “high”, “medium” and “low” levels.

The Mediterranean grassland soil bacteria dataset used in case
study 2 was published by Zhalnina et al. in 2018. This dataset has
39 sequenced isolates with assembly completeness varying from
contig to scaffold levels. Their genome assemblies are available on
JGI genome portal under GOLD study ID Gs0017561 or proposal ID
653. The catabolic capacity data in this dataset was obtained with an
exometabolomic method: they harvested Avena barbata root exu-
dates and compared the percent change of each component before
and after bacteria cultivation in the exudates with mass spectro-
metry. Rhizosphere colonization levels in this dataset were quanti-
fied based on enrichment of rhizosphere 16S rDNA in response to the
growth of Avena fatua during a time course from 0 to 12 weeks.
Twenty-seven out of 39 isolates in this dataset showed a significantly
positive (n = 19) or negative (n = 8) rhizosphere response, within
which, 12 isolates have catabolism data (2 to 4 replications for each
isolate).

Prediction Models
We used R package randomForest to train prediction models for
rhizosphere competence. The caret and rsample packages were
used for facilitating cross-validation. In case study 1, wemerged “high”
and “medium” rhizosphere colonization levels into “med-high” to solve
imbalance in the data labeling. In-total, 4 random forests were trained
with either rCGC presence/absence data or catabolism data to predict
rhizosphere competence levels in Arabidopsis thaliana or potato. An
8-fold cross validation was performed for each model to optimize the
hyperparameter mtry within a grid. The out-of-sample prediction
accuracies for these models were further estimated using an outer
layer of 8-fold nested cross-validation. Similar settingswere adopted in
case study 2 but with different methods for cross-validation due to a
smaller data size and different approaches were applied in the rCGC-
based and the catabolism-assay-based models. For the rCGC-based
model, the hyperparameter tuning was done with the built-in OOB
method and a nested 8-fold cross-validation was applied to estimate
the prediction accuracy. For the catabolism-assay-based model, to
prevent information leakage due to repeated catabolism measure-
ments, the hyperparameter tuning was done by repeating a 2-fold
grouped cross-validation (GCV) 4 times, and the prediction accuracy
was estimated by repeating a 4-fold GCV 2 times. Data partition for the
regular cross-validations was done with the createFolds function in
the caret package. For the GCVs, it was done with the group_-
vfold_cv function in the rsample package, where the strain names
and rhizosphere competence labels were set to the group and strata
as parameters

We also used a simple taxonomy-based method to predict rhi-
zosphere competence phenotypes. These predictions were made by
finding the dominant phenotype in each taxonomy label. We applied
8-fold cross-validation to estimate the accuracy of this method, where
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in each training fold, the dominant phenotype in each taxonomy label
was recalculated.

Statistical tests
We used Fisher’s exact test to test the complimentary distribution of
two trehalose rCGCs across BARS genomes (Fig. 2a). We used the one-
sided Wilcoxon Rank Sum test to compare the genomic richness of
rCGC types (number of present rCGC types in genomes) between
bacterial phyla (Fig. 2a) and environmental and clinical Nocardiaceae
spp. genomes (Fig. 2b), and the Kruskal-Wallis rank sum test to test if
there are differences in the presence of rCGC (count per million bases
in genomic sequences) between replicons in Burkholderia spp. gen-
omes (Fig. 3b, c). These statistical tests were performed with the fish-
er.test, the wilcox.test function and kruskal.test function in the stats
package in base R. P-values in the Burkholderia replicon study was
adjusted with the Bonferroni method with the p.adjust function from
the stats package in base R. To test whether rCGCs are evenly dis-
tributed on chromosomes (Supplementary Fig. 3), we applied aMonto
Carlo simulation of 999 repetitions of themean nearest neighborhood
distance (MNN) from a uniform distribution. The p values were esti-
mated by the fraction of repetitions where the simulated MNN was
smaller than the observed MNN.

We used the metaMDS function from the R package vegan to
perform NMDS throughout our study. To study the distribution of
rCGC type across bacterial taxonomy, the binomial index was used to
measure the dissimilarity of rCGC prevalences between phyla (Sup-
plementary Fig. 2). To study the functional biases in replicons of
Burkholderia, we first labeled the replicons in each genome accord-
ing to their Jaccard index was used to measure the dissimilarity of
rCGC presence/absence profiles in the (Fig. 3b). Similarly, the Jaccard
index was used in the NMDS of rCGC profiles (Fig. 4a, b). For the
catabolism-assay-derived data, the Jaccard index was used in the first
case study and the binomial index was use in the second case study
according to their type of data (Fig. 4a, b). PERMANOVAs were
conducted with the adonis2 function also from the vegan package
and the same dissimilarity indexes were used as in the NMDS ana-
lyses. Besides, in the PERMANOVA of metabolite consumption in
bacterial strains in case study 2, because of repeated measurements,
we added strain labels as strata to the parameter to ensure PER-
MANOVA was performed between strains. The number of
permutations was set to 999 as the default value in all the
PERMANOVA tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome assemblies in the BARS collection and the rKnownCGC
database can be reconstructed with the scripts at https://git.wur.nl/
rhizosmash/rhizosmash-dev. Datasets for two case studies can be
found in the corresponding cited studies, or as formatted copies under
corresponding folders at https://git.wur.nl/rhizosmash/rhizosmash-
case-studies. The descriptions of rCGCs used in the working version of
rhizoSMASH, the description of each BARS genome, and the rCGC
presence/absence profiles generated in this study are available in
Supplementary Data 1.

Code availability
Source code for rhizoSMASH is available at https://git.wur.nl/
rhizosmash/rhizosmash. A frozen version used to produce results in
this manuscript can be found under the release tag at https://git.wur.
nl/rhizosmash/rhizosmash/-/releases/rhizo-0.3.1. An archive of this
frozen version can also be downloaded from Zendo (https://doi.org/
10.5281/zenodo.16780331). Analysis scripts for reproducing the results

and visualization in our manuscript were deposited at https://git.wur.
nl/rhizosmash/rhizosmash-case-studies.
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