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A basic framework to explain splice-site
choice in eukaryotes
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Changes in splicing canmediate phenotypic variation, ranging from flowering
time differences in plants to genetic diseases in humans. Splicing changes
occur due to differences in splice-site strength, often influenced by genetic
variation and the environment. How genetic variation influences splice-site
strength remains poorly understood, largely because splice-site usage across
transcriptomes has not been empirically quantified. Here, we quantify the use
of individual splice-sites in Arabidopsis, Drosophila and humans and treat
these measurements as molecular phenotypes to map variation in splice-site
usage through GWAS. We carry out more than 130,000 GWAS with splice-site
usage phenotypes, cataloguing genetic variation associated with changes in
the usage of individual splice-sites across transcriptomes.We find thatmost of
the common, genetically controlled variation in splicing is cis and there are no
major transhotspots in the three species analyzed.Wegroup splice-sites based
on GT[N]4 or [N]4AG sequence, quantify their average use, develop a ranking
and show that these hexamer rankings provide a simple and comparable fea-
ture across species to explain most of the splice-site choice. Transcriptome
analyses in several species suggest that hexamer rankings offer a rule that
helps explain splice-site choices, forming a basis for a shared splicing logic in
eukaryotes.

RNA splicing is a critical gene regulatory process in which specific
regions of the pre-mRNA (introns) are removed with the joining
of the adjacent regions (exons) to produce the mature mRNA that
encodes the protein. RNA splicing affects growth, development,
and response to external stimuli1,2. Changes in splicing can either
alter the protein produced or trigger nonsense-mediated mRNA
decay (NMD), regulating the amount of functional protein3. RNA
splicing can differ within an individual between cells, tissues,
organs, and in response to developmental and environmental
cues2. Tissue-specific splicing has been extensively studied and is

known to play crucial roles in diverse biological processes2,4,5. In
addition, genetic variation can cause splicing changes between
genotypes and species as well as genotype-dependent differences
in tissue/condition-specific effects, ultimately shaping phenotypic
diversity with evolutionary consequences6–10. Changes in RNA
splicing are also observed in various diseases, including cancer11,12

demonstrating the importance of splicing in maintaining normal
homoeostasis. Thus, there is an interest in understanding the
mechanisms through which genetic variation can affect RNA
splicing and disease1.
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A vast majority of introns (U2-type) contain a consensus GU at
their 5’ end (donor) and an AG at their 3’ end (acceptor) and are typi-
cally processed by the major spliceosome, with a small proportion of
introns (U12-type) harbouring alternativemotifs (5’GCorAT and3’AC)
processed through the minor spliceosome13–16. In addition, a branch
point “adenosine (A)” and a polypyrimidine stretch towards the 3’ end
of introns are known sequence features required for splicing. A rich
body of work shows how splicing is an interplay between trans-acting
factors that are expressed in tissue-specific manner and cis-regulatory
elements4,17. There are intronic and exonic splicing enhancer or silen-
cermotifs at the sequence level in cis andRNAbindingproteins suchas
SR proteins and hnRNPs in trans modulate the efficiency of
splicing1,4,17–24. These studies reveal complex regulatory networks
governing splicing decisions in a context-dependent manner.

In an RNA molecule, there are multiple GU/AG sequences that
couldbeused in a condition-, tissue/cell type-, or genotype-dependent
manner. The rules that govern which of the competing GUs or AGs
become splice-sites are critical to understand splicing decisions but
remain incompletely described. The ability of a splice-site to partici-
pate in a splicing reaction is defined as its “splice-site strength”25. Both
genetic and environmental variation can influence splice-site strength
and lead to differential splicing. While there have been efforts to pre-
dict splice-site strength from sequence26,27, the accuracy of these pre-
dictions remains unknown, since splice-site usages are yet to be
empirically quantified. Global analysis of splice-sites in various gen-
omes has revealed consensus sequences, and massively parallel spli-
cing assays have been performed to assess the impacts of sequence
variation in consensus sequences1,13,28–30. For example, at the 5’ splice
donor site, frequency-based analysis suggests MAG | GTRAGT as the
consensus sequence1,13,28–30. It is also well known that, beyond 5’ GT,
sequences within this consensus are extremely diversified and even a
few specific dinucleotide combinations that differ between species
affect splice-site choice31,32. Probabilistic models based on maximum
entropy to predict mutational impacts have also been developed26,33.

Since sequence variation can affect splicing, there is considerable
interest in predicting the impact of genetic variation on splicing. Pro-
grammes such as SpliceAI, Pangolin, SpliceVault, SPLAM and others
use various artificial intelligence (AI)methods to accurately predict the
impact of genetic variationon splicing34–39. However, it is often difficult
to comprehend the biological parameters through which AI-based
approaches achieve that high predictive power40. Further, the perfor-
mance of models trained on one species is low when applied to other
species37, which suggests that evolutionary patterns in splice-site
choice remain poorly understood.

Accurate measurement of phenotypes is critical for successful
and trustworthy genetic mapping. However, efforts to map splicing
variation are limited by current measurement methods, which often
group multiple splice-sites together, thereby reducing phenotypic
accuracy. For example, splicing QTL (sQTL) analyses have been con-
ducted on diverse datasets41–48, but the quantification of splicing often
does not focus on individual splice-sites, which prevents deciphering a
direct association between the genetic variant and a specific splice-
site46,47,49. In addition, sQTL approaches often test only SNPs within a
fixed regionaround thegenes asopposed togenome-wide association,
typically increasing the risk of spurious associations41,46,47. Since most
of these studies have focused on regions surrounding splice-sites as
opposed to a genome-wide analysis, the question of whether most
splicing variation is regulated by cis or trans genetic variation remains
unanswered.

We have previously defined a measure of splicing, Splice-site
Strength Estimate (SSE), which focuses on the usage of individual
splice-sites49 rather than general features such as splicing events, iso-
forms, exon inclusions, intron clusters, or localized splice graphs48–53.
SSE can be accurately measured with SpliSER (Splice-site Strength
Estimate from RNA-seq), and this quantitative measurement can be

used as a phenotype in GWAS to detect robust associations49. Recent
AI-based tools that predict the impact of genetic variation on splicing
such as Pangolin34, SpliceBERT54 and SpliceTransformer55 use SpliSER
to obtain empirical quantification of splice-site usage and then use this
data as training datasets for building their models that outperform AI
methods without such training34,55.

Here, we quantified individual splice-site usage leveraging RNA
seq data from: (i) the 1001 Genomes Project from Arabidopsis
thaliana56,57, (ii) male and female Drosophila melanogaster lines from
the DGRP58,59, and (iii) human heart tissue from the GTEx project60,61.
We show that there is extensive genetically controlled variation in
individual splice-site strengths. By carrying out more than 130,000
GWAS using these data, we catalogue both cis and trans genetic var-
iation influencing individual splice-site usage across the genomes in
Arabidopsis, Drosophila and humans. We demonstrate that most of
the variation in splice-site strength/usage is driven by cis regulatory
variation. With high-resolution GWAS thatmap around splice-sites, we
infer specific nucleotides for each position that are best suited to
promote splicing and identify features that govern splice-site choice.
We subcategorise splice-sites based on their intronic hexamer
sequences encompassing splice donor and acceptor sites, compute
their average strengths and rank the hexamers based on their average
strengths. We show that the ranking of the average strengths of hex-
amers correlates with their presence at splice-sites. We present hex-
amer rankings as a minimal sequence-level feature that explains most
splice-site choices in the transcriptomes of diverse species. Our find-
ings suggest that hexamer ranking presents a basic logical framework
that explainsmost splice-site choice across eukaryotic organisms. This
framework, while not capturing all regulatory layers, nonetheless
highlights a conserved sequence-level logic that may be further
modulated by context-specific regulatory inputs.

Results
Extensive variation in splice-site usage in Arabidopsis,
Drosophila, and humans
To assess splicing variation, we first quantified the usage of all splice-
sites from population-level panels of Arabidopsis57, Drosophila62 and
Humans60 with SpliSER49 and obtained splice-site usage data for a total
of 767,199 splice-sites representing 39,734 genes from three different
species (Supplementary Table 1). Across all genotypes in the three
species, this represented the quantification of splice-site strength for
~200million splice-sites. Since researchers have been using tools such
as the MaxEnt score that predict splice-site strength, particularly in
humans26, we assessed how these predictions reflect empirically
quantified splice-site strengths. We observed that empirical quantifi-
cations differed noticeably from MaxEnt predictions (Supplementary
Fig. 1A, B). The distribution of MaxEnt scores, for both donors and
acceptors, displayed a skew towards the higher range, which suggests
that MaxEnt, while capable of differentiating splice-sites from non-
splice-sites, is less effective at reflecting observed usage, which could
be context-dependent. Comparison of the empirically quantified
splice-site strengths between different tissues (heart vs testis) (Sup-
plementary Fig. 1C) and sex (Drosophila) (Supplementary Fig. 1E)
showed the potential to identify sites with differential usage in distinct
contexts, distinguishing the empirical quantifications by SpliSER from
sequence-based predictions such as MaxEnt.

Next, we computed: (a) the range of splice-site usage (difference
between the highest and lowest SSE) in individuals, and (b) the var-
iance in the usage of every splice-site. We observed extensive variation
in the usage of individual splice-sites. Almost three-quarters of the
human sites displayed more than 20% difference in their usage
between individuals, while a half (50%) and a quarter (25%) of the sites
showed such differences in Drosophila and Arabidopsis, respectively
(Fig. 1, Supplementary Table 1). In summary, we observed 430,345
splice-sites (56.1%) out of a total of 767,199 that displayed more than a
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20% difference between the highest and the lowest usage among
individuals (Supplementary Table 1).

The transcriptomes from Arabidopsis57 and Drosophila58 had
replicates but human samples lacked replication. To assess whether
the lack of replication could account for the increased variability seen
in human samples, we compared the splice-site usage of two different
skin tissues (leg vs suprapubic region) (Supplementary Fig. 1D). There
was a high degree of concordance in data (R2 = 0.99) bolstering con-
fidence in our quantifications. We exploited Arabidopsis and Droso-
phila replicates to calculate broad-senseheritability of splice-site usage
and found that a substantial number of sites (>25%) displayed high
heritability (>0.3 in Arabidopsis and even higher in Drosophila). This
suggested that there is a substantial genetic contribution to splicing
variation that could be mapped. To maximise the probability of
mapping by GWAS, and to avoid spurious associations, we selected all
splice-sites for which there are at least 100 observations and that are in
the upper quartiles of both variance and heritability, which resulted in
a total of 17,140 sites in Arabidopsis, 7711 sites in theDrosophila female
and 8003 in the Drosophila male datasets. For humans, we took all
97,796 sites that had data for at least 100 individuals and fell in the
upper quartile of variance. In total, we took splice-site strength data
from 130,650 sites for subsequent GWAS (SpliSER-GWAS).

SpliSER-GWAS is specific and captures causal variants for
differential splice-site usage
Using SpliSER-GWAS, we detected associations for a total of
21,988 sites (4951 in Arabidopsis, 7328 in Drosophila and 9709 in
Human; Supplementary Data 1-3). To assess the ability of our approach
to identify causal variants, we took advantage of mutations at splice-
sites,whichwill have a causal impact on splice-site usage and should be
reflected inGWAS. Suchmutations often lead tousageof an alternative
site. We reasoned that we should identify the splice-site mutation as
the highest associated SNP for both the mutated site and the alter-
native site. For example, at the TOR1AIP1 locus in humans, there are
individuals with a G to A mutation at the splice acceptor site at
chr1:179,889,309. In individuals with this mutation, another acceptor
site at chr1:179,889,312 is used (Fig. 2A). We identified the G to A
mutation at chr1:179,889,309 as the highest associated SNP for varia-
tion in the usage of both sites (chr1:179,889,309 & chr1:179,889,312)
(Fig. 2B), while the other sites on the same gene were unaffected. We
observed similar examples in Drosophila (Supplementary Fig. 2A) and
Arabidopsis (Supplementary Fig. 2B).

To assess the extent to which we can capture causal variation, we
analyzed all splice-site mutations that occur in at least 5% of the indi-
viduals byGWAS (minor allele frequency≥0.05). This resulted in a total
of 58 sites in Arabidopsis, 63 and 34 sites in Drosophila males and

females, respectively, and 48 sites inHumans (SupplementaryTable 2).
152 of these 203 sites gave clean GWAS peaks with negligible noise
(~75%; 43/58 in Arabidopsis, 53/63 in Drosophila males, 27/34 in Dro-
sophila females and 29/48 in Humans). More importantly, we identi-
fied the splice-site mutation as the highest and/or closest associated
SNP in 34/58 sites (59%) in Arabidopsis and 29/48 sites (60%) in human
heart tissue, 36/63 (57%) in Drosophila males and 16/34 (47%) in Dro-
sophila females. These findings suggest that SpliSER-GWAS can cap-
ture up to ~60% of the mappable causal variants with large-effect.

Next, we compared SpliSER-GWAS results with previously pub-
lished sQTL analysis from the same dataset46. The key aspects that
differentiated our study include splice-site level-specificity of the
phenotype and a more conservative statistical threshold (Supple-
mentary Table 3). In addition, sQTL analysis reported all significant
SNPs, while we report only the highest and closest associated SNPs for
each phenotype. We noted that 10 of the 39 mappable splice-site
mutations (25%) were found to be the highest associated SNPs for their
corresponding sQTL phenotypes. However, 82% (32/39) were found to
be among significant (though not the highest associated) SNPs, indi-
cating a reduced signal/noise ratio. We then compared the associa-
tions at the level of genes. We observed a significant (hypergeometric
probability p = 4.45e-443) overlap of 40% in genes for which splicing
variation is mapped by both sQTL analysis and SpliSER-GWAS (Sup-
plementary Fig. 3A). The distribution of p-values suggested that
SpliSER-GWAS p-values were generally lower than sQTL p-values
(Supplementary Fig. 3B). Several genes for which only sQTL analysis
found an associated variant were either not considered to be variable
based on our phenotypes, or they failed to pass the stringent thresh-
olds applied in SpliSER-GWAS (Supplementary Fig. 3C). On the other
hand, genes that were only detected by SpliSER-GWAS produced clear
GWAS signals, suggesting the potential to capture and map variation
previously missed by sQTL analysis, perhaps due to the differences in
the phenotypes used (Supplementary Fig. 3D).

Most of the genetically associated splicing variation is cis
Toassess thegenomic architectureof splicing variation,weplotted the
positions of splice-sites against their highest associated variants in all
three species (Fig. 2C–E). We observed that most of the determinants
of splicing variation mapped within 1Mb from the splice-site in all
three tested species (Supplementary Data 1–3). We denoted these as
cis and the rest as trans. Cis-associations represented 78-91% of all
associations (Table 1), confirming that most genotype-dependent
splicing variation is mediated via cis- rather than trans-genetic varia-
tion in all three species. We observed that 40–60% of the unique
associated SNPs were in the same gene (1564/4013 in humans, 2005/
4155 in Arabidopsis and 2592/4234 in Drosophila) that harboured the

Fig. 1 | Splice-site usage varies extensively between individuals. Distribution of
splice-sites that show differences in their usage between individuals in humans (A),
Drosophila (B) and Arabidopsis (C). The sites are grouped based on the maximum
difference in their usage between individuals. The yellow region highlights the sites

thatdisplaymore than20%difference (0.2 difference in) between extreme samples.
Blue dots represent the average variance in splice-site usage between all individuals
for each of the bins.

Article https://doi.org/10.1038/s41467-025-63622-9

Nature Communications |         (2025) 16:8284 3

www.nature.com/naturecommunications


splice-site. Of these ~50–60% SNPs (728/1564 in humans, 952/2005 in
Arabidopsis and 1567/2592) were in the same exon/intron as the
splice-site.

There are no major trans hotspots of common allelic variation
affecting splicing
Most previous sQTL analyses lacked the ability to map trans associa-
tions since they focused on variants in regions surrounding the
genes45,46,48,63, (Supplementary Table 3). In contrast, our study is an
unbiased genome-wide association analysis, whichallowedus to assess
the effect of trans-genetic variation on splicing. Though we observed
that the majority of variation is cis, we also mapped trans associations
(Table 1). We observed that human GWAS identified a maximum of
~22% (2161 out of a total of 9872) of the associations being trans
associations. This was similar in Arabidopsis (916 out of a total of 5277,

17%) and somewhat reduced (678 out of 7791, 9%) in Drosophila. Since
mutations in splicing factors are often found in diseases including
cancer64, we askedwhether any of our highest associated SNPs in trans
peaks fall on genes encoding spliceosomal proteins or other RNA-
binding proteins. We reasoned that if there were such an association,
we would observe variation in multiple splice-sites mapping to such
variants and thus they may present hot spots. However, we did not
observe any major trans hot spots (Fig. 2C–E).

Unlike the cis SNPs where the proximity to splice-site could offer
some confidenceonpotential causality, without experimental analysis,
it is difficult to evaluate the causality of trans SNPs. In addition,
duplicated genes can cause mapping issues, which could appear as a
trans-association, as we observed for the largest effect trans peak in
Arabidopsis (Supplementary Fig. 4). Therefore, further experimental
analysis is required to explore trans associations. In the absence of

Fig. 2 | Splicing variability can be mapped accurately, and it is mostly cis-
regulated. AA schematic of the sequences surrounding twocompeting splice-sites
in TOR1AIP1 is shown. B Manhattan plot of the splice-site mutation at
chr1:179,889,309. SpliSER-GWAS analysis identifies causal SNP for variation in the
usage of splice-sites at the TOR1AIP1 locus in humans. The splice-site mutation at
chr1:179,889,309 (309) allows the usage of chr1:179,889,312 (312) as a splice-site,

and variation in the usage of both sites map to the 309 polymorphism. Scatter plot
of splice-site positions and their highest associated SNPs in the human heart (C),
Drosophila (D) and Arabidopsis (E) across corresponding genomes. Colour scale
represent the proportion of variance explained (PVE) by the associated top SNP.
The sizes of the dots are also correlated with PVE.
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experimental analysis, we conclude that there are no major trans hot
spots in any of the three analyzed species.

Intronic regions drive most of the variation in splice-site usage
To assess the features of splicing variation, we plotted the distribution
of distances of the highest and closest-associated SNPs to the splice-
site for all sites in all three species, which revealed that most of the
associations map in and around the splice-site (Fig. 3, Supplementary
Fig. 5A, B). We observed 32% (1410/4361, 611 donors and 799 accep-
tors) associations in Arabidopsis,where the highest-associated SNP fell
within 100bp of the splice-site; we saw 24% in Drosophila (1771/7350,
772 donors and 999 acceptors) and 9% (651/7711, 281 donors and 370
acceptors) in humans. These numbers almost doubled if we con-
sidered the closest SNPs within the peak to the site (60%, 52% and 23%
inArabidopsis,Drosophila, andhumans, respectively).Weobserved an
intronic bias in Arabidopsis, but the pattern was more diffused
between exons and introns in Drosophila and Humans, which sug-
gested that the genetic architecture of splicing variation may differ
between species (Fig. 3). Additionally, the aligner used for Arabidopsis
was different. Though all samples aligned with the same aligner clus-
tered together in a PCA plot (Supplementary Fig. 6), suggesting that
they may not have a large effect on mapping variation, we cannot
conclusively rule out the effect of aligners.Nevertheless, thesefindings
suggest a strong influence of SNPs near splice-sites affecting variation;
we also observed that 40-60% of the SNPs fell in exons/introns that
were not adjacent to the splice-sites. We asked whether the effect size
of the mapped SNPs depended on their proximity to the splice-sites.
We observed maximum effect for SNPs that are in the same intron/

exon as that of the splice-site, that on other regions of the same gene
(Supplementary Fig. 7).

To assess whether intronic or exonic nucleotides make the big-
gest difference to splice-site strength, we analyzed the average
strength of all splice-sites with specific nucleotides at each position
around the splice-site in all three species. We noticed that the stron-
gest and most frequent nucleotides differed more on the exonic side
than on the intronic side (Supplementary Fig. 8, Supplementary Data 4
& 5). When we considered pairwise interactions of nucleotides and
their impact on splice-site strength, we observed interactions between
the -1 position and the +3/+4/+ 5 positions of the intronic region
(Supplementary Figs. 9–12; Supplementary Data 6& 7), consistentwith
previous literature13,65. Finally, we asked how much of the variation in
splice-site strength/usage across the genome can be explained by
individual nucleotides surrounding the splice-site by taking all splice-
sites into account. This analysis suggests that splice-site strength is
mostly affected by intronic rather than exonic sequences (Supple-
mentary Fig. 13).

High resolution GWAS allows inferring splice-promoting
nucleotides
A substantial number of variants weremapped at eachposition around
the splice-site in GWAS. In each of the associations, there are SNPs
(alleles) associated with increased (splice-promoting) or decreased
(splice-reducing) usage of the splice-site. We inferred the most fre-
quent bases among the splice-promoting (best) and splice-reducing
(worst) nucleotides for each position (Fig. 3A, B, Supplementary
Fig. 14A–C, Supplementary Data 8). These sequences would be

Table 1 | A summary of associations detected in different RNA-seq datasets

Species/Phenotype Total associations cis associations trans associations % of cis associations % of trans associations

Arabidopsis 5277 4361 916 82.6% 17.4%

Drosophila(male) 3897 3559 338 91.3% 8.7%

Drosophila(female) 3453 3143 310 91% 9%

Human heart atrial tissue 9872 7711 2161 78.1% 21.9%

Fig. 3 | Genetic variation affecting splice-site choice is oftennear the splice-site
and high resolution SpliSER-GWAS allows inferring the best nucleotides that
promote splicing. Distribution of the distances of the highest associated SNPs
(lowest p-value) detected in SpliSER-GWAS for donors (A) and acceptors (B) in
Arabidopsis, Drosophila and Humans. Intronic regions are shaded for clarity. The

distribution of splice-promoting allelic variation for positions −2 to +6 around the
splice-donor site and −6 to +2 around the splice-acceptor site based on associa-
tions from all three species, considering GWASwhere the Top SNP and the closest
SNP are the same. Most frequent splice-promoting nucleotides are highlighted.
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identical if driven by backgroundnucleotide frequencies.Weobserved
these sequences to differ in general, indicating that these patterns are
unlikely to have evolved neutrally.

To assess the functional impacts experimentally, we designed the
best and the worst synthetic introns of 100 bp containing the splice-
promoting (best intron) and splice-reducing (worst intron) nucleotides
at each position (Supplementary Data 9). We noted that, our synthetic
best intron was “AT”-rich (75%) and the worst intron was “GC” rich
(68%) consistent with literature66. We introduced these synthetic
introns into the coding region of mCHERRY between AG and GT (AG]-
[GTintronAG]-[GT). Consistent with our expectations, we observed
strong fluorescence in HEK293T cells that were transformed with the
construct having the best intron (Supplementary Fig. 15A). Cells that
were transformed with the worst intron (despite harbouring GT-AG
and a branch point) displayed no fluorescence. RT-PCR analysis con-
firmed the appropriate splicing of thebest intron andno splicingof the
worst intron, consistent with our prediction (Supplementary Fig. 15B).
We conclude that allelic variations beyond the GT/AG and the
branchpoint adenosine have a significant impact on splicing and
contribute to splicing variation.

GT[N]4 and [N]4 AG hexamer sequences help explain splice-site
choices across species
Given that the intronic region around the splice-site primarily accounts
for variation in splice-site usage, we attempted to identify the smallest
intronic region, comparable across species, that could explain a sub-
stantial proportion of splice-site choices. We systematically scanned a
100bp window (50 bp upstream and downstream) surrounding every
individual splice-site for all GT or AG dinucleotides, extracted corre-
sponding k-mers (GT, GTN, GTNN, etc.) and queried in what propor-
tion of splice-sites k-mer ranking can explain splice-site choice. We
determined the percentage of splice-site choices explained by differ-
ent k-mer lengths (i.e., the percentage of sites in which the highest-
ranked k-mer was being utilized as the splice-site) and found that
GT[N]4 hexamers explain most (70.8%) of the donor-site choices
(Table 2). For acceptor sites, we found that both hexamers [N]4AG and
[N]5AG had similar scores (~60%), though the hexamers on average,
slightly outperformed the heptamers across species (Table 2). All three
species gave similar patterns (Supplementary Table 4). We conclude
that hexamers present an optimal intronic k-mer for cross-species
comparisons.

We carried out a similar analysis using MaxEnt in human data.
MaxEnt utilises additional sequence information (9-mer for donors
and 23-mer for acceptors), which makes it difficult to interpret dif-
ferences between species. Unsurprisingly, MaxEnt performed similarly
with donors (~76% of splice-site choices explained) but outperformed
hexamers with acceptors (83% compared to 60%). We then computed
the correlation between hexamers and MaxEnt by compressing Max-
Ent scores into hexamer groups (Supplementary Fig. 16). We obtained
a very strong correlation, particularly with acceptors (R2 = 0.9), which
suggests that hexamers disproportionately contribute to majority of
the MaxEnt scores (Supplementary Fig. 16A–D).

We observed significant correlations (0.74 for donors and 0.6 for
acceptors) between the frequency of hexamers and their average
splice-site strength, but not with their frequency in gene bodies or
genome (Supplementary Fig. 17). In addition, the proportions of used
hexamers in gene bodies were correlated with hexamer strengths
(R2 = 0.74 for both donors and acceptors), unlike the proportion of
unused hexamers (R2 = 0.001 for both donors and acceptors, Supple-
mentary Data 10 & 11). Taken together, these data indicate that natural
selection probably plays a role in choosing different hexamer
sequences at the splice-site.

To assess the generality of this observation, we analyzed publicly
available RNA-seq data to compute hexamer ranks based on their
strength and frequency across 25 eukaryotic species and asked what
proportion of the splice-site choice could be accounted for by hex-
amer rankings. Indeed, hexamer ranking based on splice-site strength
explained most splice-site choices ( ~ 60-85%) in diverse species (Sup-
plementary Data 12, 13, Supplementary Table 4). Next, we computed
pairwise rank-correlations of hexamer rankings and constructed den-
drograms based on their R2 values. R2 values in all species comparisons
were positive, and reflected phylogenies, to some extent suggestive of
evolutionary conservation (Supplementary Data 14, Supplementary
Fig. 18A).

Splicing decisions are driven primarily at the level of species
Our finding that there is evolutionary conservation of the hexamer
rankings seemingly contradicts previous findings that the splicing
code is tissue-specific9,10. To clarify this seeming inconsistency, we ran
SpliSER on the same data from four different tissues of four different
species from Barbosa-Morais et al.9 and asked whether the clustering
of tissue-specific splice-sites differs from that of other splice-sites.
Irrespective of how we split the data, we observed clustering based on
species (Supplementary Fig. 19). We also observed stronger correla-
tionswithin a species for hexamer ranks for bothdonors and acceptors
across all tissues (Supplementary Fig. 20). Thus, species-level cluster-
ing seen in previous findings9,10 and in our work together suggests
evolution of the splicing machinery at the species level. This is con-
sistent with a fundamental conserved logic of splice-site choice, with
tissue-specificity acting on top of that framework, potentially based on
the expression of tissue-specific trans-acting factors.

We wondered, for donor sites, if this could be explained purely in
terms of U1snRNA base pairing with the 5’ splice-sites. The most fre-
quent and the strongest hexamer GTAAGT (Supplementary Data 12) is
complementary to the most common U1 snRNA base pairing site of
CAUUCA. However, only 23% of splice-sites harbour this consensus
sequence. Therefore, we grouped the hexamers using sequence dis-
tances from the U1 snRNA binding site (GTAAGT) and asked whether
the average strengths of these hexamer groups reflect sequence dis-
tance from the U1 snRNA binding site. Sequence distance matrices do
not provide the same level of resolution as the average strengths.
Nevertheless, we observed a near-perfect correlation between the
sequence distances and the hexamer rankings in Arabidopsis, Droso-
phila andHumans (Supplementary Fig. 18B). This data suggests that, at
least for the donor sites, hexamer-based differences in splice-site
choices is primarily driven by U1 snRNA base-pairing properties. For

Table 2 | Percentage of splice-site choices explained in three
different species with different lengths intronic k-mers

Sequence Arabidopsis Drosophila Humans Average

Donors

GT 0.66 0.76 0.87 0.76

GTN 28.56 15.02 26.73 23.43

GTNN 38.45 48.73 52.42 46.53

GTNNN 56.06 77.47 69.87 67.80

GTNNNN 58.26 81.41 72.86 70.84

GTNNNNN 48.95 65.84 69.05 61.28

GTNNNNNN 24.60 40.90 53.24 39.58

Acceptors

AG 0 1.93 0 0.64

NAG 30.24 28.46 19.49 65.19

NNAG 48.95 46.04 32.14 42.37

NNNAG 60.98 64.05 46.46 57.16

NNNNAG 65.73 71.02 55.25 64.00

NNNNNAG 65.71 65.03 57.72 62.00

NNNNNNAG 53.92 43.29 51.10 49.43

k-mers that explain maximum variation are shown in bold.
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the 3’ acceptor sites, we computed the distances from the hexamer
with the highest strength (TTGCAG) and found a very similar correla-
tion between sequence distances and hexamer rankings (Supplemen-
tary Fig. 18C). Taken together, these results indicate that intronic
hexamer sequences potentially form a basic feature of the splicing
code in eukaryotes.

Hexamer ranking explains splicing in both natural and experi-
mental perturbations
Natural variation. Since intronic hexamers explained splice-site choi-
ces, we tested whether they could explain the effects of previously
describedmutations. Two different transcripts are produced from the
FLOWERING LOCUS M (FLM) gene of Arabidopsis based on the splicing
of the donor GT of the first intron with AG1 or AG2 acceptor sites.
Generally, AG1 is preferred over AG2 and differential splicing of FLM
leads to changes in temperature-dependent changes in flowering67–69.
Hexamer analysis revealed that AG1 harbours a stronger hexamer
compared with AG2, which can explain its preference (Supplementary
Fig. 21A). In addition, amutation (GG toAGat position chr1:28,958,437)
in the second intron of FLM abolishes the use of either of these partner
sites70. It turns out that the mutation creates a new AG acceptor site,
which then has the strongest hexamer of the three, which can explain
the abolition of the use of AG1/AG2 (Supplementary Fig. 21A).

Similarly, in humans, several mutations in the CFTR gene are
associatedwith splicing differences71. One of the commonmutations is
rs75039782 (C to T) in the 22nd intron of the CFTR gene, which gen-
erates a new donor GT site72. This mutation leads to a pseudo-exon
containing a premature stop codon, resulting in CFTR deficiency and
cystic fibrosis. Hexamer analysis explains this mutational impact: The
rs75039782 mutation generates a donor site with a stronger hexamer
than the canonical donor site, resulting in an otherwise unused
upstream acceptor site in the intron now being used in partnership
with the canonical donor site that leads to the inclusion of the pseudo-
exon (Supplementary Fig. 21B).

Meta-analysis of large-scale manipulation data. We leveraged data
published by Rosenberg et al.30 and carried out a meta-analysis with a
focus on hexamer ranking30. This dataset from cell culture experi-
ments allowed the direct testing of thousands of competing hexamers.
We ran SpliSER on this RNA-seq data and quantified the splice-site
usage of all splice-sites. A total of 466,000 competing donors allowed
us to evaluate ~4000 unique pairs of competing hexamers.We queried
how many of the winning splice-sites could be explained by the hex-
amer rankings and found that hexamer ranking could explain 66% of
splice-site choices (Fig. 4A). This percentage increased to 91% when
observing constructs where the differences in hexamer strengths were
more than 0.25, providing further evidence that hexamers indeed
explain splice-site choices (Fig. 4A).

Mini-gene assays. We designed three types of mini-gene constructs
with themCHERRY reporter gene. First, we scanned for human introns
that are removed with more than 95% efficiency (i.e., donor and
acceptor SSE ≥0.95, good intron) or less than 10% efficiency (i.e.,
donor and acceptor SSE ≤0.1, bad intron) across all individuals in the
GTEx dataset. We reasoned that by changing the hexamers, we could
convert bad introns into good ones and vice versa. An intron in the
RPS10 genewith a splice donor site at chr6:34,425,071 and an acceptor
site at chr6:34,424,840 is removedwith almost 100% efficiency ( > 99%
across all GTEx individuals). We generated constructs where the hex-
amer sequences at the donor and acceptor sites (GTAGGA [Rank 18,
SSE-0.626] / TTACAG [Rank 26, SSE 0.631]) were changed to weaker
hexamers (GTCCAA [Rank 241, SSE 0.038] / TGCGAG [Rank 217, SSE
0.037]; Supplementary Data 9, 12,13) and transfected the constructs
into HEK293T cells. We analyzed mCHERRY fluorescence and per-
formed RT-PCR (Fig. 4B). Changing the hexamers abolished splicing at

these splice-sites but revealed cryptic 5’ and 3’ splice-sites that resulted
in an inclusion of 26 bp (additional 8 bp from the alternative donor site
and 18 bp from the alternative acceptor site), which caused frameshift
disrupting mCHERRY fluorescence.

Second, as a weak intron we selected intron 2 of CALM3,
(chr19:46,608,327-46,608,481) and changed the donor hexamer from
GTGGAT [Rank 200, SSE 0.117] to GTGAGT [Rank 3, SSE 0.724]. With
the original CALM3 intron, an alternative donor 13 bp downstream
(GTGAGC [Rank 9, SSE 0.653]) is used in splicing, which disrupts
mCHERRY expression due to a frameshift (Fig. 4C). However, change
of the hexamer resulted in proper splicing with mCHERRY fluores-
cence (Fig. 4C).

Third, we selected MYO15B intron (chr17:75592302-75592463)
where two acceptor sites at chr17:75592427 and chr17:75592463
compete while the donor is less variable. GWAS analysis showed that
the splice-site choicemapped to an SNP at chr17:75592461 (A/G) in the
hexamer sequence (TACAAG [Rank-148, SSE-0.279]/TACGAG [Rank
201, SSE-0.049], Supplementary Data 3). We changed the sequences at
these competing sites to have various combinations of hexamers with
differing strengths (Supplementary Data 12,13). Confirming the caus-
ality in our GWAS results, a change of A to G reduced the use of
chr17:75592463 and promoted the use of chr17:75592427. Analysis of
diverse combinations revealed that the highest mCHERRY expression
and proper splicing was observed with the construct where we sup-
plied the donor and acceptor sites with higher-ranked hexamer
sequences (Supplementary Fig. 22A, B). In all other cases, we observed
sub-optimal splicing, including the use of alternative splice-sites
(Supplementary Fig. 22A, B).

Finally, we took our synthetic worst intron and modified it to
assess minimal features that could improve splicing. Adding a poly-
pyrimidine tract and a branch point with consensus sequences had
negligible effects suggestive of additional requirements (Supplemen-
tary Fig. 23). When we also changed both donor and acceptor hex-
amers into stronger ones, we could observe some level of proper
splicing (Supplementary Fig. 23). Taken together, these findings
experimentally demonstrated that the hexamer sequences are among
the primary factors that not only explain splice-site choice but also
could be used to rationally engineer desired changes in splice-site
strength.

Discussion
We have demonstrated that using the individual splice-site strength as
a phenotype for GWAS specifically links genetic variation to the usage
of specific donor or acceptor splice-sites. Often, a mutation that
directly impacts the strengthof one splice-sitewill have indirect effects
on the usage of other sites. For example, in the case of MYO15B (Sup-
plementary Fig. 22A, B), an SNP at chr17:75592461 reduces the effi-
ciency of the splice acceptor site 2 bp downstream of the SNP
(chr17:75592463), but also indirectly increases the efficiency of the
competing acceptor site at chr17:75592427. We were able to not only
demonstrate that we could map splice-site usage of both competing
sites to allelic variation at chr17:75596461 (Supplementary Data 3) but
also confirm this throughminigene assays (Supplementary Fig. 22A, B).
Thus, we can differentiate direct and indirect effects inmany instances
simply from the distance of the associated SNP from the splice-site.
Differentiating suchprimary and secondary effects is harder to achieve
with other approaches. Thus, we would argue that our approach,
focused on individual splice-sites, would provide a better under-
standing of the regulation of splicing as opposed to other approaches
based on isoforms or splicing events.

We have shown that common splicing variation is primarily driven
by cis rather than trans regulatory genetic variation. While it is clear
that there are several trans-acting factors that play a critical role in
splicing29, natural variation in trans effects (i.e., a change in splicing
driven by a trans acting factor) could be brought about in twodifferent
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Fig. 4 | Experimental perturbations of hexamer sequences alter splice-site
choice. A Direct comparison of competing hexamers in minigene constructs of
Rosenberg et al.30. Blue line represents permuted thresholds calculated from
10,000 permutations and the actual experimental data (red) with varying combi-
nations of hexamers. The number of unique competing pairs tested is shown above

the percentages. Conversion of a good intron into a bad intron (B) or bad intron
into a good intron (C) through change of hexamers. mCHERRY fluorescence is
shown along with the RT-PCR amplification. The experiments were repeated twice
in two independent experiments, which yielded similar results.
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ways8: there can be sequence variation in a trans-acting factor mod-
ifying its function, or there canbe a change in the potential binding site
of a trans-acting factor. Both instances will result in splicing variation.
While the former is likely to have an impact on multiple genes, the
latter allows specific changes restricted to individual genes/splice-
sites, generating variability which can be beneficial in evolution73. Our
findings support the view that cis-regulatory changes are more com-
mon than trans regulatory sequence variation. We, however,
acknowledge that due to our highly stringent analysis (i.e., having
higher thresholds for peak calling and primarily looking at the top or
closest associated SNP only), we could potentially underestimate the
impact of trans variation, particularly if the effect size is relatively
small. In addition, it is conceivable that by restricting our analysis to
the highest associated SNPs, we could be missing out on factors that
maybe inLDwith theseSNPs.Nevertheless, confirming the causality of
these trans associations would require further experiments.

We have presented a universal core logic that explains splice-site
choice in eukaryotes based on hexamer rankings. Our findings that: (1).
Hexamer prevalence and proportions of the used hexamers at splice-
sites is correlated with splice-site strength rather than genomic pre-
valence; (2). Hexamer ranks explain splice-site choices; and (3). Hex-
amer ranks correlate across diverse species, together arguing for
evolutionary selection for hexamer sequences.

Perhaps unsurprisingly, there is a near-perfect correlation
between sequence distances from U1 snRNA base-pairing site and the
average strength of intronic hexamers at splice donor sites (Supple-
mentary Fig. 18B); the same intronic hexamers whose ranking explains
much of the splice-site choice at a population level. The donor site is
typically bound by U1 snRNA and sequence variability may influence
the binding kinetics of U1 snRNA and its associated proteins, with
potential consequences to splice-site choice1. In addition to snRNA-
RNA base-pairing, some effects could also be attributed to hexamers
(e.g., GTCTTT, GTCTTA) being binding sites for proteins such as
PTBP174, which may interfere with splicing when the sequences are at
the 5’ donor sites75. Consistent with this, we found the average
strengths of these hexamers to be very low (Supplementary Data 12).
On the other hand, we observed hexamer GTAACG, which is a known
bindingmotif forDAZAP174, a protein known to promote splicing, has a
high average strength. Thus, in addition to snRNA-RNA base pairing,
RNA-binding proteins could influence the average strengths. At the
acceptor sites, where RNA-protein interactions play a critical role in
splice-site selection1,19,76, we observed similar correlations between the
sequence distances from the highest ranked hexamer and the average
strengths (Supplementary Fig. 18C). This can reflect differential bind-
ing of proteins with RNA. These differential interactions, while
requiring further validation, may underlie the mechanism by which
hexamer sequences influence splice-site choice.

Typical GWAS analysis results in the identification of genomic
regions associated with phenotypic variation. Over the past 15 years,
with the explosion of GWAS studies, there have been many genetic
variants of interest that have been catalogued to be of significance77.
However, understanding the implications of these SNPs and the
underlying mechanisms by which they act remains a huge challenge78.
Even restricting our analysis to the highest associated SNPs from
SpliSER-GWAS, more than 10% have been identified to be variants of
interest for diverse phenotypes (Supplementary Data 15). This sug-
gests splicing as a potential molecular mechanism that could be
explored in the context of these phenotypes, with important implica-
tions for personalized medicine.

It is important to point out some of the limitations of our study.
SpliSER does not have any mapping capabilities and thus all mapping-
related issues are carried over in our analysis. For example, we noticed
that when we used different aligners, we had visible differences in
scatter plots (Supplementary Fig. 6) and in the number of splice-sites.
To assess the impacts, we compared the combinations of aligners and

accessions in Arabidopsis (Supplementary Fig. 6). We observed clear
effects of the aligners onour splice-site strength estimations.However,
when the same aligners were used on multiple accessions, they
grouped together and separated from the same set of accessions
aligned with a different aligner (Supplementary Fig. 6). Based on this,
we reason that our ability to map SSE variation by GWAS is unlikely to
be affected, since for SpliSER-GWAS analysis for each species, one
aligner was used. It is also essential to note that our ability to map by
GWAS is influenced by allele frequencies and thus our analysis will
clearly miss rare alleles affecting splicing. For our analysis here, we
have mostly focused on a single tissue from three different species,
primarilydue to the sheer computational timeassociatedwith carrying
out hundreds of thousands of GWAS. Thus, we cannot rule out that we
may havemissed some patterns, whichmay become visible only when
a comprehensive analysis of all tissues or cell types is carried out in the
future.

It is worth noting that hexamer rankings, while providing valuable
information, are not to be considered as an alternative to predictive
tools. Hexamer rankings group all splice-sites into 256 categories and
thus will never have the same predictive power as tools that use larger
regions of sequences or contexts. In addition, these rankings can be
developed in a tissue/condition/sex-specific manner, as opposed to
sequence-based predictions. Thus, they provide a first and quick way
to functionally assess the impacts across diverse organisms.

In summary, we have presented a framework that explains splice-
site choice across eukaryotic organisms. Context-specificity (such as
cell type-, tissue-, condition-specific splicing changes), perhaps medi-
ated via context-specific expression of RNA-binding proteins, acts on
top of this core framework to confer splicing outcomes. We have
shown that the core determinant of splicing across diverse species is
intronic hexamer sequences, and that these are among the major
sources of splicing variability at a population level. Our catalogue of
associations in Arabidopsis, Drosophila and Humans can be further
exploited for functional analysis of pathways of growth, development,
or environmental response. The hexamer rankings that we have pre-
sented can be used as a starting point for engineering specific splicing
outcomes through gene editing techniques for desirable phenotypes
of agricultural and/or medical relevance across eukaryotes.

Methods
Ethics Statement
This study did not involve any human participants but utilised human
bulk RNA-seq data produced by the Genotype-Tissue Expression
(GTEx) project, v8 release (dbGaP accession phs000424.v8; GTEx
Portal, https://gtexportal.org/home/datasets). The datasets were pro-
vided access under the GTEx General Research Use (GRU)- Data Use
Agreement upon review by NIH for this project (#30512 – Genome
Wide Analysis of Splice-site choice). The data availability statement
provides the links and the processes for obtaining the data. The use of
data does not require approval from the human ethics committee. All
data was used as per the requirements of the Data Use Agreement of
NIH. Drosophila used in the study weremaintained in accordancewith
institutional guidelines for the care and use of invertebrate animals in
research. As Drosophila is not subject to the same ethical regulations
as vertebrate animals, formal ethical approval was not required.
Nevertheless, all efforts were made to minimize suffering and to han-
dle the flies responsibly and humanly throughout the study. Please
note the specific experiments (e.g., RNA extractions) were not pre-
sented in this manuscript, though we maintained the lines reported
in the Drosophila GWAS data. Both Arabidopsis plant work and the
work on human cell lines do not require formal ethics approval.

DNA/RNA analyses
DNA and RNA extractions from plants and HEK293T cells (ATCC,
Catalogue Number -CRL-3216) were carried out as described
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previously79,80. Briefly, plant DNAwas extracted using amodified CTAB
protocol79,80. RNA extractions were carried out using Trizol (Invitro-
gen) as per manufacturer’s instructions. Plants were grown under long
day conditions (16 hr light and 8hr dark) for expression analysis79.
HEK293T cells were cultured as per standard procedures in DMEM
media with 10% FBS and 2mMglutamine. To analyze splicing, 1μg total
RNAwas converted into cDNA and the splicing patterns were analyzed
using primers listed in Supplementary Table 5. All standard molecular
biology works were done using standard protocols79. All constructs
were sequence verified before their downstream uses. RT-PCR pro-
ducts were gel-purified and sequenced to confirm specific splice
junctions.

RNA-seq data alignment for processing
The Arabidopsis 1001 genomes RNA-seq data were aligned with
TopHat2 and splice junctions were identified with Regtools49. Briefly,
6854 RNA-seq samples were downloaded, representing 728 accessions
(PRJNA319904)57. Reads were aligned to the TAIR10 genome using
TopHat2 (v2.1.1; parameters --minIntronLength 20, --maxIntronLength
6000, -p 6)81. For Drosophila, transcriptomic data were obtained from
the Drosophila Genetics Reference Panel – DGRP259. The 957 DGRP2
RNA-seq samples, representing 200 genotypes (both males and
females each), were downloaded, and the data were aligned using
STAR version 2.782 to the BDGP6 reference genome (parameters
--outFilterMultimapNmax– --alignSJoverhangMin– --alignIntronMin 20
–alignIntronMax 150– --outSAMtype BAM SortedByCoordinate).
Aligned BAM files were indexed with Samtools version 1.12. Regtools
was used to generate gap junction files (parameters-regtools junctions
extract -a 6 -m 20 -M 15000 -s 0). For the human data, 372 BAM files
representing humanheart atrial tissue generatedby theGTEx project60

were downloaded. A BED file also known as a gap junction file, con-
taining a catalogue of splice junctions detected in the alignment was
generated with Regtools junction extract (parameters -m 20 -M 16000
-a 6 -s 0 -o ${SAMPLE}.bed {SAMPLE}.bam).

Quantification of splice-site strength/usage estimates (SSE)
The resulting BAM and splice junction BED files were processed with
SpliSER v0.1.849. We filtered sites that had at least 10 reads crossing the
splice-site in at least three replicates, in at least 100 accessions and
taken them for further analysis (Table 1). Fly data was split into female
SSE (fSSE) and male SSE (mSSE) datasets. For each splice-site, SSE was
averaged across samples of the same genotype and sex if at least two
replicates passed the previous filtering steps.

Variability in splice-site usage between individuals was evaluated
in two different ways. First, the variance of the distribution was cal-
culated and individuals who fell in the upper quartile were taken for
further consideration. Second, we computed the range in splice-site
usage among the individuals in eachof the species. Typically, therewas
a correlation between the two measures. Broad-sense heritability (H2)
was calculated from the averaged SSE phenotypic values as the pro-
portion of total variance attributed to the variance between the DGRP/
1001 Genome project accessions, using one-way ANOVA with the
genotypes as a factor and SSE as a response. An earlier analysis with all
sites in a set of flowering timegenes suggested that high variability and
heritability capture most of the mappable variation49. Therefore,
splice-sites were ranked by their H2 and total variance in SSE, and sites
in the top quartile for both H2 and total variance were taken for GWAS
mapping. For the human heart data, all sites that were in the upper
quartile of variance were taken for analysis since heritability could not
be calculated due to the absence of replicates.

Multi-tissue analysis of splicing in different species
RNA-Seq datasets for Chicken (Gallus gallus), Frog (Xenopus tropicalis),
and Mouse (Mus musculus) were obtained from the publicly available
NCBI BioProject repository under accession number PRJNA1765899.

Human (Homo sapiens) RNA-Seq data were sourced from the Genotype-
Tissue Expression (GTEx) Consortium46, with a randomly selected indi-
vidual’s dataset. Splice-site strength was quantified using SpliSER (Ver-
sion 0.1.8). Orthologous regions across species were established using
the Lift-Over tool83,84 (Galaxy platform) and regions with 1:1 overlapwere
taken further for comparative analysis as described by Barbosa-Morais
et al.9. Differentially spliced genes were identified by constructing a 95%
confidence interval around the regression line of SSE values between the
two species or organs. Sites with SSE values falling outside this con-
fidence interval were classified as differentially spliced.

GWAS and peak-calling from Manhattan plots
We ran GWAS for each site using GEMMA v0.98.385, using genotypic
data from the 1001 Genomeproject/DGRP project or the GTEx project.
A distance squarematrix kinship file was generated using the VCFs and
then utilized in the GWAS analysis. Only the variants that had a minor
allele frequency greater than 5% were considered for the association
study. Initially, we manually called the peaks for Arabidopsis and then
automated the process through benchmarking with Manhattan
Harvester86, with aminimum peak SNP count of 50. To account for the
global noise in Manhattan plots in this approach, we additionally
required that the –log10(pValue) of the top SNP of a peakmust lie 1.33
times higher than the average of the top 5 SNPs in the plot (with none
of the 5 being within 750kb of each other) for the peak to be included.
From each of the called peaks, a single SNP with the most significant
p-value was selected as the top SNP. In cases where multiple SNPs had
the maximal association significance, the one closest to the splice-site
was chosen as the top SNP and selected for downstream analyses. All
selected associations of an SNP and a splice-site were compiled into a
comprehensive SNP table (Supplementary Data 1–3). The distance of
each top SNP from the associated splice-site was calculated and nor-
malised to the splice-site position and strand, with position zero being
the first base in the intron for the donor site (“G” of “GT”), and last base
of the intron for acceptor sites (“G” of “AG”). Associations were char-
acterised as “cis” if the top SNP was within 1Mb from the associated
splice-site; all other associations were labelled as trans. Allelic change
in SSE (ΔSSE) was calculated as the averagemajor allele SSE subtracted
from the average minor allele SSE. Percentage Variance Explained
(PVE) of SSE by each SNP was calculated as per Shim et al.87.

Assessing the presence of motifs around Top SNPs
We extracted a +/-3-bp window sequence around the top SNP for
associations and examined the presence of RNA binding motifs using
sequence search optionof ATtRACTdatabase74 (parameters:minimum
motif length = 4, maximum motif length = 8). To investigate whether
the allelic variation influences RNA binding, we compared the RNA
bindingmotifs associated with both the major andminor alleles at the
top SNP. For control, we performed the same analysis on a set of
randomly selected SNPs or randomly generated sequences and con-
ducted the same motif search analysis.

Single nucleotide effects on splicing variation
We calculated the proportion of variance attributed to each position
around the splice-site as the ratio between within-group variance and
between group variance using this formula.

Proportion of variance =
TSS� RSS

TSS

where TSS is the sum of squares of Splice-site Strength Estimates
(SSEs) across all splice-sites, and RSS is the sum of the sum of squares
of SSEs of sites with each nucleotide at the given position. We
calculated this for all splice-sites in Arabidopsis, Drosophila and
Humans, taking the information from multiple individuals that were
used in the GWAS analysis.
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Second-order effects of nucleotides around splice-sites
For each species in the GWAS dataset we sampled down to approx. 2
million splice-site/sequence combinations. We investigated the
sequences -7 upstream until +3 downstream of Acceptor Sites, and -3
upstream until +7 downstream of Donor sites. Preliminary analysis
with two-way-ANOVA suggested that all positions around the splice-
site were significantly associated with changes in splice-site usage, and
that there were significant interaction effects of all nucleotides at all
positions. To capture second-order effects (pairwise interactions of
nucleotides which differ from a naive additive model), we calculated
the mean splice-site usage of each splice-site with either nucleotide 1
(e.g., Adenine at position -7) and nucleotide 2 (e.g., Guanine at position
-6; together forming an AG upstreamof the splice-site). We subtracted
themeanusageof siteswith each nucleotide from thegrandmean, and
added the differences together to form an naive expectation of their
interaction if it were additive (e.g., −7A = −0.1, −6G= −0.15, so we
expect sites with −7/−6 AG to have an average usage 0.25 below the
mean; capped such that splice-site usage could not exceed 0 or 1). We
then looked at the difference between this expectation and our actual
observations. We plotted all these differences in sorted order and
identified outliers as those sitting beyond the elbows of the resulting
plot (Supplementary Figs. 9–12). Elbow points were calculated as the
points furthest from the lines drawn between themid-point and either
extremeof the plot, towhichweadded a further conservative buffer of
0.1 (or 10% change in splice-site usage beyond the elbow threshold).
The pairwise interactions values are given in Supplementary Data 6, 7
and the heat maps of interactions for each species is shown in Sup-
plementary Figs. 9–12.

k-mer effects on splice-site choice
To identify an ideal k-mer length,we assessed the ability of the k-mer to
explain splice-site choice in the following manner. We considered
three aspects. First, we checked which length k-mers are present in the
most possible sequence combinations at splice-sites. For example, a
tetramer (e.g., GTNN) has 16 possible sequence combinations and all
16 could be found at the splice-sites. However, an octamer (GT [N]6)
has 4096 sequence combinations, but only some of these could be
found at splice-sites. Therefore, a substantial number of octamers are
not comparable across species. Second, we assessed the ability of k-
mers to differentiate GT/AGs around splice-sites. The longer the k-mer,
the more likely it is to uniquely differentiate a splice-site among
competing sites. Third, we grouped all possible splice-sites into dis-
tinct k-mer groups, used their splice-site strengths to calculate the
average strength of that k-mer and generated k-mer rankings, we
scanned +/−100 or 200bp from the splice-site for all GTs for donors
and AGs for acceptors. We then extracted the k-mers surrounding the
GT/AG in the window, taking into account of the existing mutations
using corresponding VCF files for Arabidopsis, Drosophila and
Humans and compared their average splice-site strength to generate k-
mer ranks. The number of occasions when the splice-site had the
strongest and unique k-mer among the k-mer for all GT or AG in that
window were noted. This number is over the total analyzed sites to
obtain a success rate. We then adjusted this score based on the per-
centage of possible k-mers that are present in splice-sites to obtain the
percentage of splice-site choices explained by the k-mer (Table 2) for
all three species. We excluded splice-sites that are within 100/200 bp
of each other, eliminating the competition between detected sites for
this analysis.

Identifying the best nucleotides for each position that promote/
suppress splicing
From the SNP table, we computed the distances of the highest and
closest associated SNPs from their corresponding splice-sites. The
table was filtered to only include splice-sites for which the highest
associated SNP fell within 100 bp from the splice-site. We then

trimmed down the list so that each associated SNP was giving infor-
mation only for a single site by taking the closest splice-site. This
resulted in a unique set of associated SNPs, each of which gave infor-
mation about one unique splice-site. Subsequently, the list was sepa-
rated into donor and acceptor sites, and the data were processed to
produce the distribution graphs for each species. The data from all
three species were combined and for each association,n the splice-
promoting nucleotide and the splice-reducing nucleotides were deci-
phered as the most frequent nucleotide seen for greater or lesser
usage of the splice-site. To synthesize the best and worst introns, we
carried out this analysis on acceptors from -50 to 0 and from 0 to 50
for donors and stuck them together as shown in Supplementary
Data 9. We included GT and AG and a branch point adenosine in all
constructs in this analysis. The worst construct was then modified to
include either a polypyrimidine tract (PPT) or a PPT and a consensus
branch point or a PPT, a consensus branch point, and strong hexamers
to assess the importance of hexamers. For all splice-sites across the
genome, we computed the average SSE for each of the 4 possible
nucleotides at each position relative to the splice-sites and plotted the
means as a violin plot and considered the nucleotide with the highest
mean as the best one to promote splicing for that position.

mCHERRY reporter construct analysis
To assess the splicing impacts experimentally, we interrupted the
mCHERRY ORF of pGH044 (Addgene Plasmid #85412, RRID:
Addgene_85412). We scanned mCHERRY for the “AGGT” stretch and
placed the intron between the AG and GT. We synthesized the intron
with a part ofmCHERRY through commercial suppliers (IDT-Australia)
and then used restriction cloning to replace this cassette containing
the intron within the plasmid pGH044. All constructs generated are
listed in Supplementary Data 9. Sequence-verified constructs were
transfected into HEK293T cells using LipofectamineTM 3000 (Invitro-
gen). Cellswere visualizedunder afluorescencemicroscope. RNA from
transfected cells was extracted for RT-PCR analysis.

Hexamer analysis on diverse species
Wedownloaded the rawRNA-seqdata (.fastq) ofdifferent species from
SRA using SRAtoolkit. The RNA-seq reads were aligned to their cor-
responding genome annotations from SRA using STAR. Sub-
sequent.bam files were then indexed and regtools was used to
generate.bed files, detailing the splice junction information. Then,
SpliSER was used to calculate splice-site usage. SpliSER’s output file
was used as input for a custom-made Python script that identified
hexamers for each splice-site and calculated the average Splice-site
Strength Estimate (SSE) for each hexamer. For Arabidopsis, Drosophila
and human data, the entire dataset containing all individual samples
(e.g., 200 genotypes in Drosophila) were used to generate obtain the
hexamer for all sites, which further aided in obtaining a robust esti-
mation of the SSE or count. For all other samples, single RNA-seq data
was used to obtain the SSE or count ranks. These ranks were then used
to assess the percentage of splice-site choices explained by the hex-
amers in each of these species. All the data from diverse species is
reported in Supplementary Table 4 and Supplementary Data 12, 13.
This data was used to obtain pairwise correlations between species
through custom-made python scripts. The results are reported in
Supplementary Data 14. To assess utilisation/nonutilisation of hex-
amer sequences, RNA-Seq data froma random individualwas used.We
analyzed the frequency with which each hexamer was utilized as a
splice-site. For each hexamer, we determined its occurrence within
protein-coding genes, recording both the count of hexamer usage as a
splice-site and the corresponding SSE values across all individuals. A
correlation analysis was performed, and scatter plots were generated
to explore the relationship between hexamer presence and SSE. All
analyses were conducted using custom Python scripts. To analyze
species-wide correlations, we computed the p-distance using MEGA
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software88. After grouping hexamers by p-distance, we computed the
average SSE for each groupby averaging the SSE of all hexamerswithin
the group.

Analysis of the Rosenberg et al.30 minigene constructs data
We used the RNA-seq data generated by Rosenberg et al.30, which was
downloaded from NCBI in FASTQ format. As the reads were multi-
plexed,weused fastq-multx (https://github.com/brwnj/fastq-multx) to
allocate sequences to different minigene constructs based on the
barcodes. The de-multiplexed reads were aligned to the correspond-
ing reference sequence using STAR. These aligned reads were pro-
cessed with SpliSER (v1.8) and SSE values were obtained for all the
detected splice-sites fromall 265,137 constructs. Custom-made Python
scripts were used in downstream analysis, which involved extracting
the hexamer sequence information from the reference sequence and
identifying all possible competing pairs within each construct. Sub-
sequently, we calculated the average SSE value for all hexamers in each
competing pair and determined the proportion of winning hexamers
based on this average SSE value.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are presented in the supplementary tables and in the manu-
script. The sequence data used are publicly available from the 1001
Genomes Project (Arabidopsis) with the accession number GSE80744
and the Drosophila Genotype Reference Panel with the accession
number GSE67505. The human bulk RNA-seq data from heart atrial
tissue and used in this study is available (with restrictions) from the
GTEx portal and from dbGaP [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2]. The details on how
to access the protected access data and the instructions on how to
download the data are available on https://www.gtexportal.org/home/
protectedDataAccess and https://support.terra.bio/hc/en-us/articles/
4402326091675-Accessing-GTEx-TARGET-TCGA-data. The original
data used in Figures S19 and S20 were generated by Barbosa et al.,
Science, 20129 and are available under the accession numbers
GSE41338 and GSE30352. The Rosenberg et al., 201530 data used in Fig.
4 are available under accession GSE74070. For the multi-species rank-
correlation analysis (Fig. S18), RNA-seq datasets were obtained from
publicly available studies. The corresponding SRA run accessions
(SRR) are listed in Source Data (Fig. S18_AccessionNumbers). To assess
the effect of aligner choice (Fig. S6), we downloaded RNA-seq data
from the Arabidopsis 1001 Genomes Project (SRA accessions:
SRR3462994, SRR3462995, SRR3460130, SRR461135,
SRR461134). Source data are provided with this paper.
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