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Genetic determinants of monocyte splicing
are enriched for disease susceptibility loci

Isar Nassiri1,2,3,4,5 , James J. Gilchrist 6,7, Orion Tong 6, Evelyn Lau2,
Sara Danielli5, Hussein Al Mossawi 8, Matthew J. Neville 9,10,
Julian C. Knight 2,11 & Benjamin P. Fairfax 5,6

Insights into variation in monocyte context-specific splicing and transcript
usage are limited. Here, we perform paired gene and transcript QTL mapping
across distinct immune states using RNA sequencing data of monocytes iso-
lated from a cohort of 185 healthy Europeans incubated alone or in the pre-
sence of interferon gamma (IFN-γ) or lipopolysaccharide (LPS). We identify
regulatory variants for 5749 genes and 8727 transcripts, with 291 context-
specific transcript QTL colocalizing with GWAS loci. Notable disease relevant
associations include IFN-γ specific transcript QTL at COVID-19 severity locus
rs10735079, where allelic variation modulates context-specific splicing of
OAS1, and at rs4072037, a risk allele for gastro-esophageal cancer, which
associates with context-specific splicing of MUC1. We use DNA methylation
data from the same cells to demonstrate overlap between methylation QTL
and causal context-specific expression QTL, permitting inference of the
direction of effect. Finally, we identify a subset of expression QTL that
uncouple genes from proximally acting regulatory networks, creating ‘co-
expression QTL’ with different allele-specific correlation networks. Our find-
ings highlight the interplay between context and genetics in the regulation of
themonocyte gene expression and splicing, revealing putativemechanisms of
diverse disease risk alleles including for COVID-19 and cancer.

Dysfunctional innate immunity plays a role in the pathogenesis of
diverse human disease processes, with chronic inflammation impli-
cated in autoimmunity and cancer1, whilst impaired acute immune
responses can contribute to susceptibility to infection2. Circulating
monocytes play a central role in the early innate immune response,
and inter-individual variation in monocyte gene expression results in
variation in functional activity. Monocytes display stereotypical

responses todifferent immune stimuli, with their activation leading to
widespread changes in gene expression, with parallel changes in
chromatin accessibility, revealing context-specific regulatory var-
iants. Consequently, mappingmonocyte expression quantitative trait
loci (eQTL) across different activation states provides mechanistic
insights into divergent innate immunity with relevance to disease
processes3,4. Whilst early context-specific eQTL analyses were based
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on microarray-based approaches3,5,6, these have been greatly com-
plemented by more recent single-cell RNAseq studies7. However,
neither of these approaches provides a comprehensive perspective
on activation induced transcript modulation, including splicing and
differential transcript usage. To further our understanding of the
impact of genetic variants on splicing and differential transcript
usage, we have conducted eQTL mapping using paired-end RNA-seq
at gene (gQTL) and transcript (tQTL) levels, integrating observations
with methylation QTL (mQTL). We study howmonocyte genetics and
context-specific transcriptomics relate in different immune con-
texts (Fig. 1).

We find that, consistent with gQTLs, tQTLs show a high degree
of context specificity, with 54.6% (4763/8727) observed in one
condition only (FDR < 0.01). By integrating our results with genetic
associations within the UK Biobank, we explore the potential con-
tribution of context-specific tQTLs to human disease processes8.
Notably, we find that 6.1% (291/4763) of context-specific tQTLs
associate with GWAS disease risk loci9, including those linked to
severe COVID-1910. The connection between genetic variation, DNA
methylation, and gene expression is intricate, with methylation
quantitative trait loci (mQTLs) frequently underpinning differential
gene expression11. Whilst IFN-γ has minimal effects on monocyte
DNA methylation during the timeframe we evaluated, LPS causes
highly specific and punctate effects12. To investigate the relationship
between context-specific g/tQTL and mQTL, we integrated DNA
methylation status with gene expression from untreated and LPS-
treatedmonocytes13,14, finding 89.9% of post-LPS g/tQTL:mQTL pairs
shared a causal variant. Finally, we demonstrate that for a subset of
gQTL and tQTL, the regulatory variant alters the relationship
between the cis gene and co-regulated gene networks, leading to the
formation of co-expression QTL (coExQTL)15,16, which we describe
and replicate across different activation states. We propose
coExQTLs provide paradigmatic insights into the mechanisms
whereby small-scale regulatory variation may induce large-scale
impacts on phenotype. Our work further highlights the need to
consider context when determining the effect of regulatory variant
function and provides insights into genetic determinants of tran-
scriptional pathway activity.

Results
Identification of cis-acting QTL
We performed genome-wide gQTL and tQTL analysis to identify loci
associated with both gene expression and transcript usage in mono-
cytes incubated for 24 h inmedia alone or in the presence of either LPS
or IFN-γ (Supplementary Fig. 1). We filtered out technical variability
from gene read counts and included an optimal number of principal
component covariates in the g/tQTL analysis17–19. For gQTL analysis,
mapping was performed using a 1Mb window centred on the tran-
scription start site (TSS) of the gene of interest to capture distal
enhancers and long-range acting variants, whereas for tQTL, a 100Kb
window was considered, given the known more local regulation of
splicing and tominimisemultiple testing20–27. Our stepwise conditional
analysis revealed independent g/tQTL28, implying multiple significant
independent associations for a subset of genes after conditioning for
the lead variant associated with it. We identified a total of 26,500
independent gQTL (± 1Mb, FDR <0.01) across 10875 genes and 13822
independent tQTL (± 100 kb, FDR <0.01) involving 5749 genes and
8727 transcripts. Of these, we identified 3441 gQTL and 4763 tQTL in
one condition only, whilst 1937 gQTL and 2646 tQTL were observed
only in the stimulated state (significant in IFN-γ and/or LPS treated
conditions but not in the naïve state) (Fig. 2a–c) (Supplemen-
tary Data 1).

The Moloc method was utilised to further evaluate the context
specificity of g/tQTL identified in RNA-seq data29,30, enabling com-
parison of evidence for shared or independent effects of genetic
variants whilst mitigating the impact of linkage disequilibrium. This
approach identified 3572 gQTL and 2016 tQTL with evidence of spe-
cificity to one condition only (PP > 0.5, Supplementary Data 2). The
median distance for gQTL from the transcription start site (TSS) was
43,649 bp (95%CI: 42,488 –44,449 bp),whilst tQTL are typicallymore
proximal to TSS (median 19,481 bp 95% CI: 18,233 – 20,455 bp (UT),
19,285 bp 95% CI: 18,123 – 20,397 bp (LPS), 18,263 bp 95% CI: 17,257 –

19,433 bp (IFN-γ)). The differences in window size used to identify
gQTL and tQTL complicate accurate comparison of distances
between these types of regulatory loci and the TSS. However, when
we focused on independent gQTL within 100 kb windows, we
observed that the distribution of distances from TSS to gQTLs and

Fig. 1 | Overview of approach. Paired gene and transcript QTL mapping, using
paired-endRNA-seq of primarymonocytes that hadbeen incubated in anuntreated
state or following exposure to IFN-γ or LPS. Imputed genotypes were derived from

array-based genotyping. g/t/mQTL mapping was performed using QTLtools with
biological significance and potential implications for disease inferred via integra-
tion with GWAS trait-associated SNPs. All data is available via a web browser.
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tQTLs with the 100 Kb window size remained significantly different
(Welch Two Sample t test P < 0.01), which suggests divergent reg-
ulatory mechanisms (Supplementary Fig. 2). In keeping with this,
gQTL and tQTL exhibited distinct enrichment for certain genomic
features, with promoter enrichment observed only for gQTL, whereas

tQTLdemonstrated relative enrichmentwithin enhancers and regions
of open chromatin (Fig. 2d).

We tested g/tSNPs at gQTL and tQTL peaks for enrichment of
chromatin state features for primary human monocytes31. We found
enrichment of tSNPs at gene 5’ and 3’ transcription flanking (TxFlnk)

Fig. 2 | SNP and gene mapping in the tQTL profiles.Manhattan plots of inde-
pendentmonocyte tQTL-associations for the naïve state (a), or after treatmentwith
LPS (b), or IFN-γ (c). Top condition-specific independent SNPs can be found in
highlighted SNPs on Manhattan plots. The y-axis displays the -log10(FDR) of each
association, while the x-axis displays the chromosomal position of SNPs. d Func-
tional annotation of independent g/tSNPs using genomic features. The plot dis-
plays the z-score calculated using the proportion of SNPs (independent g/tSNP and
their LD proxies) which have corresponding functional annotations assigned by
biomaRt (Ensembl) and UCSC databases in comparison with background SNP. The
foreground SNP sets for each gene/transcript were made up of g/tSNP with FDR
<0.001, and other gSNPs within the 1Mb and tSNPs within the 100Kb window
around the TSSwere used as background. eThe enrichment of independent g/tSNP
with chromatin state (E029 chromatin states dataset provided by the Roadmap
Epigenomics Consortium) across primarymonocytes fromperipheral blood tissue.
f Highlighted isoforms (red colour) of MUC1, including ENST00000612778 and

ENST00000620103 show significant tQTL in IFN-γ stimulated condition. g For
MUC1, we found an independent SNP (rs4072037) which is associated with two
transcripts in a context-specificmanner. The display of splice junctions is limited to
those that are not present in all transcripts. Abbreviations: TssAFlnk Active TSS
Flank, TxFlnk Transcription, Tx Transcription Flank, TxWk Weak Transcription,
EnhG Gene Enhancer, Enh Enhancer, ZNF/Rpts Zinc Finger/Repeats, Het Hetero-
chromatin, TssBiv Bivalent TSS, BivFlnk Bivalent Flank, EnhBiv Bivalent Enhancer,
ReprPC Repressed Polycomb-repressed Complex, ReprPCWk Weak Repressed
Polycomb-repressed Complex, Quies Quiescent chromatin. fiveUTRs 5’ Untrans-
lated Regions. threeUTRs 3’ Untranslated Regions. “N” represents and lists the
specific number of donors. The x-axis of the boxplot represents the different alleles
of the SNP that are related to the expression. Each box indicates a particular SNP
allele, and the y-axis displays the expression levels of individuals with that allele.
The normalised read count and Fragments Per Kilobase Million (FPKM) metrics
display the expression levels of genes and transcripts, respectively.
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marks, whereas gSNPs were enriched at active transcription start sites
(TssA),with bothdepleted inquiescent/lowepigenetic signals (Fig. 2e).

Replication of gQTL is important in validating observed genetic
determinants of expression and is particularly useful for well-
characterised context-specific observations20. To evaluate the repro-
ducibility of the cis-gQTLs identified using RNA-seq in this cohort, we
compared results with those from microarray analysis of an earlier
cohort treated in the samemanner3. We considered gQTLs reported in
the microarray dataset based on commonality of gene symbols with
the RNA-seq-based data, comparing SNP-gene pairs, and their gQTL p-
values and effect sizes.

This demonstrated 7675/10139 total (75.7%) naïve, 7344/9831
(74.7%) total LPS, and 7293/9410 total (77.5%) IFN-γ significant inde-
pendent gQTL at FDR <0.01 that were previously reported in the gQTL
Catalogue32. Notably, 95.6% (naïve), 94.2% (LPS), and 95.2% (IFN-γ) of
these replicated gQTL corresponded to the previously reported
independent SNP32, with 99% demonstrating identical allelic directions
(correlation coefficient = 0.98, Shapiro-Wilk normality test p-value <
0.001, Supplementary Fig. 3).

To evaluate whether identified gQTL could be replicated at the
single-cell level, we compared gQTL results with published single-cell
RNA-seq (scRNA-seq) data of monocytes from 120 PBMC samples
either stimulated or exposed in vitro to Pseudomonas aeruginosa
(PA24)7. The scRNA-seq dataset was analysed for gQTLs based on
shared gene symbol, comparing SNP-gene pairs and their gQTL p-
values. This demonstrated general consistency of results with 41,769/
91,678 (45.5%) representing naïve and 47,931/95,226 (50.3%) repre-
senting total PA24 replication. The datasets showed a significant
positive correlation between the effect sizes of gQTLs (naïve95.6% and
PA24 96.6%) (Supplementary Data 3), indicating that the associations
identified can be reproduced at a single-cell level.

We found that 54.6% of tQTL (4763 observed over 8727 total)
showed context specificity, of which 6.5% (568 observed over 8727
total) involve more than one transcript associating with the same
regulatory variant (387/568 demonstrating context-specificity). Whilst
39.3% (4276observedover 10875 total) of gQTLgenes hada tQTL,with
16.6% (710 observed over 4276 total) of them being context-specific
gQTL genes, notably 25.6% (1473 out of 5749) of tQTL were to genes
without gQTLs. Thus, tQTL analysis provides additional information
regarding context-specific regulatory variant activity that comple-
ments gQTL analysis.

An illustrative example of the context-specific splicing occurring
across conditions is at the geneMUC1. Alternative transcripts ofMUC1,
including ENST00000612778 (FDR 2.7 × 10−17) and ENST00000620103
(FDR 8.0 × 10−15), showed tQTL (but not gQTL) upon exposure to IFN-γ
(Fig. 2f), mapping to rs4072037, a risk allele (rs4072037:G) for oeso-
phageal and gastric cancer, highlighting the potential for insights into
mechanisms of disease of such features (Fig. 2g)33,34. Multiple further
examples of tQTLs demonstratinghigh conditional specificity andwith
opposing direction of effect for different transcripts were noted at
genes including RGS1, DDX1, CTSC, and KIFC3 (Supplementary
Figs. 4–6).

Disease association
To formally explore disease and trait associations with identified
monocyte g/tQTL across contexts, we integratedobservationswith the
UK Biobank andGWAS summary statistics for 380 traits.We employed
Mendelian randomisation (MR) to infer causal relationships between
exposures (gene expression) and outcomes (traits). We found that
both gQTLs and tQTLs identified across contexts in this analysis were
enriched for disease-associated GWAS loci (FDR < 5 × 10−8 and
PPH4 >0.8).

A total 126 trait-associated gQTL were observed, whereas 291
tSNPs were found to colocalise with 140 traits. Whilst 95 traits were
associated with both tQTL and gQTL, a further 45 traits were found to

colocalise with tSNPs, demonstrating the additional potential disease
insights from such analysis. In keeping with differential transcript
usage across contexts playing a key role in immune-mediated disease
susceptibility, enrichment of condition-specific tQTLs with GWAS risk
alleles was greater than that for gQTLs (Fig. 3a, b).

Althoughwe used differentwindow sizes for identifying gQTL and
tQTL, secondary analysis limited to the 100Kb window size for inde-
pendent gQTLs confirmed that these distinct observations were not
due to divergent window size usage, with 90.9% GWAS trait colocali-
zation amenable to replication (UT: 100%, LPS: 100%, IFN-γ: 63.2%)
(Supplementary Data 4).

This analysis demonstrated untreated monocytes exhibit sig-
nificant causal relationships in tQTL for rheumatoid arthritis and can-
cer, whereas stimulated monocytes demonstrated the most causal
relationships for asthma (Fig. 3b and Supplementary Data 4), for which
LPS-induced cytokines and IFN-γ induced dendritic cell differentiation
play key roles35. These data provide further granularity into potential
GWASmechanisms, demonstrating that variants at disease-risk loci are
associated with the use of activated monocyte isoforms32,36–38.

Both IFN-γ and LPS elicit prominent type I interferon induction, a
key characteristic of early anti-viral innate immune responses,
including those to SARS-CoV-2. Exemplifying the relevance of stimu-
lated monocytes to the genetics of COVID-19 pathogenesis, we
observed several context-specific gQTL and tQTL colocalising with
COVID-19 severity risk loci (Fig. 3c–e). A leading example of these is
within the antiviral restriction enzyme activators (OAS) gene cluster,
where gQTL to OAS1 and OAS3 colocalise with the COVID risk locus
rs1073507910. Whereas in untreated monocytes this locus displays
weak gQTL activity (OAS1 FDR =0.0027, OAS3 FDR=0.0023), the
expression of these genes is robustly induced by IFN-γ, leading to a
markedly increased significance of gQTL associations (Fig. 3d). Ana-
lysis of transcript usage at this locus demonstrates complex transcript
switching, specifically in OAS1 isoform usage (involving
ENST00000202917, ENST00000452357), most significantly post-IFN-γ
(Fig. 3e and Supplementary Data 5). Differential splicing at rs10735079
(chr12:112942203G >A) leads to exon skipping between
ENST00000452357 and ENST00000202917,with this SNP forming the
most likely causal variant for both post-IFN-γ gQTL, tQTL and severe
COVID-19 susceptibility (PPH4 =0.99) (Fig. 3c–e), demonstrating
multifaceted regulatory activity at this locus in a disease-relevant state.
A further key COVID-19 GWAS locus demonstrating context-specific
activity is rs6517156, which forms a gQTL for IFNAR2 post IFN-γ (FDR
6.2 × 10−6), again emphasising the importance of the IFN-γ stimulus to
elucidation of the COVID-19 disease state (Fig. 3f). Our findings are in
accordance with previously published results and provide further
resolution of the effect of this COVID severity locus at the transcript
level39,40.

Shared genetic determinants on methylation and gene
expression
To explore the relationship between context-specific g/tQTL forma-
tion and variation in DNA methylation, we assessed DNA methylation
from the same samples in the untreated state and post LPS11,41,42. We
performed genome-wide methylation quantitative-trait loci (mQTL)
analysis to identify variants associated with DNA methylation levels,
identifying a total of 19,962 mQTL (17,279 untreated, 16,853 post LPS;
FDR <0.01, Supplementary Data 1).

Colocalization analysis was used to identify g/tQTL and mQTL
pairs likely sharing a causal variant43. For mQTLs with multiple asso-
ciated CpGs, we selected the CpG with the most significant FDR and
the highest posterior probability of a causal hypothesis. We found one
causal variant to be associated with both expression and methylation
(posterior probabilities of PPH4>0.8, FDR <0.01)9 for 45.7% (497/
1086) of gQTL-mQTL pairs in naïve monocytes and 46.3% (365/787)
post LPS (Fig. 4a, Supplementary Data 6). Context-specific tQTLs that
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share the same independent and causal variant with mQTLs were
identified in naïve and post-LPS by 57.4% (862/1501) and 53.2% (590/
1107), respectively (Fig. 4a and Supplementary Data 6).

Where there was a relationship between CpG methylation for
mQTL and gene expression, we tested the directional causality of
these loci in terms of genetic variation, DNA methylation, and gene
expression by applying Steiger directionality tests across g/tQTL-
mQTL pairs.

In the naïve state, 36% (179/497) of gQTL and 42.4% (366/862) of
tQTL demonstrate dependent causal effects on methylation linked to
expression or vice versa, with this proportion being 40.3% (147/365) of
gQTL and 43.3% (256/590) of tQTL post-LPS. Steiger directionality tests
were used to determine the direction of the regulatory relationship for
the identifiedpairs of tQTLs andmQTLs that share a likely causal variant.
The analysis revealed that in 41% of naïve and 41.9% of post-LPS,
alterations in DNA methylation were the likely source of changes in

Fig. 3 |Disease associationsofg/tQTL. aContext-specific g/tQTL colocalisingwith
GWAS disease risk loci (PPH4>0.8 and GWAS p-value threshold of 5 × 10−8).bMost
significant trait association of independent g/tSNP using GWAS summary statistics
andMendelian randomisation (posterior probability PPH4 >0.8 andFDR< 5 × 10−9).
The results represent a significant causal relationship between traits related to
autoimmunity and inflammation, with enrichments where P < 1 × 10−10 plotted.
c Highlighted isoforms of OAS1, including ENST00000202917 and
ENST00000452357, show a significant switch in isoform usage across untreated
and stimulated conditions. ENST00000452357 and ENST00000202917 are gen-
erated through OAS1 SNP-dependent splicing. In ENST00000452357, there is no
use of a splice donor in exon 5. Exons 5 and 7 have been combined in
ENST00000202917. The display of splice junctions is limited to those that are not
present in all transcripts.d rs10735079, a severe COVID-19 risk locus, influences the

gene level expression of OAS1. e rs10735079 demonstrates divergent tQTL effects
to OAS1 transcripts ENST00000202917 and ENST00000452357most significantly
post IFN-γ. f gQTL to COVID-19 risk locus at IFNAR2 enhanced post IFN-γ. Each data
point on the horizontal and vertical axis indicates values for a single sample.
Regression lines are shown for categories of genotypes. Abbreviations: “N” repre-
sents and lists the specific number of donors. The x-axis of the boxplot represents
the different alleles of the SNP that are related to the expression. Eachbox indicates
a particular SNP allele, and the y-axis displays the expression levels of individuals
with that allele. The normalised read count and Fragments Per Kilobase Million
(FPKM)metrics display the expression levels of genes and transcripts, respectively.
The 25th and75th percentiles are represented in theboxat thebottomand top. The
box has a line that indicates themedian of the expression. The whiskers cover both
the minimum and maximum values, with the exception of outliers.
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transcript expression. Conversely, in around 1% of the colocalised pairs
of tQTLs and mQTLs (1.3% naïve and 1.5% post-LPS), alterations in tran-
script expression appeared to be the primary causal factor influencing
DNA methylation (Fig. 4b). Our research showed that changes in DNA
methylation and gene/transcript expression could be correlated in
either a positive or negative way (Fig. 4b). In tQTL, an increase in
methylation corresponded to a decrease in expression in 29% of naïve
and 30% of post-LPS (negative correlation). In 25% of naïve cells and
26.8% of post-LPS, increased methylation was associated with an
increase in expression (positive correlation). Figure 4b shows that
context-specificgQTLandmQTLshare similarpatterns andproportions.

We present the LPS-specific, independent, and causal tSNPs that
associate to transcript and gene expression, as well as the methylation
level of CpGs (PPH4>0.8, FDR< 10−5, Fig. 5a). One notable example of
such a shared g/tQTL and mQTL is the gQTL for CD55 (encoding a
crucial cell surface regulator of complement activation)44 at rs2914937
(chr1:207315423G>A) (Fig. 5b–d). rs2914937 is also a context-specific
tQTL forCD55 transcripts (ENST00000367063 and ENST00000314754)
(Fig. 5e–g), andanmQTL for cg22687766within theupstreampromoter
across both resting andLPS-treated states. Colocalization analysis of the
mQTL and gQTL associations was consistent with a shared causal locus
at rs2914937 for CD55 expression and cg22687766 methylation post-
LPS (PPH4= 1). These findings point to a single regulatory locus linking
gene expression and epigenetic modifications in this region. Other

examples include rs6591507, a promoter genetic variant at chromo-
some 11p12, where theminor allele is associatedwith lowermethylation
level in the cg07745373 site within the same regulatory region and
increased expression of DTX4, encoding an E3 ubiquitin ligase, induced
innate immune stimuli (P = 1 × 10−18, Supplementary Fig. 7a–d).

Next, we systematically compared the stimulus-specific mQTL-
associated lead SNPs against theGWAS summary statistics of traits.We
observed moderate associations with autoimmune disorders and dif-
ferent cancer subtypes, indicating that DNA methylation maymediate
some of the genetic risk of inflammatory disease processes, including
cancer (Supplementary Fig. 8a). We observed that mSNPs specific to
contexts are significantly enriched with “open transcript chromatin
states” and “enhancer regions”, in keeping with their roles in mod-
ulating the activity of regulatory elements (Supplementary Fig. 8b, c
and Supplementary Data 4).

The genetic determinants of gene regulatory network
relationships
Genes are typically expressed in coordinated networks (Gene Reg-
ulatory Networks - GRN), and cis-acting polymorphisms may disrupt
the relationship between cis-regulatedgenes and their associatedGRN.
By testing for divergent allele-specific correlation between cis genes
and other GRN members, we sought to identify such gQTL, which we
refer to as co-expression-QTL (coExQTL)7,15. Differential co-expression

Fig. 4 | Interaction between DNA methylation and expression. a The number
and proportion of g/tQTLs that are associated with mSNPs in naïve and LPS-
stimulated monocytes (posterior probabilities of PPH4>0.8, FDR< 1 × 10−6). b A
Steiger directionality test was conducted to determine the direction of causality
between DNA methylation and gene/transcript expression. Our results indicated
that the causal direction was most likely opposite, suggesting that increases in

expression were linked to reduced methylation. This finding is in line with the
hypothesis thathypermethylationdecreases the expression level inmost cases. The
area of boxes in the mosaic plot is proportional in size to the number of observed
counts. Abbreviations: “n” represents and lists the specific number of g/tQTL-mQTL
pairs, CS‘Context Specific’.
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analysis of genes regulated by peak-gQTLs was performed with all
other genes on an allelic basis to assess the significance of differences
in correlation coefficients between correlated genes across genotype
groups, with correction for multiple testing. To determine the biolo-
gical significance of genes that are co-regulated, we conducted path-
way analysis with HC2Allv2024 as our reference gene set45,46. To
validate candidate coExQTL, we attempted replication using earlier

independent microarray-based analysis of monocytes performed in
the same conditions but in a different population3. Our downstream
analysis was conducted on coExQTLs that demonstrated a similar gene
pair, SNP, and direction of allele-specific co-expression relationship
across both RNA-seq and microarray3 datasets.

Across naïve, LPS and IFN-γ conditions,we identified 76, 41, and 75
candidate coExQTL, respectively, involving 4744, 4920 and 7026
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allele-specific co-expression relationships (Pinteraction < 10−6). To main-
tain consistency across platforms, we intersected genes in expression
profiles from the RNA-seq and microarray datasets. The replication
analysis was restricted to coExQTLs that involved genes present in this
intersection (11371 genes). Using this shared gene set, we found 62, 34,
and 60 candidate coExQTL across naïve, LPS, and IFN-γ conditions,
involving 3761, 4029, and 5632 allele-specific co-expression relation-
ships (Supplementary Data 7). Of these, we could replicate 69 (2%),
1054 (26.1%) and 1818 (32.2%) allele-specific co-expression relation-
ships using array data (Supplementary Data 7). The majority of repli-
cated allele-specific co-expression relationships were context-specific
(UT: 15/69 (21.7%), LPS: 1053/1054 (99.9%), and IFN-γ: 1809/1818
(99.5%); Pinteraction < 0.05). The lower rate of replication of co-
expression relationships in naïve monocytes possibly reflects mono-
cytes not being incubated in the earlier study3.

Examples of coExQTL include rs7305461, a cis gQTL to RPS26,
encoding ribosomal protein S26, a component of the 40S ribosome.
RPS26 is ubiquitously expressed and is mutated in Diamond-Blackfan
anaemia, as well as having a large effect-size eQTL and being linked to
numerous traits, including atopic disease47. Strikingly, in naïve mono-
cytes, 171 allele-specific divergent gene correlations with RPS26 were
identified (Pinteraction< 0.05), the most significant affecting the rela-
tionship between expression of RPS26 and KPNA2 (Fig. 6a), encoding a
gene implicated in nuclear trafficking, indicative of a link between
nuclear trafficking and ribosomal biogenesis (Fig. 6b). Pathway-based
differential co-expression test of this coExQTL indicated rs7305461
disrupted the relationship between RPS26 expression and GRNs
involving protein secretion, cellular response to starvation, and
response to viral infection (Fig. 6c and Supplementary Data 7).Whilst a
physical interaction between the proteins encoded by KPNA2 and
RPS26 has not been described, the encoded protein KPNA2 has been
shown to bind RPS10, another component of the 40S ribosome, and
similarly mutated in Diamond-Blackfan48,49.

Subsequently, we explored the link between DNA methylation
and coExQTL. In naïvemonocytes, 12 gQTLswith replicated coExQTLs
were shown to have allele-specific correlation with 1472 DNA methy-
lation sites (Pinteraction< 0.01). An example of this type of relationship
is observed between the RPS26 coExQTL, rs7305461, and 1459
methylation sites, including at cg10762038 (Pinteraction< 1.11 × 10−5),
which is correlated with IFT20 from the coExQTL network that is
linked to RPS26 expression (Fig. 6d, c and Supplementary Data 8).
cg10762038 and IFT20 are located on chromosome 17 with a distance
of 1.5 megabase pairs (correlation P 0.001), implying long-range
enhancer activity of the cg10762038 locus50,51. The genetic variation
that supports this coExQTL also likely has pleiotropic epigenetic
effects, potentially indicative of divergent chromatin accessibility.

An example of an LPS-specific coExQTL is rs3110426, which dis-
rupts a consensus ZNF6 (Zinc Finger Protein 6)52 binding site cis to
OXR1, encoding Oxidation Resistance 1, involved in protection against

oxidative stress53,54 (Fig. 6e). Here, 1049 allele-specific co-expression
relationships were identified, of which 395 (37.6%) replicated in the
same direction (Pinteraction< 10−6). The highest divergent correlation
was noted with PTGS2 which encodes COX-2, a protein of key impor-
tance in acute inflammatory responses and a leading pharmacological
target (Fig. 6f). Notably, pathway-based differential co-expression test
indicated a significant disruption of systemic autoimmune disease
TNF-α signalling, bacterial infection pathways, and antigen processing
cross presentation (FDR <0.05) by allele (Fig. 6g and Supple-
mental Data 7).

In LPS-stimulated monocytes, 21 gQTLs had replicated coExQTLs
that demonstrated allele-specific correlation with 857 DNA methyla-
tion sites (Pinteraction< 0.01). An example of this type of relationship is
observed between the OXR1 coExQTL, rs3110426, and 76 methylation
sites, including at cg24757533 (Pinteraction< 5.7 × 10−6), which is corre-
lated with 4 genes from the coExQTL network that are linked to OXR1
expression (Fig. 6h, g and Supplementary Data 8). cg24757533 and
correlated genes from the OXR1 coExQTL network are located on
chromosome 17 with a distance of 2 megabase pairs (correlation P
values ranging from10−3 to 10−23), again implying long-range regulatory
activity51,55.

Post IFN-γ the most robust coExQTL was rs2910789, forming a
highly significant gQTL to ERAP2, encoding an endoplasmic reticu-
lum aminopeptidase of key importance to antigen presentation,
across all conditions (Fig. 6i). We observed 1576 genes to correlate
with ERAP2 expression in a genotype specific manner, of which 764
(48.4%) replicated in the same genotypically divergent direction, the
most significant being EPM2AIP1 (Fig. 6j). rs2910792 is r2 0.94 and D’
0.99 to rs2910686 which is associated with Crohn’s disease and
ankylosing spondylitis56. Pathway-based differential co-expression
analysis demonstrated significant disruption of complement, and
antigen processing/ ubiquitination-proteasome degradation (Fig. 6k,
Supplemental Data 7). Interestingly, pathway analysis of genes
involved with this coExQTL highlighted disengagement of the minor
allele from GRN regulatory modules enriched in genes involved in
mitochondrial activity (P 1.03 × 10−10) andMYC targets (P 1.86 × 10−05)
(Fig. 6k and Supplementary Data 7). To further understand this, we
explored genotype-specific correlation between ERAP2 expression
and mitochondrial count by performing quantitative PCR on mito-
chondrial and nuclear DNA extracted from monocytes in the earlier
microarray-based analysis. Whilst mitochondrial count was not
associated with age or sex of the donor, genotype specific divergent
correlations between ERAP2 expression and mitochondrial count
were found (Fig. 6l). In individuals homozygous for the minor allele
there was a positive correlation between ERAP2 expression and
mitochondrial count, whereas heterozygotes and homozygotes for
the major allele showed a negative relationship between increased
ERAP2 expression and mitochondrial count. In the same analysis, we
observed that mitochondrial count was highly associated with MYC

Fig. 5 | Interaction between DNA methylation and expression. a Circos plot of
LPS-specific g/tQTL-mQTL pairs that share one causal variant affecting both gene/
transcript expression and methylation level. Gene/transcript and methylation sites
are present on each track in g/tQTL-mQTL pairs of monocytes that are stimulated
by LPS. Different colours are utilised to enhance readability. Ribbons link genes,
transcripts, and methylation sites that have a causal variant together. The chro-
mosome and genomic coordinates should be indicated on the outer track. b
rs2914937 influences the methylation level (mQTL) and gene expression (gQTL) in
LPS-stimulated monocytes. c Read coverage plot for CD55 gQTL in LPS-stimulated
monocytes. The lead SNP (rs891378) is in LDwith rs2914937 (R2 0.99). d Expression
of CD55 correlates with the cg22687766methylation site. The CD55 expression and
cg22687766methylation, coloured by SNP rs2914937 genotype. Each data point on
the horizontal and vertical axis indicates values for a single sample. Regression lines
are shown for categories of genotypes. The adjusted p-value for the beta coefficient
correlation between methylation and expression independent of the genotype is

4.56 × 1−6. e Highlighted isoforms of CD55, including ENST00000367063 and
ENST00000314754, show a significant switch in isoform usage across the LPS-
stimulated condition. The display of splice junctions is limited to those that are not
present in all transcripts. f rs2914937 influences CD55 transcripts
ENST00000367063 and ENST00000314754 most significantly post LPS. g Expres-
sion of CD55 transcripts (ENST00000367063 and ENST00000314754) correlates
with the cg22687766 methylation site. The transcript expression and cg22687766
methylation level are coloured by the genotype SNP rs2914937. Abbreviations: “N”
represents and lists the specific number of donors. The x-axis of the boxplot
represents the different alleles of the SNP that are related to the expression. Each
box indicates a particular SNP allele, and the y-axis displays the expression levels of
individuals with that allele. The normalised read count and Fragments Per Kilobase
Million (FPKM) metrics display the expression levels of genes and transcripts,
respectively.
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expression (P 1.32 × 10−14, Supplementary Fig. 9 and Supplementary
Data 7). Thus, this disease-associated locus is associated with
apparent disruption of ERAP2 expression from a MYC-regulated co-
expression module that also regulates mitochondrial synthesis.
Whilst ERAP2 plays a fundamental role peptide trimming for HLA
loading, enabling antigen presentation57, secondary associations
with mitochondrial dysfunction have been described58. Moreover, a
relationship between antigen presentation and mitochondrial
demand has been demonstrated59, as have links with the production

of reactive oxygen species60 and pathogen engulfment61. Our data are
in keeping with a genotype-specific manner association between
ERAP2 and MYC expression, which is associated with mitochondrial
biogenesis62.

The genetic determinant of transcripts regulatory network
relationships
Subsequently,we exploredwhether tQTLmight similarly be associated
with the uncoupling of GRNs to form coExQTLs. Across naïve, LPS and
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IFN-γ conditions, we identified 721, 900, and 505 transcriptmodules of
coExQTL, respectively, involving 2969, 9621, and 2780 allele-specific
co-expression relationships with Pinteraction < 10−5 (Supplementary
Data 9). We found that transcript-level coExQTLs were frequently
context-specific (UT: 521 out of 721 total, 72.2%; LPS: 653 out of 900
total, 72.5%; IFN-γ: 333 out of 505 total, 65.9%), indicating tQTL can be
associated with disruption of GRNs. Context-specific transcript-level
coExQTL analysis indicated that tSNPs specifically influencing the co-
expression of a single transcript were the predominant mode of reg-
ulation in 98.4% of cases (1480/1507). In the remaining instances,
where different tSNPs regulated the co-expression of multiple tran-
scripts from the same gene, we found that 34.7% (8/23) of these
exhibited overlaps in their upstream coExQTL genes, suggesting some
shared regulatory mechanisms.

A key example was observed at a promoter tQTL
(ENSR00000753157), rs10512696, which is associated with
ENST00000503513, a transcript variant of theDAB2 gene characterised
by different first exon usage, intron retention, and alternative 3’ spli-
cing, leading to divergent protein structure across all contexts. In the
naïve state, this variant also forms a coExQTL with 155 allele-specific co-
expression relationships (Fig. 7a–d). The strongest co-expression rela-
tionship for ENST00000503513 was with PPP1CA (ENSG00000172531)
(P interaction = 6.18 х 10−7), encoding a PP1A, a phosphatase with a
central role in signalling cascades63,64. Correspondingly, pathway-based
differential co-expression test of this coExQTL indicated that
rs10512696 disrupts the relationship between DAB2 expression and
GRNs involving TGFB1 targets, mitochondria, and genes involved in the
cellular response to chemical stress (Fig. 7e and Supplementary Data 9).

Post-LPS rs61869825 disrupted coordinated expression of 168
canonical transcripts with ENST00000337003 (Pinteraction <0.001), a
transcript variant of the USMG5 gene encoding a component of the
mitochondrial ATP synthase complex (Fig. 7f, g). Notably, we observed
a strong association between rs61869825 ENST00000337003 and
expression of LINC00339, a long non-coding RNA associated with
cancer invasion65 (Fig. 7g). The associated coExQTLs were enriched in
key biological pathways, including responses to LPS, hypoxia, and IL4
(Fig. 7i, Supplementary Data 9).

Finally, we identified 505 coExQTL comprising 2780 allele-specific
co-expression relationships post-IFN-γ. We observed 491 independent
tSNPs related to thesemodules, indicating a significant genetic impact
on the coordinated expression of these gene isoforms (Supplementary
Data 9). Notably, we found the previous tQTL activity at OAS1
(ENST00000445409) was associated with allele-specific co-expression
forming coExQTL (Pinteraction< 10−5) (Fig. 7j–m). Most significant being
context-specific ENST00000445409 activity betweenOAS1 and IGFBP7
post-IFN-γ (Fig. 7j–l) with pathway enrichment highlighting antiviral
mechanisms (FDR <0.05) (Fig. 7m and Supplementary Data 9).

Discussion
Our observations across three divergent conditions of immune sti-
mulation provide further insights into the relationship between pri-
mary monocyte activation state and genetic regulation of gene
expression and splicing. The integration of summary data from GWAS
and both tQTL and gQTL analyses highlights the relevance of our
findings to conditions including autoimmune diseases66,67, cardiovas-
cular risk factors68, neurodegeneration69 and severe COVID-1910.
Mounting evidence suggests that in many of these conditions, often
thought to be primarily lymphoid in pathogenesis, monocytes play a
key role secondary to the release of pro-inflammatory mediators and
antigen presentation70,71. The study will be a resource for those inter-
ested in monocyte splicing in immune activation.

Our focus has been to address the gap in our understanding of the
effect of environmental factors relevant to infection and inflammation
on genetic determinants of expression at the transcript level69,72. Our
work adds to previous studies3,68 by introducing transcripts that had
monocyte expression affected by multiple cis-acting tSNPs. Indepen-
dent SNP effects were responsible for about 3.73% (390/10452) of the
detected tQTLs. It should be mentioned that 3.84% (15/390) of the
transcripts were affected by multiple context-specific tSNPs, which
were previously known to be located at disease-associated loci
(FDR < 10−5). It is possible that the disease susceptibility could be
influenced by multiple genetic effects in a specific cell or environ-
mental context. The relevance of such tQTLs in disease is demon-
strated by our observation of rs57484342 at the OAS1 COVID-19
severity risk locus associated with divergent OAS1 splicing post-IFN-γ
exposure, a condition akin to early-onset viral infection10.

By integrating observations with DNA methylation data from the
same individuals, we provide further insights into the relationship
between genetic variation, DNA methylation and expression. We fre-
quently observe directional causal effects between regulatory variants
inferred to regulate expression secondary to the effects on methyla-
tion and vice versa. Again, these mQTL-gQTL pairs are observed to
colocalise with GWAS disease risk loci, and we anticipate that these
data will be further used by the wider research community to map
causal variation.

Finally, how gQTL and tQTL intersect with regulatory networks is
less well characterised, but it is key to understanding the complex
impact of regulatory variation on phenotype. We reasoned that cis-
acting variants may disengage genes where expression is coordinated
with other genes in the same biological pathway3,16, impacting the
composition of GRNs. In such cases, we expect evidence of the genetic
variant’s regulatory influence on the gene-gene interaction in the form
of genotype-specific differential gene correlation16,46. This work adds
to previous studies exploring the effect of gene co-expression in an
allele-specific manner3,16, the effect of cis genetic variants on

Fig. 6 | Condition-specific coExQTLs in stimulated monocytes. a Local associa-
tion plot for gQTL between the rs7305461 variant and expression of the RPS26 gene
across naïve and stimulatedmonocytes.b Identification of naïve-specific coExQTLs
at rs7305461 (affecting the co-expression between RPS26 and KPNA2,
Pinteraction = 1.01 х 10−13). The expression of RPS26 and KPNA2, coloured by SNP
rs7305461 genotype. c Pathway enrichment analysis of the coExQTL for RPS26 and
the rs7305461 variant. Pathway-based differential co-expression test was carried
out for a group of genes that had allele-specific co-expression relationships for
coExQTL at rs7305461 and were enriched with curated gene sets from online
pathway databases. The genetic variant of rs7305461 is linked to cg10762038
methylation and RPS26 expression. cg10762038 is correlated with IFT20 (correla-
tion P 3.51 × 1−3) gene from the coExQTL network that are linked to RPS26 expres-
sion. d The co-expression between genes can be explained by how rs7305461
affects bothmethylation and expression. Amethylation site (cg07438246) that was
linked to RPS26 expression under the influence of a genetic variant has been
demonstrated.ePost LPS, coExQTLs are present at rs3110426 andOXR1expression,
with rs3110426 possibly affecting the binding site of ZNF628 transcription

activator. f Context-specific co-expression QTL-rs3110426 between OXR1 and
PTGS2, Pinteraction = 6.98 х 10−15, allelic expression coloured by SNP rs3110426 gen-
otype. g Pathway enrichment analysis of the co-expression QTL for the rs3110426
variant. The genetic variant of rs3110426 is linked to cg24757533 methylation and
OXR1 expression. cg24757533 (Pinteraction< 5.7 × 10−6) is correlated with JMJD6 (cor-
relationP 1−23) andUBALD2 (correlation P 1−17) genes from the coExQTLnetwork that
are linked to OXR1 expression. h The effect of rs7305461 on both methylation and
expression can explain the co-expression between genes. A methylation site
(cg24757533) that was linked to OXR1 expression was found to be influenced by
rs3110426. i coExQTL formed post IFN-γ include between the rs2910789 variant
ERAP2. j Top condition-specific coExQTL-rs2910789 demonstrating co-expression
between ERAP2 and EPM2AIP1 (Pinteraction= 7.09 х 10−16), allelic expression coloured
by SNP rs2910789 genotype. k Pathway analysis of ERAP2 co-expressed genes
demonstrates highly significant associations with the mitochondria pathway and
MYC expression. l ERAP2 expression correlates in an allele-specific manner with
mitochondrial count, with rs2910789 influencing the relationship between mito-
chondrial count and ERAP2 gene expression in IFN-γ-stimulated monocytes.
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modulating gene expression response3, and cell type-specific cis-g/
tQTL and co-expression QTL15,73. By defining coExQTL, which we show
to be intricately associated with divergent pathways of gene expres-
sion, we extend on previous studies constructing condition-specific
correlation networks7,15,46,74–79. Notably, many potential interactions
may not be apparent at the gene level, since the impact of one allele
may vary across different transcripts; however, differential transcript
correlation analysis in an allele-specific manner has not been

systematically applied. By applying this approach to tQTL we identify
many examples of similar changes inGRNassociations at the transcript
level, further illustrating the complexity of regulatory variant activity
across contexts.

We note several important coExQTL, most strikingly at ERAP2,
where rs2910792, (r2= 0.94 with rs2910686; CD risk allele) uncouples
ERAP2 expression from a MYC-regulated pathway incorporating mul-
tiple components of mitochondrial synthesis. Our observations are
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particularly intriguing because of the different disease associations at
this locus, particularly in relation to inflammatory and infectious
diseases80. Furthermore, we discovered that coExQTL genes are more
likely to be identified through transcript-level coExQTLs. A key
example being coExQTL formation at the OAS1 locus according to
rs57484342 carriage.

By integrating gene-level coExQTL analysis with DNAmethylation
profiling in the naïve and LPS states, we further illustrate the utility of
multiple layersof genomic information to uncover complex regulatory
mechanisms. This was exemplified by the identification of an mQTL at
the promoter for RPS26 linking an mQTL to the observed coExQTL.
While our results in this smaller dataset are limited, we think that
incorporating this approach into larger datasets could uncover
genotype-dependent GRN relationships.

While our findings provide valuable insights into the impact of
immune conditions on regulatory genetics in monocytes, it is
important to acknowledge limitations. The complex cytokine milieu
and cell-cell interactions that characterise the immune system in both
health and disease cannot be faithfully replicated in vitro and require
multiple approaches to fully dissect. Whilst there are strengths with
single treatmentmodels, it is increasingly important to utilise patient-
derived data in the relevant disease state. Such work, whilst in its
nascent stage, is providing insights into the role regulatory variation
plays in sepsis immunity and response to immunotherapies81,82.Whilst
bulk RNA-sequencing provides the depth of sequencing required to
provide a comprehensive overview of monocyte expression and
splicing across conditions, this work is at the expense of determining
the resolution of genetic effects that vary by cellular subset7.
Although short reads and sparsity of gene coverage are limitations for
such analysis at the single-cell level, rapid advances in this domain and
single-cell methylation analysis are envisaged to permit less-sparse
datasets and characterisation of splicing to complement these data.
Despite these limitations, our study provides a comprehensive
reference map of genetic influences on regulatory monocyte
expression and splicing in conjunction with DNA methylation across
divergent innate immune activity that will help further elucidate the
contribution ofmonocytes to disease aetiology. All data generated by
this study is made available for further exploration and analysis, and
we provide a web-based database to enable researchers to con-
veniently access specific observations.

Methods
Ethics
Blood for monocyte isolation was taken from donor participants who
were recruited via the Oxford Biobank (www.oxfordbiobank.org.uk;
ethical approval reference 06/Q1605/55), having provided written,
informed consent.

Data generation
Sample preparation, RNA isolation and sequencing. Peripheral
blood mononuclear cells (PBMCs) were isolated from 192 healthy
individuals of European ancestry. Blood cells were separated from
freshly drawn blood using Ficoll gradient purification. Monocytes
subsequently positively were selected using magnetic CD14+ isolation
kits (Miltenyi) according to manufacturer’s protocols, and cell purity
was found to be a median > 99%12. Monocytes were cultured at
500,000 cells permL in 400μL RPMI supplementedwith L-Glutamine,
Penicillin/Streptomycin and 20% FCS in BD Falcon 5mLpolypropylene
culture tubes. Post purification sampleswere rested overnight at 37 °C,
5% CO2 prior to being further incubated for 24h alone (UT) or in the
presence of 20ng/ml LPS (Ultrapure LPS, Invivogen) or 20ng/ml IFN-γ
(R&D Systems). Poly-A RNA was paired-end 100bp sequenced in the
Oxford Genome Centre using Illumina Hiseq-4000 machines. 506
high-quality transcriptomes (mean ~ 50 million reads) were mapped
(188 Untreated, 188 LPS, 144 IFN-γ).

The methylation profile of naïve and LPS-stimulated primary
monocytes from 176 individualswere assessed using the Illumina 450K
array, which quantified methylation levels at 300,885 CpG dinucleo-
tides. We excluded 96,427 loci that were analysed using probes that
contained SNP(s) at/near the targeted CpG site (≤ 50 base pair), as
these may not be enough to measure DNA methylation levels83.

In IFN-stimulated monocytes, the ratio of mitochondrial DNA
(mtDNA) to nuclear DNA (nDNA) was used to estimate the relative
abundance of mitochondria. The amount of mtDNA and nDNA in the
sampleswas quantified by performingqPCR after extractingDNA from
monocyte samples. To calculate themean ratio, the amount ofmtDNA
was divided by the amount of nDNA.

Sample size calculation of bulk tissue g/tQTL analysis. The power-
EQTLSLR R function was utilised to calculate the power for g/tQTL
analysis84. By supplying values for sample size, minimum detectable
slope, standard deviation of the outcome (y) in simple linear regres-
sion (sigma:y), andminimum allowableMAF parameters, this function
can be utilised to calculate power. Power is used to determine the
likelihood of accurately detecting a real association between a genetic
variant and gene/transcript expression. If a true association is present,
a higher power means a better chance of detecting it.

The sigma:y can be calculated as sigma:y= slope=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ×MAF × ð1�MAFÞ

p
. The slope of the simple linear regression

parameter from our tQTL/gQTL was adjusted to 0.7, and the MAF was
set to 0.04 from ref. 3. The estimated testing power for a sample size of
138, with a =0.2 and family-wise error rate (FWER) = 0.01, was 1.

Genotyping and genotype imputation. Genotyping was performed
with Illumina HumanOmniExpresswith a coverage of 733,202 separate

Fig. 7 | coExQTL analysis reveals significant associations between genetic var-
iants and the coordinated expression of transcriptmodules. a Local association
plots for tQTLs between the rs10512696 variant andexpressionof theDAB2 isoform
(ENST00000503513) across naïve and stimulated monocytes. b Identification of
naïve-specific coExQTLs at rs10512696, which affects the co-expression between
ENST00000503513 and PPP1CA. The expression is coloured by the genotype SNP
rs10512696. Eachdata point on thehorizontal and vertical axis indicates values for a
single sample. c Functional significancescorewas applied to evaluate the functional
significance of rs10512696 in 6 categories. d The figure shows the isoforms land-
scape of DAB2. e Pathway enrichment analysis of the coExQTL module of DAB2 in
naïve monocytes. Pathway-based differential co-expression test of the coExQTL
module indicated that the average correlation change between genes in the gen-
otype classes of rs10512696 was statistically significant (FDR<0.05). f Local asso-
ciation plots for tQTLs between the rs61869825 variant and the expression of the
USMG5 isoform (ENST00000337003). g The LPS-specific coExQTL at rs61869825
affects the co-expression between ENST00000337003 and LINC00339
(ENSG00000218510). h USMG5 (canonical and ENST00000337003) isoforms are

highlighted in the isoform landscape plot. i The pathway analysis of context-
specific coExQTL modules in LPS24 monocytes shows that they are significantly
associated with multiple pathways, including the response to aggregations of
unfolded proteins. f Local association plots for tQTLs between the rs61869825
variant and the expression of the USMG5 isoform (ENST00000337003). g LPS-
specific coExQTL at rs61869825, which affects the co-expression between
ENST00000337003 and LINC00339 (ENSG00000218510). h The isoform land-
scape plot highlights isoforms of USMG5 (canonical and ENST00000337003).
i Pathway analysis of coExQTL module of USMG5 in LPS24 monocytes. j Local
association plots for tQTLs between the rs57484342 variant and the expression of
the OAS1 (ENST00000445409). k Naïve-specific coExQTL at rs57484342, which
affects the co-expression between ENST00000445409 and IGFBP7. l The isoform
landscape plot highlights isoforms of OAS1 (canonical and ENST00000445409).
m Pathway analysis of the coExQTLmodule ofOAS1 in IFN-γ stimulatedmonocytes.
Abbreviations: “N” represents and lists the specific number of donors, TFBS tran-
scription factor binding site.
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markers. Analysis of identity-by-descent was performed using PLINK85,
which demonstrated that there is no shared genetic material between
the individuals (PI_HAT ranged from 0-0.047, median 0). Genotypes
were pre-phasedwith SHAPEIT2, andmissing genotypes were imputed
with PBWT86, vcftools (v0.1.12b) was applied to genetic variation data
in the formof variant call format (VCF)files tofilter out indels and SNPs
with minor allele frequency less than 0.0487. We used the CrossMap
tool for the conversion of coordinates between genome assemblies88.

Data processing
Quantification andgeneexpression analysis. Sequencing readswere
aligned to CRGh38/hg38 using HISAT2 for each sample individually,
and default parameters. High mapping quality reads were selected
based on the MAPQ score using bamtools. Marking and removing
duplicate reads were performed using Picard (v 1.105)89. Samtools was
used to pass through the mapped reads and calculate statistics90. We
detected sample contamination and swaps based on a comparison of
the imputed SNP-array genotypeswith genotypes called fromRNA-seq
using verifyBamID91.

491 high-quality transcriptomes from 185 individuals (properly
paired = 30,992,754,324 reads, median = 47,735,438) were selected
and used for downstream analysis (176 Untreated, 176 LPS, 139 IFN-γ)
(Table 1).

Gene read count information was generated using HTSeq92 (v
2.0.5), and lowly expressed genes (those with < 50 reads) were filtered
prior to applying conditional quantile normalisation, resulting in 15641
genes for analysis. Variance stabilising transformation was subse-
quently applied to the matrix using DESeq2 (v 1.18.1)93 to normalise
gene read counts, yielding approximately homoscedastic profiles94,95.
Assembly of the alignments into full and partial length transcripts and
transcript-level expression analysis of RNA-seq experiments were done
using StringTie96. The expression values of a uniform set of 27540
transcripts with minimum input transcript FPKM (Fragments Per Kilo-
base of transcript per Million mapped reads) ≥0.5 for all individuals of
at least one of the treatments were applied for downstream analyses57.
We applied the IsoformSwitchAnalyzeR tool to analyse isoform usage
of 16198 genes, including 84986 transcripts in naïve and treated
monocytes with IFN-γ or LPS97. Isoform usage refers to the fraction
value of themean isoformexpression given themean expression of the
corresponding gene in a setting with k biological replicates98.

gQTL, tQTL and mQTL analyses. We studied the association of the
variant with alternative splicing using complementary steps including
gene expression QTL (gQTL), transcript QTL (tQTL), and methylation
QTL (mQTL).

The normalised total gene counting sequencing read or tran-
scripts expression values (FPKM) were regressed against genetics
variants. SNPs were included in the cis analysis if they were located
within 1Mbof the geneor 100Kbof the isoformunder consideration32.
By reducing multi-test burden, smaller windows, such as 100Kb
centred on the transcripts start site, can improve power20.

We decomposed the gene expression matrix to the loading and
score matrices. The score matrix was applied as a covariate of the
Linear Model to adjust for unexplained variation in gene expression
(observed dependent variable) and reveal the actual effect of genetics
(categorical independent variable). Zero to 50 principal components
(PCs) of gene expression profiles were tested using a total of 1000
permutations99, to determine the optimal number of PCs that capture
themost significant variation in the data without overfitting. Technical
noise, batch effects, or other confounding factors that can affect gene
expression measurements can often be captured by dominant PCs. In
the regressionmodel for g/tQTL analysis, we used the dominant PCs as
independent variables. In this regression, the residuals represent the
gene expression levels that have been corrected for the effects of the
dominant PCs.

Inflection Points and Local Maxima were employed to select the
most suitable number of PCs to be included as covariates in g/tQTL
analysis (Supplementary Fig. 1a). To compare the number of PCs to the
number of detected g/tQTL, we used a scree plot. Our next step was to
discover a pronounced inflection point where the slope of the curve
begins to decrease significantly. This could indicate that adding more
PCs is not providing any significant additional information. The point
where the curvature changes sign is called an inflection point on a
curve. When it comes to PCA, it frequently indicates a significant
change in the rate of variance explanation by additional PCs. Local
maximum refers to a point on a curve where the function reaches its
highest value within a given interval. In PCA, it represents a PC that
explains a relatively large amount of variance.

The statistical power and balanced male/female distribution of
our sample size were not sufficient to detect subtle effects. Due to this,
g/tQTL analysis for sex-specific stimuli was not possible93,100.

g/tQTL analysis was performed with the QTLtools using a linear
regression28. We used QTLtools to calculate nominal g/tQTL summary
statistics (https://github.com/francois-a/fastqtl). tQTL analysis
requires multiple testing corrections at two levels: due to multiple
transcripts per gene (molecular trait) and due to multiple molecular
traits across the genome. We applied conditional analysis (imple-
mented in QTLtools) for tQTL analysis of multiple molecular pheno-
types (transcripts) belonging to higher-order biological entities
(genes). We used the --permute 1000 and --grp-best options in
QTLtools to calculate empirical P-values at the group level and esti-
mate the standard error of the effect sizes, after a permutation pass on
the data, was done28. The same procedure was applied to screen
relationships of DNA methylation in response to the naïve and LPS-
stimulated monocytes associated with local genetic variation within
1Mb of the start site of the gene under consideration. We performed a
permutation-based mQTL analysis on methylation data to adjust P-
values for the number of methylation sites and genetic variants in cis
given by the fitted beta distribution56.

Lead and independent SNP identification. The SNP with the stron-
gest association signal within a region is known as Lead SNP8,101. It is
often the SNP that is most likely to be the causal variant, but this is not
always true. Linkage disequilibrium (LD) analysis and clumping pro-
cedures were used to identify the lead SNPs within every associated
locus. LD identifies groups of SNPs that are highly correlated by
measuring the correlation between genetic variants. The clumping
algorithm identify SNPs that have a high correlation with each other
and groups them together8. This assists in prioritising the most likely
causal variants within a region. The number of SNPs considered was
reduced, while the most informative variants were retained by
clumping together SNPs with high LD.

The input of the Linkage Disequilibrium (LD) analysis was a list of
SNPs in gQTL (FDR <0.01). First, the degree of similarity of all SNPs
associatedwith an indicated phenotype wasmeasured using Pearson’s
χ2-statistics and 1000 genome data in the European population

Table 1 | Summary statistics of properly paired reads in high-
quality transcriptomes from 185 individuals per state

Naïve (N = 176) LPS (N = 176) IFN-γ (N = 139)

counting sequen-
cing reads

8,440,064,294 8,789,476,734 6,753,408,378

Min. 30,185,698 32,037,326 29,967,830

1st Qu. 43,804,162 46,116,686 45,043,112

Median 47,762,042 50,015,776 47,540,954

Mean 47,954,911 49,940,209 48,585,672

3rd Qu. 52,402,000 54,084,506 52,008,373

Max. 68,882,270 66,147,520 64,422,960
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background8. Next, we clumped SNPs (r2 < 1−3) and for each region of
high LD, kept the SNPs with the lowest p-value8. The application of
independent of the underlying haplotype-block structure for identifi-
cation of lead SNPs has been reviewed by ref. 101. This approachmade it
possible for us to concentrate on the leading SNPs in every locus,
which are likely to be the most functionally relevant variants that are
driving the observed association. To investigate the shared genetic
determinants of methylation and gene expression, we utilised
lead gSNPs.

Independent-g/tQTL is a term used to describe a significant con-
nection between an SNP and a gene/transcript expression level that
persists after conditioning on other SNPs in the same genomic
region102. We used conditional pass analysis in QTLtools28 to detect
independent-g/tQTLs. To detect independent signals (i.e., indepen-
dent SNPs), each SNP in the region was sequentially conditioned, and
the effect of the remaining SNPs on the trait of interest was evaluated.
We conducted permutations per molecular phenotype and
forward–backwards stepwise regression to assign all significant var-
iants per cis-window and determine the most promising hit per inde-
pendent signal28. After conditioning on the primary g/tQTLs, the
independent g/tQTLs has an independent SNP that is closely linked to
genes, transcripts, andmethylation. This indicates that the SNP ismost
likely a genuine QTL and not just a proxy for other SNPs in proximity.
Conditional pass analysis was performed to identify multiple proximal
SNPs with independent effects on a molecular phenotype and specify
context-specific gQTLs and tQTLs.

In order to balance sensitivity and specificity, we limited our
analysis to independent-gQTLs with FDR < 10−6 and MAF > 0.039.
The MAF was set to 0.04 from ref. 3. Variants with an MAF below
0.04 may not be able to detect significant associations with gene
expression due to insufficient statistical power. Low-frequency
variants tend to have fewer carriers, whichmakes it more difficult to
identify their effects. Variants with MAF below 0.04 are typically
regarded as rarer in the population. Although they may still have
significant biological effects, they may not be as likely to be
involved in common phenotypic variations. Low-frequency variants
can have a higher risk of genotyping errors because they are less
frequently encountered by genotyping platforms. To minimise the
impact of such errors on the analysis, a 0.04 threshold is utilised3.
To guarantee the reliability of identified gene-expression associa-
tions, it is common to use FDR less than 10−5 in eQTL studies. Con-
trolling false positives allows to concentrate on biologically
meaningful and reproducible findings103,104.

Correction for multiple testing in g/tQTL analysis. It’s essential to
deal with the problem ofmultiple testing correction when performing
g/tQTL analysis with multiple transcripts per gene to prevent false
discovery rate (FDR). The correction process involves two steps of
multiple-testing, which involve separate FDR correction and combined
FDR correction. Separate FDR correction computes association sta-
tistics for related transcripts and each variant independently for each
gene. After that, the p-value at the gene level is calculated, which takes
into account the number of transcripts and variants tested. The FDR at
the transcript level can be controlled by this. QTLtools were used to
identify primary eQTL for a methylation site (mQTL), gene (gQTL), or
transcript (tQTL) of interest in order to perform separate FDR
correction.

Context-specific quantitative trait. Context-specific quantitative trait
loci are eQTL that are revealed after specific biological stimuli3. Of
primary interest in context-specific eQTL analysis is identifying eQTLs
for which the correlation within condition varies across conditions3.
We denote such an eQTL in condition k by ik . When K =n conditions
are being considered, we say an eQTL maybe a context-specific eQTL
for the condition i if eQTL is just significant for condition i and not for

iC . Differential context-specific quantitative trait loci are context-
specific eQTLs that effect of QTL alleles is revealed on more than one
condition but with different directions [sgnðbiÞ≠sgnðbiC Þ where b
represents the slope of a regression line].

Conditional analysis implemented inQTLtools28wasperformed to
identify multiple proximal eQTLs with independent effects on a
molecular phenotype and specify context-specific gQTLs and tQTLs. In
a cis conditional pass, the independent signal indicates a significant
association between a SNP and a quantitative trait that remains sig-
nificant even after conditioning on other SNPs within the same geno-
mic region. This suggests that the SNP is probably a genuine QTL and
not just a proxy for other nearby SNPs. The process of detecting
independent signals involves sequentially conditioning eachSNP in the
region and evaluating the effect of the remaining SNPs on the trait of
interest55. To that end, we ran permutations per molecular phenotype
and a forward–backwards stepwise regression to assign all significant
variants per cis-window and determine the best candidate hits per
independent signal. In addition, we applied approximate conditional
analysis (moloc)29 to specify context-specific gQTLs and tQTLs (PP >
0.5) across naïve and stimulated monocytes as described by30. Evi-
dence for shared or independent effects of genetic variants can be
compared using the Moloc tool. By studying the colocalization of g/
tQTL, wewere able to identify highly active g/tQTL in specific contexts.

SNPs functional annotation and causal relationship analysis
Integration of GWAS trait-associated SNP and g/tQTL. The 380
GWAS summary statistics from UK-Biobank105 and MR Base GWAS
databases8 (European-ancestry individuals) containing significant
associations were prepared as instruments of GWAS trait causal rela-
tionship analysis. We selected GWAS summary statistics in sub-
categories of autoimmune/inflammatory, cofactors/vitamins,
haematological, immune system, cancer, immune cell subset fre-
quency, metabolites, and nucleotide and used to infer causal rela-
tionships. The input of the analysis is a list of g/tSNP genotype data
(MAF, reference and alternative alleles), effect size and p-value of g/
tQTL analysis. To ensure that the query SNPs are independent, the
European samples from the 1000 genomes project were used to esti-
mate LD between SNPs and perform SNP clumping (r2 < 1−3 and
MAF =0.01). For a set of SNPs in the same LD block, only the SNP with
the lowest p-value was retained. Next, we harmonised the reference
and minor alleles of common SNPs between each GWAS summary
statistics and query. If a particular query SNP was not present in the
given GWAS summary statistics, then a causal LD proxy SNP was
selected and searched for instead. A causal LD proxy SNP was defined
as an SNP in LD with the query SNP and causal in both GWAS and g/
tQTL/mQTL studies. We used colocalization tests of two genetic traits
(coloc)106 with default parameter for prior probabilities to estimate the
Bayes factor as the posterior probability that an eSNP is causal in both
GWAS and g/tQTL studies (Supplementary Fig. 11). Coloc examines the
posterior probability of four hypotheses (H), including PP.H1.abf (SNP
associated with gene expression only), PP.H2 (SNP associated with
GWAS trait only), PP.H3 (SNP associated with neither trait), and PPH4
(SNP is associated with both gene expression and GWAS trait). The
SNP’s high value of PPH4 suggests that it could have a causal effect on
both gene expression andGWAS trait, indicating a potential regulatory
relationship106. To identify causal relationships in the region of inter-
est, we utilised the PPH4>0.8106.

TheMendelian randomisation (MR) test was applied to enrich the
harmonised list of query SNPs and GWAS summary statistics (GWAS
p-value threshold of 1−6)107. First, the effect sizes of the g/tQTL
(βSNP�eGene) were provided in stimulated or naïve monocyte samples.
Next, the association between these same SNPs and traits were
extracted from GWAS databases (βSNP�Trait). These slopes of regres-
sion models were combined to yield estimates for each SNP of the
effect of monocytes on a trait (βexposure�outcome =

βSNP�outcome
βSNP�exposure

= βSNP�trait
βSNP�eGene

).
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Finally, the βexposure�outcome estimates of query SNPs were averaged to
produce a magnitude of the overall causal effect of monocytes on a
trait107.

To infer causal relationships between exposures (gene expres-
sion) and outcomes (traits), we employ the Mendelian randomisation
test108. MR uses genetic variants as instrumental variables to estimate
the causal effect of exposure on an outcome. The null hypothesis is
calculated by MR based on the assumption that any correlation
between the exposure and the outcome is caused by chance or con-
founding factors. MR utilises statistical methods like the inverse var-
iance weightedmethod or theWald ratio test to evaluate the evidence
for a causal relationship between exposure and outcome. The p-value
is determined by comparing the observed association between expo-
sure and outcome and the null hypothesis. The strength of evidence
against the null hypothesis and in favour of a causal relationship can be
indicated by a smaller p-value.

We used the TwoSampleMR package (version 0.5.2) in R (version
4.3.1) to perform penalised weighted median MR analyses108.

Chromatin state and genomic features association SNP enrich-
ment. Fifteen-core chromatin states (Table 2) for primary mono-
cytes peripheral blood (E029 chromatin states dataset provided by
the Roadmap Epigenomics Consortium14) and 10 genomic features
from the biomaRt (Ensembl) and UCSC109 were used to annotate a
list of SNPs in tQTLs, gQTLs, and mQTLs (FDR < 0.01, MAF > 0.039).

The biomaRt repository covers 409,304 regulatory features,
including genomic coordination and associated sequence motifs of
139729 CTCF binding site, 74575 enhancers, 63152 open chromatin
region, 25313 promoters, 87975 promoter flanking region, and 18560
transcription factor (TF) binding sites. UCSC repository provides
annotations of 1,619,806 genomic features, including 64334 3’UTRs,
114271 5’UTRs, 659198 introns, 289809 exons, and 82890 promoters.
We downloaded the annotation databases from the biomaRt central
portal (v0.6) (https://www.ensembl.org/biomart/)13 and TxDb.Hsa-
piens.UCSC.hg19.knownGene Annotation package. We selected func-
tional genomic features inmonocyte cells using the ChIP-seq (TF ChIP-
seq) profile of K562 cells110. The first step in SNP enrichment analysis

was to choose g/tSNPs as foreground for each gene/transcript and
background SNP sets from the 1Mb window surrounding the TSS. We
identified g/tSNPs with FDR less than 0.001 for the foreground (f ), and
other SNPs in the 1Mbwindow around the TSS as background (b) SNP
sets for each gene/transcript. We used the number of overlaps
between foreground (f ) and background (b) SNP sets in the genomic
feature (chromatin state) and calculated the z-score (Z) of enrichment
as follows:

Z =
f =F � b=B

SEðf =F � b=BÞ ð1Þ

where SEP1�P2 is the standard error of the difference between pro-
portions. The method is implemented as an R package, called FEVV
(Functional Enrichment of Genomic Variants and Variations). FEVV is
available at: https://github.com/isarnassiri/FEVV/.

Functional significance score of SNPs. 3DSNP score was applied to
evaluate the functional significance of an indicated SNP in 6 categories,
including 3D interacting genes, enhancer state, promoter state, tran-
scription factor binding sites, sequence motifs altered, and conserva-
tion categories111. The score for an SNP is calculated using the number
of hits in each functional category in humanmonocytes from theGTEx
project112 and a Poisson distribution model113.

Inferring direction of the causal relationship between DNA
methylation, genetic and expression. We apply the MEAL R package
to compute a Pearson correlation test between the methylation and
gene expression values. The g/tQTL-mQTL pairs with shared causal
variants and a significant correlation between methylation and gene
expression values (FDR< 1 × 10−4) in naïve and LPS-stimulated mono-
cytes were selected for downstream analyses.

We used colocalization tests of two genetic traits (coloc)106 with
default parameters to assess whether g/tQTL and mQTL association
signals are consistent with a shared causal variant. The posterior prob-
ability (PP) is the probability that there is a link between gene expression
andmethylation, bothofwhich are associatedwith theSNP. It is assumed

Table 2 | The 15 core chromatin state abbreviations are broken down

Abbreviation Full name Description

Transcription Start Site (TSS) Related States

1 TssA Active TSS Indicates a region actively involved in transcription initiation.

2 TssAFlnk Active TSS Flank Describes a region flanking the active TSS, often associated with regulatory elements.

3 TxFlnk Transcription Refers to the process of gene transcription.

4 Tx Transcription Flank Indicates a region flanking a transcript, potentially containing regulatory elements.

5 TxWk Weak Transcription Suggests a region with low levels of transcription activity.

Enhancer-Related States

6 EnhG Gene Enhancer Indicates an enhancer element associated with a specific gene.

7 Enh Enhancer A region of DNA that can boost the expression of a gene.

8 ZNF/Rpts Zinc Finger/Repeats A type of DNA binding motif often found in enhancers.

Heterochromatin and Bivalent States

9 Het Heterochromatin Densely packed chromatin that is generally transcriptionally inactive.

10 TssBiv Bivalent TSS A TSS marked with both active and repressive histone modifications, often associated with
developmental genes.

11 BivFlnk Bivalent Flank A region flanking a bivalent TSS, potentially containing regulatory elements.

12 EnhBiv Bivalent Enhancer An enhancer marked with both active and repressive histone modifications.

Repressive States

13 ReprPC Repressed Polycomb-repressed Complex A region marked by repressive chromatin modifications mediated by Polycomb proteins.

14 ReprPCWk Weak Repressed Polycomb-repressed
Complex

A region with lower levels of Polycomb-mediated repression.

15 Quies Quiescent chromatin Refers to a state that is generally inactive in transcription.
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that familymembers or related individualswere not included (abf: all but
family). Coloc examines the posterior probability of four hypotheses (H),
including PP.H1.abf (SNP associated with gene expression only),
PP.H2.abf (SNP associated with methylation only), PP.H3.abf (SNP asso-
ciatedwithneither trait), andPP.H4.abf (SNP is associatedwithbothgene
expression andmethylation). The SNP’s high value of PP.H4.abf suggests
that it could have a causal effect on both gene expression and methy-
lation, indicating a potential regulatory relationship106. To identify causal
relationships in the region of interest, we utilised the PPH4>0.8106 and
the Steiger statistical test to analyse the deviation from independence
between the direction of causal effects (p<0.05)114.

Comparison and replication of gQTL results. We compared gQTL
profiles of LPS or IFN-γ treated primary monocyte cells formed on
microarray profiling3 with the gQTL formed on RNA-seq profiling of
gene expression (P < 0.01). The experimental setup and microarray
transcriptomic data of 367 individuals after exposure to IFN-γ, 322
individuals after 24 h LPS and 414 individuals in the naïve state were
presented in detail in our previous study3. The replications were
examined using an exact match of SNP-gene pairs from significant
gQTL profiles. We use the qvalue method to calculate π1 statistics in
order to estimate the expected true positive rate115. The proportion of
false positives (π0) is calculated by assuming a uniform null P value
distribution, and π1 is equal to 1-π0

116.
We further validated our bulk RNA-seq gQTL analysis by conducting

a comparison study with published single-cell RNA-seq (scRNA-seq)
data7. The scRNA-seq dataset included monocyte cells from 120 indivi-
duals that stimulated or were induced in vitro with Pseudomonas aeru-
ginosa (PA24). The objective was to determine if the gQTL associations
that were identified were strong enough to replicate at the single-cell
level. By comparing SNP-genepairs and their gQTLp-values,wewere able
to study the replication of the scRNA-seq dataset to the RNA-seq dataset.

Genetic determinant of gene regulatory network relationships. We
performed an allele-specific co-expression analysis15,16 searching for
variants that impact co-expression relationships of genes in cis-gQTL
with upstream pathway genes.

First, we selected independent gQTLs (FDR < 1 × 10-5, MAF >
0.039) with the homozygous minor allele count of > 5. Next, for each
set of individuals with the same genotype, correlation coefficients (r)
were calculated for expression values of the eGenes and all other
genes. We used correlation coefficients and performed the genotype-
specific differential gene correlation analysis (DCA) of samples with
MM (M: minor allele) genotype versus samples with RR (R: reference
allele) genotype, and samples with MM genotype versus samples with
RM genotype as follows.

Fisher z-transformation was applied to stabilise the variance of
rank correlation coefficients (rMM :rMR:rRR)

46:

z =
1
2
loge

1 + r
1� r

� �
ð2Þ

The difference in z-scores (dz) between two genotypes
(e:g:rMMandrMR) was calculated by:

dz =
z1 � z2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvarðrs1 Þ � varðrs2 Þj

q ð3Þ

where varðrsx Þ refers to the variance of z for the set of individuals with
the same genotype (sx). We can summarise the differential correlation
relationships (DC) as the following logical statement:

p
^

q∴d � p
^

q∴:d ð4Þ

where p : rRR&rMM 2 DC, q : rRM& rMM 2 DC, and d : rRM& rRR 2 DC.

DCA uses the direction of correlation to categorise the rela-
tionship between gene pairs across different allele carriage at
specific gQTL. DCA considers the significance and direction of
correlation in each condition beyond the binary gain and loss of
correlation, the relationships being divided into three categories:
significant positive correlation, no significant correlation, and
significant negative correlation. When these categories are com-
bined across genotypes, there are a total of 3 × 3 = 9 possible
differential correlation classes.

Using independent microarray-based analysis, we attempted to
replicate coExQTLs. Those coExQTLs that had the samegenepair, SNP,
and direction of correlation in both datasets were defined as repli-
cated. The RNA-seq and microarray techniques have inherent differ-
ences that make it challenging to replicate coExQTLs findings using
microarray data. For instance, RNA-seq has a much greater dynamic
range of sensitivity to expression than microarrays. We used a con-
servative threshold to define the replicated coExQTLs in the replica-
tion study, and we believe we underestimate the number of coExQTLs
in this first description.

We combined gene expression, CpG site methylation level, and
genotype data to identify coExQTLs that regulate gene expression
and DNA methylation. Our approach involved overlaying coExQTLs
and methylation levels onto the co-expression networks in order to
identify coExQTLs that control both gene expression and DNA
methylation within these modules.

A more refined and biologically relevant understanding of gene
regulation and its implications for complex traits can be gained by
using transcripts instead of gene-level coExQTL. To identify genetic
variants that are associated with transcript expression, we performed
coExQTLs using transcript and gene (canonical transcript) expression
profiles. The expression levels of transcripts (FPKM) were transformed
using SAVER method117. The SAVER method was our preference
because the benchmark studies indicated that it effectively establishes
the correlation between marker genes and excludes those we are
aware do not correlate117.

The Benjamini-Hochberg (BH) correction method was used to
adjust the resulting p-values. To find a balance between sensitivity and
specificity, we only analysed transcript-level coExQTLs for indepen-
dent-g/tQTLs with FDR less than 10−5 and MAF >0.039. By comparing
coExQTLs with Pinteraction < 10−5 in each condition to coExQTLs with
Pinteraction > 0.01 in other conditions, we determined context-specific
coExQTLs for every condition.

We utilised IsoVis118 and 3DSNP (version 2.0)111 to perform func-
tional enrichment analysis for annotating the identified coExQTLs. To
find a balance between sensitivity and specificity, we only analysed
transcript-level coExQTLs for independent-tQTLs with FDR less than
10−5 and MAF>0.039. Independent-tQTL is a term used to describe a
significant connection between an SNP and a transcript expression
level that persists after conditioning on other SNPs in the same
genomic region. Conditional pass analysis was utilised to detect
independent-g/tQTLs28.

Pathway-based differential co-expression test. A coExQTL’s func-
tional impact would be vary depending on the specific context and the
biological significance of the gene within the pathway. A pathway-
based differential co-expression (PDC) analysis was employed to
determine whether a coExQTL is functionally neutral or impactful
within a pathway45,46. PDC analysis was carried out on a specific group
of genes that have genotype co-expression relationshipswith a specific
coExQTL and were enriched with curated gene sets from online
pathway databases.

The PDC analysis uncovers the average shift in correlation between
gene expression among two genotype classes within a pathway, as well
as its statistical significance. PDC calculates a differential connectivity
score for every gene within each module. The score reflects the change
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in the gene’s connectivity within the module between the two genotype
classes. When calculating the overall module differential connectivity,
only genes that exhibit a significant change in connectivity (p-value <
0.05) are taken into account. Let z1 be the z-score of gene i and j in
genotype class 1, z2 be the z-scoreof gene i and j in genotype class 2, and
n be the total number of genes in an indicated pathway. Then, the
median difference in z-scores between all gene pairs (overall module
differential connectivity) can be calculated as45,46:

1�
Xn

p
median dzpi, j =

z1 � z2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var rs1

� �� var rs2

� �			 			
r

								

								
f or all i, j where i ≠ j and 1≤ i, j ≤n

0
BB@

1
CCA

0
BB@

1
CCA=n ð5Þ

The median function determines the middle value among all
pairwise differences between two genotype classes, p is interpreted as
a permutation to compute a two-sided p-value and varðrsx Þ refers to
the variance of z for the set of individuals with the same genotype (sx).
The median estimator is our preferred choice due to its higher
breakdown point compared to the mean. Spearman correlation is our
preferred method for PDC due to its ability to handle non-linear
monotonic relationships and non-normal distributions, which are
common characteristics of gene expression data. Furthermore,
Spearman correlation is less affected by outliers, which can occur in
gene expression data because of technical noise or biological varia-
bility. The use of this approach has been previously introduced and
implemented45,46,119.

To determine the empirical p-value related to the observed effect,
a permutation test with 1000 resampling was performed45,46. The
threshold for gene expression variation within a pathway that would
make a coExQTL functionally disruptive is 0.05.

The clusterProfiler tool was utilised to examine pathway enrich-
ment of allele-specific co-expression relationships and display func-
tional profiles120. We used hc2.all.v2024 as a reference gene set.
hc2.all.v2024 is a complete gene set collection that has been created
specifically for human genes and encompasses a wide variety of
pathways from various biological processes121. The background
population is the entire set of genes being considered in the analysis.

Data presentation
Manhattan plots of genomic analysis were generated using CMplot
(v3.3.3). Local association plots were generated with FUMA (v1.3.5)122.
GWAS4D was used to integrate transcription factor binding sequence
motifs with context-specific regulatory variants and visualisemotifs as a
WebLopo plot123. Box plots and dotplots were generated using ggpubr
(v0.2) and customising ggplot2124. Visualisation of SNPs and methyla-
tion data alongwith annotation as track layers (Lolli plot)was generated
using trackViewer (v1.20.2)125. We used shinyCircos (V2.0) to visualise g/
tQTL association as a Circos plot126,127. The ChIPseeker package (v1.18.0)
was applied to visualise feature distribution and distribution of eSNPs
relative to TSS128. Alternative gene isoforms were visualised and anno-
tations using the IsoVis webserver118. We leveraged Shiny with R to
develop aweb application frameworkong/tQTLdata forprogramming-
free graphical and interactive analysis. The DBI R package was used to
execute SQLqueries and assign the results as the input of Shiny (https://
livedataoxford.shinyapps.io/fairfaxlab_supplementary_files/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have made a browser available for independent g/tQTL at https://
livedataoxford.shinyapps.io/fairfaxlab_supplementary_files/. The simpli-
fied version of the Shiny app is available online on shinyapps.io: gQTLs:
https://livedataoxford.shinyapps.io/fairfaxlab_monocytes_eqtl_lps/

https://livedataoxford.shinyapps.io/fairfaxlab_monocytes_eqtl_ifn/
tQTLs: https://livedataoxford.shinyapps.io/fairfaxlab_monocytes_tqtl_
lps/ https://livedataoxford.shinyapps.io/fairfaxlab_monocytes_tqtl_ifn/
All sequencing data are made freely available to organisations and
researchers to conduct research following the UK Policy Framework for
Health and Social Care Research via a data access agreement. Sequence
data have been deposited at the European Genome–Phenome Archive,
which is hosted by the European Bioinformatics Institute and the Centre
forGenomicRegulationunder accession no. EGAS00001007111 [https://
ega-archive.org/datasets/EGAD00001010176].

Code availability
Scripts used in the analysis and figure synthesis are available online
on shinyapps.io: https://livedataoxford.shinyapps.io/fairfaxlab_
supplementary_files/.
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