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Genetic controllers for enhancing the
evolutionary longevity of synthetic gene
circuits in bacteria

Daniel P. Byrom & Alexander P. S. Darlington

Engineered gene circuits oftendegrade due tomutation and selection, limiting
their long-term utility. Here we present designs for genetic controllers which
maintain synthetic gene expression over time. Using amulti-scale “host-aware"
computational framework, which captures interactions between host and
circuit expression, mutation, and mutant competition, we evaluate several
controller architectures based on threemetrics for evolutionary stability: total
protein output, duration of stable output, and half-life of production. We
propose a number of designs with varying inputs (e.g., output per cell, growth
rate) and actuation methods (transcriptional vs. post-transcriptional regula-
tion). We find post-transcriptional controllers generally outperform tran-
scriptional ones, but no single design optimizes all goals. Negative
autoregulation prolongs short term performance, while growth-based feed-
back extends functional half-life.We propose three biologically feasible,multi-
input controllers that improve circuit half-life over threefoldwithout requiring
coupling the process to an essential gene or a genetic kill switch.

Synthetic biology seeks to engineer living organisms, often microbes,
to perform desired functions, with a range of applications in health-
care, the chemicals industry and environmental science1–3. However,
loss or degradation of function over microbial generations shortens
the lifespan of such systems and represents a fundamental roadblock
to widespread adoption and application in industry4,5.

Engineered synthetic gene networks, often referred to as “cir-
cuits”, utilise their host’s gene expression resources, suchas ribosomes
and amino acids, for their own expression. This disrupts the cell’s
natural homeostasis as these resources are diverted away from host
processes and towards circuit gene expression. This additional load
imparted by the circuit often leads to a gross reduction in the cell
growth rate, a phenomenon known as “burden” (reviewed extensively
in refs. 6–9). In microbes, such as E. coli, where growth rate is analo-
gous to fitness, cells which contain gene circuits are at a selective
disadvantage as they cannot produce new daughter cells as quickly as
their faster-growing, unengineered counterparts.

DNA replication is an inherently error-prone process, so every cell
division represents a possibility for such mutations to be introduced
into a gene circuit. It is therefore inevitable that they will eventually

arise within a large population10. Mutations to promoters, ribosome
binding sites or transcription factor binding sites can result in sig-
nificant changes to gene circuit dynamics. Where these mutations
inhibit circuit function and correspondingly reduce cellular resource
consumption, the aforementioned growth disparity enables the new
mutant strains to outcompete the ancestral strain. As a result, syn-
thetic gene circuit function is eventually eliminated from engineered
populations4 (Fig. 1). In some cases, such evolutionary loss-of-function
can occur so rapidly that a culture cannot be grown to a suitable size
before its effects become significant11.

The evolutionary longevity of a gene circuit can be quantified by
measuring the time taken for the population-level output to reach a pre-
defined “breaking point”12 (e.g., for a simple output-producing circuit,
the “half-life” describes the time taken for the output to fall by 50%). A
number of experimental approaches have been developedwhich aim to
improve the evolutionary longevity of gene circuits (reviewed exten-
sively in refs. 13,14). These are divided into two broad approaches: (1)
suppressing the emergence of circuit mutants and (2) reducing their
selective advantage15. Examples of approach (1) include engineeringhost
organisms with reduced mutation rate16 and reducing the use of
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repeated DNA sequences4,10. Examples of approach (2) include systems
where circuit function is artificially coupled to host survival17–19. Such
methods are often bespoke and may constrain the performance/func-
tionof a synthetic device. For example, in ref. 18, Yang et al. engineered a
bidirectional promoter that simultaneously drives both GFP expression
and antibiotic resistance with the view that mutations to the shared
promoter ought to be selectively disadvantageous as antibiotic resis-
tance is lost. Although the promoter sequence is maintained after serial
passaging, the system remains prone to mutation in the ribosome
binding site. In general, even whenmethods are implemented to extend
the longevity of gene circuits, evolution is never entirelymitigated14 and
some designs still lose expression within 24h20.

Maintenance of function in light of evolution is still an open
challenge for engineering biology, with a need for design frameworks
to predict and account for themutation during the design process5,21,22.
Here, we tackle the problem from a systems perspective, aiming to
identify feedback controller design paradigms that can improve evo-
lutionary longevity. In this paper, we view the onset of mutation as a
parametric uncertainty and the competition between mutant and
ancestral strains as an environmental perturbation. Negative feedback
is an attractive control strategy for minimising the impact of both
perturbations and uncertainty because it enables a system to monitor
its output and feed this information back into the system as an input,
thereby adjusting its behaviour to maintain a known level. Negative
feedback has been successfully implemented in synthetic biology for a
variety of objectives23,24, including optimising yields in metabolic
engineering25 and reducing the unexpected coupling between genetic
parts (e.g.26). It has been shown both theoretically and experimentally
to reduce burden and improve the evolutionary longevity of synthetic
circuits27–30. However, existing work typically demonstrates that this
reduction in burden is at least partly a result of reduced expression of
the target genes (i.e., reduced circuit function), so the closed-loop
systems are not compared against open-loop systems of equivalent
function. Further, to date, little attention has been paid to how nega-
tive feedback controllers should be optimally designed to improve
evolutionary longevity, both in terms of controller topology and
design rules for part selection. By taking a systems engineering
approach and developing mathematical models, we are able to inves-
tigate these considerations in silico.

Here, we use a host-aware design framework to analyse different
design choices for the creation of genetic controllers which enhance the
long-term performance of a simple genetic circuit. This model accounts
for host-circuit interactions, dynamic growth andmutation, enabling us
to evaluate the relationships between circuit expression, burden and

evolutionary population dynamics30–34. To evaluate evolutionary long-
evity, we consider both the maintenance of function in the short term
(bymeasuring how long function is maintained within a narrowwindow
around the designed level) and the persistence of the circuit in the long
term (by measuring how long it takes for function to halve). We
demonstrate the performance of a variety of controller architectures
which differ in the quantity sensed by the system as the ‘control input’,
and the mechanism through which control is enacted. In each case, we
evaluate how to optimally design the controllers, the potential impact of
additional controller resource consumption and their robustness to
parametric variation to guide in vivo implementation.

We demonstrate three key factors which determine the effec-
tiveness of genetic controllers for enhancing evolutionary longevity.
Firstly, the choice of controller input: growth-based feedback sig-
nificantly outperforms intra-circuit feedback and population-based
feedback in the long term, while intra-circuit feedback can provide
significant improvements in the short term. Secondly, the means of
controller actuation: we show that post-transcriptional control, which
exploits small RNAs (sRNA) to silence circuit RNA, outperforms tran-
scriptional control via transcription factors, as this mechanism pro-
vides an amplification step which enables strong control with reduced
controller burden. Thirdly, we show that systems with separate circuit
and controller genes can exhibit significantly enhanced performance
due to evolutionary trajectories where loss of controller function
results in short-term increases in protein production. We also show
that different controller architectures have different robustness to
parametric uncertainty, which will complicate design selection for
in vivo implementation. We propose a controller topology that com-
bines control inputs and feedbackmechanisms to improve both short-
and long-termperformancewhilemaintaining enhanced robustness to
parametric uncertainty.

Results
Modelling and quantifying gene circuit evolution
We develop an ordinary differential equation model of host-circuit
interactions31,33 and augment it with a model describing an evolving
population of E.coli cells, taking a similar state-transition approach to
ref. 34 and ref. 30. Thismulti-scalemodel comprises a set of competing
populations sharing a single source of nutrients, with each population
representing a different parameterisation (or “strain”) of an engi-
neered E. coli cell. Mutation is implemented via transitions between
these different strains, and selection emerges dynamically through
differences in calculated growth rates. Simulations are performed in
repeated batch conditions, where nutrients are replenished and

Fig. 1 | A schematic demonstrating how function is lost in an engineered
population over evolutionary time.Randommutations occur as a result of error-
prone DNA replication, leading to mutants with reduced circuit function. These

mutants have higher selective fitness, as the host cells can direct more resources
towards growth. As a result, such mutants dominate the population and circuit
function is eventually lost.
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population size is reset every 24 hours, mirroring previous
experiments4,10. Variables are given inmolecules per cell (mc/cell). The
complete model is defined in Supplementary Note 1. We perform
simulations as defined in the Methods section entitled “Simulating an
evolving population of engineered cells”.

Here, we consider a simple synthetic process consisting of a single
gene A, which could represent a fluorescent reporter protein such as
GFP. Messenger RNA (mRNA) transcripts mA are generated propor-
tional to the maximal transcription rate ωA. They combine with ribo-
somes R supplied by the host model to form “translation complexes”
cA, which yield protein pA upon the completion of translation, having
consumed cellular anabolites e. Through consumption of e and utili-
sation of R the host and circuit models become coupled and the
phenomenonof burden is captured32.Wedefine the total output of the
system P to be the total number of molecules of pA across the entire
population composed of i strains:

P =
X
i

NipAi

� �
, ð1Þ

where each strain i represents a different mutant, andNi is the number
of cells belonging to the ith strain (Fig. 2a). For this nominal open-loop
system, we assume four distinct “mutation states” which differ in the
value of the maximal transcription rate ωA, corresponding to 100%,
67%, 33% and 0% of the nominal or designed level. Mutation occurs via
transition rates between these populations such that only function-
reducingmutationsmay occur, and such thatmore extrememutations
are less likely (Fig. 2b). (See Supplementary Note 1 and Supplementary
Fig. S1 for a full description of the mutation scheme.)

To measure the evolutionary longevity of this process, we define
three metrics:

1. P0, the initial output P from the ancestral population prior to any
mutation.

2. τ±10, the time taken for the output P to fall outside of the
range P0 ± 10%.

3. τ50, the time taken for the output P to fall below P0/2.

We define these metrics assuming that we wish to maximise
production (P0) and maintain performance near to the original state

Fig. 2 | Simulating an open-loop process in repeated batch conditions. a A
schematic showing the function of the process. mA is spawned and translated to
create output pA using host ribosomes. This process impacts host growth. The total
output P comes from the output pA across an entire population of engineered cells.
b A visual depiction of the mutation scheme for this process. Coloured squares
represent distinct ‘mutation states’with different levels of function. Numbers in the
squares show thepercentage function of a given state relative to the designed level,
implemented through differences in the maximal transcription rate ωA: 100
represents a state functioning as designed, while 0 represents a completely non-
functional state where no transcripts mA are produced. Arrows signify possible
transitions between mutation states, with lighter arrows representing mutations
which occur less often. c‒f Time-series outputs using an open-loop process with

maximal transcription rateωA = 5 mc min�1. cTotal population-wide circuit output
P, plotted both in full (grey) and at the end of each simulation day (green). An ideal
systemwouldmatch an open-loop system in the absence of mutation, maintaining
function indefinitely (blue). d Population size N, distributed according to mutation
state. Dark green represents a fully-functional (100%) strain. Light green represents
a non-functional (0%) strain. e Output per cell pA according to mutation state over
the first day. Dotted lines show maximum outputs. f Growth rate λ according to
mutation state over the first day. Dotted lines showmaximumgrowth rates. g For a
wide range of processes (varying ωA between 0.1 and 1000 mc min−1), τ±10 (black)
and τ50 (grey) against initial output P0. Simulation results are provided as a Source
Data file.
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(τ±10) for as long as possible.We propose τ50 as ameasure of long-term
performance or “persistence” because the maintenance of “some
function”may be sufficient for many applications, such as biosensing.

For the proposed nominal open-loop system, the total output P
falls over the course of the simulation from its initial value P0 to 0
molecules (Fig. 2c). This corresponds to a transition of the population
makeup, which initially comprises entirely of fully functional cells but
eventually is dominated by non-producing, faster growing mutants
(Fig. 2d–f). For systems with increased process transcription (i.e., lar-
ger maximal transcription rates ωA), the initial output P0 increases as
more protein is produced per cell. However, this increases the burden
caused by the process and therefore reduces both τ50 and τ±10. Beyond
a certain point, continuing to increase ωA can overburden the cell,
leading to a reduction in all metrics (Fig. 2g).

The objective of this paper is to evaluate the ability of dif-
ferent control strategies to improve the evolutionary longevity of
this simple synthetic circuit. It is trivial to reduce the burden and
improve both τ±10 and τ50 by reducing the production of pA via
the birth rate ωA. However, this impedes circuit function (Sup-
plementary Fig. S2a). We therefore define the performance of
controllers in comparison to an open-loop system of equal initial

output P0. See Methods for Comparing controllers versus open-
loop systems of equal output for full details as to how these
metrics where determined. The ideal controller would extend τ±10
and τ50 at no loss in P0.

Phenomenological models demonstrate the potential of nega-
tive feedback control to enhance evolutionary longevity
We consider three candidates for the choice of input for a control
strategy designed to improve evolutionary longevity (Fig. 3a).
We model all controllers phenomenologically by scaling the
maximal transcription rate of the circuit gene ωA by a regulatory
function, so that protein production is inhibited when levels are
already high:

wA =ωA �ΘðuÞ: ð2Þ

Here, u is the control input of choice.
Firstly, we consider product-based negative feedback where

the protein per cell pA is the control input (Fig. 3a, red). To maintain
function close to a desired level, production is inhibited if there is an
abundance of output and control is alleviated if production is low. We

Fig. 3 | Phenomenological modelling of different choices of control input. a A
simple schematic showing the three controller architectures: intra-circuit control
(red), growth-based control (orange) and population-based control (lilac). Each
output comes from a different layer of the combined multi-scale model (circuit
model, host model and populationmodel). See key in Fig. 2a for symbolmeanings.
b Time-series of population-wide output P over time for an open-loop system
(black, dashed,wA = 4.0mcmin−1) and representative control systems of equivalent
initial output P0. (Intra-circuit: red, wA = 103 mc min−1, kA = 4.5 × 102 mc. Growth-
based: orange, wA = 87 mc min−1, kλ = 6.3 × 10−2 min−1. Population-based: lilac,
wA = 16 mcmin−1, kP = 5.2 × 108mc.). c, d A large number of designs were generated

by varying themaximal transcription rateωA and control parameters ku. Against the
initial output P0, we plot the percentage change in (c) τ±10 and (d) τ50 vs an open-
loop systemof equal initial output. Pointsmarkedwith anX correspond to the time-
series plots in (b). These were selected as points on the Pareto fronts simulta-
neously optimising P0, τ50 and τ±10, with initial output P0 closest to 2 × 109 mole-
cules. e, f For circuits corresponding to trajectories in (b), (e) maximum protein
production per cell pA and (f) maximum growth rates λ across the first day (solid)
and the day where τ50 is reached (grey outline) for each mutation state. Lighter
squares represent less functional strains. The horizontal line represents a non-
functional strain. Simulation results are provided as a Source Data file.
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call this intra-circuit feedback. This is achieved via the regulatory
function:

ΘðpAÞ=
kA

2

kA
2 +p2

A

: ð3Þ

Should a mutation occur which reduces the production of pA, the
strength of control will be eased, allowing the actual output levels to
rise again. This means that mutations which reduce circuit output will
have a lesser impact on burden, minimising the selective advantage of
such mutations.

Secondly, we consider growth rate λ as the control input (Fig. 3a,
orange). Since increased production of pA corresponds to reduced
growth, we employ feedback so that production is inhibited at low
growth. We call this growth-based feedback, and use the regulatory
function:

ΦðλÞ= λ2

kλ
2 + λ2

: ð4Þ

If a burden-relieving mutation arises with reduced production of
output pA, control will be alleviated, enabling a resultant increase in
output and a smaller selective advantage over the original designed
strain.

Finally, since our objective is to maintain the performance of a
synthetic circuit across an entire population, we consider using the
total population-wide output P as an input for control (Fig. 3a, lilac).
Such a system could be implemented physically using cell-to-cell
communication systems such as quorum sensing. We employ feed-
back so that further production is inhibited when the population-wide
output P is high. We call this population-based feedback, and use the
regulatory function:

ΘðPÞ= kP
2

kP
2 +P2

: ð5Þ

Unlike with the other systems, individual cells do not directly
respond to mutations in the circuits they carry by alleviating
control, because such mutations do not significantly alter the
population-level control input P. Instead, this system aims to
maintain population-level output by steadily increasing the per-
cell production of non-mutant cells to compensate for the
increasing number of non-functional mutants.

For all three systems, applying control to a given nominal process
(here, ωA = 10mcmin−1) boosts longevity at the expense of initial out-
put P0, with stronger controllers (low kA, high kλ, low kP) causing a
more significant change (Supplementary Fig. S2b‒d). Representative
dynamics from systems which initially produce the same population-
wide output P are shown in Fig. 3b. This initial comparison suggests
that intra-circuit control is capable of maintaining function at close to
the designed level for longer (greater τ±10), but that growth-based
control is more effective at improving long-term persistence (greater
τ50). To assess the different strategies at the topological level, we
generated many designs by varying both the process input ωA and the
controller strength (kA, kλ and kP) while all other system parameters
were fixed as defined in Supplementary Table 4.We observe that intra-
circuit control excels in the short term while growth-based control
excels in the long term across most parameter combinations,
demonstrating that the result holds at the topological level (Fig. 3c, d).
Except in cases of minimal output, population-based control is less
effective and is the only strategy where some designs perform worse
than open-loop. These differences in performance are a result of dif-
ferences in the per-cell protein production and growth rates between
mutant strains (Fig. 3e, f). For intra-circuit control, mutating into
intermediatemutation states (where function is non-zero but less than

the designed level) alleviates some of the control exerted by the con-
troller, pushing production back up and providing a smaller growth
advantage. However, this means that mutations which completely
abolish function provide a greater growth advantage, allowing non-
functional mutants to dominate quickly, accelerating loss-of-function.
Growth-based control is capable of boosting the growth rate of the
fully-functional state, thereby reducing the selective advantage of
mutation into any other state. For population-based control, non-
mutant cells become affected by a decline in population-wide output,
so that control strength is eased over time. This allows them to pro-
ducemore output, but leads to an even greater selective disadvantage,
thereby accelerating loss-of-function.

Having established the theoretical differences in performance for
different controller input strategies, we next consider how such sys-
tems could be implemented in living cells by deriving mechanistic
models of biologically realisable topologies. We consider both tran-
scription factor-based and RNA-basedmethods of control information
processing and actuation. In themain text, we report the results for the
intra-circuit and growth-based systems. Mechanistic modelling of a
population-based controller which utilises quorum sensing confirms
that such systems have poor performance (Supplementary Figs. S3‒
S6). These results are described in Supplementary Note 2.

Intra-circuit feedback control improves short-term perfor-
mance at the expense of longevity
The intra-circuit control strategy described in the above section
and demonstrates the potential of negative feedback control to
enhance evolutionary longevity (Fig. 3) is equivalent to an auto-
regulationmotif where an inhibitory transcription factor inhibits itself.
This limits its utility in practice, where one may want to stabilise the
expression of an enzyme or signalling protein that performs a useful
circuit-specific function. Here, we consider two biologically imple-
mentable control systems where feedback is enacted in proportion to
the per-cell protein output pA. The first is composed of an inhibitory
transcription factor pB, which is produced from the same promoter as
circuit protein pA, so that the functional identity of pA is not con-
strained. pB inhibits the production of both pA and pB (Fig. 4a). In this
way, when production is high, increased inhibition reduces the pro-
duction of new synthetic proteins, enabling the reduction of burden.
This approach imitates previously implemented controllers (such as
ref. 26). We call this controller CLpATX ("Closed-loop, senses pA, pre-
vents transcription”). To implement this, we scale the birth rate of
mRNAs by the regulatory function:

ΘAðpBÞ=
kB

2

kB
2 +pB

2
:

Note that the controller proteinherewill exert an additional burden on
top of the process gene.

The second negative feedback mechanism similarly makes use of
a co-produced transcription factor pB, but in this case it activates an
sRNA rC which then eliminates the mRNA mA by sequestration (as in
e.g.35) (Fig. 4b). We call this controller CLpATL ("Closed-loop, senses
pA, prevents translation”). (For ease of reference, the names of the
controllers, their inputs and mode of action are available in Supple-
mentary Table S1). Note that there are now two genes which may be
subject to mutation (the process and the sRNA) and so we update our
mutationmodel to include 42 = 16 distinct mutation states, where each
represents a unique pair [%A, %C], with %A, %C ∈ {100%, 67%, 33%, 0%}.
We assume that mutations only affect a single promoter at a time
(Supplementary Fig. S1). (See Supplementary Note 1 for a full
description of both models for a full description of the mutation
scheme.)

We first consider the transcriptional controller architecture:
CLpATX. Todetermine its performance across a range of processes, we
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Fig. 4 | Protein-based control design and performance. aA schematic describing
the controller CLpATX. Controller protein pB is produced from the same gene as
output protein pA and acts as an inhibitory transcription factor on the shared gene.
b A schematic describing the controller CLpATL. See key in Fig. 2a for symbol
meanings. A controller protein, pB, is produced from the same gene as the output
protein pA, and acts as a transcription factor which activates the production of
sRNA rC. The feedback loop is completed through the combining of rC with mRNA
that codes for pA and pB, preventing it from being translated. c‒f Optimal perfor-
mance for both CLpATX (blue) and CLpATL (red) for controller protein length
nB = 1, 300, 600aa. c τ±10 vs initial output P0, (d) τ50 vs initial output P0, (e) %-change

in τ±10 over open-loop vs initial output P0, (f) %-change in τ50 over open-loop vs
initial output P0. g‒l Robustness analyses for (g‒i) CLpATX and (j‒l) CLpATL. For
each of the 100 optimal controllers with nB = 300 aa, 100 further controllers were
generated by varying parameters by up to ± 10% (dark grey) and ± 25% (light grey).
The percentage changes in three outputmetricswere calculated versus the original
optimal systems: (g, j) P0, (h, k) τ±10 and (i, l) τ50. Plots show the means (for ± 10%)
and standard deviations (for both ± 10% and ± 25%) of the percentage changes for
each optimal controller. Percentages marked on the plots indicate the standard
deviations across the entire Pareto front when parameters were varied by ± 10%
(± 25%). Simulation results are provided as a Source Data file.
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performed multi-objective optimisations to simultaneously maximise
P0, τ±10 and τ50, varying the control strength kB, the control protein
ribosome binding rate bB and the circuit maximal transcription rateωA

(see Methods section “Multi-objective optimisation”). To evaluate
performance, we then compared these outputs with corresponding
open-loop systems of equal initial output P0. (See Methods section
“Comparing controllers versus open-loop systems of equal output”).

For controller protein lengths typical of bacterial regulators (i.e.,
nB = 300 amino acids (aa)), improvements in τ50 are minimal, but τ±10
can be improved by up to 60% versus open-loop (Fig. 4c–f, blue). Our
optimisations show that, where improvements are possible, control
strength should be maximised (i.e., low kB) across the Pareto front
(Supplementary Fig. S7, blue). This is because stronger inhibitors do
not need to be as abundant to achieve the same strength of feedback,
and so controller burden can be minimised. At low outputs P0, where
performance increases areminimal or non-existent, controller binding
strength bB is very small, so there is less pressure to minimise kB as
controller proteins are less abundant. Systems which produce less
output (and have increased longevity) tend to have less synthetic
transcription (low ωA) and less controller translation (low bB) (Sup-
plementary Fig. S7, blue).

We tested the robustness of the optimal designs to parametric
uncertainty by varying the optimal parameters randomly by up to
± 10% to generate 10,000 alternate designs. We repeated the analysis
for ± 25%. To quantify robustness, we tracked the percentage change
in each metric (P0, τ±10 and τ50) versus its corresponding optimal sys-
tem. A robust architecture would have small standard deviations in
these values when the designs across the Pareto front are subjected to
variation (See Methods section “Robustness analysis”). Here, optimal
controllers are very robust to parametric variation, with changes in P0,
τ±10 and τ50 having standarddeviations of 5.6% (13.9%), 3.3% (6.8%), and
2.9% (7.0%) respectively, compared with the original optimal systems
when parameters were varied by ± 10% (± 25%) (Fig. 4g–i). (See Sup-
plementary Note 3 for our comprehensive robustness analysis (Sup-
plementary Fig. S8a‒d and Supplementary Table S2).)

In an ideal case where the repressor causes minimal burden
(i.e., nB → 0 aa), performance can be significantly boosted to the
levels suggested by the phenomenological models. The binding
rate bB can be increased without significantly increasing burden
(Supplementary Fig. S7, blue). However, increasing the repressor
size nB to 600 aa, and therefore increasing controller burden,
performance deteriorates to worse than open-loop and any ben-
efits of control are lost entirely. As repressor size increases from
300 aa to 600 aa, the parametric design rules do not qualitatively
change (Supplementary Fig. S7, blue).

To better understand how design choices impact this con-
troller architecture, we tested the performance of this controller
for a nominal process of maximal transcription rate ωA = 50 mc
min−1 and controller protein length nB = 300 aa by varying the
controller ribosome binding rate bB and the controller strength
kB. We show that τ±10 can be improved by a more significant
margin than τ50, and across a wider portion of the design space,
suggesting that it is easier to boost short-term performance than
long-term performance (Supplementary Fig. S9). (See Supple-
mentary Note 4.)

Post-transcriptional control outperforms transcriptional con-
trol for intra-circuit feedback
Unlike CLpATX, which only enhances performance when controller
size (and therefore burden) is minimal, CLpATL is capable of sig-
nificantly improving both τ±10 and τ50, even in the presence of large
controller sizes (nB = 600 aa) (Figs. 4c–h, 5a, red). For typical regulator
lengths (nB = 300 aa), τ50 can bemore than doubled, with τ±10 showing
an even more extreme improvement at low initial outputs of up to
+ 400% versus open-loop. Although this system significantly

outperforms CLpATX, the optimal control designs are less robust, with
random parameter variation of up to ± 10% (± 25%) causing larger
variations in output metrics: changes in P0, τ±10 and τ50 have standard
deviations of 7.3% (18.7%), 4.5% (11.6%) and 4.3% (10.7%) respectively
(Fig. 4j–l). (See Supplementary Note 3 for a comprehensive robustness
analysis (Supplementary Fig. S8e–h and Supplementary Table S2).) As
with CLpATX, maximising controller strength (i.e., minimising kB) is
crucial to achieve themost control for the least burden for nB = 300 aa
and nB = 600 aa. For nB = 1 aa, controller burden is much less sig-
nificant, so pushing kB to its absolute minimum is less important.
Producing sRNA rC does not result in an additional burden, and so
maximising its production allows for the strongest control (Supple-
mentary Fig. S7, red). The demonstrated improvements in longevity of
CLpATL over CLpATX are a result of two key mechanisms: (i) reduced
controller burden (at equivalent control strength) and (ii) the emer-
gence of mutations to the controller itself (enabling the short-term
growth of high-producing strains).

Firstly, we see that optimal controllers utilise larger maximal tran-
scription rates ωA (Fig. 5b) and require much less controller protein pB
than CLpATX (Fig. 5c). This is a result of the pB-mediated activation of rC,
which amplifies the “impact” that each burdensome controller protein
can achieve. This enables CLpATL to provide “more control for less
burden” and significantly enhance performance in the long term.

Secondly, this process-controller system has two promoters (A
driving the gene expression and C driving the controller). When the
process promoter mutates (affecting the process transcription rate
ωA), synthetic protein production falls, causing an increase in growth
rate. However, when the sRNA promoter mutates (affecting the sRNA
transcription rateωC), the strength of control falls, so synthetic protein
production rises, leading to a decrease in growth rate. Over time, the
emergence of both types of mutation leads to a heterogeneous
population of mutant strains, some of which produce more protein pA
than the ancestral strain (Fig. 5d–f). It is important to note that there
are two sources of mutant spread: (1) the emergence of new mutants
via randommutation and (2) the competition between mutant strains
as a result of their relative growth rates. In the long term, growth rate
differences are the predominant cause of mutant domination; the
higher-producing strains are outcompeted by faster-growing strains.
However, early in the time course, when themajority of the population
is still fully functional, the dynamics is primarily affected by the
emergence of new mutations. Mutations to the controller can there-
fore initially balance out with mutations to the process, enabling
function to bemaintained close to the designed level formuch longer,
until out-competitionbecomes thedominant sourceofmutant spread.
This effect also explains why the improvement in τ±10 is so high for
smaller initial outputs P0: the differences in growth rate between
mutants become much smaller, so the emergence of new mutants
makes up a bigger proportion of the mutant spread, so cells with
mutated controllers (and increased output) make up a larger fraction
of the combined population, balancing out the cells with reduced
process output. This results in a linear relationship between τ±10 and
τ50 for optimal systems as the initial output P0 varies. This contrasts
withCLpATX,where increases in τ±10 aremore restricted than increases
in τ50 at low outputs P0 (Supplementary Fig. S10a, e).

These higher-producing mutants are only prevalent in the short
term but contribute significantly to the excellent short-term perfor-
mance (τ±10) of CLpATL. The improvement in long-term performance
over CLpATX is primarily a result of the reduced burden. To verify
this claim, we separately considered a systemwith two dimensions of
mutation but no additional burden. We observe improvements in
short-term performance when we include a second controller-
specific mutation site whose mutation leads to an increase in pro-
cess output. However, long-term performance, optimal parameter
choices and robustness are not significantly impacted (Supplemen-
tary Figs. S11 and S12). (See full details in Supplementary Note 5).
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As with CLpATX, we explored how design choices influence
performance for a nominal process (ωA = 50mcmin−1). As before,
we see that τ±10 improves over a larger portion of the design
space than τ50, demonstrating that short-term maintenance of
function is easier to improve than long-term persistence (Supple-
mentary Figs. S13 and S14). See Supplementary Note 4 for a full
description.

We have shown that CLpATL outperforms CLpATX partly as a
result of the low burden of transcription compared with translation.
We extended our cell model to capture energy consumption, and
thereforeburden, by transcription.We found thatCLpATX is insensitive
to this additional burden and that CLpATL outperforms it except at the
highest transcriptional burden (Supplementary Fig. S15). See Supple-
mentary Note 6 for a comprehensive discussion. Given this observa-
tion, we proceed with the assumption that transcriptional burden
remains negligible and that translational demands (in terms of both
energy consumption and cellular resource competition) dominate

bacterial growth and host-circuit interactions, in accordance with
established models and experimental data19,31,36–38.

Growth-based feedback enhances evolutionary longevity
Synthetic circuit burden elicits the upregulation of specific natural
promoters, which can be considered to be burden sensors. These
promoters can be exploited to design control systems that are sensi-
tive to burden39. When burden is high and growth is low, greater
restriction on the process can alleviate burden and reduce the selec-
tive benefit of mutations to the process gene. As with intra-circuit
control, we considered two growth-based controller designs: CLλTX
("Closed-loop, senses λ, prevents transcription”) (where control is
exertedbyan inhibitory transcription factor) andCLλTL ("Closed-loop,
senses λ, prevents translation”) (which exploits sRNA-mediated mRNA
sequestration). Both CLλTX and CLλTL improve evolutionary perfor-
mance, with CLλTL outperforming CLλTX in both the short term
(greater τ±10) and long term (greater τ50 except at very high initial

Fig. 5 | Understanding the improved performance of CLpATL. a–c Comparing
CLpATX (blue) andCLpATL (red). a Population-wide process outputs P over time for
two representative controllers.b Initial output P0 against themaximal transcription
rate of the process gene ωA across all optimal controllers. c Controller protein per
cell pB vs process output protein per cell pA across all optimal controllers. d–f The
effect of controllermutation onCLpATLwith nB = 300 aa.d Population-wide output

P over time according to mutation state. e Population size according to mutation
state. f Bar charts for CLpATL with nB = 300 aa showing (i) growth rate λ (min−1), (ii)
process protein output per cell pA (molecules/cell) and (iii) sRNA per cell rC
(molecules/cell). Each subplot represents a unique mutation state. Moving right-
wards signifies mutation of the process, andmoving downwards signifies mutation
of the controller. Simulation results are provided as a Source Data file.
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outputs P0) (Supplementary Fig. S16). Here, we focus our analysis on
CLλTL, with the discussion of CLλTX presented in Supplementary
Note 7 (Supplementary Figs. S16 and S17). This controller exploits
growth-sensitive promoters to drive transcription of an sRNA rC
(Fig. 6a). When the cell undergoes stress (i.e., low growth rate), a
controller protein pB is produced, which activates sRNA expression
(rC). This sRNA combines with and eliminates the mRNA for the pro-
cess gene mA, preventing it from being translated. There are three
promoters in this system, so we employ a mutation scheme consisting
of 43 = 64 distinct strains corresponding to unique triplets {%A, %B, %C}
with {%A, %B,%C} ∈ {100, 67, 33, 0} (Supplementary Fig. S1). (See Sup-
plementary Note 1 and Supplementary Fig. S1 for a full description of
the mutation scheme.)

For typical regulator protein sizes (nB = 300 aa), CLλTL slightly
outperforms CLpATL in the short term, but significantly outperforms it
in the long term, with possible improvements of more than 200%
versus open-loop (Figs. 6b–e, 7a). The difference in performance in
systems with minimal burden (nB = 1 aa) and high burden (nB = 600 aa)
is very small, suggesting that this controller topology is less sensitive
to controller burden than intra-circuit controllers. Observing the
population dynamics, we see that when mutations affect the process
gene, there is less variation in protein production and aminimal loss in
growth rate, so mutant strains with reduced function have less of a
selective advantage (Fig. 7b, d). Similarly, when mutations affect the
controller, the newmutant strains with increased function have less of
a selective disadvantage (Fig. 7c, e).

Fig. 6 | Optimal outputs for CLλTL. a A schematic describing the controller.
Controller protein pB is produced from a growth-sensitive promoter and activates
the productionof sRNA rC. rC combineswith anddeactivates processmRNAmA. See
key in Fig. 2a for symbol meanings. b–e Optimal performance for both CLλTL
(orange) andCLpATL (red) for controller protein length nB = 1, 300, 600aa.b τ±10 vs
initial output P0, (c) τ50 vs initial output P0, (d) %-change in τ±10 over open-loop vs
initial output P0, (e) %-change in τ50 over open-loop vs initial output P0.
f–h Robustness analysis. For each of the 100 optimal controllers with nB = 300 aa,

100 further controllers were generated by varying parameters by up to ± 10% (dark
grey) and ± 25% (light grey). The percentage changes in three output metrics were
calculated versus the original optimal systems: (f) P0, (g) τ±10 and (h) τ50. Plots show
the means (for ± 10%) and standard deviations (for both ± 10% and ± 25%) of the
percentage changes for each optimal controller. Percentages marked on the plots
indicate the standard deviations across the entire Pareto front when parameters
were varied by ± 10%(± 25%). Only original optimal controllers where τ±10 = τ90 are
considered. Simulation results are provided as a Source Data file.
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Investigating the optimal controller designs shows only ωA has
significant variation across the Pareto front. All other parameters
demonstrate clear optimal choices across the performance space
(Supplementary Fig. S17, orange). The strength of control from the
transcription factor should be maximised (kB minimised). This
becomes more crucial as protein length increases, corresponding also
to a reduction in ribosome utilisation (reduced bB) but increased
transcription of controller genes (increasedωB andωC). kλ controls the
sensitivity of the controller to changes in growth rate. Our optimisa-
tions show that controllers should have kλ in the region of 0.002 to
0.005 min−1, suggesting a high sensitivity to growth rate.

We note that some optimal systems with low initial outputs have
τ±10 worse than open-loop. Investigating the system dynamics shows
that these “fail” because their output increases significantly in the early
stages of the simulation as a result of controller mutation (Supple-
mentary Fig. S18a–c). These are systems for which the 90%-life τ90
(defined as the time taken for output to fall below 90% of its original
value) is not equal to τ±10. These systems have low output and very
strong controllers, so when the controller mutates, they produce a
comparatively very large amount of output protein. Despite these
strains with mutant controllers having very low growth rates and only
arising in small numbers, their contribution to the population-wide
output is significant (Supplementary Fig. S18e). The effect is enhanced
by the existenceof two separate controller genes, both ofwhich canbe
mutated to yield this increase in output. This effect can be exploited to
generate systems with excellent τ50 but poor τ±10 because of an initial

increase in output before an eventual fall. This effect is more pro-
nounced in systems with very low initial outputs P0, because the
functional systems are less burdensome and therefore have less of a
growth disadvantage (Supplementary Fig. S18f, g). This means that a
greater proportion of mutant spread initially comes from the emer-
gence of new mutants rather than competition between strains.

This phenomenon also makes this topology much less robust to
parametric variation. In some cases, small variations in parameters can
significantly and discretely alter the value of τ±10 as systems which
previously remained below + 10% of the original value may now
exceed it. Considering only the original designs where τ±10 = τ90, 21.6%
(28.2%) of designs fail to maintain τ±10 = τ90 after parameters are ran-
domly varied by up to ± 10% (± 25%). Standard deviations in the per-
centage change of P0, τ±10 and τ50 are 15.3% (37.3%), 30.8% (38.7%) and
9.2% (24.0%), demonstrating that, despite the improvements in long-
term performance, this controller topology is much less robust than
intra-circuit topologies (Fig. 6f–h). As with the intra-circuit systems,
the post-transcriptional feedback mechanism (CLλTL) enables much
greater optimal performance than the transcriptional feedback
mechanism (CLλTX), but this comes at the expense of a reduction in
robustness: for CLλTX, standard deviations in the percentage change
of P0, τ±10 and τ50 are 9.1% (22.6%), 22.7% (35.9%) and 9.2% (17.4%)
(Supplementary Fig. S16h–j). (See Supplementary Note 3 for a detailed
robustness analysis of both controllers (Supplementary Fig. S19).) For
systems where τ±10 = τ90, τ±10 and τ50 maintain a linear relationship
(Fig. S10b, e).

Fig. 7 | Why does CLλTL outperform CLpATL? a Time-series output for repre-
sentative optimal controllers with nB = 300 aa. (Open-loop black dotted line).
b Protein output per cell pA over time for the first day of simulation according to
mutation state, considering only states with a mutated process and a fully func-
tional controller. c Protein output per cell pA over time for the first day of simula-
tion, considering only states with a mutated controller and fully functional process

(solid linemutation inωB, dotted linemutation inωC).d, eGrowth rates λ according
to mutation state. Main plots show time series over the first day. Horizontal lines
indicate differences in the maximum growth rates of each state over the first day.
d Only states with mutated process. e Only states with mutated controllers (solid
line/square is mutation in ωB, dotted line/triangle is mutation in ωC). Simulation
results are provided as a Source Data file.
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To understand how design choices influence the performance of
growth-based feedback systems, we considered how varying the con-
troller parameters would influence the performance of CLλTX for a
nominal process of ωA = 50mcmin−1. This is described in Supplemen-
tary Note 4. Unlike intra-circuit feedback, where it is easier to improve
τ±10, growth-based feedback improves τ50 across awider portion of the
design space, suggesting that growth-based controllers could have
greater potential for in vivo implementation in applications where
circuit persistence is more important for maintenance of function
close to the designed level (Supplementary Fig. S20).

We extended our analysis of growth-based control by considering
a protein-free implementation where the growth-sensitive promoters
drive the sRNAexpressiondirectly (rather than via a regulator protein).
This system can improve performance versus open-loop but does not
outperform CLλTL (Supplementary Figs. S21 and S22). See Supple-
mentary Note 8.

Combining control schemes enhances robustness of growth-
based feedback
We have shown intra-circuit control excels at maintaining short-
term performance because it reduces the selective advantage of
intermediate mutation states, whereas growth-based control excels
at enhancing long-term performance because it boosts the growth
rate of the fully functional state. Further, we have shown that sRNA-
mediated controllers have enhanced optimal performance but
poorer robustness than controllers which actuate directly via tran-
scription factors. We therefore considered whether combining
multiple inputs and mechanisms of feedback could combine the
benefits of the individual systems and enable greater improvements
in both longevity and robustness. We first considered a phenom-
enological model of a control strategy which utilises both product-
based and growth-based control in conjunction. This system is
described in Supplementary Note 9 and is capable of combining the
benefits of both intra-circuit feedback and growth-based feedback
to significantly enhance both short-term and long-term perfor-
mance by up to 50% compared with the best performing single-input
systems (Supplementary Fig. S23).

To assess the impact of biochemical constraints and controller
burden on this strategy, we developed five multi-input mechanistic
models which exploit both transcriptional and translational mechan-
isms of introducing feedback control: (i) CLpATLλTL uses protein-
based feedback to inhibit transcription of the process gene and
growth-based feedback to prevent translation of the process gene by
activating sRNA (Fig. 8a), (ii) CLpATLλTX uses protein-based feedback
to prevent translation of the process gene by activating sRNA and
growth-based feedback to inhibit transcription of the process gene
(Fig. 8b), (iii) CLpATLλTL uses both protein-based feedback and
growth-based feedback to co-operatively activate sRNA production
and prevent translation of the process gene (Fig. 8c), (iv) CLpATXλTX
uses both protein-based feedback and growth-based feedback to co-
operatively inhibit transcription of the process gene (Supplementary
Fig. S24a) and (v) CLpATLλPF (PF := protein-free) uses both protein-
based feedback and growth-based feedback to co-operatively prevent
translation of the process gene by putting the sRNA gene directly on a
growth-sensitive promoter (Supplementary Fig. S24b). Models for all
five multi-input controllers are detailed in Supplementary Note 1.

Here, we present a discussion of systems (i–iii). We solved amulti-
objective optimisation problem to identify Pareto optimal designs and
found that the potential improvements gained from combining the
control inputs are counteracted by additional controller burden,
leading to only marginal improvements in performance versus CLλTL
(Fig. 8d–g). The three multi-input controllers perform very similarly
and obey similar primary qualitative design principles: maximise the
production of sRNA (largewC), minimise the ribosome binding rate of
the growth-sensitive protein pB2 (small bB2), and maximise the

strength of transcriptional control (small kB1 and kB2) (Supplementary
Fig. S25). The relationship between τ±10 and τ50 is the same as that for
CLλTL (Supplementary Fig. S10c, f). CLpATLλTX showed the best
robustness overall, with changes in P0, τ±10 and τ50 having the standard
deviations: 8.1% (20.0%), 16.9% (24.6%) and 6.8% (14.3%) (compared
with 15.3% (37.3%), 30.8% (38.7%) and 9.2% (24.0%) for CLλTL) when
parameters were randomly varied by up to ± 10% (± 25%) (Fig. 8h–j).
Further, only 8.8% (13.4%) of controllers failed to maintain τ±10 = τ90
(compared with 21.5% (28.2%) for CLλTL). Both CLpATXλTL and
CLpATLλTL also show significantly improved robustness compared
with CLλTL (Fig. S26).

Although CLpATXλTX enhances performance versus open-loop, it
performs worse than systems (i–iii) without providing a notable
improvement in robustness: changes in P0, τ±10 and τ50 have the
standard deviations 11.1% (28.1%), 19.1% (28.6%) and 4.2% (10.1%)
(Supplementary Fig. S24, navy). 80.6% of controllers retain τ±10 = τ90.
At the same initial output P0, this controller is more highly expressed
(larger ωA) with weaker control in the intra-circuit component and
stronger control in the growth-based component (larger kλ, larger kB1)
(Supplementary Fig. S27, navy). CLpATLλPF similarly enhances per-
formance versus open-loop, but not to the extent of systems (i–iii).
However, it does offer an improvement in robustness, with changes in
P0, τ±10 and τ50 having the standarddeviations 6.6% (16.7%), 3.4% (8.6%)
and 3.4% (8.6%), with 100% of designs retaining τ±10 = τ90 (Supple-
mentary Fig. S24, lime). However, this system requires a very high
growth-based control strength (large kλ) that may be difficult to
achieve in practice (Supplementsry Fig. S27, lime). A comprehensive
analysis of the robustness of all multi-input controllers is described in
Supplementary Note 3 (Supplementary Figs. S28 and S29 and Sup-
plementary Table S2).

Negative feedback control increases bioproduction
The design of our negative feedback controllers focused on the max-
imisation of three primary metrics: P0, τ±10 and τ50, with superior sys-
tems providing improvements in longevity compared with open-loop
systems of the same initial output P0. Such improvements are crucial
for applications where reliable performance over time is required,
such as logic gates or systems which sense and respond to environ-
mental changes. For bioproduction applications, maximising total
production is the primary objective. Noting that some of our con-
trollers exhibit a production/longevity trade-off, we set out to evaluate
the ability of the controllers to enhance bioproduction. We proposed
two new performance metrics which focus on quantify total protein
production from our simulations:Q, the cumulative output of protein
pA across the entire evolutionary simulation of repeated batch culture,
and Qmax, the maximum value of Q across all optimal designs. The
calculation of these metrics are defined in the Methods section
“Cumulative production”.

For every system, an increase in initial output P0 corresponds to
an increase in cumulative outputQ, except at very high initial outputs,
where the burden is significant enough to reduce total output even
where initial output increases (Fig. 9a–b). All controllers, bar CLpATX,
show improvements in production over open loop implementations.
This demonstrates that the despite the potential loss in initial output
that negative feedback control can create, the enhanced evolutionary
stability that control confers enables higher total output over time. In
some cases, CLpATX performs worse than open loop (Fig. 9c, blue).
CLpATL outperforms CLpATX with the potential to improve on the
open-loop cumulative output by up to twofold (Fig. 9c, red). CLλTL
shows an even greater improvement of up to threefold (Fig. 9c,
orange). This suggests that the sRNA-based controllers outperform
those based on transcription factors, and that growth-based control
outperforms intra-circuit control for this objective. The cumulative
outputs of the three multi-input controllers are very similar to each
other and very similar to CLλTL, suggesting that combining control

Article https://doi.org/10.1038/s41467-025-63627-4

Nature Communications |         (2025) 16:8590 11

www.nature.com/naturecommunications


inputs neither harms nor enhances the total cumulative production of
a system (Fig. 9b, d).

The maximum cumulative protein production, Qmax, for each
system is as follows: Open-loop, 1.42 × 1011 mc; CLpATX, 1.54 × 1011 mc;

CLpATL, 1.59 × 1011mc; CLλTL, 2.47 × 1011mc;CLpATXλTL, 3.13 × 1011mc;
CLpATLλTX, 2.46 × 1011 mc; CLpATLλTL, 2.44 × 1011 mc. Every controller
is capable of enhancing the maximum possible cumulative output,
even when Q has not been explicitly optimised for, with the best

Fig. 8 | Designing multi-input controllers. a–c Schematics of mechanistic multi-
input controllers: (a) CLpATXλTL (protein-based inhibition of transcription,
growth-based inhibition of translation, teal), (b) CLpATLλTX (protein-based inhi-
bition of translation, growth-based inhibition of transcription, crimson), (c)
CLpATLλTL (protein-based inhibition of translation, growth-based inhibition of
translation, purple). See key in Fig. 2a for symbolmeanings. d–iOptimised outputs
for three multi-input controllers compared with CLλTL. (d) τ±10 vs initial output P0,
(e) τ50 vs initial output P0, (f) %-change in τ±10over open-loopvs initial output P0, (g)
%-change in τ50 over open-loop vs initial output P0. h–j Robustness analysis for

CLpATLλTX. For each of the 100 optimal controllers with nB = 300 aa, 100 further
controllers were generated by varying parameters by up to ± 10% (dark grey) and
± 25% (light grey). The percentage changes in three outputmetrics were calculated
versus the original optimal systems: (h) P0, (i) τ±10 and (j) τ50. Plots show themeans
(for ± 10%) and standard deviations (for both ± 10% and ± 25%) of the percentage
changes for each optimal controller. Percentages marked on the plots indicate the
standard deviations across the entire Pareto front when parameters were varied by
± 10%(± 25%). Only original optimal controllers where τ±10 = τ90 are considered.
Simulation results are provided as a Source Data file.
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performing controllers having more than double the maximum
cumulative open-loop output. All together these results suggest that
the use of evolutionary stabilising negative feedback controllers has
the potential to improve yields in industrial bioproduction settings.

Discussion
Here, we presented designs for feedback controllers which act to
stabilise synthetic gene expression over evolutionary time. We devel-
oped a ‘host-aware’ and ‘mutation-aware’ multi-scale model of micro-
bial gene expression, growth and population dynamics, which
mechanistically captures both the interplay between circuits and their
host (successfully predicting the growth defect imparted by circuit
burden) and the interplay between ancestral cells and their low/non-
functional mutants (successfully capturing natural selection)30–34.
Within this model, we embedded mechanistic models of feedback
controllers, implementable as synthetic gene regulatory networks
(‘circuits’) and coupled these host-circuit-controllermodelswithmulti-
objective optimisations to identify designs which maximise circuit
production (P0),maintain the circuit performance close to its ancestral
level (τ±10) and maintain its presence in the population in the long-
term (τ50).

We showed that product-based ‘intra-circuit’ transcriptional
feedback,where a transcription factor is co-transcribedwith the circuit
gene and inhibits the expression of both proteins, can effectively
increase both short-term and long-term performance by increasing
τ±10 and τ50 compared with an open-loop system of equivalent output
P0. Our sensitivity analysis shows a larger design space for increasing
τ±10 than τ50, suggesting that maintaining performance in the short
term is likely easier to achieve in vivo. Our evolutionary simulations
show that this strategy acts to maintain protein production at the
cellular level in light of mutations in protein production rates. That is,
mutant strains with weaker promoters don’t have significantly impe-
ded protein outputs.We showed that implementing negative feedback
by a transcription factor is effective at nearly doubling τ±10 and τ50, but
that the additional burden of the controller can abolish any benefit of
control; when the regulating protein’s length is greater than the E. coli
average of 300 amino acids, the control scheme can perform worse
than open loop in many cases. We then proposed an alternative
mechanism for implementing negative feedback, where the process is
instead co-transcribed with an activatory transcription factor. This

regulator protein activates the expression of an sRNA which seques-
ters and silences the mRNA, completing the negative feedback loop.
This controller outperforms the transcriptional controller in both the
long and short term, with a more than twofold improvement in τ±10.
Further, this control strategy is less sensitive to controller size, as lar-
ger controllers remain capable of enhancing performance versus
open-loop. We propose two contributing factors towards this
improvement. First, the strong gain of the controller, which enables a
smaller quantity of regulator proteins to give rise to a stronger inhi-
bitory action. This is a result of the amplification step created by the
transcription of the sRNA, and is themore significant factor in the long
term. Second, the potential for mutations to affect the controller gene
and yield a small number of slower-growing mutant strains which
produce more than the ancestral strain. This factor more significantly
affects short-term performance, as the emergence of new mutants
makes up a more significant portion of ‘mutant spread’ early in the
time course, before out-competition becomes the predominant factor
as a result of growth rate differences. We find that, although designs
based on transcriptional feedback have worse optimal performance,
they are more robust to parametric uncertainty than those based on
sRNA-mediated post-transcriptional feedback, implying that such
designs will be easier to engineer in vivo. Our analysis demonstrates
that, while sRNA-mediated feedback gives superior performance, this
can only be achieved if the parameters can be precisely tuned
experimentally. In bacteria, such as E. coli, where metabolic and gene
expression resource consumption is dominated by translation, sRNA
can be created with little additional cost to the host, enabling a sig-
nificant negative feedback action for low cost. However, this advan-
tage may not translate to other organisms, such as mammalian cell
lines, where recent evidence suggests transcriptional limitations may
be significant40.

Given that growth rate is central in governing the evolutionary
longevity of a circuit, and is the key physiological metric impacted by
circuit expression, we proposed growth-based feedback as an alter-
native control strategy for enhancing evolutionary longevity. These
controllers inhibit circuit output at low growth. Our evolutionary
simulations show that this strategy acts to maintain growth rates in
light of mutation, and so mutants do not get the same selective
advantage as in the open-loop system. Biologically, these controllers
can be implemented using stress-sensitive promoters to drive

Fig. 9 | Investigating the cumulative outputQ.We consider an open-loop system
(black) and six controllers: (a, c) CLpATX (blue), CLpATL (red), CLλTX (orange).
b, d CLpATXλTL (teal), CLpATLλTX (crimson) and CLpATXλTL (purple).
a, b Cumulative output Q against initial output P0. c,d Percentage-change in Q

versus an open-loop system of equal initial output against initial output P0. Each
marker represents a controller design from the multi-objective optimisation of P0,
τ±10 and τ50. Simulation results are provided as a Source Data file.
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expression of a transcription factor39. We tested both transcriptional
control (where the transcription factor inhibits circuit expression) and
post-transcriptional control (where the transcription factor activates
an sRNA which silences the circuit mRNA). Both implementations are
capable of increasing τ±10 and τ50, but, as in the intra-circuit case, the
sRNA-mediated feedback mechanism enables greater performance.
Further, varying the size of the regulator protein shows that the tran-
scriptional mechanism is much more sensitive to regulator size (i.e.,
controller burden) than the sRNA-based scheme. The growth-based
controllers based on sRNA-mediated feedback achieve similar optimal
performance to the intra-circuit feedback in the short term (i.e., similar
maximal increases in τ±10), but significantly exceed it in the long term,
increasing τ50 by 50%. This suggests that growth-based control could
be the best strategy for engineering evolutionary longevity, particu-
larly if circuit persistence is of more importance than maintenance of
function within a narrow bound. However, our robustness analysis
finds that these controllers are much less robust, with some designs
falling significantly off the Pareto front. Since population-wide output
was the quantity we wanted to maintain over time, we also considered
controllers which sense production at the population level, which can
be implemented using quorum-sensing. However, these controllers
were unable to compete with intra-circuit and growth-based feedback
strategies.

To overcome the drawbacks of poor robustness of the growth-
based post-transcriptional feedback controller, we developed a num-
ber of multi-input controllers which take both protein production and
growth as inputs. Whilst our initial resource-free phenomenological
models shows such controllers should yield significant improvements
in longevity (when compared to single-input topologies), mechanistic
models showed that these are sensitive to resource consumption, with
additional controller burden abolishing most performance benefits.
However, incorporating the additional feedback reduced the sensi-
tivity of a system’s output to parametric uncertainty, allowing for
enhanced robustness and more reliable performance, without dimin-
ishing longevity. These multi-input controllers are therefore the most
promising options for in vivo implementation, as they combine the
high performance of the growth-based system with the increased
robustness that will simplify the selection of biological parts without
perfectly tuned parameter values.

Extending our analysis to evaluate the cumulative (total) protein
production of our systems over time, we showed that systems with
controllers always produce more protein that than open loop
(uncontrolled) systems. As we previously found, the best controllers
where those based on translational control and those which utilised a
growth-based input. Despite not optimising the controller designs to
maximise production, we showed that negative feedback could
improve total yield despite an initial loss in production per cell. Our
results show that increasing evolutionary stability via negative feed-
back is an attractive strategy for improving yields in industrial
bioproduction.

Here, we have conducted a comprehensive analysis of feedback
controllers when applied to a process consisting of a single gene over
repeated batch cultures. This approach replicates previous experi-
mental investigations of synthetic gene circuit evolution4,10,20. Con-
trolling the evolutionary stability of more complex gene circuits
represents a more significant challenge, as the dynamics of our nega-
tive feedback controllers and the complex processesmay interact. It is
common practice in control engineering to design a bespoke con-
troller for each individual process. Our controllers can be scaled to
stabilise gene expression in systems where gene expression levels are
desired to be approximately binary (such as logic gates, activation
cascades or induction systems), provided there are sufficient experi-
mental choices of inhibitory regulator (e.g., orthogonal transcription
factor proteins or sRNAs) - albeit with controller kinetics adjusted to
suit the new process. Whilst controller designs will need to be

optimised for the newprocesses,we expect our general design rules to
hold: that negative feedbackwill stabilise expression over evolutionary
time scales, that translation-based systems will offer superior perfor-
mance over transcription-based systems (and that the latter may in
fact reduce evolutionary stability) and that systems which seek to
control function at the population level will be less effective. The
choice of intra-circuit or growth-based feedback (and associated dif-
ferences in design robustness) remains an area for future work. Engi-
neering controllers to stabilise the evolutionary stability of circuits
with time-varying dynamics (such as oscillators) represents an addi-
tional challenge, given that the introduction of the new controller
dynamics may abolish the desired circuit behaviour41. Engineering
control systems to make such systems more robust and reduce the
interactions between host and circuit remains an open question.

Thepotential impactof synthetic biology is vast, with applications
expected to transform the fields of healthcare, chemical production,
agriculture and more over the next decade42. However, the utility of
complex gene circuit designs will be severely limited if they cannot be
employed predictably and stably over the timescales required for
industrial bioprocesses. It is therefore crucial for circuits to be
designed with evolution in mind. While various approaches have been
developed to date which improve the longevity of synthetic circuits
and pathways, these are often bespoke, rely on selectable markers, or
require complex redesign based on the specific process of interest.
Here, we have demonstrated that feedback control can be employed
effectively to improve evolutionary longevity, both in the short term
(i.e., maintaining function close to the designed level) and the long
term (i.e., persistingwithin apopulation over time). Our designs donot
rely on selectable markers (reducing the need for antibiotics at scale)
or on conferring a selective disadvantage to mutants (a promising
approach, but one which is vulnerable to loss of the toxic module or
loss of control of such a module). In this work, we account for con-
troller mutation during our analysis, and therefore our proposed
designs are themselves robust to evolutionary change. The proposed
approaches canbe easily applied todifferent systemswithout the need
for significant redesign, and can be incorporated alongside existing
approaches, contributing towards the ultimate goal of synthetic biol-
ogy applications that perform reliably in the long term.

Methods
Simulating an evolving population of engineered cells
Throughout this paper, we make use of an ODE model capturing the
dynamics of an evolving population of engineered cells. This model is
similar to one recently developed by Ingram and Stan34. The complete
circuit-host-population model is described in detail in Supplementary
Note 1, alongside complete models of all the control systems con-
sidered throughout the paper. Tables of variables and parameters are
given in Supplementary Tables S3‒S5. Mutation schemes are shown in
Supplementary Tables S6 and S7. Simulations are performed which
replicate repeated batch conditions. Every 24 h, a representative
sample of 1000 cells is selected from the combined population, and
the external substrate is reset to sX = 1012 molecules. Over the course of
each day, the substrate is consumed and the population grows until
the supply is exhausted and the population levels out. This aims to
replicate a typical laboratory-based study10. This is preferable to che-
mostat conditions because growth rates are not determined by the
chemostat dilution rate, which can cause additional problems if the
cells are overburdened and cannot achieve growth fast enough to
match it. The model is encoded in MATLAB and we used the inbuilt
ode15s function to perform the simulations.

Comparing controllers versus open-loop systems of
equal output
To evaluate the performance of a given controller parameterisation X
with initial output P0X

, we compared its long-term performance (τ ± 10X

Article https://doi.org/10.1038/s41467-025-63627-4

Nature Communications |         (2025) 16:8590 14

www.nature.com/naturecommunications


and τ50X
) against an open-loop system of equal initial output. To

achieve this, we first generated a large set of 5000 open-loop designs
by varying ωA over a wide range between 0.1 and 1000 mc min−1

(Fig. 2g). This yielded multi-valued relationships between output (P0)
and longevity (τ±10 and τ50), due to the existence of overburdened
systems;whenωA is pushed above a certain threshold, bothoutput and
longevity fall. To create a set with a single-valued relationship between
output and longevity,we removed theoverburdened systems.We then
used linear interpolation to find the open-loop relationship between
output and longevity for a systemwith an initial output P0X

. For figures
where we explicitly show the time-series outputs of different systems
with comparable initial outputs P0 (e.g., Fig. 3b), we first found the
Pareto fronts from a large set of designs which simultaneously max-
imised P0, τ±10 and τ50, then selected points from the fronts with P0 as
close as possible to a set value.

Multi-objective optimisation
Here we outline howwe generated optimal designs for the considered
controller topologies. For each topology, we first generated a large
number of samples using the efast algorithm43, by varying a large
number of parameters over wide biologically feasible ranges. By
examining the outputs from the sampling, we identified those para-
meters u which were most significant in determining P0, τ±10 and τ50
and used these to perform a multi-objective optimisation to simulta-
neously maximise these three objectives:

maximiseu P0, τ ± 10, τ50
� �

subject to L≤u≤U:
ð6Þ

Here, L andU represent the lower and upper bounds of the parameters
u. Separate optimisations were performed for each of the considered
control topologies, with each being repeated for different controller
protein lengths nB = 1, 300, 600 aa (where applicable). The parameters
optimised for each controller, and their biologically feasible upper/
lower bounds, are defined in Supplementary Table S8. A detailed dis-
cussion of the choices of boundary values is given in Supplementary
Note 1. To perform the optimisations, we used Matlab’s gamultiobj
genetic algorithm function, with population size 250, Pareto fraction
0.4 and tolerance 10−4, yielding Pareto fronts consisting of 100 indi-
viduals. The fixed and optimised controller parameters are reported in
Supplementary Table S8.

Robustness analysis
Outputs from optimisations yielded Pareto fronts of 100 individuals
and a set of optimal parameters u. From this set of individuals, we
removed any parameterisations with exceedingly poor short-term
performance (i.e., where τ±10 ≠ τ90). For the remaining individuals, we
generated 100 alternativeparameterisations by randomly varying each
parameter by up to ± X%, for X = 10, 25. For example, in the casewhere
X = 10, eachparameter varied in theoptimisationuiwas selected froma
uniform distribution with lower bound 0.9ui and upper bound 1.1ui,
yielding a window of ± 10% around the original values. In instances
where this would push a parameter beyond the upper or lower bounds
defined in the multi-objective optimisations, we set the value of the
parameter to be exactly the boundary value, to avoid searching a
portion of the design space that wasn’t available in the optimisations.
To evaluate the robustness of individual controllers, we compared
these random parameterisations against their original designs, con-
sidering the percentage change of five metrics:

1. P0, the initial population-wide output.
2. τ50, the time taken for population-wide output P to halve.
3. τ±10, the time taken for population-wide output P to fall outside a

window of ± 10% of its original value.

4. τ90, the time taken for population-wide output P to fall to 90% of
its original value.

5. Pmax, the maximum population-wide output P over the course of
the simulation.

Standard deviations of these percentages indicate the level of
variability in the function of a system at the topological level. In
addition, we evaluated the percentage of random designs which
showed a discrete change in the value of τ±10 due to it no longer
being equal to τ90. Throughout the main text, we focus our analysis
primarily on P0, τ±10 and τ50. A more detailed analysis covering τ90
and Pmax is provided in Supplementary Note 3. All means and stan-
dard deviations for all controllers are presented in Supplementary
Table S2.

Cumulative production
The translation rate TLA

of protein pA gives the rate of production of
output protein pA per cell. Integrating TLA

over the time course of the
simulation, therefore, gives the total production of pA per cell. We
define the cumulative output Q of a system to be the total production
of pA across an entire culture over the course of a simulation. For a
system composed of n mutation states, with population sizes Ni and
translation rates TLAi

, Q is defined as follows:

Q=
Xn
i= 1

Z tend

t =0
TLAi

Ni dt:

We define tend to be the point where output falls below 1% of its initial
value P0. We calculated the value ofQ for each controller design given
by themulti-objective optimisations. Across those optimal designs, we
designate the maximum value of Q as Qmax. To assess the ability of a
given controller architecture to improve total bioproduction, we
compared Qmax against the maximum cumulative production for an
open-loop system. Note that Qmax and QmaxOL

don’t necessarily
correspond to the same initial output P0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Optimisation results generated from this study and are available in the
Source Data file. Source data are provided in this paper.

Code availability
The code used to develop the model, perform the analyses and gen-
erate results in this study is publicly available andhasbeendpositite on
Github at https://github.com/apsduk/byrom-nat-commun-2025 under
a CC-BY 4.0 license. The specific version of the code associated with
this publication is archived in Zenodo and citable with https://doi.org/
10.5281/zenodo.1609416644.
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