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The intrinsic time tracker: temporal context
is embedded in entorhinal and hippocampal
functional connectivity patterns

Jingyi Wang 1, Arielle Tambini 2,3, Laura Pritschet1,4, Caitlin M. Taylor 1,
Emily G. Jacobs1 & Regina C. Lapate 1

Changes in task-evoked activity in the entorhinal cortex (EC) andhippocampus
have been shown to track changes in temporal context at short and long
timescales. However, whether spontaneous changes in EC and hippocampal
neural signals—in the absence of task demands—likewise reflect the passage of
time remains unknown. Here, we leveraged a dense-sampling study in which
two individuals underwent daily resting-state fMRI for 30days. Similarity in EC-
and anterior hippocampal-whole-brain resting connectivity patterns was
negatively correlated with the time interval between sessions, suggesting a
spontaneous, slow-drifting neural signature of time. These changes could not
be explained by other time-varying factors (including session-wise changes in
mood, hormones, or motion). Hippocampal connectivity temporal drifts fol-
lowed an anterior-to-posterior gradient, and anterolateral EC showed stronger
temporal drift than posteromedial EC. Finally, posterior networks (including
visual and defaultmode) primarily drove drifts in EC- and hippocampal-whole-
brain connectivity over time. Collectively, these findings reveal a resting-state
connectivity signature that reflects the passage of time in the absence of task
demands and follows a functional gradient along the longitudinal axis of the
hippocampus.

“Noman ever steps in the same river twice, for it’s not the same river and
he’s not the same man” - Heraclitus

In 500 B.C.E., Heraclitus captured humans’ elemental sense that
time flows continuously, with the world in a state of constant change.
How does the brain give rise to our experience of the flow of time?
Prior studies suggest that the dynamicsof time and temporal context—
including temporal intervals, event duration, and the temporal order
of events—are reflected in changes in neural activity patterns in the
hippocampus (HPC) and its primary source of cortical projections, the
entorhinal cortex (EC)1–14. For instance, intracranial recordings, cal-
cium imaging, and fMRI recordings in humans and rodents have shown
that larger temporal intervals between events are typically associated
with greater dissimilarity (i.e., distances) ofmultivariate neural activity

patterns in both the HPC13,15–29 and EC30,31. Critically, in the rodent HPC,
cell ensemble firing patterns gradually change over time even when
other features in the environment (e.g., spatial features) remain
unchanged16,17,19,27,32.

Prior studies indicate that these putative neural signatures of
temporal context extend beyond the length of a single experimental
session and are evident over timescales of days and months33. For
example, the similarity structure of neural activity patterns of time cell
ensembles in themouseHPC can be used to decode distinct recording
sessions over a four-day period27. In a naturalistic experiment, human
participants viewed pictures of self-relevant events spanning a one-
month period in theMRI scanner23. The objective time interval elapsed
between those events correlated with greater dissimilarity of
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multivariate neural activity patterns in the anterior HPC23. Further, a
recent dense-sampling fMRI study showed that the similarity of
stimulus-evoked multivariate neural activity patterns in the HPC and
EC tracked temporal contexts over a 10-month period34. Collectively,
these results lend credence to the rivermetaphor, indicating that both
theHPC and ECmay carry representations of time or temporal context
across long timescales when assessed in a stimulus-evoked fashion.
However, these findings raise an intriguing but largely unanswered
question: Do intrinsic, long-timescale fluctuations in HPC and EC sig-
nals spontaneously track or reflect thepassageof time—i.e., in task-free
contexts? In the current study, we used resting-state human fMRI data
to answer this question.

The HPC can be divided into anterior and posterior portions
(corresponding to ventral and dorsal HPC in rodents)35,36, which are
differentially connected to the EC37–39. Extant data suggest that tem-
poral context representations may be differentially supported by
anterior versus posterior HPC23 as well as by lateral versus medial
EC subregions31,40,41. Previous results suggest a prominent role for
anterior (vs. posterior)HPC in tracking temporal informationover long
timescales (e.g., over a day42 and a one-month period23). This is con-
sistent with prior work indicating that the anterior HPC (aHPC)
represents information with a relatively coarser coding scheme,
including in space (e.g., aHPC/ventral HPC receptive fields are larger
than those in posterior HPC (pHPC)/dorsal HPC)43,44, temporal recep-
tive windows (e.g., a slower temporal autocorrelation decay has been
noted in aHPC than pHPC)45–47, and in episodicmemory (e.g., ‘gist-like’
memory has been linked to aHPC function, whereas detailed auto-
biographical memories to pHPC)35,36,48,49. This putative functional gra-
dient in coding schemealong the longitudinal axis of theHPCmay also
extend to coding of temporal context50. Specifically, using a time
interval estimation task, Polti and colleagues found higher aHPC
activity in trials with time estimates towards the mean of recently-
sampled temporal intervals, whereas pHPC activity more closely
reflected the time interval of the current trial, suggesting that aHPC
signals incorporated longer timescales than signals in pHPC51. Across a
number of studies examining temporalmemory in naturalistic settings
—with varied task manipulations including virtual environment
navigation21, screenshots from life simulation computer games52, and
complex narratives presented in audio clips30—only the aHPC (not
pHPC) tracked subjectively-remembered time. Relatedly, evidence for
task-evoked temporal context representations has typically been
stronger in the human anterolateral division of EC (alEC, analogous to
the lateral division in rodents) than in the posteromedial division
(pmEC, analogous to the medial division in rodents)10,31,33,40,41,53. Col-
lectively, these results obtained in task contexts suggest that coding of
temporal contexts at longer timescales may be differentially sup-
ported across distinct regions of the HPC (i.e, in aHPC versus
pHPC) and EC (in alEC versuspmEC). However,whether the strength of
spontaneous time-varying representations in humans varies system-
atically between EC subregions or along the HPC longitudinal axis—
putatively reflecting an anterior-posterior gradient of temporal con-
text coding—has not been previously tested.

Previous tracing37–39,54 and functional connectivity studies55–57

indicate that EC and HPC subregions also show differential inter-
regional and cortical connectivity profiles. For instance, the aHPC and
medial EC exhibit preferential connectivity with the default mode
network (DMN), whereas the pHPC and lateral EC are strongly con-
nected with the ventral attention network (VAN/salience
network)53,55–58. Given previous findings relating EC and HPC function
to temporal-context-relevant representations5,33, it is possible that
their system-level interactions may also be sensitive to the passage
of time.

Here, we investigated whether multivariate EC and HPC signals
intrinsically reflect the passage of time in humans in a task-free context
(i.e., during rest) over a relatively long timescale of 30days. In addition,

we tested whether the magnitude of time-dependent changes sys-
tematically varied along the HPC longitudinal axis or differed between
EC subregions. To do so,we leveraged adense sampling study inwhich
two participants underwent repeated resting-state fMRI scans at fixed
times eachday for 30 consecutive days (Fig. 1)59–62. Going beyond intra-
regional metrics, we took the approach of examining HPC and EC low-
frequency (LF) fluctuations in the BOLD signal as reflected by changes
in HPC- and EC-whole-brain resting state functional connectivity
(henceforth, resting connectivity) patterns. Large-scale whole-brain
connectivity pattern changes have been previously shown to track
slow changes in emotion63 and other behavioral states64–67. Thus, using
this approach, we tested whether spontaneous changes in EC- and
HPC-whole-brain resting connectivity patterns tracked the objective
passage of time over a month in a task-free, resting state.

We hypothesized that the similarity of EC- and HPC-whole-brain
resting connectivity patterns between sessions would negatively cor-
relate with objectively elapsed time between sessions4,6,9,33. We further
hypothesized that the strength of time-related changes in HPC would
systematically vary along the longitudinal axis, with stronger tem-
poral drifts in anterior than posterior HPC over a one-month period.
Moreover, we predicted that time-related drifts would be particularly
reliable in alEC compared to pmEC. We controlled for several poten-
tially confounding time-varying factors, including inter-session fluc-
tuations in mood, motion, and hormones. To foreshadow, we found
that changes in intrinsic EC- and HPC-whole-brain resting connectivity
patterns reflected the passage of time in a task-free context in humans,
with the strength of hippocampal time-related drifts varying system-
atically along the longitudinal axis of the human HPC.

Results
EC- and HPC-whole-brain resting connectivity patterns reflect
elapsed time
Given that HPC and EC signals have been found to track temporal
information in structured, task-dependent contexts1–5,8,9, we investi-
gated whether their large-scale resting connectivity patterns system-
atically drift with elapsed time. To examine whether elapsed time was
reflected in the similarity of large-scale resting connectivity patterns,
we first obtained patterns of whole-brain resting functional con-
nectivity for each session using EC and HPC (including aHPC and
pHPC) as seed regions of interest (ROIs). Next, we computed the pat-
tern similarity between each pair of sessions for each ROI. This allowed
us to calculate a ‘temporal drift score’, or the correlation between
pattern similarity and time interval across session pairs (Fig. 1C–E, see
Methods for details). Asmentioned, we hypothesized that whole-brain
resting connectivity pattern of both ROIs would become less similar
(i.e., negatively correlate) with the time elapsed between sessions4,6,9,33.

Accordingly, EC- and HPC-whole-brain resting pattern similarities
correlated negatively with the time interval elapsed between session
pairs for both female (EC: r = −0.206, p < 0.001; HPC: r = −0.187,
p <0.001) and male (EC: r = −0.217, p <0.001; HPC: r = −0.146,
p <0.001) subjects (all nonparametric p-values were derived from a
null distribution obtained by shuffling time interval labels for session
pairs (n = 5000 shuffles); Fig. 2, Supplementary Table 1). Of note,
aHPC-whole-brain resting connectivity patterns showed stronger
temporal drift (as indexedbyamorenegative drift score) thanpHPC in
both subjects (Female aHPC: r = −0.180, p <0.001 vs. pHPC: r = −0.142,
p =0.002; Male aHPC: r = −0.153, p <0.001 vs. pHPC: r = −0.123,
p <0.001), suggesting a possible functional differentiation of temporal
context coding along the longitudinal axis of the HPC (see section
below). As expected, the similarity of EC-HPC resting connectivity
patterns also decreased over time (Supplementary Results). Collec-
tively, these results indicate that EC- and HPC-whole-brain resting
connectivity patterns become increasingly dissimilar with longer time
intervals, suggesting that large-scale EC and HPC signals in humans
intrinsically reflect the passage of time.
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Time-related changes in HPC-whole-brain connectivity patterns
show an anterior-to-posterior gradient
Given previous evidence suggesting that the aHPC may play a more
prominent role than pHPC in tracking time at long timescales in
humans23,35,36,50, we hypothesized that the magnitude of time-related
changes in hippocampal connectivity patterns would vary system-
atically along the longitudinal axis of the HPC. To quantify time-
dependent associations along the longitudinal axis of the HPC and
examine whether the strength of the association between the simi-
larity of HPC-whole-brain resting connectivity patterns and time
varied along the longitudinal axis, we computed temporal drift
scores along the HPC on a voxel-wise basis. We found that the aHPC
showed numerically stronger time-related resting connectivity pat-
tern drifts than pHPC (Fig. 3A, D), as indexed by a more negative
correlation coefficient in aHPC voxels than pHPC voxels for both
subjects (Fig. 3B, E). Next, we investigated whether there was a linear
association between themagnitude of time-dependent drifts and the
longitudinal HPC axis by correlating hippocampal voxel-
wise temporal drift scores with their y-axis coordinate (see Methods
for details). We found that temporal drift scores were negatively
correlated with the anterior-posterior hippocampal position (y-axis
coordinates) (Female: Pearson’s correlation r = −0.099; p = 0.01,
Male: r = −0.160; p < 0.001, Supplementary Fig. 1), indicating
that they systematically varied along the anterior-to-posterior axis,
in a robust association that was significantly above chance (non-
parametric permutation test (y-axis coordinate shuffle; n = 5000):
Female: p = 0.004, Male: p < 0.001, Fig. 3C, F). Collectively, these
results indicate that the strength of time-related changes in HPC-
whole-brain resting connectivity patterns varies systematically along
the hippocampal longitudinal axis.

Stronger time-correlated changes in alEC than pmEC resting
connectivity patterns
EC is a complex structure that can be subdivided into the alEC and
pmEC, which are associated with functionally distinct cortical
networks55,58 and have been differentially linked to temporal
coding40,41. Here, we found that only alEC-whole-brain resting pattern
similarity reliably correlated with the time interval elapsed between
session pairs (Female: r = −0.218, p <0.001; Male: −0.179, p < 0.001),
whereas the pmEC did not show a consistent association across sub-
jects (only in theMale subject: r = −0.111, p = 0.001; Female: r = −0.034,
p =0.478; Fig. 4 A & D, Supplementary Table 1). Importantly, temporal
drift scores were significantly more negative in alEC compared to
pmEC in both subjects (Female: z = −3.138, p =0.001; Male:
z = −1.802, p =0.036).

To further examine potential functional differences in tem-
poral tracking between the alEC and pmEC, we calculated voxel-
wise temporal drift scores and averaged them per subregion. We
found that the averaged time-related drift in alEC-whole-brain
resting state functional connectivity was consistently stronger
than that of the pmEC, as shown by numerically more negative
temporal drift scores in the alEC across both subjects (Fig. 4B, C
and E, F). Collectively, these findings indicate that spontaneous
changes in alEC-whole-brain connectivity correlate with objective
time changes.

Comparing the strength of time-related drifts in EC and HPC
versus control regions
Next, we tested whether time-related drifts in whole-brain resting
connectivity patterns are generally present when using other regions
as seeds, versuswhether they are statistically stronger in EC- and aHPC-

Fig. 1 | Experimental procedure and calculation of temporal drift scores.
Sampling rate and study timeline are shown over a 30-day period for the two
participants (A:Female,B:Male). In each session, a resting-state scanwas collected.
Hormone sampling preceded each scan. Method for calculating temporal drift
scores. C For each ROI (region of interest, here, the seed region), the resting-state
functional connectivity pattern for each session was computed (i.e., the correlation

between the seed ROI time series and each gray matter voxel across the whole
brain). Then, D the similarity between resting connectivity patterns was measured
for all pairs of sessions (e.g., Z1-2 corresponds to the similarity (Fisher’s
Z-transformed correlation) betweensessions 1 and2).E For eachROI,weobtaineda
temporal drift score (correlation coefficient), which reflects the association
between resting-state pattern similarity and the time interval between sessions.
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resting connectivity patterns compared to other regions. To that end,
we compared the strength of their timecorrelation against two control
regions: the primary motor cortex (M1) and the perirhinal cortex
(PRC). M1 was tested as a control site because contextual representa-
tions that track elapsed time are not known to be reliably present in
this region68,69. The PRC was chosen due to its spatial and anatomical
proximity to our other a-priori medial temporal lobe (MTL) ROIs and
its established role inprimarily coding for item-centered (vs. temporal-
context) information in the service of memory, including object-
related and semantic information18,34.

We found that temporal drift scores in the EC—particularly alEC—
and in the aHPC were stronger than in both control ROIs (i.e., sig-
nificantly more negative; test of the difference between dependent
correlation coefficients: Female EC vs. control ROIs ps <0.016; Female
aHPC vs. control ROIs ps <0.043; Male EC vs. control ROIs ps< 0.004;
Male aHPC vs. control ROIs ps <0.05, Female alEC vs. control ROIs

ps <0.006; Male alEC vs. control ROIs ps <0.027; Supplementary
Table 1). Of note, this was not the case for the whole HPC (which
showed significantly stronger drifts than the control ROIs in the
Female subject only), pHPC, or pmEC ROIs (which did not differ sig-
nificantly from control ROIs in either subject). In sum, these results
suggest regional specificity in the strength of time-related EC- and
aHPC-whole-brain resting connectivity changes.

Controlling for time-varying factors
To ascertain process specificity of the association between changes in
neural activity patterns and temporal context, it is important to isolate
intrinsic time from other time-varying factors. While our current
design allowed us to hold constant a number of potentially con-
founding experimental factors across the 30-day period—such as
spatial location, equipment, and experimenter—other time-varying
factors may still influence resting connectivity patterns, including, for

Fig. 2 | EC- and HPC-whole-brain resting connectivity patterns drift over time.
The similarity of EC- and HPC-whole-brain resting connectivity patterns decreases
(i.e., negatively correlates) with the time interval elapsed between MRI sessions in
both subjects. A EC and HPC, B aHPC and pHPC, and C control sites: M1 and PRC.
Left panels: female subject, right panels: male subject. Temporal drift scores
(Pearson’s r values) are shown on the top right in each figure. All p values are

derived from a null distribution by shuffling time interval labels for session pairs
(n = 5000 shuffles). *pvs. chance ≤ 0.05; **pvs. chance ≤ 0.005; ***pvs. chance ≤ 0.001. EC
entorhinal cortex,HPChippocampus, aHPCanterior hippocampus, pHPCposterior
hippocampus,M1 primarymotor cortex, PRCperirhinal cortex. Shaded ribbon: 95%
confidence interval (CI).
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instance, head motion differences70,71, emotional state changes72, and
hormonalfluctuations59,73. Therefore, to control for these factors in our
study, we extended the regressionmodel used to derive temporal drift
scores into amultiple regression analysis framework, which allowed us
to control for multiple variables (covariates). These covariates inclu-
ded motion, emotional state changes, as well as hormone fluctuations
(Female: estradiol, progesterone, LH and FSH, Male: estradiol, testos-
terone, cortisol) (see Methods for details). We found that the time
interval between sessions significantly predicted the similarity of EC
and aHPC resting connectivity patterns after controlling for changes in
motion, emotion, and hormones in both participants (Female: EC:
B = −0.004 (SE =0.001), t = −4.037, p <0.001; aHPC: B = −0.005 (SE =
0.001), t = −3.813, p < 0.001; Male: EC: B = −0.016 (SE = 0.003),
t = −4.820, p < 0.001; aHPC: B = −0.008 (SE = 0.003), t = −2.687,
p =0.008) (Supplementary Fig. 2). Conversely, after controlling for
these factors, the similarity of whole-brain resting patterns in the
control ROIs no longer correlated with the time interval between ses-
sions (Female: M1: B = −0.0003 (SE =0.001), t =0.313, p =0.754; PRC:
B = −0.004 (SE =0.001), t = −0.446, p = 0.656; Male: M1: B = 0.0002
(SE =0.002), t =0.09, p =0.928; PRC: B = −0.001 (SE = 0.002),
t = −0.411, p =0.681). Instead, hormonalfluctuations remained the only
significant predictor inbothmultiple regressionmodels for the control
ROIs (Supplementary Fig. 3), consistent with prior findings showing
the robust influenceof hormonal changes on resting-state connectivity
throughout the brain59,61. Collectively, these results indicate that
changes in EC- and aHPC-whole-brain resting functional connectivity
patterns correlate with the passage of time beyond changes in neural
similarity driven by other time-varying factors.

EC and aHPC time-related pattern changes were driven by spe-
cific cortical networks
Priorwork indicates that theDMNregions that are anatomically closest
to the MTL are involved in spatiotemporal processes that support
episodic memory74. This portion of the DMN—comprising the MTL
cortex, retrosplenial cortex, posterior cingulate cortex, and the pos-
terior portion of the inferior parietal cortex—is often termed the
‘posterior-medial network’75,76, and corresponds to the DMN-C (also
referred to as the DMN-medial temporal lobe subsystem (DMN-MTL)77

or DMN-A57,58,78–80) of awidely used networkparcellation (Yeo-17)74,81–83.
In addition, task-evoked representational activity patterns in the visual
cortex have been found to relate to coding of temporal context84,
suggesting that time-dependent connectivity pattern changes in the
EC and aHPC may be particularly pronounced when examining inter-
actions with the default mode and visual networks. Of note, EC and
aHPC temporal drift scores showed substantial variance across the 17-
Yeo networks83 (non-parametric Kruskal-Wallis test (n = 5000 permu-
tations) aHPC: H = 22.901, p =0.029 and EC: H = 19.311, p =0.088) (see
Methods for details). Therefore, we next explored whether time-
related drifts in EC and aHPC resting connectivity patterns were driven
by specific large-scale cortical networks. We compared the putative
contributions of large-scale cortical networks relative to the somato-
motor network, an a priori control network inwhich we did not expect
to find time-varying representations68,69.

We found that EC time-related connectivity pattern changes were
primarily driven by the DMN-C (Female: r = −0.206, pFDR<0.001; Male:
r = −0.252, pFDR<0.001) and DMN-D (also known as the temporal-
parietal network85–87 or the auditory/language network88; Female:

Fig. 3 | A gradient of strength of temporal drifting along the hippocampal
longitudinal axis.Temporal drift scores are shown for each voxel in theHPCof the
female (A) andmale (D) subjects. Temporal drift scores for aHPC and pHPC voxels
are shown, indicating a more negative association with time in aHPC than pHPC in
both female (B) and male (E) subjects. Non-parametric permutation tests show the

above-chance associations between HPC temporal drift scores and the HPC y-axis
coordinates for the female (C) andmale (F) subject. The blue vertical lines show the
correlation between voxel-wise temporal drift scores and the HPC y-axis coordi-
nates, which were significantly above chance for both subjects (n = 5000
permutations).
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r = −0.175, pFDR=0.002; Male: r = −0.193, pFDR <0.001) as well as the
dorsal attention network A (DA-A) (Female: r = −0.238, pFDR < 0.001;
Male r = −0.275, pFDR <0.001) and ventral attention network A (VAN-A)
(Female: r = −0.188, pFDR < 0.001;Male r = −0.173, pFDR < 0.001, Fig. 5A).
These networks showed reliable temporal drifts, which were sig-
nificantly stronger than the somatomotor network in both subjects (ps
≤ 0.05; Fig. 5C, See Supplementary Tables 3). Similarly, aHPC time-
related connectivity patternchangesweredrivenprimarilyby theVAN-
A (Female: r = −0.253, pFDR <0.001; Male: r = -0.223, pFDR<0.001) and
the visual network (Visual-A) (Female: r = −0.245, pFDR<0.001; Male:
r = −0.290, pFDR <0.001, Fig. 5B), where temporal drift scores were
reliable (and significantly stronger than in the somatomotor network)
in both subjects (ps ≤ 0.043; Fig. 5D, See Supplementary Tables 4). Of
note, these results were largely replicated when using an individua-
lized network parcellation method89,90 (for details, see Supplementary
Results: Individualized network parcellation analysis).

Discussion
Extant work has shown that signals in the EC and HPC reflect changes
in temporal context across species and a variety of task
demands1,3–6,8,9,33. Here, we investigated whether intrinsic fluctuations
in EC- and HPC-whole-brain functional connectivity patterns reflect
the passage of time in the absence of task demands. Using a dense-
sampling study, we found that both EC- and HPC-whole-brain resting
connectivity patterns became increasingly dissimilar with longer
time intervals across a 30-day period. Moreover, time-related chan-
ges in the HPC showed a functional gradient along the longitudinal
axis, wherein aHPC was characterized by stronger time-dependent
drifts compared to pHPC. Likewise, time-related drifts were stronger
in alEC than pmEC. Critically, time-related changes in whole-brain
connectivity patterns were significantly stronger in the EC and aHPC
when compared with control regions (motor cortex and nearby MTL
cortex), and remained significant after controlling for time-varying
factors that fluctuated over the 30-day period, such as hormonal and
emotional-state changes. Finally, we found that time-related drifts in

EC and HPC connectivity patterns were not uniform across the brain,
but primarily driven by functional connectivity with specific cortical
networks (including default mode and visual networks). Collectively,
these data suggest that EC- and aHPC-whole-brain resting functional
connectivity patterns spontaneously reflect the passage of time in
humans.

EC- and aHPC-whole-brain connectivity patterns reflect the
passage of time
A recent surge of empirical work across species has consistently
implicated EC and HPC function in temporal context and temporal
memory coding1,3–6,8,9,33,91. Specifically, the similarity of multivariate
neural activity patterns in EC and HPC evoked by stimuli such as
images, audio clips, or objects in a virtual environment progressively
decreases for stimuli presented further apart in time12,18,21,23,24,28,30,31, in
agreement with the time-related changes in the similarity of global EC
andHPC resting connectivity patterns observedhere. Of note, changes
in multivariate pattern similarity in these regions have been shown to
correlate not only with ‘objective’ variations in time or temporal con-
text at encoding, but also with subjectively remembered temporal
intervals and durations30,92–94, suggesting that time-related changes in
neural pattern similarity may sculpt temporal memory.

Going beyond task- or stimulus-evoked neural activity patterns,
our study examined low-frequency fluctuations in resting state BOLD
fMRI signals to uncover a novel, spontaneous temporal neural sig-
nature in EC and aHPC operating at a relatively long timescale (30
days). Large-scale functional-connectivity patterns have previously
been shown to track mental states63–66,95, with the specific nature of
mental states that is captured varying as a function of which brain
region is used to derive functional connectivity patterns (e.g., amyg-
dala vs. visual cortex). For instance, changes in amygdala-whole-brain
functional connectivity patterns have been shown to track emotional
states63, whereas visual cortical connectivity differences predict
attentional states during visual processing65,95. As HPC and EC play
crucial roles in temporal coding and memory, we reasoned that

Fig. 4 | Temporal drift strength differs between EC subregions. A, D In both
subjects, the similarity of alEC-whole-brain resting connectivity patterns decreases
with time interval elapsed between sessions, an association not as reliable (across
both subjects) in pmEC. Voxel-wise temporal drift scores in EC for the female (B)

andmale (E) subjects. Averaged temporal drift scores across alEC andpmECvoxels,
demonstrating a stronger negative associationwith time inalECcompared topmEC
for both female (C) and male (F) subjects. Shaded ribbon in (A, D): 95% CI.
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changes in HPC- and EC-whole-brain connectivity patterns may track
or reflect changes in temporal context.

Accordingly, we found that the gradual drift of HPC- and EC-
whole-brain functional connectivity patterns correlated with time
elapsed over a 30-day period in experiments devoid of a task, i.e., in
spontaneous activity during rest. Importantly, the negative association
between elapsed time and whole-brain EC and aHPC connectivity
pattern similarity remained significant after controlling for time-

varying factors known to influence the BOLD signal at rest, including
emotion dynamics72, hormonal fluctuations59, and differences in head
motion70,71. Of note, severalother potentially confounding factorswere
kept constant across the 30-day period in our study, including spatial
location, experimenter, and scanning procedures. Collectively, these
findings suggest that changes in the similarity of EC- and aHPC-whole-
brain functional connectivity patterns spontaneously reflect the pas-
sage of time. Moving forward, it will be important to determine

Fig. 5 | EC and aHPC time-dependent pattern changes were driven by specific
networks. A,B The Yeo-17 networks are shown on a surface template (color-coded
by network). The primary networks that drove time-related resting connectivity
pattern changes in the A EC and B aHPC are highlighted. Bar plots show temporal
drift scores for C EC and Yeo-17 large-scale networks (Female: left, Male: right) and

D aHPC and Yeo-17 large-scale networks (Female: left, Male: right). *Denotes sig-
nificantly different temporal drift scores compared to the control somatomotor
network in each subject. DMN default mode network, dorsal attention network
(DA), ventral attention network (VAN), somatomotor network (SMotor).
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whether time-related changes observed in EC- and HPC-whole-brain
connectivity patterns serve a functional role in episodic memory,
putatively providing ‘time stamps’ that may bind to (and be subse-
quently accessed with) specific experiences34,96.

Functional gradient of time-related connectivity pattern chan-
ges along the hippocampal longitudinal axis
Our finding that aHPC-whole-brain resting connectivity patterns
showed stronger time-dependent drifts compared to pHPC aligns with
prior human work, which hasmore often uncovered temporal context
coding in aHPC than in pHPC21,23,28,30,52,97. For example, searchlight
analyses have more often identified clusters of voxels within the aHPC
(pHPC) that track or represent time intervals, conjunctive spatio-
temporal information, and the temporal structure of event
sequences21,28,52,97. Similarly, in response to images shown twice over a
28-day interval, neural activity patterns in the aHPC showed reduced
similarity compared to when images were repeated over a shorter
interval, with no such changes observed in the pHPC98,99. In a study
examining changes in task-evoked hippocampal activity patterns over
a similar time scale as our current study, Nielson and colleagues (2015)
found that larger temporal distances between specific auto-
biographical memories were associated with increasingly dissimilar
neural activity patterns in the aHPC (but not pHPC) over a one-month
period. Moreover, a relatively more rapid decline in the rate of tem-
poral autocorrelation has been noted in the pHPC (vs. aHPC), sug-
gesting that its neural activity patterns may more quickly revert to
previous states, potentially limiting systematic time-correlated drift
over extended time periods46,47. Collectively, these studies converge to
suggest the aHPC may be sensitive to changes in time (or temporal
contexts) over long timescales in humans—to a greater extent than the
pHPC. Our finding that the strength of time-related drift in HPC signals
covaried linearly with the position along the HPC longitudinal axis
provides additional evidence for a potential anterior-to-posterior
functional gradient of time coding in the HPC.

Time-related whole-brain connectivity pattern changes are
stronger in alEC than pmEC
Recent electrophysiological studies in rodents10,41 and fMRI studies in
humans31,40 indicate that the alEC reliably tracks temporal context,
whereas the pmEC does so less consistently. For instance, neurons in
the rat lateral EC robustly encode temporal information across time-
scales from seconds to hours, a phenomenon less pronounced in the
medial EC41. Similarly, increased BOLD activity in the human alEC—but
not in pmEC—was associated with greater accuracy in retrieving tem-
poral information about when an event occurred40. In line with these
findings, we found that alEC-whole-brain resting connectivity patterns
exhibited a stronger and more reliable temporal drift across subjects
compared to pmEC, suggesting that spontaneous changes in alEC-
whole-brain connectivity patterns may reflect the passage of time.

Posterior networks drive time-related EC and aHPC neural drifts
Here, we found that time-dependent changes in the similarity of EC-
and aHPC- connectivity patterns were driven by specific cortical net-
works. Specifically, the resting connectivity between EC and the DMN-
C showed particularly strong time-dependent changes, which may be
related to this network’s role in representing contextual features that
are critical for mnemonic processes. Stronger co-activation of DMN-C
nodes has been found during the retrieval of memory details as well as
episodic memory construction77,100–102. Moreover, the strength of
interconnectivity between DMN-C nodes has been implicated in epi-
sodic memory quality. For instance, the strength of resting functional
connectivity between DMN-C nodes has been found to positively
correlate with the ability to recall spatiotemporal event information103,
and the integrity of the cingulumbundle that links nodes ofDMN-Chas
been found to positively correlate with the number of event element

details (e.g., spatiotemporal context) during free-recall104. Given that
the EC is part of the DMN-C83, time-dependent EC-DMN-C resting
connectivity pattern drifts may contribute to representing temporal
context information that can be incorporated into episodic memory
processes.

The visual network also contributed to time-related changes in EC
and aHPC global resting connectivity patterns in our study. Multi-
session calcium imaging in rodents and fMRI studies in humans have
uncovered neural activity drifts at the population level in response to
identical visual stimuli shown over a multi-week period105–107. More-
over, a recent human fMRI study showed that neural activity patterns
in lateral occipital cortex are sensitive to temporal context changes at
encoding, suggesting that the visual system may encode temporal
information84, and that temporal-context relevant signals that can be
integrated into memory may be available at early stages of sensory
encoding.

Finally, we found evidence that time-dependent changes in the
connectivity of the EC with the DA-A and DMN-D networks, as well as
between the aHPC and the VAN-A network, contributed to large-scale
time-related drifts uncovered in our study. Previous studies under-
score the role of the VAN and DA networks in allocating limited
attentional resources toward mnemonic processes108–113. During
memory tasks, the functional coupling between HPC and VAN is
enhanced114,115, which in turn relates to mnemonic quality116. Moreover,
the DA-A, VAN-A, and DMN-D include a large portion of the temporo-
parietal junction (TPJ), which has been shown to be involved in con-
textual updating117 and representing mental states82. Recent research
suggests that the DMN and DA networks juxtapose near the TPJ—and
that these networks serve as a hub for EC and HPC communication
with other large-scale networks80. While speculative, it is possible that
changes in the resting connectivity patterns of these networks may
reflect changes in attentional shifts toward (or updating of) MTL
contextual representations for memory.

Beyond cortical–MTL interactions: global temporal drifts
Of note, while our results indicated a reasonable degree of regional
specificity in the strength of the association between the passage of
time and changes in EC- and aHPC-whole-brain resting connectivity
patterns, we also found weak (but statistically significant) time-
correlated drifts in our control ROIs (M1 and PRC). Current theore-
tical frameworks suggest that experience-driven and spontaneous
synaptic plasticity may contribute to some degree of temporal drift
over time96,118,119. Indeed, post-task resting state functional connectivity
has been shown to strengthen in EC and HPC with memory
consolidation120–122 as well as in M1 after motor learning123,124, suggest-
ing that experience-dependent consolidation may drive system
reconfiguration at rest. Relatedly, spontaneous and learning-
associated changes in synaptic strength, spine density, and spine for-
mation have been observed in both the EC and HPC125–128 as well as in
our control ROIs (PRC and M1)129–133. Given its known link to BOLD
signal changes134, synaptic plasticity may serve as the neurobiological
substrate underlying the whole-brain functional connectivity changes
observed in our study. While these studies underscore the ubiquity of
dynamic changes throughout the brain, it is important to note that
time-related changes in whole-brain connectivity patterns were sig-
nificantly stronger in the EC and aHPC compared with our control
regions (PRC and M1), whose functional connectivity drifts were
instead better explained by other, time-correlated factors (here, hor-
monal changes) rather than the passage of time per se. Of note, neural
excitability changes over time may also partially underlie the time-
related changes in HPC- and EC-whole-brain resting connectivity that
we observed in this study. Functional imaging107 and cellular
recording17,27,105,106 studies examining long-termneural activity changes
have revealed temporal drifts in local multivariate activation patterns
over the course of weeks to months, even in the absence of explicit
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task demands16,19. Determining whether regional differences in neu-
ronal excitability and activity changes over time may contribute to
stronger time-correlated drifts observed in EC and HPC resting con-
nectivity patterns (compared to control regions) requires additional
future investigation.

Limitations and future directions
Our study used a dense-sampling approach whereby we examined
n = 2 subjects (one Male and one Female) over a 30-day period to test
whether time-related drifts occur in HPC- and EC-whole-brain func-
tional connectivity patterns in the absence of task demands. Dense-
sampling approaches have been recently advocated as a path forward
to circumvent fMRI reliability issues that plague studies with modest
sample sizes59,135–137. By increasing the number ofmeasurements within
subjects, dense sampling increases signal-to-noise ratio and statistical
power to detect small effects sizes59,135–137. Dense sampling approaches
also increase spatial precision in neuroimaging137, which is especially
important for brain regions known to have large cross-subjects
variability138. Nonetheless, a tradeoff of this approach, compared to
population-level effects, is generalizability to new subjects. Therefore,
while all findings reported here were characterized independently in
both a male and a female subject, future studies with larger sample
sizes will be important to establish the generalizability of our findings
to more diverse samples. In addition, it remains unclear whether and
how the intrinsic resting connectivity metrics we examined relate to
changes in stimulus-evoked neural activity patterns previously shown
to vary with time91. Therefore, future work simultaneously examining
time-related neural drifts in resting and task-basedmetrics in the same
subjects—ideally with measurements of temporal memory—will be
required to fully uncover the functional implications of the results
uncovered here.

In conclusion, our study reveals a spontaneous neural signature
that reflects the passage of time in humans in the absence of task
demands, which may serve to provide temporal stamps for episodic
memory processes.

Methods
Participants
Two healthy, right-handed adults (1 Female, 23 years; 1 Male, 26 years)
with normal or corrected-to-normal vision participated. Both partici-
pants provided consent, and the study was approved by the University
of California, Santa Barbara Human Subjects Committee59,61.

Experimental procedure
As previously described59,61,62, the female subject underwent one ses-
sion per day for 30 consecutive days with each session starting at 11:00
am. Themale subject also underwent repeated testing for 30 days with
the first 10 days consisting of testing at 7:00 am each day, the second
10 days consisting of testing at 7:00 amand 8:00 pm each day, and the
final third 10 days consisting of testing at 8:00pm each day (Fig. 1A).
Serum and salivary assessments of hormones (Female: estradiol, pro-
gesterone, luteinizing hormone (LH) and follicle stimulating hormone
(FSH), Male: estradiol, testosterone, cortisol) and questionnaires
(Perceived Stress Scale, State-Trait Anxiety Inventory for Adults, and
Profile of Mood States) were sampled at the start of each session. Of
note, hormone samples from the female subject were collected with
blood. In the male subject, the participant underwent one blood draw
per day on days 11-20, whereas both saliva and blood sample for the
hormone test were collected on days 1-10 and 21-30.

fMRI acquisition
MRI scans were performedwith a Siemens 3T Prisma scanner. For each
session, participants completed a resting state fMRI scan with their
eyes open (Female: 10minutes,Male: 15minutes, repetition time [TR] =
720ms; echo time [TE] = 37ms; 2.0-mm isotropic voxels, multiband

factor = 8), a T1-weighted structural scan (TR = 2500ms, TE = 2.31ms,
T1 = 934ms, 0.8mm thickness) and a T2-weighted hippocampal scan
that was acquired with an oblique coronal orientation positioned
orthogonally to the main axis of the hippocampus (TR = 8100ms,
TE = 8100, 0.4 ×0.4 mm2 in-plane resolution, 2mm slice thickness).
Detailed scan parameter information can be found in refs. 59,60.

Brain area parcellation
Medial temporal lobe ROIs. We parcellated medial temporal lobe
(MTL) ROIs into HPC, EC, and perirhinal cortex using the automatic
segmentation of hippocampal subfields package (ASHS)60. Briefly, T1

and T2 weighted images were submitted to ASHS, which automatically
parcellates MTL using the Princeton Young Adult 3 T ASHS Atlas
template139. Segmentations were then manually corrected using ITK-
SNAP140 based on the Olsen-Amaral-Palombo segmentation
protocol60,141. All subfields of the hippocampus (including CA1, CA2/3,
dentate gyrus, and subiculum) were merged into one hippocampal
segmentation and then divided into anterior and posterior hippo-
campus according to the presence of uncus36. The masks were
then manually inspected (and when needed, corrected) by a trained
neuroanatomist (Dr. Jingyi Wang) (Supplementary Fig. 5). The EC was
segmented using a well-validated parcellation strategy that uses ana-
tomical landmarks53,142. Briefly, the most anterior level of the EC was
fully covered by the alEC. We began delineating the pmEC at the very
medial/dorsal tip of the EC, 2mm after the appearance of the hippo-
campal head. Theborder between the alEC andpmECgradually shifted
laterally, forming an oblique boundary relative to the medial wall.
Finally, we labeled all EC voxels as pmEC, where the uncus was no
longer present53,142–144. Next, manually corrected MTL segmentations
were registered to anatomical space (maintaining functional resolu-
tion) using FLIRT.

Primarymotor cortex (M1). TheM1ROI was obtained from theOxford
PFC Consensus Atlas (http://lennartverhagen.com/145,146), thresholded
at 25% and registered to participants’ native surface space using
Freesurfer147. Then, vertex coordinates in the M1 mask were trans-
formed into the anatomical (volumetric) space. ROI masks in volu-
metric space were constructed by projecting half the distance of the
cortical thickness at each vertex, with functional voxels required to be
filled at least 50%. Volumetricmaskswere then resampled to functional
resolution (2 mm3)148.

Network masks. Seventeen cortical network masks were obtained
using the Yeo-17 MNI atlas83. We registered eachmask fromMNI space
toparticipants’ anatomical spaceusing FNIRT (10mmwarp resolution)
while maintaining functional resolution (2 mm3).

fMRI data processing and analysis
Preprocessing. We performed motion correction, skull removal, and
registration of each individual’s functional data to their anatomical
space using the FMRIB Software Library (FSL). Six motion parameters
and the average signal obtained from FSL-derived cerebrospinal fluid
and white matter masks (obtained using FAST) were entered as nui-
sance regressors using AFNI’s 3dDeconvolve function149. Next, a band-
pass filter (0.01 Hz <f < 0.1 Hz) was applied using AFNI’s 3dBandpass
function138. The preprocessed functional data for each session and
subject were kept in subject-specific T1 space and in the original
functional resolution.

Regional-whole-brain temporal drift score. To obtain EC- and HPC-
whole-brain resting state connectivity patterns for each session, we
first averaged the time series across all voxels within each ROI. Pear-
son’s correlation values (indexing resting-state functional connectivity
with each seed) were then obtained using AFNI for all gray-matter
voxels (for details, see Supplementary Methods) (Fig. 1B), which were
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Fisher-Z transformed. Next, we calculated Pearson’s correlation coef-
ficients (i.e., indexing similarity) for resting-state functional con-
nectivity patterns between every pair of sessions (across all gray
matter voxels), which were Fisher-Z-transformed. Between-session
similarity values were considered outliers and excluded from sub-
sequent analyses if they exceeded 3 standard deviations relative to the
mean across all pairs of sessions for each seed region [fewer than 1%
session-pairs were excluded for each seed region, range of session
pairs included: Female: 432–435 sessions (Mean =434.087, sd=0.848);
Male: 769-780 sessions (Mean = 778.783, sd = 2.522)]. Finally, to cap-
ture whether connectivity patterns reliably tracked elapsed time, a
temporal drift score was calculated for each seed ROI (Fig. 1D). To do
so, we correlated the similarity of connectivity patterns (Z-trans-
formed correlation coefficients obtained for every session pair) with
the Δ time interval between session pairs. Finally, to isolate whether
relationships with elapsed time were specific to particular large-scale
cortical networks, temporal drift scores were calculated using con-
nectivity patterns obtained from established large-scale cortical
networks83. To do so, we divided the cortex into 17 networks using the
Yeo-17 atlas83. For each session, we correlated the averaged time series
of each seed region (e.g., EC, HPC,M1, and PRC) with the time series of
every voxel within each network mask. We then obtained between-
session pattern similarity by correlating connectivity patterns within
each networkmask across sessions. Finally, we obtained temporal drift
scores by correlating between-session pattern similarity with the time
interval between session pairs for each seed-network pair.

HPC longitudinal axis and EC subregional analysis. Temporal drift
scores for the analysis of the HPC longitudinal axis were calculated as
described above, but using single-voxels in theHPCas seeds, insteadof
the average timeseries in the ROI. Similarly, voxel-wise temporal drift
scores in the EC were calculated and then averaged within each EC
subregion.

Statistical analysis
Temporal drift score significance tests. We performed two-tailed
Pearson tests for the correlations between resting functional con-
nectivity pattern similarity and time interval for each session pair for
each ROI.

In addition, we also used a nonparametric approach to examine
the significance of temporal drifts in a given ROI by testing against a
null (chance) distribution. For nonparametric tests against chance, we
assessed whether the true correlation was higher than the null dis-
tribution (rather than lower or higher), therefore, p-values are repor-
ted as one-tailed. To generate the null distribution, we permuted the
time interval labels (n = 5000 times) and correlated the permuted
labels with resting connectivity pattern similarity, which yielded a null
distribution of temporal drift scores for a given ROI. The true temporal
drift score for each ROI was then compared to each ROI’s null dis-
tribution to estimate the permutation test p-value.

Control analysis: test of regional differences in temporal drift
strength. To test whether our main ROIs showed stronger temporal
drift than control ROIs, we used the Cocor package150 to test for dif-
ferences in temporal drift scores (i.e., test of the difference of depen-
dent correlation coefficients) obtained from EC and HPC regions
relative to the control regions (M1 and PRC). We also tested for dif-
ferences in temporal drift by comparing EC- and/or HPC-network drift
scores (for each network of interest) with temporal drift scores
obtained using the network that served as a control (combined
somatomotor A & B). Given the a priori prediction that pattern simi-
laritywoulddecrease over time, and thusmore negative temporal drift
scores would indicate stronger drifts, p-values for the comparison
between correlation coefficients fromapriori ECandHPCROIs relative
to control ROIs are reported at one-tailed p <0.05.

FDR correction. When assessing temporal drift scores across the
nodes of the Yeo-17 network, we corrected for multiple comparisons
by adjusting the p-value using the Benjamini-Hochberg proce-
dure across all ROIs151.

Linear gradient test. To test whether temporal drift scores system-
atically vary along the longitudinal (y) axis of the HPC, we computed
Pearson’s correlation coefficients between temporal drift scores and
the y-axis coordinates across all hippocampal voxels. To test for sig-
nificance, we used a nonparametric permutation test. Specifically, to
build a null distribution of correlation values, we permuted the y-axis
coordinates of hippocampal voxels (n = 5000 times) and correlated the
permuted y-axis coordinates with temporal drift scores across voxels
(thus eliminating the true relationship between y-position and tem-
poral drift scores). The true Pearson’s correlation coefficient between
voxel-wise drift scores and y-axis coordinates was compared to this null
distribution to estimate the p-value for a putative longitudinal gradient.

Kruskal-Wallis test. To test whether temporal drift scores showed
significant variance across the large-scale networks, we first obtained
temporal drift scores from EC and aHPC with each of the Yeo-17 net-
works and computed Kruskal-Wallis H values (across female and male
subjects). Next, to test for significance, we used a nonparametric
permutation test (null distribution of H values obtained from n = 5000
permutations of time interval labels for EC and aHPC). Then, true H
values obtained from EC and aHPC network analyses were compared
to their respective null distributions to estimate p-values.

Control analyses: time-varying factors. To control for the effect of
time-varying factors in our dataset—including hormonal, headmotion,
and emotion-related—we performed a multiple linear regression
simultaneously entering changes in time interval, hormone, head
motion, and emotion differences to predict changes in resting con-
nectivity similarity between pairs of sessions. Hormonal changes
(Female: estradiol, progesterone, LH and FSH, Male: estradiol, testos-
terone, cortisol) were calculated with the hormonal level sampled
prior to each scan (Fig. 1A). Head motion changes were calculated as
the difference of mean framewise displacement between pairs of ses-
sions. We performed a principal component analysis (PCA, principal
function, Psych R package152) using the three mood questionnaires
(Perceived Stress Scale (PSS), State-Trait Anxiety Inventory for Adults
(STAI), and Profile of Mood States (POM) tension and depression
subscales) administered at the beginning of each session to obtain an
aggregate metric of participant’s emotional states for each session
(First PC: Female subject: λpss = 80.0%, λSTAI = 95.1%, λPOM_tension =
94.2%, λPOM_depression = 88.0%; Male subject: λpss = 57.5%, λSTAI = 85.7%,
λPOM_tension = 48.4%, λPOM_depression = 55.5%). Session-wise emotion dif-
ferences were calculated as the difference between emotional-state
scores for each pair of sessions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The female subject dataset is openly available at https://openneuro.
org/datasets/ds002674. Themale subject dataset is openly available at
https://openneuro.org/datasets/ds005115. The averaged functional
connectivity maps for each ROI are shared in NeuroVault (https://
neurovault.org/collections/VEHAFBWA/, Supplementary Figs. 6, 7).
Source data are provided with this paper.

Code availability
Analyses were run using custom code in FSL (version 6.0.7.12), Python
(version 3.8, Package: Nilearn_0.9.1), AFNI (Version 24.1.22), and R (R
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studio Version 1.4.1717, R version 4.1.2. Packages: tidyr_1.2.1;
dplyr_1.0.10; emmeans_1.6.3; stats_4.1.2; cocor_1.1.3; ggplot2_3.4.2).
The code used for these analyses is available in the following GitHub
repository (https://github.com/LEAPNeuroLab/rsFCTemporalDrift)153.
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