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Escherichia coli phylogeny drives co-
amoxiclav resistance through variable
expression of TEM-1 beta-lactamase
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Co-amoxiclav (amoxicillin and clavulanate) is a commonly used combination
antibiotic, with resistance in Escherichia coli associated with increased mor-
tality. The class A beta-lactamase blatgy. is often carried by resistant E. coli but
exhibits high phenotypic heterogeneity, complicating genotype-phenotype
predictions. We curated a dataset of n =377 diverse E. coli isolates where the
only acquired beta-lactamase was blatpy.;. We generated hybrid assemblies
and co-amoxiclav minimum inhibitory concentrations (MICs), and blatgma
PCR expression data for a subset (n=67/377). We first tested whether
intrinsic expression of blargy varied between E. coli lineages, for example,
from regulatory system differences, which are challenging to genomically
quantify. Using genotypic features, we built a hierarchical Bayesian model for
blarem expression, controlling for phylogeny. Expression varied across the
phylogeny, with some lineages (phylogroups Bl and C, ST12) expressing
blarenm more than others (phylogroups E and F, ST372). Next, we built a sec-
ond model to predict isolate MIC from genotypic features, again controlling
for phylogeny. Phylogeny alone shifted MIC past the clinical breakpoint in 19%
(55/292) of isolates with greater-than-chance probability, mostly representing
STI2, ST69 and ST127. A third causal model confirmed that phylogenetic
influence on blargy expression drove variation in MIC. We speculate that
intergenic variation underlies this effect.

The class A beta-lactamase blatgy; was first identified in 1965 in a  other mobile genetic elements such as IS26* and a diverse array of
clinical Escherichia coli isolate'. Originally, it was mobilised by two of  plasmids’ contribute to its dissemination. At the time of writing, NCBI
the earliest named transposons, Tn2 and Tn3, located on plasmids In  contains over 220,000 unique isolates carrying blagy., distributed
the decades since, the genetic context of blargy has evolved®, and  across 26 genera, including the common clinical pathogens
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Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii®.
The emergence and dissemination of beta-lactam resistance has been a
major healthcare challenge’, and blargy represents a key example.

In the UK, beta-lactam and beta-lactamase inhibitor combinations
such as co-amoxiclav (amoxicillin and clavulanate), are commonly
used as a first-line treatment for severe infections®. For Enterobacter-
ales, the current EUCAST co-amoxiclav minimum inhibitory con-
centration (MIC) clinical breakpoint for resistance is 8/2 pg/mL°’ across
all indications, with a recent study concluding that empiric co-
amoxiclav treatment of E. coli bacteraemia with MICs >32/2 pug/mL
was associated with significantly higher mortality’. However, the car-
riage of blatpm. is associated with high phenotypic heterogeneity,
making genotype-phenotype predictions challenging.

Small-scale, experimental blatgy; systems have demonstrated
that the interplay of location (plasmid or chromosome) and copies in
the genome, through varying dosage, contributes to variable
resistance™" In addition, other determinants such as mutations in the
promoter of blaegym4” and the chromosomally intrinsic ampC gene",
and efflux pumps®, are associated with E. coli beta-lactam resistance.
Moreover, different regulatory systems'®”, epistasis (interaction
between genes)®" and epigenetics (heritable phenotypic changes
without alterations to the underlying DNA sequence)®, might also
influence co-amoxiclav resistance. For example, five different E. coli
strains carrying the same pLL35 plasmid (which carries blactx.m-15 and
blayey112) varied in cefotaxime resistance?. Likewise, the introduction
of a pOXA-48, a common conjugative plasmid in carbapenem-resistant
clinical Enterobacterales, to six different E. coli strains resulted in
variable co-amoxiclav resistance”. This indicates that strain back-
ground plays a role in resistance.

Successful genotype-to-phenotype prediction requires a com-
prehensive understanding of not only individual resistant determi-
nants but also their combined effects. Moreover, this understanding
must be translated to clinically relevant pathogens. Yet, to accurately
model resistance in these systems, a large sample of linked genomic
and phenotypic data is required, which until recently has been limited
by sequencing technology and costs.

In this study, we curated and completely reconstructed the gen-
omes of 377 clinical E. coli bacteraemia isolates to reflect a real-world
but relatively simple genetic scenario where the only acquired beta-
lactamase gene identified was blargy., all identical at the amino acid
level. We quantified the co-amoxiclav MICs for these isolates and
generated blargnm; qPCR expression data for a subset. We then mod-
elled blatg; expression and co-amoxiclav MIC whilst controlling
for confounding genetic mechanisms and chromosomal phylogeny,
and characterised differences in intergenic content between lineages
that may be contributing to differential phenotypic effects.

Results
A curated dataset of E. coli isolates with hybrid assemblies and
co-amoxiclav MICs
We began with n=548 candidate E. coli isolates, which following
hybrid assembly, were curated into a final dataset of n=377/548 (see
“Methods” and Supplementary Information). In total, 77% (291/377) of
assemblies were complete (all contigs were circularised), with the
remaining 27% (86/377) having at least a circularised chromosome to
confidently distinguish between chromosomal and plasmid-associated
blatgm-1- Assemblies contained median = 3 (IQR = 2-5) plasmid contigs.
We identified n =451 blargy; genes on 431 contigs (13% [58/431]
chromosomal versus 87% [373/431] plasmid). Isolates carried a med-
ian=1 copy of blagm.1 (range =1-6). Carrying more than one copy of
blagy; on a single contig was rare: of all blatgv.-positive contigs, 97%
(400/412) versus 3% (12/412) had no duplications versus at least one.
The blatpm genes had synonymous single-nucleotide polymorphisms
(SNPs) in positions 18, 138, 228, 396, 474, 705 and 717, totalling n=7
single-nucleotide variant (SNV) profiles across the replicons, yet

diversity was dominated by blatema, at 73% (329/451; SNV profile
TATTTCG; see “Methods”)”. Where blargy-positive contigs had at
least two copies of blargy, they were almost always the same SNV
duplicated (11/12).

By examining the genomic arrangement of blargy.; (namely the
replicons it was found on as well as any copies), we found most isolates
carried a single non-chromosomal copy (73% [277/377]; Fig. 1a, b).
More generally, whilst the plasmid contigs totalled only 3.6% of the
total sequence length (bp) across the assemblies (71,126,646 bp/
1,969,804,202 bp), they carried 85.8% of the blargy.; genes (387/451).
Such blargmi-carrying plasmids were represented across the E. coli
phylogeny (Fig. 1c). Overall, the dataset comprised 5.6% (21/377) phy-
logroup A, 8.0% (30/377) B, 48.5% (183/377) B2, 4.8% (18/377) C, 27.3%
(103/377) D, 0.5% (2/377) E, 4.2% (16/377) F and 1.1% (4/377) G. In total,
we manually corrected n=5 EzClermont phylogroup classifications
using a chromosomal core gene phylogeny (see “Methods”): OXEC-108
(G to D), OXEC-317 (B2 to D), OXEC-333 (U to B1), OXEC-344 (U to B1)
and OXEC-406 (U to B1). The EzClermont publication presented a
98.4% (123/125) true-positive rate on their validation set, whichis in line
with our 98.7% (372/377)*.

Five known upstream promoters modulate the expression of
blaremy: P3, Pa/Pb, P4, PS5 and Pc/Pd **. We linked 91% (409/451)
blatpy; genes to a promoter immediately upstream, of which a
majority, 64% (262/409), were identical to the P3 reference. More
generally, excluding n=2 different Pc/Pd-like promoters which have
large deletions, we identified SNPs in positions 32, 43, 65, 141, 162 and
175, totalling n = 8 SNV profiles (by Sutcliffe numbering®). Notably, 15%
(39/262) of promoters had the Pa/Pb-associated C32T mutation, which
produces two overlapping promoter sequences. Figure S1 visualises
the joint distribution of isolate phylogroup and linked blatgm pro-
moter SNV.

Isolates were associated with a diverse range of co-amoxiclav
MICs (pg/mL; <2/2 [4 (1.1%)], 4/2 [24 (6.4%)], 8/2 [144 (38.2%)], 16/2 [86
(22.8%)1, 32/2 [44 (11.7%)] and >32/2 [75 (19.9%)]; Fig. 1d; see “Meth-
ods”). Figure S2 visualises the joint distribution of isolate phylogroup
and MIC. Figure S3 visualises the distribution of blargm.; genome and
cell copy number, blargy.; expression, and co-amoxiclav MIC against
the chromosomal core gene phylogeny.

blatgy., associated with conjugative plasmids

Whilst chromosomal copies of blargy; can remain with a lineage over
time, plasmidic copies might come and go. This could give the host cell
access to a transient boost in resistance without impeding long-term
fitness.

Confining the analysis to circularised plasmids (1036/1512), in
silico replicon typing revealed the most common plasmid families to
be ColRNAI-like, Col156-like, B/O/K/Z-like and Col(MG828)-like at 11%
(117/1036), 7.4% (77/1036), 6.8% (70/1036) and 5.2% (54/1036),
respectively. All other plasmid families had fewer than 50 repre-
sentatives. Figure S4 visualises the relationship between strain back-
ground (sequence type and phylogroup) and replicon types
(PlasmidFinder output; see “Methods”) for the circularised plasmids.
Using a 2-sample test for equality of proportions with continuity cor-
rection, the blargvi-positive plasmids (333/1036) were significantly
more likely to be putatively conjugative (85.9% [286/333]) compared to
the blargy.i-negative plasmids (28.4% [200/703]; prop =200/703;
x> =297.02, df =1, p-value < 2.2e-16). Moreover, for the most common
genomic arrangement of blargy; (i.e., a single plasmid [277/377]),
amongst circularised plasmids (252/277), 90% were putatively con-
jugative (227/252).

For a genome carrying blargy; on the chromosome, the gene’s
copy number and total number of genes in the genome are equivalent.
For agenome carrying blargyp. on a plasmid, this might not be the case.
This is because plasmids can exist as multiple copies. The calculated
copy number of all plasmidic contigs (n=1512) was median =3.13
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Fig. 1| A genotypically and phenotypically heterogenous population of blaygy.1-carrying E. coli. a The genomic arrangement of blargy. in the genomes ordered in
descending (b) frequency. ¢ Phylogroup and d co-amoxiclav MIC distribution for each genomic arrangement.

(range=0.04-57.00). Of these, n=19/1512 contigs (with 6/19 circu-
larised) had calculated copy numbers less than one (see “Methods”).
This was potentially due to uneven short-read coverage. However,
none carried blargn.1 SO were not used in the later modelling. Taking
the circularised plasmids with copy number at least one (1030/1512),
longer plasmids (>10kbp; 668/1030) were generally low copy number
(median=2.36), whilst shorter plasmids (<10kbp; 362/1030) were
generally high copy number (median =11.01, see Fig. S5), consistent
with previous studies”.

E. coli phylogeny shapes blaygy.; expression

Within different E. coli lineages, blatgms and its promoter are poten-
tially subject to different regulatory systems and epigenetic interac-
tions, which may in turn affect blargy.; expression. To test this, we first
selected a random subsample of n = 67/377 isolates with a single copy
of blargy., in the genome, either on a chromosome (15/67) or a plasmid
(52/67). Moreover, we only selected isolates with zero, one, or two
mutations in the blargy; promoter sequence: C32T, a well-studied but
rare mutation which produces two overlapping promoters and is
known to increase expression®, and G175A, a less studied but common
mutation in our dataset (according to Sutcliffe numbering based on
the PBR322 plasmid®; see Table 1). Focussing on only two mutations
enabled us to statistically explore the effect of their interaction. Iso-
lates were distributed across the entire E. coli phylogeny (phylogroup
A[6/67],B1[4/67], B2 [40/67], C[4/67],D[8/67], E[1/67] and F ([4/67]).
We then performed gPCR to evaluate for blargy., expression (see
“Methods”). Every isolate had at least two replicates (2 [48/67], 4 [1/67],
or 9 [18/67), giving a total of n =262 blargy; ACt observations (TEM-1
Ct - 16S Ct; see “Methods”) for modelling.

To test for the effects of E. coli lineage, we built a maximum
likelihood core gene phylogeny for all n=377 chromosomes (see
“Methods”). In total, we identified 17,836 gene clusters, of which 18.7%
(3342/17,836) were core genes (those found in >98% of chromosomes).
The phylogeny (midpoint-rooted and restricted to the n=67/377

Table 1| Replicon distribution of n =67 blatgm.q promoter
variants

Promoter SNV/ Chromosome Plasmid Total
Replicon

CG (wildtype) 1 22 23
G175A 2 21 23
C32T 3] 5 8
C32T, G175A 9 13
Total 15 52 67

Single-nucleotide variants (SNVs) are for the 32" and 175" positions by Sutcliffe numbering®.

isolates in the expression analysis) is given in Fig. 2a. Using b=1000
ultrafast bootstraps, all phylogroup node supports were 100%, and
more generally, 76.7% (287/374) of internal node supports were 100%,
and 87.4% (327/374) were at least 95% (see “Methods”). Moreover, the
Robinson-Foulds distance between the ML tree and consensus tree was
4, indicating nearly identical topology.

Briefly, the expression linear mixed model employed Markov
Chain Monte Carlo (MCMC) to estimate parameters. The response
variable blatgy.; ACt (normalised and 95th percentile truncated) was
related to the fixed effects (i) blatgm cell copy number (normalised),
(ii) presence of the C32T promoter mutation, (iii) presence of the
G175A mutation, and (iv) their interaction. Random effects were
incorporated to account for qPCR replicates and

phylogenetic relationships between isolates. See Supplementary
Information for model specification, outputs and diagnostics.

In decreasing order of effect size, C32T, G175A, and a one unit
increase in contig copy number all increased expression (decreased
ACt; Table 2). There was no additional effect of G175A if C32T was
also present (-1.69 < -1.71). After accounting for these covariates, we
still identified a contribution from isolate phylogeny. The posterior
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Fig. 2 | Intrinsic expression of blargy.; shapes co-amoxiclav MIC across the

E. coli phylogeny. a A midpoint-rooted core gene phylogeny of E. coli chromo-
somes from the 67 isolates with expression quantified. Tips are coloured by phy-
logroup. ST12, ST127 and ST69 are highlighted with tip outlines and circles at their
crown nodes. Tip shape distinguishes location of blagy.; on chromosomes (circles)
and plasmids (squares). b Bar length records mean blargy ACt for each tip (log;o-
scaled; lower values denote higher blarpm., expression). Bar colour records isolate
co-amoxiclav MIC for each tip. ¢ Posterior means (coloured circles) and 95% HPD

°

intervals (horizontal lines) for phylogenetic effect on negative blargm.; ACt for each
tip (multiplied by -1 for ease of comparison). Red indicates above average
expression and blue indicates below average expression. d Posterior means
(coloured circles) and 95% HPD intervals (horizontal lines) for phylogenetic effect
on co-amoxiclav MIC for each tip. Pink indicates above average MIC and green
indicates below average MIC. Note that isolates OXEC-238 and OXEC-490 were
excluded from the MIC model (see exclusion criteria).

Table 2 | Parameter estimates for blargm.q delta cycle thresh-
old (ACt) genotype-phenotype model

Variable Beta coefficient 95% HPD Pmemc
posterior mean L, u)

Intercept 0.30 0.03, 0.59 0.0245
C32T* -1.71 -2.08, -1.34 <1e-05
G175A* -0.31 -0.57,-0.04  0.0202
C32T*:G175A* 0.33 -0.14, 0.81 0.1779
interaction

blatgv cell copy -0.12 -0.24, 0.01 0.0679

number

All values were taken from chain 1. Lower () and upper (u) values are given for the 95% highest
posterior density (HPD) intervals. pucwmc is the posterior probability that the coefficient was
positive (defined in the Supplementary Information). The effect of both C32T* and G175A* is
-1.71-0.31+0.33 =-1.69.

* Numbering by Sutcliffe®.

for contribution of variance from phylogeny demonstrated a long
right tail (mean = 0.07; 95% highest posterior density, HPD =[0.00,
0.21]; see “Methods”), suggestive of heterogeneity in phylogenetic
signal, where deeper splits between major lineages may explain
disproportionately large differences in expression. For qPCR repli-
cates, the contribution of variance exhibited minimal skew
(mean = 0.15; 95% HPD =[0.08, 0.23]). To investigate this further, we
computed the posterior mean and 95% HPD credible interval for
each tip in the phylogeny (Fig. 2c). Compared to the average across
the E. coli phylogeny, some phylogroups (B1, C) and STs (12) were
associated with increased blargy. expression, whilst some phy-
logroups (E, F) and STs (372) were associated with decreased blargym-
1 expression.

ampC gene variation is highly concordant with E. coli lineage

In many Gram-negative species, chromosomal ampC is regulated by
the transcriptional activator AmpR and is inducible in the presence of
beta-lactams. However, E. coli lacks ampR and therefore expresses
ampC constitutively; overproduction depends on mutations in the
promoter or attenuator regions. At the time of writing, the beta-
lactamase database (BLDB) contains n=4915 non-synonymous var-
iants of the gene®,

To quantify how well ampC variants agree with phylogroup and
ST, we calculated the homogeneity (h) and completeness (c; both
range from O to 1; see “Methods”). Briefly, h =1 means that a phy-
logroup or ST contains a single ampC variant. Conversely, c=1
means that all instances of an ampC variant fall within the same
phylogroup or ST. For phylogroups, we found h=0.489 and
¢c=0.964, and for STs (excluding 38/377, which were unassigned),
h=0.938 and c = 0.877. Overall, this suggests that phylogroups tend
to contain distinct ampC variants, which are generally ST-specific,
and overall, that E. coli phylogeny is a suitable proxy for ampC
variation.

Whilst many E. coli ampC variants present a narrow spectrum of
hydrolytic activity, some can potentially hydrolyse third-generation
cephalosporins following mutations in the promoter sequence.
To explore promoter variation, we aligned all n=377 ampC
promoter sequences. Mutations outside positions -42 to +37
(according to Jaurin numbering'*) were disregarded based on existing
characterisations*°. In total, n=12 ampC promoter SNVs were iden-
tified, with variation dominated by the E. coli K12 wildtype at 47% (177/
377). Table 3 documents all n =11 mutations identified. A given ampC
variant associated almost uniquely with an ampC promoter variant, yet
ampC promoter variants were associated with multiple ampC variants
(h=0.483 and c=0.941).
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Table 3 | Variation in n =377 ampC promoters

Region Position  E. coli K12 (n) Mutation (n)
Spacer -28 G (243) A (134)
-18 G (329) A (48)
Between -10 box and attenuator -1 C (329) T (48)
+11 T(37) -(6)
Attenuator 17 C (316) T (61)
+22 C (367) T(10)
+26 T (367) G (10)
+27 A (367) T(10)
+30 G (376) A)
+32 G (364) A (13)
+37 G (376) T

Positions are according to Jaurin numbering'.

E. coli phylogeny drives co-amoxiclav resistance through
expression

We next investigated whether the E. coli lineages with intrinsically
higher blargy.1 expression also had intrinsically higher co-amoxiclav
MICs. This would be consistent with lineage differences in regulatory
regions and epigenetic interactions driving increased resistance.

We employed an MCMC to estimate parameters in an ordinal
mixed model. The response variable isolate co-amoxiclav MIC (pg/mL;
levels <2/2, 4/22, 8/22, 16/2, 32/2, >32/2) was predicted by the fixed
effects (i) blarem cell copy number (normalised and 95th percentile
truncated), (ii) blatgm1 genome copy number (>1 vs. 1), (iii) non-
wildtype blarpy-; promoter SNVs, and (iv) non-wildtype ampC pro-
moter SNVs. For the model, we only used isolates for which every
blatpv1 gene was linked to a promoter, and all the promoters were the
same variant. We then filtered out isolates with blatgy.; promoter and
ampC promoter variants that appeared less than 10 times. This left
n=292/377 isolates. Full model specification, convergence diag-
nostics, and outputs are given in Supplementary Information.

In decreasing order of effect size, the presence of C32T and G175A
in the blargy.; promoter, the presence of just C32T, blatgw cell copy
number and blargy; genome copy number all increased co-amoxiclav
MIC (Table 4); the remaining effects were compatible with chance. As
with the expression model, the posterior distribution for contribution
of variance from phylogeny demonstrated a long right tail (mean =
2.80; 95% HPD =[0.72, 5.16]). The phylogeny for the n=292 isolates
with co-amoxiclav MIC tip effects is given in Fig. S6.

We found that phylogenetic tip effects alone were sufficient to
shift category membership across the EUCAST resistance breakpoint
(> 8/2 pg/mL). Fixing all other covariates at the midpoint of their latent
categories, 19% (55/292) of isolates had a greater than 50% posterior
probability of being shifted from the susceptible to the resistant
category due to their phylogenetic effect alone. Of these, most were
represented by phylogroup B2 and D at 64% (35/55) and 20% (11/55),
respectively. The most represented sequence types were ST12, ST127
and ST69 at 27% (15/55), 20% (11/55) and 18% (10/55), respectively. The
isolates in these sequence types also used in the expression model are
highlighted in Fig. 2d.

Lastly, we developed a combined model to test whether the
phylogenetic influence on blaygy, expression causally varies co-
amoxiclav MIC (see Supplementary Information). Here, we only used
the predictors identified as significant from previous expression and
MIC models (blatgy cell and genome copy numbers, and blaren.1
promoter SNV). Briefly, the model estimates a parameter that scales
the phylogenetic and non-phylogenetic random effects from expres-
sion to MIC. Under causality, the scaling parameter should be constant
across all random effect terms. We found the scaling parameter had a

Table 4 | Parameter estimates for co-amoxiclav minimum
inhibitory concentration (MIC) genotype-phenotype model

Variable Beta coefficient 95% HPD  pmcmc
posterior mean , u)
Intercept 3.92 2.92,4.85 <le-05
blatgm cell copy number 2.07 1.38, 2.78 <1e-05
blargm genome copy number  0.97 0.02,1.90 0.0414
(>1vs. 1)
blatgm pro- G175A7 0.17 -0.35, 0.5313
moter SNV vs. 0.69
wildtype C32T° 6.06 415,8.08 <le-05
C32T1° and 5.87 3.89,7.87 <le-05
G175A°
ampC promoter ~ G-28A° 0.44 -0.63, 0.4122
SNV vs. and C17T° 1.48
wildtype G-28A 0.87 -0.89, 0.3039
2.58
G-18A° 0.83 -1.37,3.11  0.4402
and C-1T°

All values were taken from chain 1. For single-nucleotide variant (SNV) vs. wildtype, E. coli K12
was used as the wildtype baseline. Lower () and upper (u) values are given for the 95% highest
posterior density (HPD) intervals. pycwmc is the posterior probability that the coefficient was
positive (defined in the Supplementary Information).

2 Numbering by Sutcliffe.

° Numbering by Jaurin™.

posterior mean=-113 (95% HPD=[-0.72, -1.49]; pmcmc = 0.002;
values taken from chain 1). This supports a direct and substantial
influence of expression on MIC, mediated by phylogenetic
relationships.

Intergenic architecture and dynamics vary between E. coli
phylogroups

The results from our modelling suggest that lineage-specific reg-
ulatory systems play a role in the expression of blargy.;, which in turn
modulates resistance. The intergenic regions (IGR) in bacterial chro-
mosomes contain their regulatory systems, with one study finding that
86% of IGRs in a strain of E. coli were transcriptionally active®. Like
genes, IGRs are subject to genetic flow within bacterial populations.
Yet, how closely these dynamics mirror one another remains unclear.
Understanding whether IGRs evolve more rapidly than coding
sequences can shed light on how bacterial populations adapt and
diversify not just at the level of the genes they carry, but in how they
control the expression of those genes, ultimately affecting their phe-
notypic traits.

We first began with a traditional pangenome analysis for all n =377
chromosomes (see “Methods”). Here, we identified n=15,781 gene
clusters, with 5.0% (782/15,781) present in all isolates, and singletons
(one member) and doubletons (two members) comprising 22.7%
(3576/15,781) and 9.0% (1413/15,781), respectively. We then performed
a similar analysis, but for IGR clusters (see “Methods”). In total, we
identified n=33,345 IGR clusters, of which 1.0% (322/33,345) were
present in all isolates, consistent with a small core IGR system. Most
IGR clusters represented singletons at 44.7% (14,903/33,345) or dou-
bletons at 11.9% (3977/33,345). We then visualised the top 10,000 IGR
clusters against our E. coli phylogeny in Fig. 3a. This indicated phy-
logroup- and sequence type-specific patterns in intergenic sequence.

We next wanted to understand whether IGR diversity outpaced
coding-sequence diversity. To do this, we built cluster accumulation
curves, randomising genome-addition order 100 times per phy-
logroup, then plotting the cumulative number of clusters discovered
versus the number of genomes sampled. We performed this for all
phylogroups with at least 20 members (A, B1, B2 and D) in two separate
runs: for all cluster sizes, and clusters with at least two members to
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Fig. 3 | Intergenic region content and dynamics vary across the E. coli phylo-
geny. a The top 10,000 most common IGR clusters ordered by prevalence (left to
right), arranged by midpoint-rooted core gene phylogeny. Tips are coloured by

phylogroup. b Gene and IGR cluster accumulation curves for phylogroups A, B1, B2
and D. Dashed vertical lines indicate crossover points of averaged accumulation
curves.

account for possible assembly and bioinformatic errors. The averaged
curves are presented in Fig. 3b. When considering clusters of all sizes,
the IGR curves began below the gene curves, reflecting rapid discovery
of moderately common accessory genes, but all overtook them after a
period of sampling. This crossover marks the sampling depth at which
IGR novelty becomes the dominant source of new information.
Fitting Heaps’ law to the mean curves provided a concise measure
of openness (see Fig. 3b and Table 5). Briefly, a describes the rate at

which diversity accumulates as more samples are taken, where a higher
a indicates faster accumulation. We found that a was consistently
higher for IGR curves than for gene curves, and phylogroup A exhib-
ited the highest a, indicative of the most open IGR system. To ensure
these patterns were not driven by unequal sampling, we regressed a
against both phylogroup sample size and cluster type (IGR vs gene). In
this model (adjusted R? = 0.73), sample size had no significant effect on
a (B=-12e-04, p-value=0.48), whereas IGRs showed a highly
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Table 5 | Heaps’ law model alpha (a) estimates for gene and
intergenic region (IGR) cluster analysis

Phylogroup Minimum clus- Cluster type o
ter size
A 1 IGR 0.39
Gene 0.21
2 IGR 0.30
Gene 0.18
B1 1 IGR 0.32
Gene 0.20
2 IGR 0.23
Gene 0.16
B2 1 IGR 0.36
Gene 0.17
2 IGR 0.26
Gene 0.14
D 1 IGR 0.35
Gene 0.17
2 IGR 0.27
Gene 0.15

o represents the decay parameter from fitting Heaps’ law model. Contains estimates for E. coli
isolate phylogroups A (n=21), B1 (n=30), B2 (n=183) and D (n=103).

significant positive shift (8=0.137, p-value =2.2e-05). Thus, the faster
accumulation of IGR diversity truly reflects biological differences in
chromosomal IGR dynamics, not sampling artifacts.

Discussion
In our dataset of clinical E. coli, blargy; was overwhelmingly carried by
conjugative plasmids. This means it can spread between bacterial
hosts and different genetic backgrounds. We demonstrated that
different bacterial hosts intrinsically vary in their ability to express
blatgv; when accounting for variation in promoters (C32T and G175A
mutations) and contig copy number. Moreover, our findings suggest
that some clinically successful lineages (e.g., ST12) are better at
expressing blargy than less clinically successful lineages (e.g., phy-
logroup F). With a second model, we also found that different £. coli
lineages vary intrinsically in co-amoxiclav MIC (accounting for blagn.-1
genome and cell copies, and blatgm; and ampC promoter variants).
Again, we observed that some clinically successful lineages (e.g., ST12)
had higher resistance than less clinically successful lineages (e.g.,
phylogroup F). We also quantified that the clinically successful
sequence types ST12, ST69 and ST127 had the highest probability of
flipping an isolate from the sensitive to resistant category. A third
model demonstrated that these two traits were causally linked: E. coli
phylogeny drives co-amoxiclav resistance through variable expression
of blatpm1, and underscores the necessity of fully resolving bacterial
genomes to incorporate accurate genetic, genomic, and phylogenetic
information in resistance prediction models. Future work could
include evaluations of single amino acid substitutions in TEM-1 (that
hydrolyse third-generation cephalosporins and carbapenemases®),
which are typically carried in more complex genetic backgrounds.
This study has limitations. Firstly, it is possible that, due to frag-
mented plasmid assemblies, some isolates identified as having multi-
ple copies of blargy.; on multiple plasmids instead had multiple copies
on the same plasmid. Nonetheless, our expression analysis only con-
sidered isolates with a single copy of blargy;.; in the genome, mitigating
this concern. Secondly, we only examined expression for a subsample
of our isolates due to resource limitations. Thirdly, whilst there is not
an agreed upon standard reference gene for quantifying beta-
lactamase expression®’>*, previous work has shown 16S to be

stable®. Crucially, our delta Ct values were consistent within isolates.
Fourthly, we only observed two potentially relevant porin mutations (a
premature stop codon in OmpC on OXEC-40’s chromosome and in
OmpF on OXEC-423’s chromosome), limiting our ability to investigate
their effects on phenotype. We also identified no relevant efflux pumps
beyond AcrEF-TolC (found in every isolate), and it was out of the scope
of the study to explore their functionality. Fifthly, we found that tip
effects did not strictly align with phylogenetic structure. We used a
single fixed phylogeny and a single global phylogenetic-variance
parameter, which does not capture uncertainty in tree topology or
clade-specific evolutionary rates. Consequently, tips within densely
sampled clades can be over-shrunk toward their mean, while tips in
sparse clades can be under-shrunk. Future work should incorporate
phylogenetic uncertainty (e.g., sampling from a tree posterior) and
explore multi-variance or partitioned phylogenetic models to assess
the impact of tree balance on tip-effect estimation. Sixthly, modelling
phylogenetic effect terms for all the plasmid replicons in the dataset
would be computationally prohibitive and statistically unstable. Whilst
future studies could focus on curating datasets with less plasmid
diversity, this would not be reflective of true clinical bacterial popu-
lations. Penultimately, automated susceptibility testing methods, like
the BD Phoenix™ used here, may not agree completely with reference
methods; yet previous work has shown strong agreement with the
EUCAST agar dilution method™®. Lastly, plasmid copy number is not
static. Moreover, in the presence of antibiotics, it has been demon-
strated that resistance gene-carrying plasmids can increase their copy
number to increase the chance of survival’®. Our point estimates of
plasmid copy number were derived from genome assemblies
sequenced in the absence of antibiotics, which likely represent a lower
bound. Nonetheless, we found strong signal to suggest the import of
plasmid copy number on resistance, even if under our sensitivity
testing, plasmid copy number potentially increased within isolates.

We posit that lineage-specific regulatory systems in £. coli, shaped
by horizontal gene flow, may house the key modulators of blatgm;
expression. Although comprehensive dissection of these elements (for
example, through ChIP-seq) extends beyond the scope of this study,
our findings suggest that future efforts directed at mapping trans-
acting factors, small RNAs, differential DNA methylation and nucleoid-
associated protein binding across phylogroups will be essential.
Additionally, examining other resistance genes and their expression
patterns in a similar phylogenetic framework could provide a broader
understanding and prediction of resistance mechanisms across dif-
ferent bacterial species and antibiotics. Our study demonstrates the
some clinically successful lineages are better at expressing blarem.1,
and have a higher probability of flipping from sensitive to resistant. We
speculate that, since blargy; is both widespread in clinical bacterial
populations and its spread is plasmid mediated, being able to better
control the expression of blargy; Wwhen acquired is a selective advan-
tage for clinical isolates.

Methods

Ethics oversight

The use of genotypic and phenotypic data from these isolates is cov-
ered by ethical permissions (London—Queen Square Research Ethics
Committee, REC ref. 17/LO/1420). Isolates were a subset of those
evaluated in a previous study”, for which data linkage with patient
data/antibiotic susceptibility test data was enabled through the
Infections in Oxfordshire Research Database (IORD). This database has
generic Research Ethics Committee, Health Research Authority and
Confidentiality Advisory Group approvals (19/SC/0403, 19/CAG/0144)
which facilitate the pseudo-anonymised linkage of routinely collected
NHS electronic healthcare record data from the Oxford University
Hospitals NHS Foundation Trust Clinical Systems Data Warehouse and
research data (e.g., sequencing data) from the Modernising Micro-
biology and Big Infection Diagnostics Theme of the Oxford NIHR
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Biomedical Research Centre, Oxford. IORD links records by a specific,
random, number ensuring that no patient-identifiable information is
shared with researchers using this resource.

Isolate selection

We considered n = 548 candidate E. coli bacteraemia isolates cultured
from patients presenting to Oxford University Hospitals NHS Foun-
dation Trust between 2013 and 2018, and selected from a larger study
of systematically sequenced isolates based on screening their short-
read only assemblies with NCBIAMRFinder (v. 3.11.2) for blatgy, and
the absence of other beta-lactamases™.

DNA extraction and sequencing

Sub-cultures of isolate stocks, stored at —80 °C in 10 % glycerol nutrient
broth, were grown on Columbia blood agar (CBA) overnight at 37 °C.
DNA was extracted using the EasyMag system (bioMerieux) and
quantified using the Broad Range DNA Qubit kit (Thermo Fisher Sci-
entificc, UK). DNA extracts were multiplexed as 24 samples
per sequencing run using the Oxford Nanopore Technologies (ONT)
Rapid Barcoding kit (SQK-RBK110.96) according to the manufacturer’s
protocol. Sequencing was performed on a GridION using version FLO-
MIN106 R9.4.1 flow cells with MinKNOW software (v. 21.11.7) and
basecalled using Guppy (v. 3.84). Short-read sequencing was per-
formed on the Illumina HiSeq 4000, pooling 192 isolates per lane,
generating 150 bp paired end-reads”.

Dataset curation and genome assembly

Full details are given in Supplementary Information. Briefly, short- and
long-read quality control used fastp (v. 0.23.4) and filtlong (v. 0.2.1),
respectively***°. We also used Rasusa (v. 0.7.1) on n=3/548 long-read
sets due to memory constraints*. Genome assembly used Flye (v. 2.9.2-
b1786) with bwa (v. 0.7.17-r1188) and Polypolish (v. 0.5.0), and Uni-
cycler (v. 0.5.0), which used SPAdes (v. 3.15.5), miniasm (v. 0.3-r179)
and Racon (v. 1.5.0)***%, Plasmid contig validation used Mash screen (v.
2.3) with PLSDB (v. 2023 06_23 v2)*°°, All assemblies were annotated
with NCBIAMRFinder (v. 3.11.26 and database v. 2023-11-15.1)*
Alongside, we validated the presence of blatgy; using tblastn (v.
2.15.0+) with the NCBI Reference Gene Catalog TEM-1 RefSeq protein
WP_000027057.1 and 100% amino acid identity®'. Following genome
assembly, we removed n=171/548 isolates, either because (i) the
chromosome did not circularise (116/171), (ii) it carried a non-blargn-1
blargy variant and/or an additional acquired beta-lactamase (54/171),
or (iii) the chromosome was too short consistent with misassembly
(- 3.5Mbp; 1/171). This left a final dataset of n =377 isolates.

Antibiotic susceptibility testing

Antibiotic susceptibility testing was performed using the BD Phoenix™
system in accordance with the manufacturers’ instructions, generating
MICs for co-amoxiclav.

Generation of cDNA template

RNA extraction and DNase treatment were performed on replicates of
each isolate (n = 3 biological/n = 3 technical) as described previously*.
RNA was quantified post DNase treatment using Broad Range RNA
Qubit kit (Thermo Fisher Scientific, UK), normalised to 1 pg and reverse
transcribed to cDNA using SuperScript IV VILO (Thermo Fisher Sci-
entific, UK) under the following conditions: 25 °C for 10 min, 42 °C for
60 min and 85 °C for 5 min.

qPCR quantification of blatgy; expression

blatpy; expression was quantified in a selection of isolates: initially
n=35isolates in triplicate, referred to as batch 1; then a further n=48
isolates in duplicate, referred to as batch 2. Batch 1 were randomly
selected by MIC (n=2 MIC <2/2, n=5 MIC 4/2, n=9 MIC 8/2, n=10

MIC 16/2, n=4 MIC 32/2, n=5 MIC > 32/2). Batch 2 was enhanced for
specific blargpm.; promoter mutations, selecting all isolates with a single
blatpv; gene with C32T (with or without a G146A mutation) that had
not already been tested, and then randomly selecting from other
wildtype and G146A, single blargy gene isolates. For all qPCR reac-
tions, E. coli cDNA was normalised to 1 ng and amplified in a duplex
qPCR reaction targeting blatgy and 16S. qPCR standard curves were
prepared for both blargy.; (Genbank Accession: DQ221255.1) and 16S
(Genbank Accession: LC747145.1) sequences cloned into pMX vectors
(Thermo Fisher Scientific, UK). Tenfold dilutions of linearised plasmids
(1-1x 10’ copies/reaction) were used as a standard curve for each
experiment. Both curves were linear in the range tested (16S:
R?>0.991; TEM-1: R*> 0.91). The slopes of the standard curves for 16S
and blargm were —3.607 and -3.522, respectively. QPCR was per-
formed using a custom 20 pl TagMan gene expression assay consisting
of TagMan™ Multiplex Master Mix, TagMan unlabelled primers and a
TagMan probe with dye label (FAM for TEM-1 and VIC for 16S) carried
out on the QuantStudio5™ real-time PCR system (Thermo Fisher Sci-
entific, UK). Cycling conditions were 95°C for 20s, followed by 40
cycles of 95°C for 3s and 60 °C for 30 s, with Mustang purple as the
passive reference. For batch 1, triplicate samples were analysed and
standardized against 16S rRNA gene expression. Triplicate reactions
for each isolate demonstrated good reproducibility for batch 1
(Fig. S7). Of note, for isolate OXEC-75, TEM-1 expression was very low-
level, and 5 reactions (1 technical replicate for biological replicate 1, 1
technical replicate for biological replicate 2, and all 3 technical repli-
cates for biological replicate 3) failed to amplify any product. Due to
resource constraints, we reduced replicates for batch 2 (n =1 biologi-
cal/n =2 technical; Fig. S8). To reduce model complexity, we omitted
some batch 1 isolates (n =16/35) which carried more than one copy of
blatpy in the genome, leaving a total of n=67 isolates. ACt values
were calculated by subtracting mean 16S Ct from mean TEM-1 Ct.

Assembly annotations

We annotated the chromosomes using Prokka (v. 1.14.6) with default
parameters except —-centre X --compliant (see annotate.sh)>.
Abricate (v. 1.0.1) was used with default parameters and the Plas-
midFinder database (v. 2023-Nov-4) to annotate for plasmid
replicons®**. Plasmid mobilities were predicted using MOB-suite’s MOB-
typer (v. 3.1.4) with default parameters®. Briefly, a plasmid was labelled
as putatively conjugative if it had both a relaxase and mating pair for-
mation (MPF) complex, mobilisable if it had either a relaxase or an origin
of transfer (oriT) but no MPF, and non-mobilisable if it had no relaxase
and oriT. Lastly, we assigned sequence types (STs) and phylogroups to
our E. coli chromosomes using mist (v. 2.23.0) with default parameters
and EzClermont (v. 0.7.0) with default parameters, respectively?**, We
used blastn (v. 2.15.0+) with a custom database of known blargmi
promoters™**’, Due to the high similarity between the P3, Pa/Pb, P4 and
PS5 reference sequences, we chose the top hit in each position.

SNV analysis

We first determined the sets of sequences we wanted to align: (i)
blargm (n=451; some genomes carried multiple copies), (ii) blatgwm-1
promoters (n=409), (iii) ampC (n=377) and (iv) ampC promoters
(n=377).For blatpm; and ampC, we extracted the relevant sequences
using the coordinate and strand information from the NCBIAMR-
Finder output (see extractGene.py). For the blargv; promoters,
we used coordinate and strand information from the earlier blastn
results. For the ampC promoters, we took the sequence 200 bp
upstream of the ampC gene then manually excised the —42 to +37
region in AliView™, Sets of sequences were aligned using MAFFT (v.
7.520) with default parameters except —--auto®. Variable sites were
examined using snp-sites (v. 2.5.1) with default parameters and in -v
mode®°.
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Contig copy number

We used BWA (v. 0.7.17-r1188) to map the quality-controlled short-
reads to each contig, then SAMtools (v. 1.18) for subsequent processing
(see copyNumber.sh)**, For each contig, we calculated the mean
depth over its length, then within each assembly, normalised by the
mean depth of the chromosome.

Chromosomal core gene phylogeny

Building the chromosomal phylogeny involved four main steps:
annotating the chromosomes, identifying the core genes, aligning
them and building a phylogeny. Initially, all the chromosomes carried a
copy of ampC, meaning it was a core gene and would be included in
the phylogeny. Since we wanted to manually verify EzClermont
phylogroup classifications with the phylogeny and then compare
phylogroups to the distribution of ampC gene variants, we excised
the ampC sequence from all the chromosomes beforehand to
avoid confounding our analysis (see removeGene.py). To identify the
core genes (those with >98% frequency in the sample), we used
Panaroo (v. 1.4.2) with default parameters except --clean-mode
sensitive --aligner mafft -a core --core threshold 0.98%.
Panaroo also aligned our core genes using MAFFT (v. 7.520;
see runPanaroo.sh)”. Lastly, we built the core gene maximum-
likelihood phylogeny using IQ-Tree (v. 2.3.0) with default
parameters except -m GTR+ F + I +R4 —keep-ident -B 1000 -mem
10 G using -s core gene_alignment filtered.aln from Panaroo
(see runIQTREE.sh)®. The substitution model used was general time
reversible (GTR) using empirical base frequencies from the alignment
(F), allowing for invariant sites (I) and variable rates of substitution (R4).

Intergenic region analysis

For the gene cluster analysis, we used Panaroo (v. 1.5.1) with default
parameters except --clean-mode sensitive ——merge_paralogsbz.
Running Panaroo with paralog merging is necessary for Piggy, and
reduced the overall pangenome size from the previous run. For the
intergenic region cluster analysis, we used Piggy (v. 1.5) with default
parameters®*,

Statistical analysis and visualisation

All statistical analysis was performed in R (v. 4.4.0) using RStudio (v.
2024.04.2+764)°>°°. We implemented MCMC generalised linear mixed
models using the MCMCglmm library in R*. Model specifications,
convergence diagnostics, parameter estimations and outputs are
reported in Supplementary Information; see modelExpression.R,
modelMIC.R and modelCombined.R, to reproduce the blargy.
expression, co-amoxiclav MIC and causal models, respectively.
Homogeneity and completeness are defined in Rosenberg, A. and
Hirschberg, J (2007) and were also implemented in R®. A 95% highest
posterior density (HPD) credible interval finds the closest points (a and
b) for which F(b) — F(a)=0.95, where F is the empirical density of the
posterior. Figures were plotted with the ggplot2 library®’. See buil-
dResults.R and igr analysis.R to reproduce all statistics and
figures in the manuscript.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Metadata for all n =377 genomes included in the final analysis is given
in Supplementary Data File 1. Metadata for all n =451 blargy.; annota-
tions identified in these genomes is given in Supplementary Data File 2.
qPCR expression data for all replicates is given in Supplementary Data
File 3. NCBI accessions for short- and long-read sets and assemblies are
given in Supplementary Data File 4. All Supplementary Data Files are
also stably archived at https://doi.org/10.5281/zenodo.16731807.

Code availability

All scripts referenced in the Methods can be found in the GitHub
repository https://github.com/wtmatlock/tem, which is stably
archived at https://doi.org/10.5281/zenodo.16731807.
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