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Chip-scale reconfigurable carbon nanotube
physical unclonable functions

Yang Liu1,2,5, Jingfang Pei1,5, Yingyi Wen1, Lekai Song1, Songwei Liu1,
Pengyu Liu 1, Wenyu Cui 3, Zihan Liang4, Teng Ma 3, Xiaolong Chen 4 &
Guohua Hu 1

With the rapid advancement of edge intelligence, ensuring the security of edge
devices and protecting their communication has become critical. Physical
unclonable functions, known as hardware fingerprints, are an emerging hard-
ware security solution enabled with the physical variations inherent in the
hardware systems. To facilitate a widespread edge deployment, here we pre-
sent chip-scale reconfigurable physical unclonable functions built with carbon
nanotube charge-trapping transistors, where the charge-trappingmemory and
physical variations of the transistors are harnessed to render over 1013 recon-
figurable states and the demonstrated ideal physical unclonability. Arising
from this, the physical unclonable functions prove robust resilience against
advanced machine learning and artificial intelligence attacking (limiting suc-
cess to ~50–60%) as well as brute force cracking (requesting an estimated 1016

years to crack). This performance, along with their scalability and low-power
operation as well as cryogenic temperature robustness, position the physical
unclonable functions a promising hardware security solution for edge intelli-
gence. As a practical demonstration, we model self-driving vehicular network
in Central Hong Kong and prove secure vehicle communication using the
physical unclonable functions.

As edge intelligence becomes increasingly integral to applications
such as the Internet of Things (IoT) and autonomous systems, securing
the distributed edge devices has emerged critical1. Concerns arise for
authenticating the identities of these edge devices, combating the
counterfeits, and establishing trust protocols for their
communication1. Taking self-driving as an example, self-driving
requires authentication of the vehicles, alongside secure generation
and transmission of sensitive driving - both among the vehicles and
between the vehicles and cloud servers. Implementing robust
authentication mechanisms to prevent unauthorized access, and
adopting secure communication protocols to safeguard the driving
data against theft, manipulation, or misuse via reverse engineering,

hacking, and cyberattacks are essential2. In manufacturing of self-
driving vehicles, consequently, hardware-based security measures are
often integrated for reliable vehicle authentication and secure
communication3.

Among the many hardware security measures, physical unclon-
able functions (PUFs) have emerged as a promising solution4. PUFs,
known as hardware fingerprints, exploit the physical variation inherent
in the hardware systems introduced duringmanufacturing to produce
unpredictable responses when challenged4. Owing to the entropic
nature of the physical variation, the responses are theoretically unique
and unclonable, specific to each hardware instance4,5. These responses
can thus be repeatedly produced to create physical unclonable
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primitives4,5. Current PUF development predominantly relies on inte-
grated silicon circuits, such as those based on arbiter and ring oscil-
lator architectures, realized by the trivial physical variation in the
silicon electronics6. However, the silicon electronics often suffer from
limited entropy, andmay thus require substantial hardwareandenergy
overhead for the design and operation of PUFs7. To address the lim-
itations and, importantly, to facilitate widespread edge deployment of
PUFs in edge intelligence, scalable PUF solutions are being sought,
particularly those exploiting solution-processedmaterials and devices
capableof exhibiting high-level entropy8. To alignwith the constrained
hardware budget of edge scenarios, reconfigurable PUFs are being
explored to enhance the security. A PUF is reconfigurable if it can be
updated post-manufacturing through physical mechanisms and
operations8,9.

Carbon nanotubeswith high carrier concentration andmobility as
well as specific surface area allow dynamic engineering of their elec-
tronic structures10,11. Herein, in this context, wepresent chip-scale PUFs
developed with solution-processed carbon nanotube charge-trapping
transistors, where the PUFs by exploiting the charge-trappingmemory
and physical variation of the transistors achieve over 1013 reconfigur-
able states for generating physical unclonable primitives. Through
rigorous evaluation, we prove the ideal physical unclonability of the
PUFs, evidenced by their ideal randomness, uniqueness, and irrele-
vance from one another and in reconfiguration operations. The PUFs
with the physical unclonability and reconfigurability demonstrate
robust resilience against advanced machine learning and artificial
intelligence attacking as well as brute force cracking, manifesting their
potential to enable hardware security in edge intelligence. As a
demonstration, we model self-driving vehicular network in Central
Hong Kong, with PUF-based key exchange protocols embedded to
secure the vehicle communication.

Results
Chip-scale reconfigurable PUFs
We develop PUFs with carbon nanotube charge-trapping transistors,
following the fabrication method in our previous report12. Briefly,
semiconducting-phase single-walled carbon nanotubes are sorted out
in solution with PCz polymer, and deposited to fabricate the transis-
tors via photolithography (Fig. 1a–d). Arising fromcharge trapping and
the dynamics (Supplementary Fig. 1), the transistors achieve reconfi-
gurable non-volatile memory with over 32 easily reconfigurable states
(Fig. 1e, f), and the memory is robust at low and even cryogenic tem-
peratures (Supplementary Fig. 2). The transistor fabrication is wafer
scalable, with a yield of >98%, and importantly, sampling tests across
the wafer prove a high uniformity. For example, the memory window
of 300 randomly sampled transistors (Fig. 1e) is 11.40±0.62 V, giving a
variation of only 5.4% (Fig. 1g), though the correspondingly extracted
mobility and subthreshold are a bit more variant (Fig. 1h, i). These
uniform yet variant performance metrics lay the foundation for rea-
lizing physical unclonability towards PUF development. The variation
across the transistors arises from the random distribution of carbon
nanotubes in transistor fabrication. In addition, we demonstrate that
the transistors allow cycle-to-cycle stable resetting and reconfigura-
tion operations (Supplementary Fig. 3).

The wafer-scale transistors with the exhibited uniformity and yet
trivial physical variation as well as the stable memory reconfiguration
suggest the potential in developing PUF. Here we prototype PUF chips
as shown in Fig. 2a,with nine transistors interconnected via one shared
common drain to create a PUF. See Supplementary Fig. 4 for the
optical images of the PUFs.Uponoperation, the states of the individual
transistors are first reset and then configured as required via the gates
(Supplementary Fig. 5). After the configuration, a voltage pulse is
applied to the common drain as the challenge, allowing the sources to
output parallel current pulses as the response (Fig. 2a). The response
carries the variationof the transistors for physical unclonable primitive

generation. To generate the primitives, the response in analog is
binarized via an ADC testing board, and each of the response pulses
produces 12 binary digits. This gives primitives in 9 × 12 bitmaps, i.e., in
a 108-bit length. See Supplementary Fig. 6 for thedesign andoperation
of the ADC testing board. Note the 12-bit length analog-digital con-
version is defined by the ADC used in our work, and other bit length
digits can be generated using other ADC models. Given the reconfi-
gurability of the transistors (Fig. 1f), the PUFs can be easily configured
to over 329 states for primitive generation, far outperforming other
studies (Supplementary Table 1). As an example, herewe show the first
PUF, denoted as PUF1, can be configured to different states from the
initial state for primitive generation and, importantly, after the con-
figurations, it can be reset to the initial state (Fig. 2b, c). The initial state
means all the individual transistors are in the initial high conductance
states. The PUFs starting from a random state can still be configured
and reset (Fig. 2d).

A practical operation of the PUFs demands stable configuration
and primitive generation. This in turn requires the transistors to
withstand constant configuration and stable challenge-response gen-
eration, as proved in Fig. 1j and k. See also Supplementary Fig. 7 for the
highly stable challenge-response generation from the transistors
across 100,000 sampling times in the initial and other states. This
stable transistor operation can give rise to a limited bit error rate (BER)
in PUF primitive generation. Indeed, we demonstrate that the BER in
practical operation of our PUFs is <1% (Fig. 2e, Supplementary Fig. 8).
Given this, the real bit length of our PUF primitives is 106-bit (i.e.,
108 × 99%). Here we note the error bits generated may be further
corrected by hardware (e.g., using other high precision ADCs) and
algorithm designs (e.g., temporal majority voter, median value by
multiple measurements, and error-correcting code; Supplementary
Fig. 9)13. In addition, the PUFs prove a long lifetime, as demonstrated in
Supplementary Fig. 10 where we show the transistors of a typical PUF
are tested up to 120 days and demonstrate stable operation through-
out the period. The operational stability may, however, extend
beyond this.

Physical unclonability
Apractical operation of the PUFs demands ideal physical unclonability.
Taking PUF1 as the example, here we examine the entropy of the pri-
mitives generated by PUF1 at the initial state (Fig. 3a). Entropy
describes the distribution of the 1 s and 0 s bits in the primitives, and
can be quantified by E = � plog2p+ 1� pð Þlog2 1� pð Þ� �

, where p is the
ratio of the 1 s bits9. An entropy of 1means a randomdistribution of the
primitive bits, i.e., the ideal randomness of the primitives13. As
demonstrated, the primitives all present an entropy of ~1, proving an
ideal randomness.We then analyze the normalized Hamming distance
(n-HD). n-HD describes the differences between any two random pri-
mitives, and can be quantified by dH x, yð Þ= 1

n

Pn
i = 11 xi ≠ yi

� �
, where xi

and yi are the corresponding bits in the twoprimitives14. An n-HDof 0.5
represents a maximum uniqueness across the primitives9. As demon-
strated, the primitives all present an n-HD of ~0.5, proving an ideal
uniqueness. See Supplementary Table 2 for the detailed n-HD values
(and also other physical unclonability metric values) as estimated. To
thoroughly investigate the physical unclonability, we further study the
correlation coefficients (CC). CC, denoted by ρx, y, measures the linear
relationship between any two random primitives x and y, and can be
quantified by

ρx, y =
covðx, yÞ
σxσy

=
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where covðx, yÞ is the covariance between the two primitives x and y,
and σx and σy are the respective standard deviations15. A CC of
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0 suggests no linear correlation, i.e., the primitives are irrelevant to
one another9. As demonstrated, the primitives all present a CC of ~0,
proving an ideal irrelevance.

As demonstrated, the entropy, n-HD, and CC metrics all prove an
ideal physical unclonability of the PUFs at the initial state. On the other
hand, as discussed, to apply the PUFs in edge intelligence, a reconfi-
gurability is expected to adapt to the edge applications and enhance
the hardware security. Here we study the physical unclonability of the
PUFs at five other randomly configured states (Supplementary Fig. 11)
and the final state (Fig. 3b). The final state means all the individual
transistors are configured in the final low conductance states. As
shown, the entropy, n-HD, and CC all prove almost ideal metrics, i.e.,
entropy~1, n-HD ~0.5, and CC ~ 0. This demonstrates the robust, ideal
physical unclonability with reconfigurability of the PUFs. A practical
application of the PUFs in edge intelligence would also demand PUF-
to-PUF unclonability to ensure the hardware security. Here we analyze

the n-HDacross the PUF chip as prototyped (Fig. 3c). As demonstrated,
the PUF-to-PUF n-HD matrix is all ~0.5, proving an ideal uniqueness of
the PUFs across the PUF chip. Note that the 40 PUFs are all configured
at the initial state in this analysis.

Having demonstrated the physical unclonability with the
reconfigurability, as well as the PUF-to-PUF unclonability, here we
study the physical unclonability of the PUFs in consecutive config-
uration operations. Starting from the initial state, we consecutively
randomly configure PUF1, and analyze the entropy, n-HD and CC
metrics (Fig. 3d). As demonstrated, the entropy varies within ~0.7 to
~0.95, the CC ~ 0.2 to 0, while the n-HD remains at ~0.5, proving an
almost ideal physical unclonability of the PUFs in consecutive con-
figuration operations towards practical hardware security applica-
tions. Note that the PUFs is configured at 0.1ms per state. The energy
consumed for the configuration is estimated as ~0.432 to 34.992 fJ,
given that the individual transistors require ~0.432 to 3.888 fJ to
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Fig. 1 | Wafer-scale carbon nanotube charge-trapping transistors. a Carbon
nanotube charge-chapping transistors on a 4-inch wafer, with b–d showing the
device configuration, zoomed-in device array, and scanning electron microscopic
carbon nanotube thin-film. Scale bars –2 cm, 100μm, 1mm, and 1μm. e Transfer
outputs of 300 randomly sampled transistors, showing consistent yet varying non-
volatile memory switching. f Reconfigurable memory, showing over 32 easily dis-
tinguishable stable states. Possibility mass function (PMF) of g the memory win-
dow,h themobility extracted from the transfer outputs, and i the sub-subthreshold

swing, sampled from 300 random transistors across the wafer. j Cycling high/low
conductance state configurationwith 1 kHzpulsed gate signal, showing stable state
configuration across 1000 cycles. k Cycling challenge-responses as probed by
positive and negative 1MHz pulsed drain signals at a medium conductance state,
showing stable yet varying responses over 106 cycles. The 106 raw data points are
plotted with 1000-point intervals due to the limitations of the plot drawing
software.
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configure. This minimal energy consumption is ideal for edge
applications.

Attacking resilience
To be applied in practical hardware security applications, the PUFs
must ensure resilience to advanced machine learning and artificial
intelligence (AI) attacking16. Advances show that regression models
can be a powerful tool to attack PUFs and predict the primitives17. Here
we adopt the extreme gradient boosting (XGBoost)18 to attack the PUFs.
XGBoost, with the capability designed to address structured data, is
well-suited to attack PUFs19. As illustrated in Fig. 4a, the XGBoost is first
trained in supervised learning with the primitives generated from the
PUFs, and after training, the XGBoost is assigned to predict primitives.
We train the XGBoost with 20,000 primitives. The results show the
XGBoost proves a poor attacking to the PUFs, with an averaged pre-
diction accuracy of only 62.61% over ten tests (Supplementary
Figs. 12 and 13). To study the attacking resilience further, we analyze
the n-HD and CC between the experimental and predicated primitives.
As shown in Fig. 4b–e, the n-HD is ~0.4 and theCC is ~0.2, proving high-
level uniqueness and irrelevance of the predicated primitives from the
experimental ones, confirming the resilience of the PUFs to XGBoost

attacking. See also Supplementary Figs. 14–17 for the n-HD and CC
matrix details.

Besides regression models, deep learning is widely reported suc-
cessful in attacking PUFs20,21. Here we adopt the generative adversarial
networks (GAN)22 to attack the PUFs. As illustrated in Fig. 4f, the GAN
consists of two deep neural networks, with one assigned as the gen-
erator for learning the primitives and predicating primitives, and the
other assigned as the discriminator to distinguish the predicated pri-
mitives from the experimental ones. See alsoSupplementary Fig. 18 for
the detailed GAN architecture. We train the generator with 16,000
primitives and allow the prediction of 4,000 primitives. We then train
the discriminator to evaluate the prediction. The training loss shows
that the GAN is well-trained for performing this task (Supplementary
Fig. 19). The evaluation results prove again a poor attacking of the GAN
to the PUFs, with an averaged prediction accuracy of only 51.31% over
ten tests (SupplementaryFig. 20).We again analyze then-HDandCC to
study the attacking resilience further. As shown in Fig. 4g–j, the n-HD is
~0.5 and the CC is ~0, proving the predicated primitives are completely
unique and irrelevant to the experimental ones, confirming the resi-
lience of the PUFs to GAN attacking. See also Supplementary
Figs. 21–24 for the n-HD and CC matrix details.
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Fig. 2 | Chip-scale PUFs and operation. a Operation diagram of the PUFs. In the
prototyped chip, 40 PUFs are fabricated, where each PUF consists of nine carbon
nanotube transistors connected via a common drain. In operation, gate pulses are
applied to configure the individual transistors, a 1MHz pulsed voltage signal is
applied to the drain as the challenge, and the sources output current pulses as the
response that are then converted and binarized to generate the digitized PUF
primitives. In binarization, eachof the responsepulses generates 12 binarydigits via
ADC. PUF primitives of a 108-bit length are generated. See Supplementary Fig. 4 for

the optical microscopic images of the PUF chip, and Supplementary Fig. 6 for the
hardware operation of the PUFs. b Configuration and resetting of the first PUF,
denoted as PUF1, from the initial state, with c zoom-in plots showing the first three
consecutive states. The initial state means all the individual transistors are config-
ured to the initial high conductance states. d Configuration and resetting of PUF1
from a random state, s. e Bit error rate (BER) of our PUFs at the initial, final, and
three other states. See also Supplementary Fig. 8 for the detailed BER assessment.
All the BER is lower than 1%, proving the operational reliability of our PUFs.
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The attacking resilience suggests the potential of the PUFs in
securing edge devices. Here we present a common authentication
solution (Fig. 5a)23, where the central server stores the PUF primitives
along with the reconfiguration and challenge instructions. In authen-
tication, the edge user sends a request to the server and is then feed-
back with the instruction for generating a PUF primitive that is sent
back to the server for authentication—if the primitive agrees with that
stored in the server, the user is authorized as right user for access.
Given the attacking resilience and reconfigurability of the PUFs, the
authentication can achieve effective hardware security. Besides, keys
may be generated with PUFs to secure data communications between
the edge devices13. Random numbers are commonly used for key
generation24. However, the lack of entropy renders limited
randomness25. Here we present secure key generation using PUFs
(Fig. 5b)4. In the simpler approach 1, at enrolment, the random number
is encoded with the PUF primitives, such that the output engages the
ideal entropy from the PUF; at key generation, the output throughHash
function generates the key with enhanced randomness. To further
enhance the randomness, at key generation in approach 2, the output
may be encoded with the PUF primitives multiple times before Hash
function. Note that the key generated can pass all the NIST SP800-22
tests, proving their high-level randomness (Supplementary Table 3).
Through the PUF-based approaches, the keys carry the high-level
entropy of the PUFs and ensure the security of edge communications.
See Supplementary Fig. 25 for the secure data communication proto-
cols using PUF-based private and public keys where a public-key
cryptosystem Rivest Shamir Adleman (RSA) is used for the data traffic
encryption17.

Although the PUFs can secure the edge devices, with resilience
against advanced machine learning and AI attacking, the

authentication and communications may still be attacked by brute
force cracking (Fig. 5c), a common method to compromise the
security23. In brute force cracking, one bit of the PUF primitives is
challenged at a time, and the challenge is repeated until successful.
The cracking time is estimated as the averaged time taken to crack, and
is correlated to the bit length of the primitives (Fig. 5d). A 108-bit PUF
primitive can require an estimated 1016 years to crack, far beyond the
time limit for cracking in practical hardware security applications. On
the other hand, meanwhile, the probability of achieving successful
cracking in 10,000 attempts is less than 1/1025 (Fig. 5e), thereby pro-
viding high-level hardware security in practical applications. Note that
the machine learning and AI attacking as well as brute force cracking
resilience of the PUFs far exceeds other studies (Supplementary
Table 1).

Secure self-driving
As discussed above, our PUFs prove performance outperforming
previous reports (e.g., refs. 9,17,26) in, for instance, reconfigurability,
physical unclonability, and attacking resilience (Supplementary
Table 1). We illustrate quantitative comparison in some of the metrics
in Fig. 5h, g. This well demonstrates the capability of our PUFs in
securing hardware security in edge scenarios. Here we explore the
potential application in self-driving. Self-driving is a cutting-edge
technological advancement that leverages artificial intelligence to
deliver intelligent and secure driving experiences27,28. As discussed,
ensuring the security of self-driving requires continuous authentica-
tions, as well as the generation and transmission of sensitive driving
data between vehicles and central communication infrastructures.
However, the vehicle authentication and communications are sus-
ceptible to cyber threats, including jamming, eavesdropping, and
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spoofing, due to the use of open-wireless data exchange channels29.
Protecting self-driving from attacks requires advanced hardware
security solutions.

Here we explore self-driving vehicular network modeling with
PUF-based key exchange protocols embedded to secure vehicle
communication on OMNeT++ platform (Fig. 6a). OMNeT++ is a widely
adopted general platform for building network simulators to imple-
ment and study real-time road traffic and vehicle communications. In
this modeling, the map of Central Hong Kong is used, and the secured
communication among the vehicles is in general phased into Reconfi-
guration, Authentication, and Communication stages (Supplementary
Fig. 26). Briefly, Reconfiguration is designed to allow the vehicles to
update the identities, Authentication is to allow the trust authority to
verify the identities of the vehicles, and Communication is to allow the
vehicles to authenticate their identities before establishing secure
communication. See Supplementary Figs. 27–29 and Supplementary
Note 1 for thedetailed implementationprocesses andprotocols,where
PUF-based keys are exchanged among the vehicles and the trust

authority for the mutual-verification and authentication handshakes.
Particularly, in this modeling, PUF is embedded a PUF Module in each
vehiclemodule to 108-bit responses upon challenges. This PUFModule
is allowed to feature the characteristics of our carbon nanotube PUFs
including the reconfigurability and input-output response times. As
such, a time delay of ~1ms is cost by the PUF Module in generating the
108-bit responses. Note that a lightweight public-key cryptosystem
Elliptic Curve Cryptography29 is used here for PUF-based key exchange
at the edge scenario.

In this self-driving vehicular network modeling, self-driving net-
works of 10–100 vehicles are implemented. See Fig. 6b and Supple-
mentary Movie 1 for the real-time self-driving of 100 vehicles. The
results prove smooth road trafficking flows and vehicle authentication
and communications. To detailly evaluate the self-driving trafficking,
we study the time delay, data transmission, and computation cost due
to the vehicle authentication and communications. As demonstrated,
the time delay is typically ~12ms for the 10–100 vehicle network scales
(Fig. 6c–f), with amaximum delay of ~100ms (Fig. 6g). This well meets
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the self-driving requirements (50ms)30. This well-acceptable time
delay partly arises from the fast generation of primitives of the PUFs
(~1μs). On the other hand, the data transmission for a communication
process is estimated 324 bits per vehicle, and the overhead for
authentication is 1544 bits per vehicle (Fig. 6h). The associated com-
putation cost is estimated as ~0.87ms, given that each computation
goes through six Hash function operations, two symmetric encryption
and decryption operations, four elliptic curve point addition and four
elliptic curve scalar multiplication operations, and two PUF operations
in the authentication and communications. This data transmission and
computation cost overhead outperform the other studies31–33 and,

importantly, well meet the self-driving requirements30. The results
prove the successful use of the PUFs in enabling low-delay, lightweight
vehicle authentication and communications in self-driving. In sum-
mary, our PUF-based key exchange protocol achieves a typical time
delay of ~12ms for the networks and enables lightweight authentica-
tion and communication with only 324 bits per vehicle for commu-
nication and 1544 bits for authentication, alongside a low
computational cost of ~0.87ms per vehicle. As previously demon-
strated, our PUFs can provide high-level resilience to advanced
machine learning and AI attacking as well as brute force cracking.
Given this, as the success possibility of cracking in 10,000 attempts is
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less than 1/1025, it is nearly impossible to attack successfully in practical
self-driving in a time window of ~10ms.

Discussion
We have developed chip-scale reconfigurable PUFs to enhance hard-
ware security in edge intelligence. The PUFs, designed with carbon
nanotube based charge-trapping transistors, achieve an exceptional
reconfigurability exceeding 1013 states by exploiting the non-volatile
charge-trapping memory, and prove physical unclonability with ideal
randomness, uniqueness, and irrelevance by harnessing the entropy
variation arising from the randomly arranged carbon nanotube net-
work. With the physical unclonability and reconfigurability, the PUFs
demonstrate robust resilience against advancedmachine learning and
AI attacking aswell asbrute forcecracking. Theseperformancemetrics
surpass both existing hardware security benchmarks and state-of-the-
art advancements, manifesting the potential of the PUFs for securing
edge intelligence applications. As a practical demonstration, we show
that the PUFs can be embedded to enable secure self-driving with low-
delay, lightweight secure vehicle authentication and communications.

Given this performance, alongwith their scalability and low-power
operation as well as cryogenic temperature robustness, the PUFs are
readily integrated into diverse edge intelligence systems beyond self-
driving vehicles, for instance, robotics, drones and unmanned aerial

vehicles, and IoT systems, for hardware security. Looking forward to
bridging the lab-to-fab gap for our PUFs towards the real-world
applications, our PUFs expect to adapt to industrial-scale advanced
photolithographic systems for the manufacture of PUFs with high
density of miniaturized transistors and low power consumption. The
manufacture also expects to meet CMOS integration towards integral
PUFs with the analog front end and digital logic fabricated and inte-
grated onto one single chip. At the system level, multi-channel pipe-
lined ADCs with on-chip buffering and microprocessors may be
integrated for operating the PUFs. Furthermore, hardware-algorithm
co-designs inoperation instructions anderror correction strategies are
demanded for practical operations of the PUFs.

Methods
Carbon nanotubes
Carbon nanotubes are processed following our previous report (12).
1mg/mL single wall carbon nanotubes are dispersed in toluene with
2mg/mL poly[N-(1-octylnonyl)-9H-carbazole-2,7-diyl] (PCz). The mix-
ture is tip-sonicated (400W, 1 h) and centrifuged (20,000× g, 2 h), and
90% of the supernatant is collected. The collected supernatant is
vacuum filtered, washed with tetrahydrofuran, and redispersed in
chloroformwith anadditional sonication (400W,0.5 h) to obtain high-
purity semiconducting-phase carbon nanotubes in solution. The
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solution is deposited to yield carbon nanotube thin-films for PUF
fabrication by dip coating (lowering speed 500 µm/s, lifting speed
100 µm/s, repeated for 15 times), followed by post-bake (150 °C).

PUF fabrication
The PUFs are fabricated via photolithography. The SiO₂/Si substrate is
cleaned with deionized water, acetone, and isopropanol via bath
sonication for 10min each. The carbon nanotube channel is patterned
with photolithography and etched with oxygen plasma, and is then
washedwith acetone to remove the photoresist. The source, drain, and
gate electrodes (5 nm Ti and 15 nm Au) are patterned with photo-
lithography, deposited via electron beam evaporation (IVS EB-600),
and finalized with a lift-off process. The 20 nm HfO₂ dielectric layer is
deposited by atomic layer deposition. The fabricated PUFs are then
baked at 150 °C for 1 h.

Transistor characterizations
The output and transfer of the transistors are measured with Tek-
tronix Keithley 4200A-SCS in DC mode. The multistate conductance
states and cycling endurance of the transistors are measured with an
arbitrary waveform generator (Siglent SDG7032A) and a digital sto-
rage oscilloscope (SDS2354X), in conjunction with operational
amplifiers (TL082CP) and external resistors that match the signals.
The state configuration is conducted with the pulse measure unit
(PMU) of Tektronix Keithley 4200A-SCS. All the above tests are
performed in ambient conditions. The 100–400K tests are per-
formed in high vacuum (~10−6mbar), and the temperature of the
probe stage is regulated by a thermostat with a heating plate and
liquid nitrogen cooling.

PUF operation
For the initial state PUF test, the test is conducted when the individual
transistors are all configured to the initial high conductance states. For
the other reconfigurable state tests, the states of the individual tran-
sistors are configured as designed with PMU. Primitive generation is
performed with an ADC testing board. The ADC testing board consists
of analog-to-digital converter (Zhengzhou Hengkai Electronic Tech-
nologyCo.)modules. The PUFs are connected to the probe station, the
arbitrary waveform generator (Siglent SDG7032A), the digital storage
oscilloscope (SDS2354X), the ADC testing board, and also trans-
impedance amplifiers (TIA) via a breadboard, as shown in Supple-
mentary Fig. 6. The transistors are configured and reset (via the gates)
and appliedwith the challenge pulse (via the commondrain) to get the
current pulses as the response (via the sources). Each of the response
pulses from the sources is converted to a voltage pulse via the TIA
modules, and then binarized into 12 binary digit bits via the ADC
modules. The output binary digit bits are acquired via a laptop port
using a specialized acquisition software of the ADCmodules. The PUFs
are operated with a frequency of 10 kHz for the state configuration,
and a frequencyof 1MHz for challenge-responsegeneration. However,
due to the noise and frequency limitations of the breadboard and the
ADC testing board, the actual operation frequencies may be
decreased a bit.

XGBoost attacking
20,000 primitives containing 108-bit binary digits are separated into
10,000 odd rows and 10,000 even rows by parity. They are then
reorganized into 216 columns of data frames from bit 1 to bit 108. By
doing so, the primitives are restructured such that one column is an
odd row containing 108 “feature” columns, and another column is an
even row containing 108 “target” columns. The data frames are split,
with 80% for training and 20% for validation. Following this, XGBoost
classification (https://xgboost.readthedocs.io/en/stable/#) is used to
fit a specific XGBoost classifier for each primitive bit by looping
through all the 108 bits. After each bitmodel is trained, the accuracy of

the validation set is evaluated, and the predictions are recorded and
collected. In this work, n-HD and CC between 10 predicted primitives
and 10 experimental primitives are extracted to draw the heat maps.
The above XGBoost attacking is repeated ten times, with the data
frames randomly split in each of the tests.

GAN attacking
20,000primitives are converted into a tensor by replacing 0with −1 as
the dataset. The dataset is then split, with 80% for training and 20% for
validation. Following this, GAN (https://github.com/goodfeli/
adversarial) is adapted for modeling the primitives. GAN consists of
a generator and a discriminator. For the generator, the size of each
layer is increased sequentially, such that the generator can map ran-
dom input to PUFprimitives. For the discriminator, it handles the input
primitives to determine if the primitives are from the dataset. The
discriminator uses a Leaky Rectified Linear Unit (ReLU) as the activation
function, and Wasserstein loss formulation plus a gradient norm pen-
alty to stabilize the training. By doing so, the generator keeps gen-
erating primitives, and the discriminator keeps learning the primitive
generation in the dataset. The training is repeated for 150 epochs.After
the training, the accuracy of the discriminator on validation is eval-
uated. In this work, n-HD and CC between 10 predicted primitives and
10 experimental primitives are extracted to draw the heat maps. The
above GAN attacking is repeated ten times, with the 20,000 primitives
randomly split in each of the tests.

Self-driving
Self-driving is modeled on OMNeT++ 6.0.2 (https://omnetpp.org/).
First, the map of Central Hong Kong (114°15′ E, 22°29′N to 114°17′ E,
22°27′N) is downloaded from OpenStreetMap (https://www.
openstreetmap.org/), a public street map website. Then, the files con-
taining the map and 10-100 vehicle routing are built in the Simulation
of UrbanMobility 2.10.0 (SUMO). Finally, self-drivingmodeling runs on
the OMNeT++ platform using SUMO in Linux. OMNeT++ is adapted for
detailed packet-level simulation of data transmission and reception
between the modeled self-driving vehicles, with the PUF-based key
exchange protocol embedded for securing the vehicle authentication
and communications. See Supplementary Fig. 26 and Supplementary
Note 1 for the detailed secure communication implementation scheme.
See Supplementary Figs. 27–29 for the detailed PUF-based key
exchange protocol and implementation. See Supplementary Movie 1
for the real-time self-driving network of 100 vehicles.

Data availability
All data supporting the findings of this study are available on Figshare
https://doi.org/10.6084/m9.figshare.28953254.

Code availability
Customized Python codes and C++ codes for XGBoost attacking and
GAN attacking as well as PUF enabled vehicle communication on open-
source OMNeT++ used in this study are available at Code Ocean
https://codeocean.com/capsule/4214745/tree/v1.
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