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The brain exhibits rich dynamical properties that underpin its remarkable
temporal processing capabilities. However, spiking neural networks (SNNs)

inspired by the brain have not yet matched their biological counterparts in
temporal processing and remain vulnerable to noise perturbations. This study
addresses these limitations by introducing Rhythm-SNN, which draws
inspiration from the brain’s neural oscillation mechanism. Specifically, we
employ heterogeneous oscillatory signals to modulate spiking neurons,

enforcing them to activate periodically at distinct frequencies. This approach
not only significantly reduces neuronal firing rates but also enhances the
capability and robustness of SNNs in temporal processing. Extensive experi-
ments and theoretical analyses demonstrate that Rhythm-SNN achieves state-
of-the-art performance across a broad range of tasks, with a markedly reduced
energy cost, even under strong perturbations. Notably, in the Intel Neuro-
morphic Deep Noise Suppression Challenge, Rhythm-SNN outperforms deep

learning solutions by achieving over two orders of magnitude in energy
reduction while delivering award-winning denoising performance.

Spiking neural networks (SNNs), which draw inspiration from the brain’s
cognitive architecture and operational mechanisms, represent a pro-
mising avenue for brain-inspired artificial general intelligence*. When
deployed on neuromorphic chips®®, SNNs demonstrate exceptional
processing speed and energy efficiency across various applications,
such as object detection®’, speech recognition*®, odor recognition’,
and robotics'*". Despite these advancements, current SNNs face sig-
nificant challenges in processing temporal signals characterized by
complex multiscale dynamics. Moreover, they have yet to match the
extraordinary efficiency and robustness of the human brain. To address
these challenges, we turn our attention to the operational mechanisms
of the human brain, particularly exploring neural oscillations, which
may offer promising solutions to enhance the capabilities of SNNs.

Neural oscillations are rhythmic or repetitive patterns of neural
activity in the brain'?". These oscillations play critical roles in various
brain functions, including synchronization and communication, per-
ception, attention, memory, and motor control>*%, As illustrated in
Fig. 1a, this fundamental neural mechanism provides valuable insights
for addressing the challenges in SNNs. First, neural oscillations facil-
itate the synchronization and integration of information across various
timescales. They operate across a wide range of frequencies, from the
slow delta band (<4 Hz) to the rapid gamma band (>30 Hz)". This
frequency diversity enables the brain to flexibly encode, transmit, and
integrate information across various timescales, thereby enhancing
temporal processing capacity. For instance, neural oscillations con-
tribute to effective speech and language processing, from the rapid
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Fig. 1| Illustration of the key characteristics of the neural oscillation
mechanism and the design of Rhythm-SNN. a Neural oscillations spanning a wide
range of frequencies have been observed across various brain regions, which play
crucial roles in neural computation. Top Right: Neural oscillations operating at
various frequencies enable the brain to synchronize and integrate information
across diverse timescales. Bottom Left: Neural oscillations enhance energy effi-
ciency by selectively activating distinct neural populations at specific phases of the
oscillatory signal. Bottom Right: Neural oscillations promote pattern separation,
allowing for robust decoding of the target signal from noisy inputs. b In the pro-
posed Rhythm-SNN, neurons are modulated by oscillatory signals of different
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frequencies, which are represented by different colors. ¢ Neuronal dynamics of
rhythmic spiking neurons depicted in (b). The charging and firing behaviors of
these neurons are influenced by the square wave modulation signals. Note that a
constant input current is applied to these neurons in this illustration. d The
unfolded computational graph of rhythmic spiking neurons is shown in (c). These
neurons alternate periodically between "ON' and ~OFF' states following neural
modulation. During the ~OFF' state, membrane potentials remain unchanged
during forward propagation, thereby conserving energy. In backward propagation,
gradients effectively propagate by skipping the ~OFF' states, thus establishing a
highway for gradient backpropagation through time.

encoding of phonemes to the integration of words, and the compre-
hension of longer linguistic constructs, such as phrases and
sentences'®”. Second, neural oscillations contribute to the brain’s
energy efficiency. Studies have shown that cortical neuronal activities
exhibit high sparsity, with less than 1% of neurons active concurrently's,
This is achieved with the assistance of neural oscillations that coordi-
nate the timing and synchronization of neuronal firing among various
neural populations. By enabling the selective activation of specific
neural populations while keeping others inactive'*"’, it is ensured that
only relevant information is processed while minimizing unnecessary
neuronal activity, thereby effectively promoting energy-efficient

computation®, Third, neural oscillations enhance the robustness of
communication and information processing in the brain amidst var-
ious noises”. The sparse neuronal activities facilitated by neural
oscillations reduce the overlap between representations of different
stimuli, thereby enhancing pattern separation. This improved separa-
tion enables robust decoding from noisy inputs.

Drawing inspiration from the key characteristics of neural oscil-
lations, we propose a neural modulation mechanism that employs
oscillatory signals to modulate the neuronal dynamics of spiking
neurons. This innovation leads to the development of a new genera-
tion of SNNs, termed Rhythm-SNNs, which capitalize on the brain’s
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remarkable capabilities in temporal processing, energy efficiency, and
robustness against perturbations. Our comprehensive experimental
results indicate that Rhythm-SNNs achieve state-of-the-art (SOTA)
accuracy across a wide range of challenging temporal processing tasks,
while reducing energy cost by up to an order of magnitude compared
to conventional SNNs that do not incorporate this neural modulation
mechanism. Moreover, Rhythm-SNNs demonstrate significantly
enhanced working memory capacity and improved robustness against
various types of noise and adversarial attacks.

The comprehensive performance enhancements offered by the
Rhythm-SNNs present significant opportunities for addressing com-
plex temporal processing tasks at the edge. To illustrate this advan-
tage, we applied Rhythm-SNNs to the Intel Neuromorphic Deep Noise
Suppression (N-DNS) Challenge®. This challenge requires the devel-
opment of neuromorphic speech enhancement models that exhibit
superior temporal modeling capabilities, low latency, and minimal
energy consumption - criteria that traditional signal processing and
deep learning models often struggle to meet simultaneously. By
leveraging the proposed rhythmic modulation mechanism, our
Rhythm-SNN produces high-quality audio output that surpasses
award-winning entries in the challenge, while reducing energy cost by
two orders of magnitude compared to the deep learning models. This
breakthrough paves the way for the next generation of neuromorphic
hearing devices, such as hearing aids and headsets, capable of oper-
ating efficiently in complex environments.

Results

Rhythm-SNN: harmonizing rhythms and spikes

Neural oscillations, characterized by rhythmic patterns in membrane
potentials and spike trains, are crucial for modulating neuronal activ-
ities within the brain'*"®. Previous neuroscience studies have demon-
strated that sensory perception and memory maintenance are
selectively regulated through the modulation of neural oscillations* .
Drawing inspiration from this fundamental neural mechanism, we
propose a rhythmic neural modulation framework for SNNs. Within
this framework, an oscillatory signal, denoted as m(t), is employed to
modulate the neuronal dynamics of spiking neurons. In general, this
rhythmic neural modulation can be expressed mathematically as fol-
lows:

S(t)=Neuron(I(¢t), U(t), ¥; m(t)), (1)

where S(¢) represents the output spike emitted at time ¢, /(t) denotes
the input current from presynaptic neurons, and U(t) and 8 correspond
to the membrane potential and the firing threshold of the spiking
neuron, respectively.

Within the proposed framework, the oscillatory signal m(t) is
modeled as a periodic function. Specifically, as illustrated in Fig. 1c, we
employ a square wave function for m(¢t) to modulate the updates to the
neuron’s membrane potential and its firing activities (see “Methods”
section). This approach enables the neurons to alternate between ‘ON’
and ‘OFF states. During the ‘ON’ state, the neurons are updated as
usual, whereas in the ‘OFF state, the neuronal updates are halted.
Neurons modulated by oscillation signals of similar period and phase
are expected to synchronize in their firing activity. This synchronized
firing will lead to oscillatory neural activities at the population level,
aligning with observations of neural oscillation in human electro-
physiological studies***. This design offers four notable benefits. First,
as depicted in Fig. 1d, the introduction of the rhythmic modulation
mechanism allows neuronal state updates to be skipped during ‘OFF
states, significantly reducing overall neuronal activity and directly
enhancing energy efficiency. Second, the ‘OFF’ states act as a shortcut
during gradient backpropagation, effectively shortening the gradient
propagation pathway. This mechanism is reminiscent of the residual
connections commonly used in artificial neural networks (ANNs)*,

which can facilitate long-term credit assignment. Third, the rhythmic
modulation mechanism prevents the membrane potential of spiking
neurons from being updated during ‘OFF’ states, facilitating memory
preservation and hence enhancing their memory capacity. Fourth, the
resulting sparse neuronal activity promotes pattern separation during
signal processing, which in turn improves the model’s robustness to
perturbations. Another key feature of the proposed oscillatory signals
m(t) is their design to encompass diverse periods, duty cycles, and
phases, as indicated by different colors in Fig. 1b. This temporal het-
erogeneity enriches the network dynamics, facilitating effective
information synchronization and integration across a wide range of
timescales.

Furthermore, we theoretically analyze the computational advan-
tages of Rhythm-SNNs from three aspects (see “Methods” section).
First, we examine the backpropagation pathways and reveal that the
oscillatory modulating signal m(¢) significantly alleviates the issue of
exponential gradient decay with distance, a common challenge during
gradient-based training of SNNs. This suggests that incorporating
oscillatory modulation can improve the learning of long-term tem-
poral dependencies. Second, we assess the memory capacity of
Rhythm-SNNs using the mean recurrent length metric”’. Our theore-
tical analysis shows that our method effectively reduces the mean
recurrent length, thereby enhancing memory capacity. Third, we
evaluate the robustness of Rhythm-SNNs against various types of
noises and adversarial attacks through perturbation analysis of spike
responses®. This analysis demonstrates that Rhythm-SNNs can
enhance robustness to perturbations by reducing the spiking Lipschitz
constant associated with the spike train. These theoretical advantages
are also supported by the extensive experimental results presented in
the following sections.

Rhythm-SNN facilitates effective and efficient temporal
processing

Temporal processing is vital for accurate perception and integration of
time-dependent information, which is essential for functions such as
speech recognition and motor control. In this section, we evaluate the
effectiveness of the proposed Rhythm-SNN across a wide range of
temporal processing tasks, including visual recognition on Sequential-
MNIST (S-MNIST) and Permuted Sequential-MNIST (PS-MNIST)*,
speech recognition on Spiking Heidelberg Digits (SHD)*® and Google
Speech Commands (GSC)*, bio-signals recognition on Electro-
cardiogram (ECG)*, speaker identification on VoxCelebl®, language
modeling on Penn Tree Bank (PTB)**, and event stream recognition on
DVS-Gesture®.

The SNN architectures evaluated in this section are state-of-the-
artand serve as representative models for temporal processing tasks in
the field of SNNs**~*%, These models primarily focus on enhancing the
temporal processing capabilities of SNNs by designing advanced
spiking neuron models that incorporate learnable decay factors®>***°,
gating functions for neuron updates*, and dendritic structures®. To
evaluate the effectiveness and broad applicability of our method, we
conducted experiments by incorporating the proposed rhythmic
modulation mechanism into these representative SNN architectures.
As shown in Table 1 and Fig. 2a, Rhythm-SNNs consistently outperform
their non-Rhythm counterparts. Notably, the performance of feed-
forward SNNs improves substantially upon incorporating the pro-
posed rhythmic neural modulation mechanism, surpassing many
competitive baseline models that utilize recurrent network dynamics
to enhance temporal processing capacity. This highlights the sig-
nificant effectiveness of the proposed mechanism in enhancing tem-
poral processing. Following previous research®’, we also conducted a
detailed analysis to assess the capability of our method in facilitating
multiscale temporal processing in SNNs. As shown in Fig. 2b, the
accuracy of the SRNN model declines rapidly as the sequence length
increases from 500 to 1500 on the DVS-Gesture dataset. In contrast,
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Table 1| Performance comparison of Rhythm-SNNs with
state-of-the-art SNN models

Dataset Model Architecture  Parameters Accuracy?®/
Perplexity

S-MNIST FFSNN* Feedforward 0.09M 59.24%
Rhythm- Feedforward 0.09M 96.43%
FFSNN
PLIF*3° Recurrent 0.16M 91.79%
GLIF** Recurrent 0.16M 96.64%
LSNN*° Recurrent 0.07M 93.70%
ASRNN* Recurrent 0.16M 98.70%
DH-SRNN®* Recurrent 0.08M 98.90%
Rhythm- Recurrent 0.08M 99.00%
DH-SRNN

PS-MNIST FFSNN* Feedforward 0.09M 42.96%
Rhythm- Feedforward 0.09M 95.01%
FFSNN
GLIF* Recurrent 0.16M 90.47%
ASRNN?*? Recurrent 0.16M 94.30%
DH-SRNN?®*® Recurrent 0.08M 94.52%
Rhythm- Recurrent 0.08M 96.73%
DH-SRNN

SHD FFSNN* Feedforward 0.09M 48.10%
DH-SFNN*® Feedforward  0.05M 92.10%
Rhythm- Feedforward 0.05M 92.40%
DH-SFNN
SRNN"® Recurrent 0.17M 81.60%
ASRNN** Recurrent 0.14M 82.82%
Rhythm- Recurrent 0.14M 86.48%
ASRNN

ECG FFSNN* Feedforward 0.40K 55.99%
LSNN*4© Recurrent 1.80K 81.93%
ASRNN* Recurrent 1.80K 85.90%
Rhythm- Recurrent 1.80K 86.41%
ASRNN
DH-SRNN** Recurrent 1.78K 86.35%
Rhythm- Recurrent 1.78K 87.43%
DH-SRNN

GSC LSNN*° Recurrent 4.19M 91.20%
ASRNN?*? Recurrent 0.31M 92.10%
DH-SFNN?®® Feedforward  0.11M 94.05%
Rhythm- Feedforward 0.11M 94.47%
DH-SFNN

VoxCeleb1  FFSNN* Feedforward  0.93M 29.42%
Rhythm- Feedforward 0.93M 31.42%
FFSNN
PLIF*3° Feedforward  0.93M 31.03%
Rhythm- Feedforward 0.93M 33.45%
PLIF

PTB SRNN* Recurrent 13.86M 129.27
Rhythm- Recurrent 13.86M 121.55
SRNN
PLIF*3° Recurrent 13.86M 128.69
Rhythm- Recurrent 13.86M 14.73
PLIF
ASRNN**? Recurrent 13.86M 118.27
Rhythm- Recurrent 13.86M 14.76
ASRNN

* Reproduced results based on the publicly available codes.
The bolded entries in the table highlight the results obtained in this study.

incorporating an adaptive firing threshold with a slow-decaying time
constant significantly improves the performance of the ASRNN*
model over the SRNN. Even greater performance improvements are
observed when our proposed rhythmic modulation mechanism is
integrated into the SRNN, with our results at a sequence length of
1,500 surpassing those of the ASRNN at a sequence length of 500.
Furthermore, our method can synergize with the adaptive firing
threshold approach, as evidenced by further accuracy improvements
in the Rhythm-ASRNN.

To elucidate how the proposed rhythmic neural modulation
effectively facilitates learning multiscale temporal dependencies, we
visualize the normalized gradients of FFSNN, ASRNN, and their
rhythmic counterparts on the PS-MNIST dataset. As illustrated in
Fig. 2c, Rhythm-SNNs could allocate more gradients to early time steps
compared to their non-Rhythm counterparts, suggesting the proposed
method establishes a more effective gradient backpropagation path-
way during training. More results on LSNN and SRNN are provided in
Supplementary Fig. S2. Furthermore, we present two concrete exam-
ples in Supplementary Fig. S3 to demonstrate how Rhythm-SNNs
improve temporal processing tasks that involve long-range depen-
dencies. This enhancement in gradient backpropagation also accel-
erates training. As demonstrated in Fig. 2d, our method enables
significantly faster convergence during training and exhibits greater
stability, as evidenced by the smaller standard deviations across dif-
ferent random initializations.

We further evaluate the energy efficiency of the proposed
Rhythm-SNNs. Following prior works***’, we calculate the model's
energy cost based on Synaptic Operations (SynOps) and Neuron
Operations (NeuOps) incurred during data processing and neuron
updates. As shown in Fig. 2e, Rhythm-SNNs reduce energy cost com-
pared to their non-Rhythm counterparts by up to an order of magni-
tude while achieving higher accuracies. This enhanced energy
efficiency can be directly attributed to the sparser neuronal activity, as
shown in Fig. 2f and Supplementary Fig. S4. A detailed quantitative
analysis and FPGA-based neuromorphic hardware evaluation of energy
efficiency between Rhythm-SNNs, conventional SNNs, and ANNs are
provided in Supplementary Tables 5-7. These results highlight the
significant potential of our method to enhance the energy efficiency of
neuromorphic computing systems.

Rhythm-SNN enhances working memory capacity

Working memory is crucial in the neural system as it enables the
temporary storage and manipulation of information necessary for
complex cognitive tasks, such as reasoning, learning, and decision-
making. In this section, we further assess the working memory capacity
of Rhythm-SNNs using the STORE-RECALL task****. As illustrated in
Fig. 3a and b, a sequence of binary values is randomly generated and
subsequently encoded into spike trains by two groups of encoding
neurons. These neurons generate spike trains within a 100 ms encod-
ing time window for each binary value, following a Poisson distribution
with an average firing rate of 50 Hz. Upon receiving the ‘STORF’
command, the network is required to store the binary value present
during that period. A subsequent ‘RECALL’ command prompts the
network to output the stored value. In accordance with previous
research****, we utilize two SRNN architectures for this task, each
featuring a different type of neuron model with distinct mechanisms
for adaptive firing threshold updates (see Supplementary Section 2),
i.e., Adaptive-Leaky Integrate and Fire (ALIF)*° and Double EXponential
Adaptive Threshold (DEXAT)*, referred to as Rhythm-ALIF and
Rhythm-DEXAT, respectively. More details of the experimental setup
are provided in “Methods” section.

As shown in Fig. 3b, the rhythmic neural modulation enables
Rhythm-DEXAT to maintain a lower firing rate at the hidden layer,
resulting in more stable output predictions between ‘STORE’ and
‘RECALL’ commands compared to DEXAT. Similar results are observed
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with Rhythm-ALIF, as detailed in Supplementary Fig. S5. As illustrated
in Fig. 3¢, our experimental results demonstrate that Rhythm-SNNs
significantly outperform their non-Rhythm counterparts in recall per-
formance. Additionally, the reduced standard deviation of recall errors
indicates that our models exhibit greater robustness. Figure 3d, e
further illustrates the learning dynamics of different models, with
Rhythm-SNNs converging much faster than their non-Rhythm coun-
terparts. This demonstrates that the proposed rhythmic neural

modulation mechanism effectively facilitates the learning of multiscale
temporal dependencies, consistent with the observations in the pre-
vious section. To further evaluate the increased memory capacity of
Rhythm-SNNs, we designed a more challenging delayed recall task in
which the models are required to recall temporally encoded spike
patterns after a specific delay. A comparison of recall accuracy
between vanilla ALIF and Rhythm-ALIF across varying numbers of
input patterns demonstrates a significantly enhanced memory
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capacity of our approach (see Supplementary Figs. S7 and S8). These
results underscore the efficacy of our proposed method in enhancing
working memory capacity and corroborate the theoretical analysis
presented in “Methods” section.

Rhythm-SNN enhances robustness against perturbations
The sparse neuronal activity facilitated by Rhythm-SNNs can enhance
pattern separation, potentially leading to increased model robustness. In
this section, we evaluate the robustness of Rhythm-SNNs against various
perturbations, including input-related Gaussian noise, network-related
noises (i.e., thermal noise, silence noise, and quantization noise), and
adversarial attacks. Gaussian noise simulates the disturbances that occur
in the input data, whereas network-related noise represents the hard-
ware noise commonly found in mixed-signal neuromorphic chips,
affecting all neurons in the network. Additionally, adversarial attacks
involve deliberate manipulations of input data aimed at deceiving
machine learning models, leading them to make incorrect predictions. In
our experiments, we generate input- and network-related noises in
accordance with prior studies’®*%, and employ the Fast Gradient Sign
Method (FGSM)* and Projected Gradient Descent (PGD)*® for black and
white box attacks, respectively. More details of the experimental setup
are provided in “Methods” section.

In Fig. 4, we present the test results obtained from the PS-MNIST
dataset under various types of noise perturbations, where higher bars

indicate more severe performance degradation. Our Rhythm-ASRNNs
consistently outperform ASRNNs across all testing scenarios. Specifi-
cally, as shown in Fig. 4a, Rhythm-ASRNNs maintain stable perfor-
mance across four different input noise levels, experiencing only a
0.005 accuracy drop ratio, compared to the 0.087 accuracy drop ratio
obtained by ASRNNs at the highest noise level. Regarding network-
related noises, Rhythm-ASRNNs exhibit a more gradual increase in
accuracy drop ratio as noise level rises, as illustrated in Fig. 4b—-d. To
further demonstrate the effectiveness of our approach, we visualize
the perturbation distance across different network layers in Fig. 4e-h.
The perturbation distance is calculated as the Euclidean distance
between network representations before and after introducing noise.
It is evident that the perturbation distance increases in deeper layers
for ASRNNs, whereas it remains significantly lower for Rhythm-
ASRNNs, indicating that our model achieves more robust network
representations. Additionally, visual illustrations of hidden layer
representations for ASRNNs and Rhythm-ASRNNs are provided in
Supplementary Figs. S11 and S12, respectively, which further demon-
strate the smaller variations in network representations achieved by
our Rhythm-ASRNNSs.

To further investigate which temporal properties of the proposed
rhythmic neural modulation mechanism contribute to enhanced net-
work robustness, we conducted experiments by adjusting the duty
cycle (‘dc’) of oscillatory signals used in Rhythm-ASRNN and examined
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Fig. 4 | Results of ASRNNs and Rhythm-ASRNNSs against various noise pertur-
bations. a-d Comparison of the accuracy drop ratio of ASRNNs and Rhythm-
ASRNNSs under varying levels of input-related Gaussian noise and network-related
noises, including thermal noise, silence noise, and quantization noise.

e-h Comparison of perturbation distances for ASRNNs and Rhythm-ASRNNs across
various types of noise perturbations, illustrated in (a-d). Note that the highest
noise level was utilized in this analysis. The perturbation distance is quantified using
the Euclidean distance between the network representations prior to and following
the introduction of noise. i-1 Comparison of the changes in average firing rate and

average perturbation distance for ASRNNs and Rhythm-ASRNNs under various
types of perturbations. Rhythm-ASRNNs with a smaller duty cycle exhibit greater
robustness against noise perturbations. In the legend, “dc' represents the duty
cycle of the oscillatory modulation signal used in Rhythm-ASRNNs. The numbers
following the colon specify the lower and upper bounds of the initial distribution of
the duty cycle. m-p Comparison of the accuracy drop ratio and perturbation dis-
tances for ASRNNs and Rhythm-ASRNNSs across various types and levels of adver-
sarial attacks. The error bars represent the standard deviation of three runs with
different random seeds.

its influence on the network firing rate and network representation. As
shown in Fig. 4i-1, the variability in the average firing rate decreases
after incorporating the proposed rhythmic neural modulation
mechanism, leading to reduced perturbations in the network repre-
sentation. Additionally, we observed that a smaller duty cycle results in
greater robustness against noise perturbations. These findings suggest
that reducing the duty cycle of oscillatory signals, thereby promoting
sparser neuronal activity, enhances the network’s robustness.
Regarding the assessment of adversarial attacks, as shown in
Fig. 4m and o, ASRNNs exhibit significant performance degradation
under both FGSM and PGD attacks. In contrast, Rhythm-ASRNNs
consistently demonstrate a substantially lower accuracy drop ratio in

both attack scenarios. This enhanced robustness can also be explained
by the sparser neuronal activity achieved in Rhythm-ASRNN, with
details provided in Supplementary Fig. S10. Overall, these empirical
results highlight the critical importance of enforcing sparse neuronal
activity in enhancing the robustness of the network. This finding is
further corroborated by our theoretical analysis of the model's
robustness against perturbations (see “Methods” section).

Application in speech enhancement tasks

Human communication predominantly relies on speech, which serves
as an effective medium for expressing thoughts and emotions. How-
ever, as illustrated in Fig. 5a, speech communication systems often
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quality (measured by SI-SNR, OVR, SIG, and BAK metrics) and computational cost
between Rhythm-GSNN and leading speech enhancement methods.

d-f Visualization of the noisy audio spectrogram, the denoised audio spectrogram
generated by Rhythm-GSNN, and the clean audio spectrogram, respectively.

capture unwanted environmental interferences, such as ambient noise
and reverberations, which can significantly degrade the quality of the
speech signal. To address these challenges, speech enhancement (SE)
technologies have been developed to improve clarity and intelligibility
by mitigating noise and distortions. Over the past decade, deep
learning techniques have significantly enhanced SE systems. However,
deploying these deep learning solutions on edge devices, such as
headphones and hearing aids, remains challenging due to their sub-
stantial computational demands and latency issues. The proposed
Rhythm-SNNs offer promising solutions to address these limitations
inherent in deep learning approaches.

Motivated by this, we evaluate the effectiveness of Rhythm-SNNs
on the SE task using the latest Intel N-DNS Challenge dataset*’, which
provides a comprehensive evaluation across a wide range of lan-
guages, noise types, and acoustic conditions. Inspired by the winning
entry of the latest Intel N-DNS Challenge, we develop a Rhythm Gated

Spiking Neural Network (Rhythm-GSNN) model (see Supplementary
Fig. S9 for more details). As illustrated in Fig. 5b, this model first
encodes noisy speech into spike trains using a Short-Time Fourier
Transform (STFT) encoder. Subsequently, the computationally inten-
sive SE workload is handled by the Rhythm-GSNN. Finally, the output
spike trains from the Rhythm-GSNN are decoded into audio signals via
an inverse STFT (iSTFT) decoder. We compare our model with several
SOTA approaches, including both deep learning solutions (i.e.,
DCCRN*, FullSubNet®®) and neuromorphic solutions (i.e., Microsoft
NsNet2*, SDNN?°, PSNN*’, and GSNN*?). A comprehensive set of eva-
luation metrics is employed in this study to ensure rigorous assess-
ment of the generated audio samples, including Scale-Invariant
Source-to-Noise Ratio (SI-SNR)*?, Overall Audio Quality (OVR)*,
Speech Signal Quality (SIG)**, and Background Noise Quality (BAK)**.
Higher values of these metrics indicate better audio quality. More
details of the experimental setup are provided in “Methods” section.
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As summarized in Fig. 5¢, our Rhythm-GSNN model demon-
strates superior performance that is comparable to, or even sur-
passes, the SOTA deep learning and neuromorphic models. Notably,
the integration of the proposed rhythmic neural modulation
mechanism significantly enhances the performance of the original
GSNN model, particularly in terms of SI-SNR and SIG metrics. Fur-
thermore, we randomly selected a speech sample from the test set
and plotted its noisy spectrogram, denoised spectrogram, and clean
spectrogram in Fig. 5d-f, respectively. The denoised spectrogram
produced by our Rhythm-GSNN model closely matches the reference
clean spectrogram, demonstrating the high effectiveness of our
method. Additionally, Rhythm-GSNN exhibits substantial advantages
in energy efficiency. As reported in Fig. 5c, Rhythm-GSNN reduces
energy cost by two orders of magnitude compared to the leading
deep learning solution, FullSubNet*°. It is also worth noting that the
energy cost of Rhythm-GSNN is less than half of that of its non-
rhythm counterpart. These results clearly demonstrate the super-
iority of our method in simultaneously enhancing the model’s
denoising capability and energy efficiency. Overall, the remarkable
performance achieved by our Rhythm-GSNN opens up a myriad of
opportunities for deployment on edge audio devices with stringent
energy and latency requirements.

Discussion

Neural oscillation mechanisms have long been identified in neu-
roscience studies®™. Drawing inspiration from their key characteristics,
we introduce Rhythm-SNN, a computational framework that incorpo-
rates rhythmic neural modulation into SNNs to enhance their temporal
processing capabilities. This framework facilitates multiscale temporal
processing by leveraging heterogeneous neural oscillation signals with
diverse periods, duty cycles, and phases”™*. Our experimental results
indicate that Rhythm-SNNs achieve significant improvements in tem-
poral processing capacity, energy efficiency, and robustness against
perturbations. Additionally, we provide theoretical analyses of the
effective gradient backpropagation pathways, enhanced memory
capacity, and improved robustness enabled by the proposed
framework.

The Rhythm-SNNs represent a fundamental departure from pre-
vious studies on SNNs in the context of temporal processing. Earlier
research primarily focused on modeling intrinsic neuronal variables,
such as adaptive firing thresholds and heterogeneous membrane time
constants, to improve the long sequence processing ability of
SNNs*?%4045In contrast, our approach utilizes external hetero-
geneous oscillatory signals to modulate neuronal dynamics, thereby
facilitating the encoding, transmission, and integration of informa-
tion across various timescales. The simulation results presented in
Table 1 and Fig. 2 confirm the superior performance of Rhythm-SNNs
across a wide range of temporal processing tasks. Additionally, we
demonstrate the synergistic effect of combining external oscillatory
neural modulation with intrinsic neuronal variables in enhancing the
SNN'’s temporal processing capacity. Furthermore, our experiments
on the STORE-RECALL and delayed recall tasks have shown the
benefits of our proposed method in enhancing working memory
retention. These results align with previous neuroscience studies
that suggest a positive correlation between memory maintenance
and neural oscillations®*. While prior work®® has explored the
incorporation of an oscillatory postsynaptic potential and a phase-
locking activation function into resonant spiking neurons, it pri-
marily addressed the incompatibility between the backpropagation
algorithm and SNNs, rather than enhancing the temporal processing
capability of SNNs. Additionally, our design incorporates the het-
erogeneity of neural oscillations for multiscale temporal processing,
distinguishing it from previous studies~’, which integrated homo-
geneous skip connections into RNNs to address training difficulties
and achieve temporal parallelization.

The proposed rhythmic modulation mechanism can also be
regarded as a neuroscience-inspired periodic hard gating mechanism.
This design contrasts with the continuous soft gating mechanisms
used in ANN models, such as the LSTM family***° and their spiking
variants’*, and offers several notable advantages. First, unlike pre-
vious approaches that require frequent updates of the hidden states at
each time step, our periodic hard gating mechanism keeps most
neurons inactive during processing, thereby reducing overall neuronal
activity and enhancing energy efficiency. Second, this design facilitates
long-term temporal credit assignment. Our analysis indicates that it
effectively mitigates the vanishing gradient problem encountered
when training with long sequences by establishing multiple temporal
shortcuts for gradient backpropagation. Third, the binary nature of the
oscillatory gating signals is hardware-friendly, efficiently supporting
the spike-driven computing paradigm and deployment in neuro-
morphic chips (see Supplementary Fig. S15 for more details).

Another innovative aspect of Rhythm-SNNs is their utilization of
brain-like sparse coding strategies to achieve robust and energy-
efficient computation. Previous efforts to enhance the robustness of
SNNs have primarily relied on classical machine learning techniques,
such as adding regularization terms to the loss function®®*' and
developing tighter estimators to better delineate the network’s clas-
sification boundaries®. In contrast, as illustrated in Fig. 4, our model
enhances robustness against various perturbations by reducing neu-
ronal activity levels through rhythmic neural modulation. This
approach aligns with neuroscience findings that suggest the sparsity of
neuronal activity can enhance the robustness of neural systems in
sensory processing®’. Moreover, this method also allows for efficient
data representation by activating only a small subset of neurons in
response to stimuli.

Our approach offers an intriguing solution for efficient and robust
information processing in edge devices. In our experiments on the
speech enhancement task, the proposed Rhythm-GSNN demonstrated
significant improvements in denoising performance while reducing
energy cost by more than two orders of magnitude compared to the
leading deep learning solutions. This combination of efficiency and
robustness is essential for audio devices served at the edge, such as
hearing aids and headsets, where low latency and ultra-low energy
consumption are critical. Collectively, our method could prompt the
development of more efficient, effective, and robust neuromorphic
signal processing systems that could be deployed on edge devices and
operate in complex real-world scenarios.

Methods

Rhythm-SNN

The proposed Rhythm-SNN utilizes heterogeneous oscillatory signals
to modulate the membrane potential update and spike generation.
Since these two neuronal dynamics are fundamental to all spiking
neuron models, our rhythmic modulation mechanism is applicable
across a wide range of such models. Here, we employ the widely used
LIF®*¢ neuron model for an illustration. Additional details on other
recently developed network architectures incorporating our rhythmic
modulation mechanism, along with their mathematical formulations,
are provided in Supplementary Section 1. For the vanilla LIF neuron,
the membrane potential of the i neuron in layer [ evolves according
to:

1
T aali" = — (Ui u,)+1, ®)

where 1,, denotes the membrane time constant, U, is the resting
potential. Uf and I,’- represent the membrane potential and input current
of the neuron, respectively. Once Uf- exceeds the firing threshold 8, the
neuron emits a spike S,’- and its potential is subtracted by the firing
threshold. In fact, I,’- is computed by accumulating the spikes from all its
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presynaptic neurons, resulting in the following discrete form:

1ie1= ;wgsj*[tﬁbﬁ, 3)

where w’ represents the connection weight from the presynaptic neu-
ronjin layer -1, b denotes the constant injected current to neuron i,
and S’ ! signifies the input spike from the presynaptic neuron .

By employing the zero-order hold (ZOH) method®’, we could
obtain the discrete form of the membrane potential update from its
continuous form illustrated in equation (2):

Uit =aU{e — 1]+ 1{{e] - 9{{¢ — 1], )
where a = exp(-dt/t,,) denotes a constant that captures the membrane
potential decay, with 7, as its time constant and dt as the simulation
time step.

In contrast, our Rhythm-LIF neuron incorporates rhythmic mod-
ulation by utilizing oscillatory signals to modulate the membrane
potential update and spike generation. Specifically, the membrane
potential update is modulated by the introduced oscillatory signal
mi[¢] as follows:
osiie -1, if mie]=1

Ulie = 11+ 16 -
f[t]={a’[ I+ ] )
if mit]=

Uile -1,

where Uﬁ[t] is the membrane potential at time step ¢. Additionally, the
corresponding firing activity is also modulated by the introduced
oscillatory signal as described below:

sli)=mi[1e (Uf[t] -0), (6)

where

if 0<(t
otherwise

- lolc) modci<idicl) ;)

mije= { -
o,
Here, q)f , c,’. and d,’- denote the initial phase, rhythm period, and duty cycle
of the modulating signal, respectively; | - | represents the floor function;
and O( - ) is the Heaviside step function, defined as ©(x) =1 for x> 0 and
©(x) = 0 for x < 0. Through this modulation mechanism, when m} equals
zero, the neuron neither integrates input current from its presynaptic
neurons nor emits spikes to its postsynaptic neurons, corresponding to
an ‘inactivate’ state. Conversely, when m! equals one, the neuron adheres
to the original dynamics of a conventional spiking neuron, representing
an ‘activate’ state. The detailed computational graph of our proposed
rhythmic spiking neuron is illustrated in Supplementary Fig. S1.
Collectively, the neuronal dynamics of the LIF model and the
proposed Rhythm-LIF model can be summarized as follows:

LIF model Rhythm — LIF model

Kt =Sl s e+ b

Ul { all[e 1] +1l Ha
Ulle -1,

slie1=miie (U§[t] - 9)

n=d b
it {0,

osie -1, if mi[g=1

1=l S e+ bl
il61=23wyS; e+ b; i mig=0

Ullt)=aUlt — 11+ 1) - 6Se - 1] vs.
sliel= O(Uf[t] . 9)

if 0<(t— glct)ymodci<dic!]
otherwise

®

Heterogeneous oscillation signals

To emulate the multiscale characteristics of neural oscillations, we
parameterize the modulating signal mf by sampling its hyperpara-
meters from diverse distributions. Specifically, given a Rhythm -SNN
with L layers the rhythmrc parameters, i.e., the rhythm period c!, duty
cycle d and phase (p, of the oscillatory signal m’ of a neuron i in the

layer [ are generated through:

i~ u(ch"un' Cllmx) 1< Ch‘un <T
dé U (D i) With S 0 < din.n < dﬁmx <1, O
@}~ U@l Phoas) 0= @i = P <1

where T represents the total number of time steps and ¢/ denotes
the uniform distribution. Here, we use the parameters c’ ., c...,
dh i dhaxs @, and @L. to define the range of the uniform
distributions, which subsequently control the characteristics of
the generated oscillatory signals. Since d,’- and ¢! control the
fraction of the duty cycle and the phase within a rhythm period,
their values are constrained within the intervals (0,1] and [0,1],
respectively. An ablation study on the impact of rhythm hyper-
parameters on Rhythm-SNNs’ performance is presented in Sup-
plementary Figs. S13 and S14.

Training method for Rhythm-SNN

We use the backpropagation through time (BPTT) algorithm, com-
bined with the surrogate gradient method®®*™, to train the proposed
Rhythm-SNN. During the training process, both the synaptic weights W
and the constant injected current b are optimized. By applying the
chain rule across both spatial and temporal dimensions, the deriva-
tives of the loss function £ with respect to the spike S can be for-
malized as follows:

oL S oc 95"
asii) 4~ osi*[e] asi[e]

Z oc 050U oL asi[e+1aUe+1)
oS, [t1oU e BSle] oS +1]0ULE+1] BSI[]

oL 98'[e]

Zasl+1

oL oSi[t+1]
osiit+1) asl[e]

oL dSit+1
i+ S o1
10U e oSlt+1]0Ur +1]

10)

Note that on the right-hand side of equation (10), the first term denotes
the derivatives in the spatial dimension and the second term
represents the derivatives in the temporal dimension. Similarly, the
derivatives of the loss function with respect to the membrane potential
U can be obtained by:

oL oL as’[t] oL  AUt+1]

aulle] as’[r]au’[t] oUlt+1] AUt
_ oL ast] ,_oc
oSl aute] Uit +1]

an

(1 —a- a)mf[t+1]).

By employing equations (10) and (11) iteratively backward in time,
the derivatives % and i% can be easily obtained as per:
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We use a rectangular surrogate function®®’® to approximate the non-
differentiable spike activation function O( - ) during training, which is
defined as follows:

as! N ! k
6U’ h(U) sngn<|U,-—6|<§>,

where h( - ) represents the rectangular surrogate function. k is a
hyperparameter that controls the range of the gradient flow. k is set to
0.6, in accordance with prior work*®. sign( - ) denotes the sign function.

14)

Mitigating the gradient vanishing problem with Rhythm-SNN
We next demonstrate that Rhythm-SNN can effectively address the
gradient vanishing problem, a significant challenge faced by existing
SNN models. To illustrate this, we first analyze the backpropagation of
gradient information from time ¢ to an arbitrary time step ¢+c} in
Rhythm-SNN, and compare it with a non-Rhythm-SNN that does not
incorporate the rhythmic modulation mechanism.

According to equation (11), the derivative of the loss regarding the
membrane potential at time step ¢ in our Rhythm-SNN can be calcu-
lated by the following recursive formula:

F) or 95 )
Wﬁm W’?z]aufm aul[rLu (1- Q- mile+1)
_  _ac 0sia _or OSiU1 / [k trd [
= B+ Z aszmwm H (1 — (- aymi[k])+ BU,[mz]/ 1:[ (1- @1 - oymi[])
t+dlc! [
= B[ﬁ bSI[_/] j~t 4. af i)S,.l[_/] + (a‘#)d'i[aﬁ +  (0<aq di<1<d).
2 0SI[j1oU! )] oSi[j10U! /1 oU! [t+cl]

j=t+dic+1

dient te from time £ +¢!
gmdientpropagatebeforetimeucf gradientpropagate fromtime £+;

as)

Similarly, the derivative of the loss with respect to the membrane
potential in the non-Rhythm-SNN is calculated as:

ar _ ac 98 +_oL oUe+1]
Ul oSl aull - aUl[e+1] aUlI
- _oc 95 or
ast[t] aU! (] oU[e+1]
t+cl-1 .
: oS!l
= X 0L OSllgic O (0<a<lsd).

— 0SI[j1oU!L)] aU![t+cl]

—_—
gradient propagate from time ¢ + cf

gradient propagate before time ¢ + cf

6)

Given O <a <1, a comparison of the coefficients of the last term in
equations (15) and (16) reveals that the duty cycle dﬁ can effectively
mitigate the gradient vanishing issue during backpropagation. This
property helps preserve information over a longer time span, thereby
enhancing the ability to capture long-term dependencies.

Analysis of the memory capacity of Rhythm-SNN

In this part, we demonstrate the enhanced memory capacity of
Rhythm-SNNs over non-Rhythm-SNNs. First, we introduce a memory
capacity metric used in non-spiking RNNs?, called the mean recurrent
length, which captures the average distance between inputs and out-
puts of the network model over multiple timescales within a cyclic

period. Later, we use this metric to compare the memory capacity of
Rhythm-SNNs with non-Rhythm-SNNs (see “Proposition 17).

Definition (mean recurrent length). Consider the minimum path
length D,(n) from an input neuron at time ¢ to an output neuron at time
t+n. The minimum path length here refers to the shortest path length
of a signal propagating across a time span of n and a network depth of
L. For an SNN with cyclic period C, its mean recurrent length is defined
as:

= 2 " max,Dy(n). 17)

Proposition 1. Consider a Rhythm-SNN consisting of L layers, with
rhythm periods of oscillatory signals ranging from c; to ¢, where ¢; and
¢k are the minimum and maximum rhythm periods, respectively. The
mean recurrent length of the Rhythm-SNN is less than that of the non-
Rhythm-SNN.

Proof. For a Rhythm-SNN with rhythm periods ranging from ¢; to ¢, its
cyclic period C can be calculated as follows:

=lem (cy, -+, Cg)s (18)
where Icm signifies the least common multiple of ¢;, - , ¢,
and ¢i< - <.

If we unfold the information propagation paths from the input
neuron to the output neuron through spatial and temporal dimen-
sions, any path from the input neuron to the output neuron spanning n
time steps yields:

L,
Dy(n)= { e

C
o tL

if n<C

if n=C’ 19)
where r.(n) represents the shortest temporal path between the input
neuron at time ¢ and the output neuron at time ¢+ n. Deriving r.(n)
equates to solving the common change-making problem. Given
denominations {c,, ---, ¢, } and an amount n, the goal is to minimize
the number of denominations summing to n. Formally, r.(n) satisfies:

k
r(m=mind_a,

J=1 J=1

(20)

where g; represents the number of banknotes of denomination c;.
Following the prior work?, we use a greedy strategy to obtain an upper
bound for r,(n), thereby avoiding the complex process of solving the
original integer linear programming problem in equation (20). This
yields:

n
r(ms -

o @n

According to equations (17), (19), and (21), the upper bound for
the mean recurrent length of the Rhythm-SNN with L layers is obtained
as:

Qi

< d(gcra)
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Therefore, its mean recurrent length is:

-1 24

Given that 1< ¢, < C, we have X! +L < &1 + /. It indicates that the
mean recurrent length of the Rhythm -SNN is smaller than that of the
conventional SNN. According to ref. 27, a shorter mean recurrent
length implies a higher network memory capacity. This can be eluci-
dated as past information propagates along fewer edges, thus
experiencing less attenuation. Consequently, the network’s memory
capacity is enhanced by leveraging the proposed modulation
mechanism.

Robustness analysis
We analyze the robustness of Rhythm-SNNs to various perturbations
by comparing the representation distance between output spike trains
in response to original patterns and those of corresponding perturbed
patterns. Input perturbations mainly include adversarial attacks and
random noise. Since the spiking Lipschitz constant®® provides a uni-
form bound on the network’s vulnerability to input perturbations,
regardless of noise types, Rhythm-SNN’s robustness against these
perturbations can be validated by analyzing the spiking Lipschitz
constant corresponding to the distance between output spike trains.
For a Rhythm-SNN with L layers, the output spike train of the " layer
can be represented as S'={s'[¢]it=1,2,---,T} e Q"M(@Q e {0,1}),
where T is the inference time step, and N, is the number of spiking
neurons in layer [. We quantify the distance between the original and
perturbed activations using:

! § [ L ~_addrallP v
0,(s18) =[5 81| - (3 ste-stel)

where Sl is the output spike train after perturbing the original input,
and || - ||, is the matrix norm induced by the vector [, norm.

Previous studies’””* have established the theoretical foundation
for the vulnerability of neural networks to perturbations, primarily
based on the magnitude of activation changes. Recent work® has
further extended this framework to spiking LIF models. We borrow this
tool to analyze the distance bound of spike responses in Rhythm-SNNs
and compare it with that in non-Rhythm-SNNs. According to prior
work?, the upper bound of the distance between the original and
perturbed spike trains for conventional SNNs can be described as:
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Q=1{0, 1}, 9 represents the firing threshold, W' is the weight matrix of
the layer [, and «a signifies the decay factor of the membrane potential.
In equation (27), A, i.e., the Lipschitz constant, mainly bounds the
variation of the original and perturbed spike outputs. For the Rhythm-

SNN, its corresponding spiking Lipschitz constant can be deduced by
equations (3)-(7) (see Supplementary Section 5 for more details):

A=a  sup W's
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Given that O <a <1, the upper bound for the Rhythm-SNN’s spiking
Lipschitz constant can be relaxed as follows:

A=a
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The above comparison shows that our Rhythm-SNN possesses a
smaller spiking Lipschitz constant compared to that of the conven-
tional SNN. Since a smaller spiking Lipschitz constant generally leads
to a decreased magnitude of network output perturbations®’>7*, it
implies an enhanced robustness against perturbations by
Rhythm-SNN.

Experimental setup for temporal processing tasks

We conduct experiments on several widely used temporal processing
benchmarks, including S-MNIST?, PS-MNIST?, SHD**, ECG*, GSC?,
VoxCeleb1*, PTB*, and DVS-Gesture® to validate the effectiveness of
our method.

S-MNIST and PS-MNIST are built by performing a raster scan on
the original MNIST digit recognition dataset in a pixel-by-pixel manner,
resulting in sequences with a length of 784. Unlike S-MNIST, PS-MNIST
applies a random permutation to the pixels of the original image
before performing a raster scan, eliminating the original spatial
structure. For both tasks, the pixel values are directly fed into the
network as injected current to the neurons in the first layer. This layer
functions as an encoding layer, converting non-spiking inputs into
spiking outputs to enable further processing by SNNs.

The SHD dataset® comprises approximately 10,000 audio
recordings of English and German digits (0-9) from 12 speakers. Each
speaker recorded approximately 40 sequences for each digit in both
languages, resulting in a total of 10,420 sequences. These audios are
transformed into spike-based representations using a bionic inner ear
model. Following previous research®, the resulting spike trains are
segmented into a sequence of 1000 frames for post-processing by an
SNN. The dataset is partitioned into 8156 samples for training and
2264 samples for testing.

The ECG dataset™ contains six types of ECG waveforms, i.e., P, PQ,
QR, RS, ST, and TP. We adhere to the data preprocessing procedures
outlined in prior work®. Specifically, we apply a variant of the level-
crossing encoding method® on the derivative of the normalized ECG
signal to convert the original continuous values into a spike train. Each
channel is transformed into two distinct spike trains, representing
value-increasing events and value-decreasing events, respectively.

The GSC dataset™ consists of 64,727 utterances from 1881 speak-
ers, each pronouncing one of 35 distinct speech commands. In our
experiments, we followed the dataset configuration commonly used in
other works*>*, selecting 12 classes from the total of 30 available
classes. These include ten specific commands: “Yes”, “No”, “Up”,
“Down”, “Left”, “Right”, “On”, “Off”, “Stop”, and “Go”. Additionally,
there are two extra classes: an “Unknown” class, which encompasses
the remaining 25 commands, and a “Silence” class, created by ran-
domly sampling background noise from the dataset’s audio files. For
feature extraction, we followed the preprocessing approach described
in prior work®. Specifically, log Mel filter coefficients were computed
from the raw audio signals, and their first three derivative orders were
extracted. This involved calculating the logarithm of 40 Mel filter
coefficients on a Mel scale ranging from 20 Hz to 4 kHz. Each frame of
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the processed input is represented as a tensor with dimensions 40 x 3,
corresponding to the coefficients and their derivatives. The spectro-
grams are normalized to ensure an appropriate input scale, and each
time step in the simulation is set to 10 ms. As a result, each audio
sample is transformed into a sequence of 101 frames, with each frame
containing 120 channels.

The VoxCelebl dataset®, sourced from YouTube, includes 153,516
utterances from 1251 celebrities with diverse ethnicities, accents,
professions, and ages, with balanced speaker gender, resulting in a
classification task with 1251 classes. All audio is first converted to sin-
gle-channel, 16-bit streams at a 16 kHz sampling rate for consistency.
Spectrograms are then generated in a sliding window fashion using a
Hamming window of width 25 ms and stride 10 ms.

The PTB dataset® contains 929,000 words for training, 73,000 for
validation, and 82,000 for testing, with a vocabulary size of 10,000
words. The text is segmented into sequences of fixed length 200,
where each sequence serves as input for models tasked with predicting
the subsequent word. To represent the words, we employ an embed-
ding dictionary of size 650, which encodes each word into a dense
vector space, capturing both semantic and syntactic relationships.

The DVS-Gesture dataset® comprises 11 types of hand and arm
movements performed by 29 individuals, recorded under three dif-
ferent lighting conditions using a DVS128 camera. Each frame in the
dataset is a 128 x 128-sized image with two channels. Each sample in
the DVS-Gesture dataset is divided into fixed-duration blocks, with
each block averaged to a single frame, resulting in sequences that vary
from 500 to 1500 frames depending on the block length.

The training configurations and hyperparameter settings for the
above temporal processing tasks are summarized in Supplementary
Table 1. We utilize the PyTorch library, which facilitates accelerated
model training. All models are trained using the Adam optimizer. Our
experiments are conducted using Nvidia GeForce RTX 3090 GPUs,
each equipped with 24 GB of memory. In Table 1 of the main text, we
provide experiment results of both Rhythm-SNNs and non-Rhythm-
SNNs, which employ various spiking neuron models with both feed-
forward and recurrent architectures. Specifically, the tested models
encompass the feedforward SNN (FFSNN)”, the SNN with recurrent
connections (SRNN)”°, SRNN complemented with a learnable firing
threshold (LSNN)*°, SRNN complemented with both learnable firing
threshold and learnable time constant (ASRNN)*, and the SNN incor-
porating temporal dendritic heterogeneity (DH-SRNN and DH-SFNN)*®.
Their Rhythm-SNN counterparts are denoted as Rhythm-FFSNN,
Rhythm-SRNN, Rhythm-LSNN, Rhythm-ASRNN, Rhythm-DH-SRNN,
and Rhythm-DH-SFNN. The detailed mathematical formulations of
these models are provided in Supplementary Section 1.

Experimental setup for the STORE-RECALL task

In this experiment, a 3-layer SRNN architecture is utilized, with each
layer comprising 20 neurons. Furthermore, two types of spiking neu-
ron models are examined, including ALIF*° and DEXAT* neurons. For
ALIF and Rhythm-ALIF models, the membrane potential decay time
constant and adaptive threshold time constant are set to 20 ms and
600 ms, respectively. For DEXAT and Rhythm-DEXAT, the membrane
potential decay time constant and the two adaptive threshold time
constants are set to 20 ms, 30 ms, and 600 ms, respectively. These
time constant settings are consistent with prior work®, as they have
been chosen based on the characteristics of these two models and the
task requirements. The mathematical formulations of the proposed
Rhythm-ALIF and Rhythm-DEXAT models are provided in Supple-
mentary Section 2. Input signals, composed of characters ‘0’ and ‘I’
along with ‘STORE’ and ‘RECALL’ commands, are encoded into 50 Hz
Poisson spike trains by four separate neuron groups. Each neuron
group contains 25 neurons and encodes each character/command
with a 100 ms time window. Each ‘STORE’ command is followed by a
‘RECALL’ command with a probability of p =1/6, leading to an average

delay of 600 ms between these two commands. The output layer uses
a softmax activation function, and the resulting output vector is uti-
lized to calculate the recall error and cross-entropy loss relative to the
provided label. Following previous work****, the network is trained for
200 epochs or until the recall error on the validation set drops below
0.05. Detailed training configurations and hyperparameter settings are
provided in Supplementary Table 2.

Experimental setup for robustness evaluation tasks

We assess the robustness of Rhythm-SNNs against various perturba-
tions, including Gaussian noise, thermal noise, silence noise, and
quantization noise, and two types of adversarial attacks generated
using FGSM and PGD. Gaussian noise is characterized by zero mean
and variance ranging from (2/255) to (8/255)>. Thermal noise, which
affects the input currents to spiking neurons, is simulated by adjusting
variance levels from 0.05 to 0.2; silence noise, occurring when a subset
of spiking neurons fails to respond, is simulated by randomly masking
neuron outputs with failure rates ranging from 5% to 20%; quantization
noise, resulting from the conversion of analog signals into digital sig-
nals with limited bit resolution, is simulated through post-training
quantization, progressively reducing the bit number from 8 down to 2.
For gradient-based attacks, the FGSM perturbs input data in the
direction of the gradient of the loss relative to the input data, while the
PGD operates as an iterative and more potent version of FGSM. Our
evaluation is anchored on the temporal processing task employing the
PS-MNIST dataset. We conduct experiments with the ASRNN and
Rhythm-ASRNN models at various noise and attack levels, compre-
hensively evaluating their robustness against perturbations. For sim-
plicity, we denote (¢/255)° as the variance for Gaussian noise, o as the
variance for thermal noise, p as the masking rate for silence noise, and
Bit as the bit resolution for quantization noise. Visual comparisons of
the average perturbation distance with respect to the average firing
rate changes, as displayed in Fig. 4i-1, are conducted under conditions
with €=8 for Gaussian noise, 6=0.2 for thermal noise, p=0.2 for
silence noise, and Bits = 6 for quantization noise. More details of the
experimental setup and perturbation methods are provided in Sup-
plementary Section 3.

Experimental setup for the speech enhancement task

In this task, the Intel N-DNS Challenge dataset is utilized, which includes
500 h of human speech in various languages and noise types, recorded
at 16 kHz and 16-bit depth, with a synthesized signal-to-noise ratio (SNR)
ranging from 20 dB to -5 dB. For performance metrics, we use Scale-
Invariant Source-to-Noise Ratio (SI-SNR)* to assess audio quality and
DNSMOS** for perceptual evaluation, with the latter considering the
overall audio quality (OVR)*, speech signal quality (SIG)*, and back-
ground noise quality (BAK)**. Besides, we also evaluate the energy cost of
the tested speech enhancement models. The architecture of the
Rhythm-GSNN employed in this task consists of a full-band module and
three sub-band modules, each of which contains two layers of the
Rhythm-GSN model (see Supplementary Fig. S9). Specifically, the noisy
audio is divided into three frequency bands after undergoing STFT and
normalization, with each band containing an increasing number of fre-
quencies: 32, 96, and 128, respectively. The audio is then fed into the full-
band module, and its output features corresponding to each frequency
band are processed by their respective sub-band modules. Finally, the
features are integrated across the low-frequency, mid-frequency, and
high-frequency bands, and the final denoised audio is obtained through
iSTFT. More details of the training configurations and hyperparameter
settings for the speech enhancement task are provided in Supplemen-
tary Table 4 and Supplementary Section 4.

Data availability
All data used in this paper are publicly available. The S-MNIST and PS-
MNIST datasets can be downloaded from http://yann.lecun.com/exdb/
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mnist/. The SHD dataset can be accessed at https://zenkelab.org/
resources/spiking-heidelberg-datasets-shd/. The ECG dataset is pub-
licly available at https://physionet.org/content/qtdb/1.0.0/. The GSC
dataset can be obtained from https://tensorflow.google.cn/datasets/
catalog/speech_commands/. The DVS-Gesture dataset can be down-
loaded at https://research.ibm.com/interactive/dvsgesture/. The Vox-
Celebl dataset is available at https://www.tensorflow.org/datasets/
catalog/voxceleb. The PTB dataset can be accessed at https://www.
kaggle.com/datasets/aliakay8/penn-treebank-dataset. The Intel N-DNS
Challenge dataset can be downloaded from https://github.com/
IntelLabs/InteINeuromorphicDNSChallenge.

Code availability
The source code is publicly available at https://github.com/
YinsongYan/Rhythm-SNN.
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