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Accurate time-series forecasting is crucial in various scientific and industrial
domains, yet deep learning models often struggle to capture long-term
dependencies and adapt to data distribution shifts over time. We introduce
Future-Guided Learning, an approach that enhances time-series event fore-
casting through a dynamic feedback mechanism inspired by predictive coding.
Our method involves two models: a detection model that analyzes future data
to identify critical events and a forecasting model that predicts these events
based on current data. When discrepancies occur between the forecasting and
detection models, a more significant update is applied to the forecasting
model, effectively minimizing surprise, allowing the forecasting model to
dynamically adjust its parameters. We validate our approach on a variety of
tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using
EEG data, and a 23.4% reduction in MSE for forecasting in nonlinear dynamical
systems (outlier excluded). By incorporating a predictive feedback mechan-
ism, Future-Guided Learning advances how deep learning is applied to time-
series forecasting.

In recent years, deep learning models have been increasingly applied
to time-series forecasting, leveraging their ability to model complex,
nonlinear relationships within data'. Despite these advancements,
challenges remain in accurately capturing long-term dependencies
due to inherent stochasticity and noise in signals. Time-series data
involve complex temporal dynamics and often exhibit non-stationary
behaviors. Additionally, they are frequently subject to external influ-
ences and perturbations that introduce abrupt changes in the data
patterns, making long-term forecasting difficult. As a result, even
advanced deep learning models face difficulties when tasked with
long-term predictions™*.

Complementary to these deep learning approaches, classical
time-series methods have long used threshold-based adaptation to
capture sudden distributional shifts. Early methods such as the Page-
Hinkley test and the Drift Detection Method (DDM) formalize this by
keeping a running estimate of error statistics, and raising an alarm
when a significant change in data distribution is observed**. Once drift

is detected, models are either fine-tuned on recent labeled examples or
retrained from scratch on a sliding window of past data. This
threshold-retraining approach has shown practical performance in
domains ranging from anomaly detection to predictive maintenance®,
but it can suffer from abrupt resets, loss of long-term knowledge, and
sensitivity to hyperparameter choices for the error threshold.
Beyond these classical methods, several self-supervised approa-
ches use future prediction as a pretext task: given an input x;, they
learn to reconstruct X.,. This includes applications from video frame
prediction’ to masked audio modeling®. However, because they
decouple pretraining from online correction, they do not incorporate
continuous feedback from each new observation. As a result, their
forecast errors cannot be dynamically adjusted as more data arrives.
To address these challenges, we introduce Future-Guided Learn-
ing (FGL), an approach that draws on predictive coding and employs a
dynamic feedback mechanism to enhance time-series event forecast-
ing. By leveraging a future-oriented forecasting model that guides a
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past-oriented forecasting model, FGL introduces a temporal interplay
reminiscent of Knowledge Distillation (KD)°, where a “teacher” can
provide insights that improve a “student” model’s long-horizon
predictions.

Other works have explored the application of knowledge dis-
tillation to sequential data, such as speech recognition'"? and lan-
guage modeling®, and have excelled at transfer learning and model
compression. While these show value in the application of KD to
sequential data, it is not used to enhance performance over the base-
line. KD can be used to enhance how a model handles temporal
dynamics and variance in uncertainty across a time horizon.

Importantly, FGL is rooted in the theory of predictive coding, a
theory which treats the brain as a temporal inference engine that
refines its internal model by minimizing “prediction errors”™*"7—the
discrepancy between expected and actual inputs—over time and
across hierarchical layers of abstraction, progressively building inter-
nal models of the world'".

Although predictive coding naturally handles spatio-temporal
data, it has yet to penetrate mainstream deep learning’®”. Neural
Predictive Coding frameworks aim to fill this gap by coupling predic-
tion and error-correction in a unified loop. For example, Oord et al.*?
use an autoencoder to forecast future latent representations, and
Lotter et al.’s PredNet* stacks LSTM cells that propagate and correct
layer-wise prediction errors. While these frameworks offer valuable
neuroscientific insights, they often emphasize biological plausibility
over empirical forecasting performance and tend to be restricted to
specific architectures or domains. As a result, it remains challenging to
apply them to diverse time-series tasks, thus motivating the need for a
more flexible and performance-driven framework, such as FGL.

We evaluate FGL in two settings (see Supplementary Note 4): (1)
EEG-based seizure prediction, where FGL boosts AUC-ROC by 44.8% on
average across patients; and (2) Mackey-Glass forecasting, achieving a
23.4% MSE reduction. These results show that FGL not only enhances
accuracy but also offers a principled way to leverage uncertainty over
time, directly aligning with predictive-coding theory.

Results
We briefly summarize the two domains in which FGL is evaluated:
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* Event prediction, where a pretrained seizure-detection “teacher”
model distills near-future information into a “student” model
tasked with early event prediction. We benchmark on two
standard EEG datasets (CHBMIT and AES) and report area-
under-ROC improvements relative to strong baselines (MViT
and CNN-LSTM).

Regression forecasting, in which we reformulate continuous signal
forecasting as a categorical task by discretizing each true value x..,
into one of B equal-width intervals (or “bins”). The student predicts
a distribution over these B bins via softmax-matched to the
teacher’s softened logits via KL-divergence-while the hard one-hot
bin label remains in the cross-entropy term. Final predictions are
recovered as the expectation over bin centers, and performance is
measured by the resulting mean squared error (MSE). We explore
two resolutions (B=25 vs. B=50) to show how bin granularity
trades off difficulty against tighter uncertainty bounds.

Event prediction results

To compare our method with state-of-the-art (SOTA) approaches, we
tested FGL against a Multi-Channel Vision Transformer (MViT)** and a
CNN-LSTM*?¢, These models are commonly used in medical settings
for temporal data and have demonstrated strong efficacy. Further
details, including results on false positive rate (FPR) and sensitivity, are
provided in Supplementary Note 1.

On the CHBMIT dataset, our results show a significant improve-
ment with FGL compared to the baseline, with an average 44.8%
increase in the area under the receiver operating characteristic curve
(AUC-ROC), as shown in Fig. 1a-c. Additionally, FGL enhanced pre-
dictions across most patients, with the largest gain observed for
patient 5 by a factor of 3.84x . The performance dropped only for
patient 23 by a factor of 0.80x compared to the CNN-LSTM, but still
significantly outperformed the MVIT architecture.

On the AES dataset, where the teacher model was trained on a
different set of seizure patients and then used on new individuals at
test time, FGL still achieved an average performance improvement of
8.9% over the CNN-LSTM, as shown in Fig. 1b. Further details on
implementation and preprocessing are provided in Supplemen-
tary Note 1.
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Fig. 1| Seizure prediction results. a CHBMIT, (b) AES, and (c) dataset averages. Three methods are tested: an MViT, a CNN-LSTM, and FGL. All results were calculated over

3 continuous trials with mean and variance bars displays.
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Regression forecasting results

Across both bin resolutions, incorporating future-guided learning
(FGL) yields substantial average MSE reductions versus the baseline.
With 25 bins, the baseline’s average error is 4.09, while the students
trained with FGL achieve 3.64 (a=0.0) and 3.56 (a=0.5)-a 11-13%
improvement. When the task is made harder (50 bins), the baseline
error jumps to 28.34, but FGL cuts that by more than half to 11.95
(a =0.0) and 11.68 (a=0.5). The consistent edge of the (a=0.5) stu-
dent over its (a=0.0) counterpart (even if modest) confirms that
blending distilled future information with ground-truth targets during
training provides a measurable boost.

Discussion

Overall, our experiments demonstrate that FGL consistently enhances
both event-prediction and regression-forecasting tasks by leveraging
near-future information to guide long-horizon student models. Below,
we examine the distinct gains and underlying mechanisms in each
domain, and highlight key trade-offs and robustness benefits.

Event prediction

On both the CHBMIT and AES datasets, FGL yields substantial increases
in AUC-ROC and noticeably tighter error bars compared to our CNN-
LSTM and MVIT baselines (Fig. 1c). This variance reduction is particu-
larly important in seizure forecasting, where few seizure events per
patient can otherwise lead to unstable performance.

A critical factor is the choice of teacher model. With CHBMIT, we
trained patient-specific teachers, which captured individual epileptic
signatures and delivered the largest average boost (44.8% AUC-ROC)
but also higher inter-patient variability. By contrast, our “universal”
teachers for AES-pretrained on aggregated UPenn-Mayo seizure data-
achieved more modest gains (8.9%) yet produced consistent
improvements across all test subjects. Thus, there is a clear trade-off
between tailoring guidance to each patient versus exploiting larger,
heterogeneous training sets. In practice, one might combine both
approaches: use a universal teacher to establish a stable baseline and
then fine-tune patient-specific models where data allow.

Regression forecasting

In the Mackey-Glass experiments, FGL again outperforms the baseline
by a wide margin, cutting MSE by 11-13% at 25 bins and by over 50% at
50 bins (Fig. 2). Here, the teacher’s short-horizon forecasts serve as a
dynamic “upper bound” that guides the student away from

Bins =25

MSE Loss

—— Baseline
FGL: a=0.50
= FGL: a=0.00

catastrophic errors. Rather than penalizing the student harshly
whenever the teacher itself errs, our KL-based distillation captures the
teacher’s uncertainty patterns, yielding a smoother, more informative
loss surface.

Examining individual horizons reveals that FGL not only lowers
overall error but also produces a gentler, more predictable degrada-
tion as the forecast horizon increases. At 25 bins, baseline MSE rises
from 1.55 at horizon 2 to 2.30 at horizon 15, whereas FGL students
exhibit a flatter slope and smaller peaks. When using 50 bins-where the
baseline suffers extreme outliers (e.g., MSE=195.62 at horizon 13)-
both FGL variants cap errors below 12, underscoring dramatic
robustness gains in chaotic settings.

Key insights and future directions

Across both tasks, FGL'’s effectiveness hinges on two principles: (1)
distilling uncertainty from a more confident, near-future teacher and
(2) blending distilled signals with ground-truth targets to stabilize
learning. Moving forward, we plan to explore hybrid schemes that
adaptively weight patient-specific and universal teachers, as well as
extensions to multi-horizon and multi-modal forecasting. Finally,
integrating FGL with online drift-adaptation methods (e.g., Page-
Hinkley) could further enhance resilience to non-stationary environ-
ments without discarding long-term knowledge.

Methods

Traditional KD involves transferring probabilistic class information
between two models that share the same representation space. In our
approach, we reformulate this student-teacher dynamic by placing
the teacher model in the relative future of the student model,
introducing a temporal difference in the representation space
between them.

Our distillation method follows that of Hinton et al.’, where the
student model is trained using a combination of the cross-entropy loss
with the ground truth labels and the Kullback-Leibler (KL) divergence
between the softmax outputs of the student and teacher models. This
dual objective allows the student to learn from both the true data and
the future-oriented predictions of the teacher.

Notation: Let x, € X be the input observed up to time ¢, and
Ye+0 € Y the target at horizon ¢. We denote by

T,:X—> RS and S5:x— RS
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Fig. 2 | Mackey-Glass forecasting results. A 25 bins and (B) 50 bins. Results show
the MSE loss at each horizon. In (B), the baseline MSE at horizon 13 was a large
outlier and has been omitted for clarity. A, B a=0.00 indicates the student trained

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Forecasting Horizon

(B)

using only the distilled label, and a = 50 indicates a balance of distilled and ground-
truth labels. A table of results is available in Supplementary Note 2.
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A. FGL Theoretical Intuition
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Fig. 3 | Overview of FGL and its applications. A In the FGL framework, a teacher
model operates in the relative future of a student model that focuses on long-term
forecasting. After training the teacher on its future-oriented task, both models
perform inference during the student’s training phase. The probability distribu-
tions from the teacher and student are extracted, and a loss is computed based on
Eq. (1). A1 Knowledge distillation transfers information via the Kullback-Leibler
(KL) divergence between class distributions. B In an event prediction setting, the
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teacher is trained directly on the events themselves, while the student is trained to
forecast these events. Future labels are distilled from the teacher to the student,
guiding the student to align more closely with the teacher model’s predictions,
despite using data from the relative past. C In a regression forecasting scenario, the
teacher and student perform short-term and long-term forecasting, respectively.
Similar to event prediction, the student gains insights from the teacher during
training, enhancing its ability to predict further into the future.

two neural network models parameterized by ¢ and 6, producing C-
dimensional logits. The teacher T, forecasts n steps (y,), while the
student Sg forecasts n + k steps (Vern+i)-

Claim 1. (Future-Guided Learning (FGL)) Let

ToX) X Yern,  SoX) X Vernsir

be the logits of a teacher forecasting n steps ahead and a student
forecasting n + k steps. FGL trains the student by minimizing:

‘CFGL(G) = ALk (Se(xt)vyt+n+k)

task loss
+(1— a)TZKL <0<T¢(~it+k)> I 0(59(3[))) , @

future-guided distillation

where o is softmax, 7 the distillation temperature, and O<a<1
balances ground truth and teacher guidance. By aligning the tea-
cher’s n-step logits at ¢ + k with the student’s (n + k)-step logits at ¢,
FGL transfers near-future uncertainty to the long-horizon
forecaster.

The first term in L ensures the student learns to match true
labels at ¢+n+k. The second term softly aligns the student’s long-
horizon distribution with the teacher’s nearer-horizon distribution,
effectively distilling “future” uncertainty Fig. 3a.

In practice, we set L, to cross-entropy (for classification) or MSE
(for regression). We pretrain T, on its n-step task, then freeze it while
training Sg under the combined FGL loss. Figure 3b illustrates the offset
in the data flow.

In classic distillation’, both teacher and student forecast the same
horizon fromidentical inputs. FGL instead introduces a temporal offset.
the teacher’s logits come from a shifted time step ¢+ k, providing an
extra supervisory signal drawn from the near future.

CHBMIT: patient-specific FGL

On the CHBMIT dataset, FGL was performed by first pre-training a
unique teacher model for seizure detection on each patient for 50
epochs. During this pre-training phase, preictal segments were exclu-
ded, as their inclusion would reduce the uncertainty we aim to distill
during the student training phase. Next, during the training of the
student model over 25 epochs, each data point was fed into both the
student and teacher models, and the corresponding class probabilities
were obtained. The loss function defined in Eq. (1) was then used to
compute the student model’s loss. A range of a values was tested to
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balance the contributions of the cross-entropy and KL divergence
components of the loss function. The optimal a for each patient was
selected based on a hyperparameter sweep, with detailed results
presented in Supplementary Fig. 1. Different values of a were tested to
balance the cross-entropy and KL divergence components of the loss,
with the optimal value selected through a hyperparameter sweep for
each patient. The temperature parameter for the KD loss was fixed at
T=4. We used the SGD optimizer with a learning rate of 5 x10™. Both
the student and teacher models were implemented as CNN-LSTM
architectures.

AES: patient non-specific FGL

When future data from the same distribution as the student model is
unavailable, it is still possible to train a teacher model using future data
from an out-of-distribution source. We test this approach on the AES
dataset, which contains only preictal samples without any labeled
seizures. Due to the lack of corresponding seizure data, we use a
separate dataset: the UPenn and Mayo Clinic seizure dataset” to create
the teacher model.

The AES dataset comprises recordings from 5 dogs and 2 humans,
while the UPenn and Mayo Clinic datasets include 4 dogs and 8 human
patients. Given this discrepancy, we constructed two “universal tea-
chers” from the latter dataset: one based on dog seizures and the other
on human seizures. These universal teacher models were trained using
a combined set of interictal data from selected patients, interspersed
with randomly sampled seizures from a diverse pool of patients. This
approach allows the teacher model to learn generalized seizure fea-
tures from a wide variety of cases.

A challenge in using different data sources for the teacher model
was the inconsistency in data characteristics and formats between
datasets. We addressed this issue by selecting the top k most sig-
nificant EEG channels for each teacher model based on their con-
tribution to seizure detection scores®. The number of selected
channels was then adjusted based on the requirements of each student
model, ensuring compatibility and effective knowledge transfer. As
with the CHBMIT dataset, an ablation study of the influence of « is
provided in Supplementary Figs. 1 and 2.

Regression forecasting implementation

To quantify uncertainty in our regression forecasts, we map each con-
tinuous target value x.., onto a discrete probability distribution over B
equally-spaced bins (Fig. 4a). Concretely, we first partition the full range
of observed x-values into B contiguous intervals, then represent the
"true” target by a one-hot vector indicating the bin that contains x..,.
Our network’s final layer has B neurons with softmax activations, so its
output p € A* encodes a categorical distribution over these intervals.

Discretization Process Teacher

During distillation, the teacher supplies a softened p'”, which the stu-
dent matches via a KL-divergence loss; the hard one-hot label is still
used in the cross-entropy term. Increasing B narrows each interval—
leading to finer-grained value ranges and tighter uncertainty bounds—at
the expense of making the classification task more difficult. This binning
strategy thus lets us reduce a regression problem to a probability-
distribution prediction, enabling us to leverage standard classification
losses (cross-entropy + KL) while still recovering a real-valued forecast
(e.g., by taking the expectation over bin centers).

In addition, we reformulate the tasks of the teacher and student
models to better align with regression objectives. The teacher model
performs next-step forecasting, while the student model focuses on
longer-term predictions. This difference in forecasting horizons
explicitly enforces a variance in timescales between the models. More
specifically, given an input sample at x;, the student model aims to
predict n steps into the future, targeting x,.,. In contrast, the teacher
model is tasked with predicting the immediate next step and is pro-
vided with the input data at x,.,;.

Similar to event prediction, the teacher model is pretrained first,
followed by inference within the student training loop, where the loss
defined in Eq. (1) is computed. During model testing, we select the
neuron with the highest probability and compute the corresponding
MSE, aligning this approach with traditional regression evaluation
methods. Full experimental details can be found in Supplemen-
tary Note 2.

Future guided learning and predictive coding
The teacher and student models can be described more precisely using

a Bayesian prediction framework. The teacher, with access to n future
points, has predictive density

PrXeen) = /f(xt+n 10) (0] X101 p_1) A0,
while the student, limited to the current window, uses
PstEien) = [ Fixien 10O 1x,,)dO.

Their divergence is

pr(x)
dx,
Ps(x) X

D (pr 1l ps)= / pr) In

quantifying how much “extra” information the teacher holds over the
student as the horizon grows.

Baseline Student (FGL)

Amplitude
Amplitude

—— True Values
—— Predictions

Original data
—— Bin Number

Amplitude
Amplitude

—— True Values —— True Values

—— Predictions —— Predictions

Fig. 4 | Discretization enables knowledge-distillation on Mackey-Glass. a After
generating the chaotic trajectory, every scalar target X,., is quantized into one of C
equal-width bins. The regression problem is thus recast as C-way classification, so
the teacher and student can exchange soft logits of identical dimensionality-an

essential requirement for the KL-distillation term in FGL. b Teacher performs next-

[ 50 100 150 200 250 0 50 100 150 200 250
Time Time

(c) (d)

step prediction. ¢ Baseline performs a 5-step forecast without future guidance.

d FGL-trained student forecasting the same horizon. By aligning its logit distribu-
tion with the teacher’s near-future logits, the FGL student captures neighborhood
information in bin space, yielding a visibly lower MSE and a smoother
reconstruction.
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Fig. 5 | Predictive Coding and FGL. A Illustration of predictive coding in the brain.
Information is received by the primary visual cortex (V1), which then propagates to
different areas of the brain with more complex levels of abstraction. This propa-
gation takes the form as a predictive estimator: higher level areas aid in prediction
of lower level areas. The difference between the prediction and true output is the
predictive error. Areas with lighter colors represent low-level abstractions, where
darker colors represent the increasing representational demand (thoughts,

movement, etc). B Hierarchical FGL propagates information via uncertainty; in
other words, FGL substitutes the predictive estimator with the uncertainty of each
layer. This uncertainty is conveyed via the KL divergence of between each layer’s
probability distribution with the successive layer. The difference between each
layer’s prediction and true output is the predictive error. In both models, areas
lower in the hierarchy process information in a delayed manner, as they are the last
to receive it. As the demand for complexity increases, so does the predictive error.

Rather than distilling directly from the longest-horizon teacher,
we chain predictions through intermediate models at steps ¢ +1, ..., t +
n-1. Each acts as both student (to its predecessor) and teacher (to its
successor), propagating uncertainty down the hierarchy.

This approach bears similarity to a potential implementation of
hierarchical predictive coding in the brain. Low-level cortical areas,
such as the primary visual cortex (V1), function analogously to the
intermediate models in hierarchical FGL, as they process detailed
sensory inputs over short timescales (e.g., fXp+dXp+t-1, ---» X)). In con-
trast, higher-level cortical areas like the prefrontal cortex correspond
to the bottommost student model, fix,+/X,, ..., X;), as they integrate
abstract patterns and process temporally delayed information over
longer timescales. A visual representation of this hierarchical structure
is provided in Fig. 5.

In practice, true posteriors are intractable. We therefore treat
each pr as a variational surrogate g(v) and each ps as a prior p(v),
optimizing the usual ELBO:

Inp(u)= — F+Dy (q) || p(vIw)),

where F is the free energy (a lower bound on surprise)**?. Finally,
assuming Gaussian predictive distributions gives the familiar
precision-weighted error form:

O R Zg(cb))z .

Inp(u)%—% InXs+ : »

Minimizing this drives the student toward the teacher’s richer, future-
informed predictions.

Data availability

All datasets used in this study are publicly available: CHB-MIT Scalp EEG
Database: Available at https://physionet.org/content/chbmit/1.0.0/.
Kaggle Seizure Prediction Challenge: Available at https://www.kaggle.
com/competitions/seizure-prediction. Kaggle UPenn & Mayo Clinic Sei-
zure Detection Challenge: Available at https://www.kaggle.com/
competitions/seizure-detection. Synthetic Mackey-Glass time series
generated for this work using the standard Mackey-Glass delay differ-
ential equation (see Supplementary Note 2). Parameter settings and
generation scripts are provided in the accompanying code repository
(see Code availability, below); preprocessed train/test splits used in our
experiments are included there for reproducibility.

Code availability
Our code is publicly available at the following github repository:
https://github.com/SkyeGunasekaran/FutureGuidedLearning.
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