
Article https://doi.org/10.1038/s41467-025-63794-4

Demonstration of transformer-based
ALBERT model on a 14nm analog AI
inference chip

An Chen 1 , Stefano Ambrogio1, Pritish Narayanan1, Atsuya Okazaki 2,
Charles Mackin 1, Andrea Fasoli 1, Malte J. Rasch 3, Alexander Friz1,
Jose Luquin 1, Takeo Yasuda2, Masatoshi Ishii 2, Takuto Kanamori2,
Kohji Hosokawa 2, Timothy Philicelli4, Seiji Munetoh 2, Vijay Narayanan 3,
Hsinyu Tsai 1 & Geoffrey W. Burr 1

A Lite Bidirectional Encoder Representations from Transformers model is
demonstrated on an analog inference chip fabricated at 14nmnodewith phase
changememory. The 7.1 million unique analog weights shared across 12 layers
are mapped to a single chip, accurately programmed into the conductance of
28.3 million devices, for this first analog hardware demonstration of a mean-
ingfully large Transformer model. The implemented model achieved near iso-
accuracy on the General Language Understanding Evaluation benchmark of
seven tasks, despite the presence of weight-programming errors, hardware
imperfections, readout noise, and error propagation. The average hardware
accuracy was only 1.8% below that of the floating-point reference, with several
tasks at full iso-accuracy. Careful fine-tuning ofmodel weights using hardware-
aware techniques contributes an average hardware accuracy improvement of
4.4%. Accuracy loss due to conductancedrift –measured tobe roughly 5%over
30 days – was reduced to less than 1% with a recalibration-based “drift com-
pensation” technique.

As Deep Neural Network (DNN) model sizes continue to grow from
millions to billions of weights, it has been challenging for AI hardware
to keep up with the pace of this AI revolution. Analog AI accelerators
based on Non-Volatile Memories (NVMs) leverage the massive paral-
lelism in memory arrays to efficiently perform the Multiply and
ACcumulate (MAC) matrix-operations that dominate these workloads.
In particular, the “von Neumann bottleneck,” incurred by repeatedly
moving weight data from memory to processing cores, is greatly
reduced by performing computation directly at the location of data
("Compute-In-Memory” or CIM). Programming these weights into
NVMdevices capable of continuous analog states leads to high-density
and full weight-stationarity, enabling analog AI accelerators that can
offer extremely high system (not just macro) energy-efficiency [TOPS/

W] at highly competitive compute-density [TOPS/mm2]1,2. Analog
accelerators based on CIM have been demonstrated using various
NVM technologies, e.g., Flash3–5, PCM6–9, RRAM10–13, MRAM14–16,
ECRAM17–19, or ferroelectric devices20–22. A variety of bit-wise CIM
macros based on high-endurance but low-density SRAM have also
been proposed23–26.

In recent years, DNN-based Natural Language Processing (NLP)
has transitioned from Recurrent networks such as Long Short-Term
Memory (LSTM) toward Transformer-based models, which use an
attention mechanism (Fig. 1a) to represent the relationships between
“tokens” (e.g. words) of a data-sequence (e.g., sentences and
paragraphs)27–29. Decoder-based transformers (such as GPT-329) can
repeatedly generate a next predicted token to extend an input

Received: 10 December 2024

Accepted: 22 August 2025

Check for updates

1IBM Research – Almaden, San Jose, CA, USA. 2IBM Research – Tokyo, Saiwai, Kawasaki, Japan. 3IBM T. J. Watson Research Center – Yorktown Heights,
Yorktown Heights, NY, USA. 4IBM Albany NanoTech – Albany, Albany, USA. This work is supported by the IBM Research AI Hardware Center (ibm.com/ai-
hardware-center). e-mail: chenan@us.ibm.com

Nature Communications | (2025) 16:8661 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0001-8022-4431
http://orcid.org/0000-0002-5275-5224
http://orcid.org/0000-0002-5275-5224
http://orcid.org/0000-0002-5275-5224
http://orcid.org/0000-0002-5275-5224
http://orcid.org/0000-0002-5275-5224
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-8413-5583
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0001-6892-5139
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0009-0005-9539-1386
http://orcid.org/0009-0005-9539-1386
http://orcid.org/0009-0005-9539-1386
http://orcid.org/0009-0005-9539-1386
http://orcid.org/0009-0005-9539-1386
http://orcid.org/0000-0003-0794-7232
http://orcid.org/0000-0003-0794-7232
http://orcid.org/0000-0003-0794-7232
http://orcid.org/0000-0003-0794-7232
http://orcid.org/0000-0003-0794-7232
http://orcid.org/0009-0009-8086-8144
http://orcid.org/0009-0009-8086-8144
http://orcid.org/0009-0009-8086-8144
http://orcid.org/0009-0009-8086-8144
http://orcid.org/0009-0009-8086-8144
http://orcid.org/0000-0003-3334-5235
http://orcid.org/0000-0003-3334-5235
http://orcid.org/0000-0003-3334-5235
http://orcid.org/0000-0003-3334-5235
http://orcid.org/0000-0003-3334-5235
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0009-0008-8433-963X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0002-3971-097X
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://orcid.org/0000-0001-5717-2549
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63794-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63794-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63794-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-63794-4&domain=pdf
mailto:chenan@us.ibm.com
www.nature.com/naturecommunications

sequence. In contrast, Encoder-based transformers, such as BERT
(Bidirectional Encoder Representations from Transformers)28 perform
a single pass over each input sequence, using an attention-matrix to
understand token relationships across the sequence, and thus execute
NLP tasks with high accuracy.

This attention-matrix is dynamically generated from token-
vectors emitted by large fully connected weight-layer blocks, which
in turn are highly suitable for implementation with analog AI accel-
erators. Since BERT has achieved leading-edge performance for NLP,
many approaches to reduce its model size and hardware requirements
have been reported. The ALBERT (A Lite BERT) model30 significantly
reduces the number of required weights by sharing the same weights
across all the Transformer encoder layers. With 7.7 million unique
weights, the ALBERT-base model is a Transformer-based model with
meaningful industry relevance, worthy of demonstration on an analog
AI accelerator. In fact, previous work has shown that ALBERT is sig-
nificantly more challenging for analog AI hardware than BERT-base
model31 that implements unique weight-matrices for each of the 12
layers. Thus successful demonstration of ALBERT implies that a larger
chip with the same noise characteristics should have little trouble
implementing BERT models. While several pure-digital accelerator
macros have been introduced that focus on the attention-compute
block, the associated hardware demonstrations have depended heav-
ily on partial weight-stationarity32,33. To the best of our knowledge, this
work is the largest fully weight-stationary2 CIM demonstration of a
industry-relevant Transformer model to date.

In thiswork,wemap theweights of oneALBERT layer onto a single
PCM-based analog inference chip that we have demonstrated

recently34. Since the weights are shared by all 12 layers, the demon-
stration of the entire ALBERT model can be conducted with one chip
by feeding the outputs of a layer back to the chip as the inputs to the
next layer, iterating the process across the 12 layers to produce the
final outputs. Figure 1b shows the four fully connected layer-blocks
comprising the bulk of the ALBERT model and implemented in hard-
ware; all other operations, including the matrix computations for
attention, pooler, and classifier are implemented off-chip (in software
running on a control computer). Note that theweight-sharing across 12
layers in the ALBERT model provides a unique opportunity to
demonstrate a completemodel in a single chip. The learning about the
challenges and solutions for analog AI hardware through this
demonstration is broadly applicable to other models without weight-
sharing.

To test the ALBERT model in hardware, we utilize seven NLP
tasks in the General Language Understanding Evaluation (GLUE)
benchmark (Fig. 1c)35. The size of the validation datasets associated
with these tasks varies from several hundred sequences to tens of
thousands, with sequence lengths ranging from ~ 10 tokens up to
128 (Fig. 1d). The accuracy of each GLUE task is measured by running
embedded tokens through the 12 layers of ALBERT model, using the
analog AI chip for fully-connected layers and software for attention-
compute and vectorized activation-compute, followed by pooler
and classifier layers implemented in software. The classifier outputs
are compared with labels to calculate the final accuracy. We can
examine how accuracy evolves through the 12 layers of the network
by passing the outputs of these layers through the pooler and
classifier to calculate the accuracy for fewer than 12 layers. For the

Fig. 1 | ALBERT model and the GLUE benchmark datasets. a A Transformer
model relies on the attention mechanism instead of recurrence for sequence pro-
cessing.bThe structure of the ALBERT-basemodelwith 12 layers of sharedweights.
Each layer consists of a self-attention block and a feed-forward network (FFN)
block, each followed by residual addition (Add) and layer normalization (Layer-
Norm). The four layer-blocks implemented in hardware include inProj (mapping
input activations to queries (Q), keys (K), and values (V)), outProj (mapping
attention computation to output activations), and the two fully connected layer-
blocks comprising the FFN (FC1, FC2). These four layer-blocks represent over 99%
of the weights in the ALBERT-base model. c Seven GLUE benchmark tasks used in
this paper have validation data-sets that vary considerably in size (number of

examples); all but one are binary classification tasks. d The distribution of the
sequence lengths for the validation datasets associated with the seven GLUE tasks.
For sequences with 64 tokens, the analog accelerator is performing 98% of the
required operations; for longer sequences, this percentage is slightly lower since
the fully-connected layer-blocks scale linearly with sequence-length, yet the
attention-compute scales quadratically. e Simulated accuracy of the seven GLUE
tasks asmodel weights are quantized from6-bit precisiondown to 2-bit (2-bit: grey;
3-bit: teal; 4-bit: lime; 5-bit: orange, 6-bit: blue), revealing significant differences in
difficulty and robustness between tasks. An effective precision of 4 bits is sufficient
for almost all the tasks.

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 2

www.nature.com/naturecommunications

four smaller datasets – RTE, MRPC, CoLA, and SST-2 – the entire
validation datasets were used in hardware testing. For each of the
larger tasks – QNLI, MNLI, and QQP – we chose a randomly sampled
subset of 1000 sample-sequences for hardware testing, which
exhibits the same accuracy as the entire dataset (see section
“Methods”).

Inevitably there are slight errorswhenprogramming thehardware
weights into PCM conductances, as well as readout noise while per-
forming the analog MAC operations. Both of these reduce effective
weight precision, which we can emulate in software by weight quan-
tization, to rapidly assess these GLUE tasks (Fig. 1e). Most tasks can
reach the accuracy of the floating-point (FP) reference at 4-bit
equivalent weight precision, while 3-bit weight precision causes
some accuracy degradation (Fig. 1e). GLUE tasks vary noticeably in
their resilience againstweight quantization, and thus to analognoiseas
well. For example, QNLI is robust even at 2-bit weight precision, but
RTE is quite sensitive to weight precision.

Hardware-aware (HWA) training incorporates noise and hardware
imperfections into the training process to producemodel weights that
aremore resilient against hardware imperfections. Transformer-based
models have been shown to be more sensitive to hardware imperfec-
tions than recurrent networks, and thus benefit considerably from
HWA training31. Since the ALBERTmodel takes pre-trainedweights and
then fine-tunes them for each downstream task, we employ HWA

techniques during thisfine-tuningprocess to improvemodel resilience
(see section “Methods” for details).

The mapping of the four layer-blocks comprising the ALBERT
model (inProj, outProj, FC1, andFC2) to a single chip is shown in Fig. 2a.
This mapping strategy routes signals to maximize utilization of the six
input and six output landing pads (ILPs and OLPs), which are the pri-
mary throughput constraints. Figure 2b-g show the multiple phases of
inputs and outputs for the four layer-blocks occurring in sequence
(inProj → outProj → FC1 → FC2). Given the ILP andOLP constraints and
the need for off-chip processing, these operations cannot be fully
pipelined, limiting our throughput expectations for this hardware
demonstration. More advanced chips with larger analog tiles (for
better network mapping) and multiple compute-cores (for on-chip
digital compute36) will enable pipeline design for significantly higher
parallelism, utilization, throughput, and efficiency.

However, several significant challenges that such a pipelined chip
will face can be addressed in the present experiment, including the
drive for sufficient MAC accuracy and the mapping of large weight
matrices to fixed-size tiles. Each of the four layer-blocks are larger than
one analog tile (512 × 512 weights when using 4 PCM per weight) and
need to bemapped acrossmultiple tiles. Figure 2h illustrates themulti-
tile mapping of these layer-blocks. These tiles of mapped weights are
carefully placed into a single chip, sometimes with two layer-blocks
sharing a tile, and signal routing carefully designed to avoid any

Fig. 2 | Mapping of ALBERT model to the chip. a The four ALBERT layer-blocks
described inFig. 1 (inProj, outProj, FC1, and FC2) aremappedonto theirown tiles on
a single 14nm analog inference chip. b–g The routing paths for the incoming and
outgoing vectors for the four layer-blocks. Each ALBERT layer requires four phases
of inputs and outputs for the layer-blocks in sequence (inProj → outProj → FC1 →

FC2). b, d, f Routing paths for the independent incoming 512-element data vectors,
from the six input landing pads (ILPs) across the 2Dmesh over the tiles to the west-
sides of one or more destination tiles; c, e, g Routing paths for outgoing 512-

element vectors, from the south- or north-sides of source-tiles (or tile-pairs) to the
six output landing pads (OLPs). 512-element data vectors are conveyed in duration
format on 512mesh wires in parallel8. In some cases, two 256-element vectors from
two different source tiles are implicitly concatenated by the 2D-mesh before arrival
at anOLP.hThemappingofeachof the inProj, outProj, FC1, andFC2 layer-blocks to
the requisite number of 512 × 512 weight tiles. i The percentage of weights being
utilized in each of the 34 tiles for this ALBERT model (Note that the two white
squares contain neither tile arrays nor 2D mesh routing wires).

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 3

www.nature.com/naturecommunications

crossing of data vectors on the 2D mesh. Many tiles can be fully uti-
lized, with only a few occupied at less than 50% (Fig. 2i). Overall, 79.4%
of the weight capacity of the chip is used in the demonstration.

Results
Accuracy of the ALBERT model in hardware
The target weights in software were programmed into the on-chip PCM
devices with a closed-loop tuning process34. Four PCMdevices are used
to program each weight and implement asymmetry balance, with
positive (negative) weights programmed on the first (second) PCM-
pair8. The programmed hardware (HW) weights match the target soft-
ware (SW) weights quite well (see Supplementary Fig. 3 for correlation

plots for all 34 tiles), with correlation coefficients (R2) > 0.98. However,
correlation plots between HW MAC and SW MAC (Supplementary
Fig. 4) exhibit wider spread than the raw weights. This spread visually
increases with layers, and the HW-SWMAC correlation coefficients (R2)
degrade steadily for all seven GLUE tasks (Supplementary Fig. 5), indi-
cating accumulationofMACerror as tokensmove through the 12 layers.
Both Supplementary Figs. 4 and 5 show that these HW-SW MAC cor-
relations improve at each inProj and FC1 layer-block as compared to
outProj and FC2, which can be attributed to the restoring nature of the
LayerNorm operations performed just before inProj and FC1.

Figure 3a shows the measured HW accuracy (green bars), SW
accuracy (red bars), and FP accuracy (blue bars) for the seven GLUE

Fig. 3 | ALBERT model performance on-chip. a Plot and b Table of accuracy for
floating-point (FP) reference (blue bars), software (SW, red bars), and hardware
(HW, green bars) of the seven GLUE tasks on the ALBERT model. The HW ALBERT
model achieves near iso-accuracy, with the average accuracy of seven GLUE tasks
only 1.8% below the FP accuracy. MRPC and QNLI reach iso-accuracy (bold in the
table). c Cumulative distributions of the error margin (defined as the difference
between two classifier layer outputs) of the six binary classification tasks (RTE: red;
MRPC: blue; CoLA: lime; SST-2: magenta; QNLI: aqua; QQP: black). The inset

enlarges the tails (<25%) of the distributions to focus on samples with small error
margin. dMedian value of the MAC error (i.e., the difference between SW and HW
MAC values) at layer 12 for the six binary-classification GLUE tasks. e Larger error
margin and smaller MAC error lead to higher accuracy, and vice versa. f The HW
accuracy of the seven GLUE tasks after layer 6 (grey), 9 (teal), 10 (lime), 11 (orange),
and 12 (blue). g Histogram of the layers at which correctly-classified samples settle
on that answer for the MRPC task.

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 4

www.nature.com/naturecommunications

tasks. The SWmodel adopts the HWA fine-tuned weights and clipping
on weights and activations, thus differing from the FP model in accu-
racy. The average SW accuracy of the seven GLUE tasks is 0.5% below
the FP accuracy. The HW imperfections degrade the average GLUE
accuracy by 1.29% from this SW accuracy, resulting in an overall 1.79%
accuracy loss from FP reference to HW. This FP-HW accuracy gap
varies markedly across the seven GLUE tasks (Fig. 3b). Two GLUE tasks
– MRPC and QNLI – reach iso-accuracy, defined as HW accuracy that
exceeds 99% of FP accuracy. QQP is only slightly below this threshold.
On theother hand, RTE andCoLAhave the lowestHWaccuracy relative
to the FP reference, at 95.5% and 96.7% respectively. As the smallest
dataset, RTE also shows more instability during testing in comparison
with larger datasets.

The different levels of HW accuracy of the GLUE tasks can be
partially explainedby the intrinsic errormargin of thesedatasets. Since
six of the sevenGLUE tasks use binary classification, the absolute value
of the difference between the “correct” and “wrong” neurons in the
classifier layer represents an error margin. A sample with large error
margin is quite likely to produce the same result in the HW as FP
reference – samples with small error margins are at higher risk of
flipping due to noise and imperfections (Supplementary Fig. 6). Fig-
ure 3c compares thedistributions of this errormargin for the six binary
classification GLUE tasks, focusing on the tail of the error margin dis-
tribution contributed by the most error-prone verification samples.
The inset of Fig. 3c shows that tasks exhibiting higher accuracy (e.g.,
MRPC and QNLI) have fewer samples with small error margin than
tasks with lower accuracy (e.g., RTE, CoLA).

GLUE tasks can also have poor resilience by being susceptible to
producing large MAC errors. Figure 3d compares the median HW
MAC error at layer 12 for the six GLUE tasks. MRPC and QNLI exhibit
both high error margin and lowMAC error, which explains their high
accuracy. In comparison, RTE and CoLA have lower error margin and
higher MAC error, and hence have lower accuracy. Figure 3e visua-
lizes the resilience of these GLUE tasks in HW, by showing how
accuracy varies with error margin andMAC error. QQP has the lowest
MAC error but also has many low error margin samples; SST2 has
very few low error margin samples but exhibits the highest MAC
error. As a result, the accuracy of these two GLUE tasks falls in the
middle. The task-specific robustness is related to how these task
datasets are structured. Simulations have also shown that the smaller
datasets (e.g., RTE) tend to have larger variation in training accuracy
across multiple trials. The different resilience of GLUE tasks reveals
the importance of intrinsic task robustness during evaluation of
analog AI hardware.

Testing “early exit” in hardware
One of the strategies to both accelerate ALBERT inference and save
energy is known as “early exit”37 – to redirect sequences to the pooler
and classifier before passing through all 12 layers, while maintaining
model accuracy. Figure 3f shows the hardware accuracy after layers 6,
9, 10, 11, and 12. The accuracy is still quite low after layer 6 and con-
tinues to increase through layers 9 and 10. The post-layer 11 accuracy is
very close to the final accuracy (layer 12) for most GLUE tasks. MAC
error (the difference between the HW MAC and SW MAC) also
increases the most at early layers and then saturates (Supplementary
Fig. 7). The average accuracy of seven GLUE tasks after layer 11 is only
0.4% below the final accuracy. “Early exit” of Transformer-based
models could potentially save time and energy while also reduce
unnecessary error accumulation in HW. Even larger accuracy gains
could be feasible if the ALBERTmodel were to be explicitly fine-tuned
for the target number of layers (rather than just exiting early from a
model trained to expect 12 layers). Such a designed “early exit”
implementation in hardware would not only use model weights fine-
tuned for fewer layers, but also employ a prediction-based strategy to
determine when to exit.

To examine the dynamics as sample-sequences pass through the
12 layers, Fig. 3g shows the distribution of the layers atwhich correctly-
classified samples settle on that answer. While some samples settle on
the correct answer as early as layer 2, the majority of samples become
correct at layers 7-9. As sequences pass through the last few layers,
only a small number of samples fix their incorrect classification, con-
sistent with the saturation of accuracy. Supplementary Fig. 8a shows
the cumulative distribution of this data – the build-up of correctly-
classified samples – for all seven GLUE tasks, showing that most
correctly-classified samples are obtained well before the final layers.
That said, the increaseof accuracywith layer is not a smoothprocessof
adding more correct answers at every layer, since correctly-classified
samples can and do flip back to the wrong class as well (Supplemen-
tary Fig. 8b).

Demonstration of the HWA training effect
HWA training has been demonstrated on smaller networks, e.g., Con-
volutional Neural Network (CNN), LSTM7. This implementation of the
ALBERT model provides an opportunity to demonstrate the effec-
tiveness of HWA training on Transformer-based models in actual
analog inference hardware. Model weights fine-tuned with different
levels of noisewereprogrammed into theon-chip PCMdevices and the
hardware accuracy was measured. Figure 4a compares the hardware
accuracy on all seven GLUE tasks for weights fine-tuned with noise
scale of 0 ("zero-noiseweights,”white bars), and forweights fine-tuned
with appropriate noise scale to maximize accuracy ("HWA-tuned
weights,” grey bars). These HWA-finetuned weights consistently
achieve higher hardware accuracy than the zero-noiseweights, driving
an improvement in average GLUE-task accuracy of 4.4%. Figure 4b
shows the dependence of the hardware accuracy on the noise scale
used in the HWA fine-tuning for six GLUE tasks. RTE with its extremely
small dataset was excluded due to excessive run-to-run instability. For
each task, there exists an optimal noise scale that produces a best set
of HWA-finetuned weights and the highest accuracy. Accuracy is
always poor for weights finetuned with zero noise, but injecting too
muchnoise during HWA fine-tuning also hurts accuracy. To the best of
our knowledge, this work is the first hardware demonstration of the
effectiveness of HWA training on a meaningfully large Transformer-
based model.

PCM conductance drift effect and mitigation
As the amorphous phase within programmed PCM devices relaxes,
device-conductances decrease logarithmically over time38. Worse yet,
since each device experiences this conductance drift at a slightly dif-
ferent decay rate, model-weight distributions broaden over time (see
section “Methods”). Both (1) the decay in average conductance and (2)
the broadening of weight distributions cause model-accuracy to
degrade; fortunately, as we will show here, (1) can be fully compen-
sated and (2) by itself has only amodest impact on ALBERT accuracy in
HW. A comprehensive study on the impact of analog hardware non-
idealities (including PCM drift) on the performance of various DNNs
has been previously conducted by simulation31. Transformer-based
models, including ALBERT, were shown to be slightly more robust
against PCMdrift thanCNNs butmore sensitive to drift thanRecurrent
Neural Networks (RNNs). This work provides an experimental assess-
ment of the PCM drift impact and the effectiveness of the drift com-
pensation technique.

A thorough drift test was conducted over 30 days on this hard-
ware ALBERT model using the MRPC task. After programming the
model weights into the on-chip PCM devices, the inference accuracy
wasmeasured periodically over 30days (Fig. 4c), either using the same
initial calibration (see section “Methods”) produced before the first
inference test after weight programming (blue circles, “without reca-
libration”), or by generating a new set of recalibrated parameters
before each inference test (red squares, “with recalibration”7,8). Red

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 5

www.nature.com/naturecommunications

and blue dashed lines show simple linear fits to highlight overall
trends; the black horizontal dashed line indicates the FP reference
accuracy.

Without recalibration, HW accuracy degraded roughly 5% over
30 days. As expected from the logarithmic nature of conductance
drift (see section “Methods”), most of this accuracy drop occurred
over the first few days. Recalibration effectively performs “drift
compensation”38 since the new calibration parameters measure the
current states of PCM devices, thus tracking the average conductance
drift. With recalibration, the HW accuracy decreases less than 1% over
30 days. Figure 4d shows how the MAC error (i.e., difference between
HW and SW MAC) evolves over time. Without recalibration (upper
panel), the tails of these distributions spread, driving reduced hard-
ware accuracy. With recalibration (lower panel), there is little notice-
able change of the MAC error distribution over time, thus leading to
unchanged HW accuracy. As this calibration involves determining new
slope and offset parameters, it requires access to calibration data and
ground truth, as well as on-chip digital arithmetic circuitry. For-
tunately, a system for deep learning will include on-chip digital com-
pute cores for auxiliary operations such as normalization, activation
functions etc., which can be repurposed for calibration.

Drift effect over a 30-day period is the longest hardware mea-
surement conducted in this work. To quantify the drift effect over a
longer period would require accelerated testing at elevated

temperature. Note that PCM drift is an effect that is rapid immedi-
ately after programming, and then slows down significantly over
time; therefore, conductance change after the first 30 days will be
relatively small. Furthermore, in many business applications, the AI
models are refreshed or updated within 30 days. Occasional valida-
tion examples can also be run to determine if re-calibration is nee-
ded. This drift test was conducted at room temperature. A prior
study has shown that PCM-based inference accelerators are robust
against ambient temperature variation (33–80 °C) with compensa-
tion techniques.39

To explore the considerable run-to-run variation in HW accuracy
visible in Fig. 4c, MAC values were read out multiple times during one
of the later inference tests (so drift during this experiment is negli-
gible). To compare fairly between different layer-blocks, we normalize
the MAC variation by the median MAC amplitude. This normalized
read-to-read variation in MAC values (Fig. 4e) shows clear distinctions
among the four layer-blocks: FC2 has the highest MAC variation and
FC1 the lowest, while inProj and outProj are in the middle. These dis-
tinctions can be understood from the mapping of these layer-blocks
on-chip (Fig. 2h). With its 3072 rows and 768 columns, FC2 requires
summing vectors across six tiles (512 columns) or six half-tiles (final
256 columns), which each experience their own circuit noise, small tile-
to-tile discrepancies in calibration coefficients, and 7-bit quantization
at the OLPs. The other three layer-blocks all have 768 rows and require

Fig. 4 | Hardware (HW) demonstration of HWA training, drift effects, and MAC
variation. a ExperimentallymeasuredHW inference accuracywith optimized (grey
bars) and without any (white bars) HWA noise during fine-tuning of seven GLUE
tasks. Adding the appropriate level of noise during fine-tuning improves the aver-
age HW accuracy of seven GLUE tasks by 4.4%. b The dependence of HW accuracy
on the noise scale used in HWA fine-tuning for six GLUE tasks (MRPC: blue squares;
CoLA: lime stars; SST-2: pink triangles; QNLI: aqua triangles; QQP: black diamonds;

MNLI: brown circles). The smallest task (RTE) is excluded due to its instability. The
filled-in (enlarged) symbol identifies the optimal HWA noise-scale for that task,
typically in the rangeof 1.0–2.0. cTheHWinferenceaccuracy of theMRPC taskwith
(red squares) and without (blue circles) recalibration over 30 days. d The dis-
tribution of MAC error from day 0 up to 3 weeks after weight programming. e The
ratio of the median MAC variation over medianMAC values for repeated inference
attempts.

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 6

www.nature.com/naturecommunications

summation over only two tiles. FC1 has the cleanestmapping strategy,
with summation performed in the analog domain within the tile-pairs
before digitization at the OLPs. In contrast, the inProj and outProj
layer-blocks are split across partial or shared tiles. Thus future analog
accelerators that can minimize quantization and circuit noise intro-
duced during tile-to-tile summation should significantly reduce HW
variation and further improve HW accuracy.

Power and efficiency analysis
We estimate the speed and energy potential of this analog accelerator
when implementing the ALBERT model, using both hardware mea-
surements (for the energy consumption of analog operations8) and
circuit simulations (for digital operations implemented in a 14nm
technology36). This treatment assumes that digital compute is done in
14nm circuitry at the locations of the ILP/OLP pairs, but implements
the non-pipelined dataflow used in the HW accuracy experiments
(Fig. 5a), as required by the mapping strategies from Fig. 2. Both the
analog compute in MAC cores ("inProj,” “outProj,” “FC1,” “FC2” in
Fig. 5a) and the digital compute for auxiliary functions ("QKV,” “other
ops” in Fig. 5a) are included in this analysis. Memory access involved in
the digital operations (e.g., reading/writing activations) is also inclu-
ded in the digital compute. There are no additional external
memory–access costs beyond these operations. Each sequence of
tokens is processed through one layer-block of the ALBERT hardware
at a time. Each layer comprises the 4 layer-blocks, the QKV compute
and other operations. This is repeated 12 times to complete the 12
ALBERT layers. The next sequence of tokens (e.g. Sample 2 in Fig. 5a)
may have a different sequence length, but sequence padding is not
required because batch size is 1. See section “Methods” for more
details. Because this particular implementation of ALBERT focused on
densely packing all weights on a single chip, only a fraction of the tiles

are active at any given time, which limits both peak energy efficiency
and peak throughput.

Figures. 5b, c show that analogoperations dominate both the total
operation-count (> 99% for short sequences, ≈ 98% for longer
sequences) and total energy (> 95%, Fig. 5(f)). Although the quadratic
scaling of digital attention-compute operations with sequence-length
noticeably affects the operation counts, the effects on energy are quite
subtle. This is because the tiles in this chip-demo are only ~ 3-4 ×more
energy-efficient than the 14nm digital compute (~20 TOPS/W8 vs. 5–7
TOPS/W36). As tile efficiency increases, the effects of sequence-length
become much more noticeable36. Although the sequence length of
GLUE benchmark is limited (up to 128), additional analysis with syn-
thetic datasets of sequence lengths up to 1000 reveals similar trends,
as shown in Supplementary Fig. S10.

Throughput in samples-per-second and energy efficiency in
samples-per-Joule also inherently decrease with sequence-length
(Fig. 5d, e). Figure 5i shows that all seven GLUE tasks achieve a
system-level energy efficiency over 3 TOPS/W, a reasonable perfor-
mance considering the hardware constraints. The prior work on the
demonstration of the Recurrent Neural Network Transducer (RNNT)
model in this analogaccelerator achieved the efficiencyof 6-7 TOPS/W,
a 14 × improvement over conventional digital accelerators8. In a more
advanced design where digital compute units are distributed on-chip
amongst the tiles, fine-grained pipelining within each layer can be
expected to keep all resources continuously busy, leading to sig-
nificant improvements in both energy-efficiency and throughput36.
Initial pipelining studies for networks such as BERT-base and BERT-
large have already been performed for such chips, showing the con-
siderable throughput and latency benefits of “Full Weight
Stationarity.”2,40 Higher tile-efficiency will help achieve higher system
energy efficiency, especially for short sequence lengths.

Fig. 5 | Power and efficiency analysis. a Simulated time sequence of activities in
the four layer-blocks implemented in the analog accelerator (inProj, outProj, FC1,
and FC2), attention computation ("QKV''), and all other digital operations.
b–e show the dependence on the mean sequence-length of: (b) the ratio between
analog and digital operation numbers, (c) the ratio between analog and digital

energy, (d) throughput in samples-per-second, and (e) energy efficiency in samples-
per-Joule. f The percentage of total energy spent on analog operations, (g)
throughput, (h) task-based energy efficiency, and (i) system-level energy-efficiency
in TOPS/W, across the 7 GLUE tasks.

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 7

www.nature.com/naturecommunications

Discussion
The Transformer architecture and the attention mechanism have
dominated large language models (LLMs). To the best of our knowl-
edge, this work is the first demonstration of a meaningfully large
Transformer-based model on an analog AI accelerator. Although it is
not an end-to-end demonstration, over 99% of ALBERTmodel weights
are implemented in hardware. The ALBERT model is small in com-
parisonwith the state-of-the-art LLMs, but it is uniquely suitable for the
analog accelerator in thiswork. Theweight sharing across layers allows
themapping of all unique weights of the model (around 7million) to a
single chip and the iteration on the chip enables the implementation of
the total 85 million weights in the model. As shown in the paper, this
ALBERTmodel on analog hardware provides an important platform to
examine the challenges of analog accelerators, develop mitigation
techniques, and prove the feasibility of analog AI accelerators for
Transformer-based models with sufficiently large size.

Analog AI accelerators are known to be susceptible to hardware
imperfections and random noises. HWA training is among the most
effective techniques to improve the resilience of AI models on analog
accelerators. Most studies on the HWA technique are based on simu-
lation. This work is not only a hardware demonstration of the
HWA technique on a reasonably large Transformer-based NLP model
across multiple benchmark tasks, but also provides experimental
results to gauge keyparameters inHWAsimulation (e.g., weight noise).
In addition, measuring the hardware performance acrossmultiple NLP
tasks reveals the importance of examining task-dependent model
resilience to produce a fair and transparent evaluation of analog AI
hardware.

While the analog accelerator in thiswork is based on PCM, lessons
learned from this study are broadly applicable to other NVM tech-
nologies such as RRAM. For example, calibration is not only an
essential step to convert raw MAC data from the chip to scaled MAC
data for the network but also helps to compensate spatiotemporal
variation in devices. Therefore, properly designed calibration is
important for analog accelerators regardless of the underlining NVM
technologies. The exact mapping of network weights to devices on
tiles tomaximize tile utilizationwill vary with different chip design and
capacity, but the mapping methodology shown here is generally
applicable to different device technologies. The closed-loop tuning of
conductance to achieve high weight precision is also a technique
applicable to various NVM devices.

Conductance drift is unique to PCM, but other NVM devices have
retention degradation behaviors and will benefit from similar mitiga-
tion techniques. Variability is a well-known challenge for NVM devices,
especially RRAM. However, the MAC variation measurement in Fig. 4e
reveals the importance of circuit noise, so device variation is not the
only source of variability at the network level. The relevant importance
of device and circuit noise will depend on both the NVM technology
and the circuit design. Note that – in contrast to the applicability of this
work focused on inference to other NVM devices – training, on the
other hand, involves more device-specific requirements such as the
symmetry and linearity of device programming not considered here.
The programming endurance of PCM is not an issue for inference
accelerators where PCM devices are infrequently programmed as
staticweights in analog tiles for theMACoperation. In a full end-to-end
inference chip, intermediate data processing will utilize SRAMs in
digital compute units instead of NVMs with limited endurance. How-
ever, training will place more stringent requirements on NVM endur-
ance since weights are frequently updated.

In summary, Transformer-based ALBERT model is demonstrated
on a 14nm analog AI accelerator with 35 million PCM devices. This
hardware demonstration of the ALBERT model not only provides
important proof-of-feasibility of analog AI inference chips for now
widely-usedTransformer-basedNLPmodels, but also enables aflexible
platform to evaluate various algorithm, design, and technology

solutions. Thanks to an efficient weight mapping strategy, optimized
weight programming schemes, and well-designed input/output rout-
ing, the HWALBERTmodel achieves near iso-accuracy as compared to
the FP reference on the GLUE benchmark. This inference chip also
proves that using HWA techniques during fine-tuning is important and
highly effective for the ALBERT model. Although PCM conductance
drift does degrade theALBERTmodel accuracy over time, these effects
can be greatly mitigated by recalibration. Further improvement of
large network performance is expected on more advanced analog AI
accelerators that can support better mapping strategies, fine-grained
pipelining, and tiles with higher macro energy-efficiency.

Methods
Test platform and analog inference chip
This demonstration of the ALBERTmodel on the analog inference chip
starts with the floating-point (FP) model, which is fine-tuned with
hardware-aware (HWA) technique in software. The weights are
extracted and programmed into the PCM devices in the analog chip.
Digital computations are implemented in software, including the
matrix computation for attention, activation functions (gelu, softmax,
tanh), pooler, and classifier. The accuracy of each GLUE task is mea-
sured by running embedded tokens through the 12 layers of ALBERT
model, using the analogAI chip for fully-connected layers and software
for attention-compute and vectorized activation-compute, followed
by pooler and classifier layers implemented in software. The classifier
outputs are compared with labels to calculate the final accuracy.

The analog AI inference chip is based on Phase Change Memory
(PCM) fabricated with 14nm CMOS technology. This chip contains 34
analog tiles connected with amassively-parallel 2Dmesh for tile-to-tile
communication34. Each tile contains 1.05 million mushroom-type PCM
devices that can be parallel-programmed in row-wise fashion, with
options to encode each weight across multiple PCM devices to
improve precision and reduce noise. Vertically-adjacent pairs of tiles
can share their peripheral capacitors, to double the number of input
rows overwhich current integration is performed.With 35million PCM
devices, this chip has been shown capable of implementing large DNN
models, e.g., Recurrent Neural Network Transducer (RNNT)8 at near
software-level model accuracy.

Hardware-aware (HWA) fine-tuning
HWA techniques are employed in the fine-tuning of the ALBERTmodel
to improve the resilience of the ALBERT model31. Supplementary
Fig. 1b shows the simulated inference accuracy of the MNLI task for
weights fine-tunedwith different levels of noise scale duringHWA fine-
tuning. The HWA noise scales are multiplication factors applied on a
standard PCMnoisemodel, e.g., a noise scale of 2.0 applies “twice” the
base amount of PCM noise during fine-tuning. For weights fine-tuned
with an HWA noise scale of 0, the inference accuracy starts high but
decreases quickly over time. For weights fine-tuned with high HWA
noise scales (e.g., 3.0), the inference accuracy is stable over time
although it was already low from the beginning. As shown in the bar
chart of inference accuracy at 1-month (Supplementary Fig. 1c), there is
an optimal range of HWA noise scale at which the model can be fine-
tuned to achieve maximum inference accuracy, although this value
varies from task to task. All seven GLUE tasks are fine-tuned with a
range of HWA noise scales and the model weights for each noise scale
were extracted to map to the analog PCM chip for hardware testing.

Sample randomization
The FP reference accuracy of a subset of 1000 samples varies
depending where the 1000 samples are chosen, from within the three
largest verification datasets, QNLI, QQP, and MNLI. As shown in Sup-
plementary Fig. 2, the FP accuracyof a subset of 1000 samples can vary
from subset to subset as much as 5%. Therefore, an arbitrarily chosen
set of 1000 samples (e.g., the first 1000 samples of the dataset) may

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 8

www.nature.com/naturecommunications

not be a good representation of the dataset as a whole. We choose to
first randomize the samples in these larger datasets and then select a
subset of 1000 samples whose accuracy closely matches that of the
entire dataset, and then use this subset for all hardware testing.

Calibration
Before inference, a calibration is performed to obtain the scaling
parameters that are needed to convert raw MAC data read directly
from the chip to the scaled MAC data consistent with the network
activation range. This step is done by passing a batch of samples from
the training dataset to the model. Columnwise scale and offset para-
meters are calculated to best correlate the raw MAC on-chip with the
target MAC in software. This calibration is needed at least once before
inference but can also be done repeatedly during inference over an
extended period of time (“recalibration”) to account for changing
hardware weights over time (e.g., PCM drift). Note that even though
the same set of weights, say for FC1, are used 12 times across the 12
layers, each usage has its own set of columnwise calibration (e.g., scale
and offset) factors. This is because the excitation distributions change
at each layer for the various layer-blocks.

PCM conductance drift
PCM devices depend on controlling the phase of the PCM material
located in the effective device-volume – e.g., affecting the device-
resistance for read current passing from a top- to a bottom-electrode
through the PCM material41. PCM material can crystallize to a high-
conductance state at elevated temperatures (~400–450 °C), and be
quenched into the low-conductance amorphous phase by rapidly
cooling molten material (hotter than ~600 °C) to temperatures low
enough to suppress recrystallization (below ~ 150 °C).

PCM conductance drift occurs over time because this rapidly-
quenched amorphous phase within the device volume continues to
relax long after programming is completed. The overall trend is almost
always from higher to lower conductance, and typically represents a
stright line on a plot of logG vs. log t, where G is conductance and t is
time. Thus PCMdevice-conductancewill drop by the same percentage
within each 10 × time interval, inherently slowing down from a rapid
initial decay. This can be quantified as

G=G0
t
t0

� ��ν

, ð1Þ

where G0 represents the conductance at some time t0 (as measured
after programming), and ν is known as the drift coefficient, typically
ranging from 0.01 to 0.10.

If this were the only problem with drift, then so long as all model
weights were programmed at the same time t0, onewouldneed only to
boost readout currents by the appropriate time-dependent gain-
coefficient to reproduce the original effective device-conductances.
This gain-coefficient could even be applied at the end of array-columns
after device read-currents were summed along bitlines. Eventually, any
readout noise – coming either from the PCM devices (such as thermal,
shot or random-telegraph noise) or introduced by bitline or ADC cir-
cuitry before the gain-amplification is applied – also ends up being
amplified. Thus after some long time t, the signal-to-noise ratio would
degrade. However, a different effect ends up degrading MAC correla-
tion and model accuracies long before this can occur.

Beyond device-to-device variations in device width, size and
material composition, every quenching event even within the same
physical PCM device will encounter a different distribution of crystal
grains (and stoichiometry distribution) within the device, depending
on some number of its most recent programming events. This affects
the device resistance through percolation paths around the amor-
phous plug that is undergoing relaxation, thus affecting the effective
drift coefficient exhibited on both an inter- and intra-device basis. It is

this shot-to-shot variability in ν coefficient that broadens distributions
and makes it challenging to simply compensate all the read-currents
coming from a column of PCM devices.

That said, it is still a good idea to ensure that all devices are pro-
grammed togther so that they exhibit roughly the same t0 and then
scale them back up together. This allows one to boost the aggregated
read currents by the average drift-coefficient, and thus maintain the
same average read-signal in each array MAC. This is what the “recali-
bration” referred to in Fig. 4c, d accomplishes, allowing model accu-
racy to be maintained even as device conductances are inherently
decaying.

MAC variation measurement
To measure the variation of MAC in hardware, the output from the
analog chip is continuously readmultiple times during one of the later
inference tests (so drift during this experiment is negligible). For each
array column, we have multiple samples of what should be the same
MAC result, leading to a non-zero standard deviation. We can then
repeat at each column to obtain the median value across a particular
layer-block. The Supplementary Fig. 8c shows the median MAC value
(blue bars) and the median MAC variation during the multiple-reading
test (red bars) of the inProj, outProj, FC1, and FC2 layer-blocks over 12
layers. The MAC value and variation do not show layer dependence.

Power performance measurement and estimation
To estimate system-level power performance, we calculate the total
energy and time to process the target workloads. System power per-
formance is estimated in two parts: The digital compute units for all
non-MACoperations are simulated using a 14nm technology, while the
timing and power of the analog chip for MAC computations are
experimentally measured. The analog MAC-compute time and energy
includes the costs of sending activations to the edge of the chip and
the conversionof activations to/fromdigital bits at theOLP/ILP blocks.
The digital compute units are assumed to reside on the same chip,
right next to the ILPs/OLPs of the analog inference chip. Analog chip
power and timing measurements are illustrated in Supplemen-
tary Fig. 9.

The sequence lengths of the GLUE benchmark are relatively small,
up to 128. To examine the effect of longer sequence length, synthetic
datasets with sequence lengths of 150, 300, 500, and 1000 are added
in the power and efficiency analysis in Supplementary Fig. 10.

Data availability
The ALBERT model is publicly available from the HuggingFace
repository42. The rawdata that support thefindings of this study canbe
made available by the corresponding author upon request after IBM
management approval.

Code availability
The HWA fine-tuning of the ALBERT model was conducted with an
internal tool and the same capability is available in the IBM Analog
Hardware Acceleration Kit at https://github.com/IBM/aihwkit43,44.
(https://doi.org/10.5281/zenodo.8148598)

References
1. Burr, G. W., Sebastian, A., Ando, T. & Haensch, W. Ohm’s law +

Kirchhoff’s current law = better AI: Neural-network processing done
in memory with analog circuits will save energy. IEEE Spectrum 58,
44–49 (2021).

2. Burr, G. W. et al. Design of analog-AI hardware accelerators for
Transformer-based language models. In Proc. 2023 International
Electron Devices Meeting (IEDM) (2023).

3. Bavandpour, M., Mahmoodi, M. R. & Strukov, D. B. aCortex: an
energy-efficient multipurpose mixed-signal inference accelerator.

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 9

https://github.com/IBM/aihwkit
https://doi.org/10.5281/zenodo.8148598
www.nature.com/naturecommunications

IEEE J. Explor. Solid State Comput. Devices Circuits 6,
98–106 (2020).

4. Fick, L., Skrzyniarz, S., Parikh, M., Henry, M. B. & Fick, D. Analog
matrix processor for edgeAI real-time video analytics. In Proc. 2022
IEEE International Solid-State Circuits Conference (ISSCC), vol. 65,
260–262 (IEEE, 2022).

5. Hu, H.-W. et al. A 512Gb in-memory-computing 3D-NAND flash
supporting similar-vector-matching operations on edge-AI devices.
In Proc. 2022 IEEE International Solid-State Circuits Conference
(ISSCC), vol. 65, 138–140 (IEEE, 2022).

6. Cheng, H. Y. et al. State-independent low resistance drift SiSbTe
phase change memory for analog in-memory computing applica-
tions. In Proc. 2024 IEEE Symposium on VLSI Technology and Cir-
cuits (VLSI Technology and Circuits), 1–2 (IEEE, 2024). https://
ieeexplore.ieee.org/document/10631376/.

7. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network infer-
ence. Nat. Electronics 6, 680–693 (2023).

8. Ambrogio, S. et al. An analog-AI chip for energy-efficient speech
recognition and transcription. Nature 620, 768–775 (2023).

9. Wu, X. et al. Novel nanocomposite-superlattices for low energy and
high stability nanoscale phase-change memory. Nature Commu-
nications 15, 13 (2024).

10. Yin, S., Sun, X., Yu, S. & Seo, J.-S. High-throughput in-memory
computing for binary deep neural networks with monolithically
integratedRRAMand90-nmCMOS. IEEE Transact. ElectronDevices
67, 4185–4192 (2020).

11. Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

12. Zhang, W. et al. Edge learning using a fully integrated neuro-
inspired memristor chip. Science 381, 1205–1211 (2023).

13. Song, W. et al. Programming memristor arrays with arbitrarily high
precision for analog computing. Science 383, 903–910 (2024).

14. Deaville, P., Zhang, B. & Verma, N. A fully row/column-parallel in-
memory computing macro in foundry MRAM with differential
readout for noise rejection. IEEE J. Solid State Circuits. 59,
2070–2080 (2024).

15. Cai, H. et al. Proposal of analog in-memory computing with mag-
nified tunnelmagnetoresistance ratio anduniversal STT-MRAMcell.
IEEE Trans. Circuits Syst. I Regul. Pap. 69, 1519–1531 (2022).

16. Jung, S. et al. A crossbar array ofmagnetoresistivememorydevices
for in-memory computing. Nature 601, 211–216 (2022).

17. Kwak, H., Kim, N., Jeon, S., Kim, S. & Woo, J. Electrochemical
random-access memory: recent advances in materials, devices,
and systems towards neuromorphic computing. Nano Con-
vergence 11, 9 (2024).

18. Chen, P. et al. Open-loop analog programmable electrochemical
memory array. Nat. Commun. 14, 6184 (2023).

19. Solomon, P. M. et al. Transient investigation of metal-oxide based,
CMOS-compatible ECRAM. In Proc 2021 IEEE International Relia-
bility Physics Symposium (IRPS), 1–7 (IEEE, 2021).

20. Soliman, T. et al. First demonstration of in-memory computing
crossbar using multi-level cell FeFET. Nat. Commun. 14,
6348 (2023).

21. Zhang, B. et al. Multi-functional ferroelectric domain wall nanode-
vices for in-memory computing and light sensing. Adv. Funct.
Mater. 34, 2405587 (2024).

22. Chen, C., Zhou, Y., Tong, L., Pang, Y. & Xu, J. Emerging 2D ferro-
electric devices for in-sensor and in-memory computing. Adv.
Mater. 37, 2400332 (2024).

23. Deaville, P., Zhang, B. & Verma, N. A 22nm 128-Kb MRAM row/col-
umn-parallel in-memorycomputingmacrowithmemory-resistance
boosting and multi-column ADC readout. In Proc. 2022 IEEE sym-
posium on VLSI technology and circuits (VLSI technology and cir-
cuits), 268–269 (IEEE, 2022).

24. Sun, X. et al. Efficient processing of MLPerf mobile workloads using
digital compute-in-memorymacros. IEEE Trans. Comput Aided Des.
Integr. Circuits Syst. 43, 1191–1205 (2023).

25. Wu, P.-C. et al. A 22nm 832Kb hybrid-domain floating-point SRAM
in-memory-compute macro with 16.2-70.2 TFLOPS/W for high-
accuracy AI-edge devices. In Proc. 2023 IEEE International Solid-
State Circuits Conference (ISSCC), 126–128 (IEEE, 2023).

26. Zhang, B. et al. MACC-SRAM: a multistep accumulation capacitor-
coupling in-memory computing SRAM macro for deep convolu-
tional neural networks. IEEE J. Solid State Circuits 59,
1938–1949 (2023).

27. Vaswani, A. et al. Attention is all you need. 31st Conference on
Neural Information Processing Systems (NIPS 2017). http://arxiv.
org/abs/1706.03762 (2017).

28. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training
of deep bidirectional Transformers for language understanding.
http://arxiv.org/abs/1810.04805 (2019).

29. Floridi, L. & Chiriatti, GPT-3: Its nature, scope, limits, and con-
sequences. Minds Mach. 30, 681–694 (2020).

30. Lan, Z. et al. ALBERT: A Lite BERT for self-supervised learning of
language representations. International Conference on Learning
Representations 2020. http://arxiv.org/abs/1909.11942. (2020).

31. Rasch, M. J. et al. Hardware-aware training for large-scale and
diverse deep learning inference workloads using in-memory com-
puting-based accelerators. Nat. Commun. 14, 5282 (2023).

32. Prabhu, K. et al. MINOTAUR: An edge Transformer inference and
training accelerator with 12 MBytes on-chip resistive RAM and fine-
grained spatiotemporal power gating. In 2024 IEEE Symposium on
VLSI Technology and Circuits (VLSI Technology and Circuits), 1–2
(IEEE, 2024).

33. Tang, C. et al. A 28nm4.35 TOPS/mm2 transformer acceleratorwith
basis-vector based ultra storage compression, decomposed com-
putation and unified LUT-assisted cores. In 2024 IEEE Symposium
on VLSI Technology and Circuits (VLSI Technology and Circuits), 1–2
(IEEE, 2024).

34. Narayanan, P. et al. Fully on-chipMACat 14nmenabledby accurate
row-wise programming of PCM-based weights and parallel vector-
transport in duration-format. IEEE Trans. Electron Devices 68,
6629–6636 (2021).

35. Wang, A. et al. GLUE: Amulti-task benchmark and analysis platform
for natural language understanding. International Conference on
Learning Representations 2019. http://arxiv.org/abs/1804.
07461 (2019).

36. Jain, S. et al. A heterogeneous and programmable compute-in-
memory accelerator architecture for analog-AI using dense 2D
mesh. IEEE Trans. VLSI Syst. 31, 114–127 (2023).

37. Zhou, W. et al. BERT loses patience: Fast and robust inference with
early exit. 34th Conference on Neural Information Processing Sys-
tems (NeurIPS 2020). http://arxiv.org/abs/2006.04152 (2020).

38. Ambrogio, S. et al. Reducing the impact of phase-change memory
conductance drift on the inference of large-scale hardware neural
networks. In Proc. 2019 IEEE International Electron Devices Meeting
(IEDM), 6.1.1–6.1.4 (IEEE, 2019).

39. Boybat, I. et al. Temperature sensitivity of analog in-memory com-
putingusingphase-changememory. InProc. 2021 IEEE International
Electron Devices Meeting (IEDM), 28.3.1–28.3.4 (IEEE, 2021).

40. Burr, G. W. et al. Analog-AI hardware accelerators for low-latency
Transformer-based language models (invited). In Proc. 2025 Cus-
tom Integrated Circuits Conference (CICC) (IEEE, 2025).

41. Burr, G. W. et al. Phase change memory technology. J. Vacuum
Sci.Technol. B 28, 223–262 (2010).

42. Wolf, T. et al. HuggingFace’s Transformers: State-of-the-art natural
language processing. https://arxiv.org/abs/1910.03771 (2019).

43. Rasch, M. J. et al. A flexible and fast PyTorch toolkit for simulating
training and inference on analog crossbar arrays. In Proc 2021 IEEE

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 10

https://ieeexplore.ieee.org/document/10631376/
https://ieeexplore.ieee.org/document/10631376/
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2006.04152
https://arxiv.org/abs/1910.03771
www.nature.com/naturecommunications

3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), 1–4 (IEEE, 2021).

44. Le Gallo, M. et al. Using the IBM analog in-memory hardware
acceleration kit for neural network training and inference. APL
Mach. Learn. 1, 041102 (2023).

Acknowledgements
We thank the IBMResearchAIHWcenter for project support, IBMAlbany
Nanotech Center and IBM Bromont for device & module fabrication and
W. Wilcke, S. Narayan, V. Mukherjee, S. Yamamichi, C. Osborn, J. Burns,
R. Divakaruni and M. Khare for logistical and management support.

Author contributions
G.W.B. and P.N. designed the chip architecture, including the ramp-
based duration concept. G.W.B., P.N., K.H., M.I., A.O., T.Y., and T.K.
developed the2Dmeshand local controller codes formappingcomplex
DNNs to the 14nm Analog AI Inference Chip. A.O., T.Y., A. Friz imple-
mented the test platform and optimized I/O interfaces for fast testing.
A.C. and S.A. developed themixedMAC-software testing framework for
ALBERT and conducted the accuracy experiments. S.A. developed the
ALBERTweightmap. A.C. conductedhardware aware training of ALBERT
for GLUE with help from A. Fasoli, J.L., C.M. and M.J.R. S.A. and P.N.
implemented power experiments. H.T and S.A. implemented the timing
and power performance estimation. A.C., S.A., and H.T. wrote the text of
the paper and C.M., P.N., T.P., S.M., V.N., G.W.B helped to revise it. S.A.
and A.C. generated the figures.

Competing interests
The authors declare no competing financial interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-63794-4.

Correspondence and requests for materials should be addressed to
An Chen.

Peer review information Nature Communications thanks Marco Pasotti,
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-63794-4

Nature Communications | (2025) 16:8661 11

https://doi.org/10.1038/s41467-025-63794-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Demonstration of transformer-based ALBERT model on a 14nm analog AI inference chip
	Results
	Accuracy of the ALBERT model in hardware
	Testing “early exit” in hardware
	Demonstration of the HWA training effect
	PCM conductance drift effect and mitigation
	Power and efficiency analysis

	Discussion
	Methods
	Test platform and analog inference chip
	Hardware-aware (HWA) fine-tuning
	Sample randomization
	Calibration
	PCM conductance drift
	MAC variation measurement
	Power performance measurement and estimation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

