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Large language models (LLMs) demonstrate impressive performance on a
wide variety of tasks, but they often struggle with tasks that require multi-step
reasoning or goal-directed planning. To address this, we take inspiration from
the human brain, in which planning is accomplished via component processes
that are predominantly associated with specific brain regions. These processes
include conflict monitoring, state prediction, state evaluation, task decom-
position, and task coordination. We find that LLMs are often capable of car-
rying out these functions in isolation, but struggle to autonomously
coordinate them in the service of a goal. Therefore, we propose a modular
agentic architecture - the Modular Agentic Planner (MAP) - in which planning is
performed via the interaction of specialized brain-inspired LLM modules. We
evaluate MAP on three challenging planning tasks — graph traversal, Tower of
Hanoi, and the PlanBench benchmark - as well as an NLP task requiring multi-
step reasoning (strategyQA). We find that MAP yields significant improve-
ments over both standard LLM methods and competitive agentic baselines,
can be effectively combined with smaller and more cost-efficient LLMs, and
displays superior transfer across tasks. These results demonstrate the benefit

of utilizing knowledge from cognitive neuroscience to improve planning

in LLMs.

Large Language Models (LLMs)"? have become widely accepted as
highly capable generalist systems with a surprising range of emergent
capacities®>. They have also sparked broad controversy, with some
suggesting that they are approaching general intelligence®, and others
noting a number of significant deficiencies’. A particularly notable
shortcoming is their poor ability to plan or perform faithful multi-step
reasoning®’. Recent work'® has evaluated the extent to which LLMs
might possess an emergent capacity for planning and exploiting cog-
nitive maps, the relational structures that humans and other animals
utilize to perform planning” ™. This work found that LLMs displayed
systematic shortcomings in planning tasks that suggested an inability
to reason about cognitive maps. Common failure modes included a
tendency to hallucinate (e.g., to use non-existent transitions and
paths), and to fall into loops. This work raises the question of how

LLMs can be improved so as to enable a capacity for planning. This is
especially important given the ubiquity of sequential decision-making,
reasoning, and planning problems across the wide application of
generative Al and LLMs.

In the present work, we take a step toward improving planning in
LLMs, by taking inspiration from the planning mechanisms employed
by the human brain. Planning is generally thought to depend on the
prefrontal cortex (PFC)'*", a region in the frontal lobe that is broadly
involved in executive function, decision-making, and reasoning®.
Research in cognitive neuroscience has identified specific component
processes that are predominantly associated with specific PFC sub-
regions. These include functions such as conflict monitoring?; state
prediction and state evaluation**?’; and task decomposition and task
coordination®, Although there is debate over whether the PFC is
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truly modular, and the specific computational function of each PFC
subregion is still a matter of debate”°, the identified component
processes may nevertheless suggest a useful factorization of the
planning process, and may guide the development of modular Al
systems with improved planning capabilities.

An interesting observation is that LLMs often seem to display
some of these capacities when probed in isolation, even though they
are unable to reliably integrate and deploy these capacities in the
service of a goal. For instance Momennejad et al.' noted that LLMs
often attempt to traverse invalid or hallucinated paths in planning
problems (e.g., to move between rooms that are not connected), even
though they can correctly identify these paths as invalid when probed
separately. This suggests the possibility of a brain-inspired approach,
in which planning is carried out through the coordinated activity of
multiple LLM modules, each of which is specialized to perform a dis-
tinct process.

With this goal in mind, we propose the Modular Agentic Planner
(MAP), an agentic architecture composed of modules that are specia-
lized to perform specific PFC-inspired functions within the planning
process. Specifically, we have identified and implemented the follow-
ing key modules: error monitoring, action proposal, state prediction,
state evaluation, task decomposition, and task coordination. Action
proposal, state prediction, and state evaluation are further combined
to perform tree search. All modules are implemented using an LLM,
which receives instructions describing the module’s role via prompt-
ing and few-shot in-context learning (ICL). The resulting MAP algo-
rithm solves reasoning and planning problems via the recurrent
interaction of these modules, combining the strengths of classical
planning and search algorithms with the use of LLMs as general-
purpose world models and planning functions.

We evaluate MAP on four challenging decision-making tasks that
require planning and multi-step reasoning. First, we investigate
Tower of Hanoi (ToH), a classic problem-solving task that requires
multi-step planning®, and for which performance is known to be
heavily dependent on PFC function®*’, Second, we performed

Modular Agentic Planner (MAP)

controlled experiments on a set of graph traversal tasks according to
the CogEval protocol'. These tasks require goal-directed navigation
in novel environments (MDPs) described in natural language, of
which we selected an environment that was most challenging for
LLMs, including GPT-4. Third, we investigate the two most challen-
ging tasks in the PlanBench benchmark: Mystery BlocksWorld and
Logistics®. Finally, we investigate a challenging NLP task that requires
multi-step reasoning, StrategyQA*. We find that, when implemented
with GPT-4, MAP significantly improves performance on all four
tasks, and that the algorithm can also be effectively implemented
with a smaller and more cost-efficient LLM (Llama3-70B). Transfer
experiments further indicate that MAP displays an improved ability
to generalize between tasks, and ablation experiments indicate that
each of the individual modules plays an important role in the overall
architecture’s performance. Taken together, these results indicate
the potential of a brain-inspired approach to improve the reasoning
and planning capabilities of LLMs.

Results
Problem formulation
We define a planning task 7 as a tuple:
T=(S AT,sy, Sgoat) @
where S is the set of all possible states in an environment, A is the set of
available actions, 7:Sx .4 — S is the transition function, sq is the
starting state at the beginning of the task, and s, is the goal state. A
plan P is a sequence of actions:
P=(aj,a,, ...,ay), acA (2)
such that applying P to s, under T results in transitioning to Sgoa
(Fig. 1). We are interested in the setting in which an agent is not allowed
to interact with the external environment to iteratively refine a plan,
but instead must generate a plan internally based on knowledge of the
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Fig. 1| Modular agentic planner (MAP). The agent receives states from the

environment and high-level goals. These are processed by a set of specialized LLM
modules. The Task Decomposer receives the current state and a high-level goal and
generates a series of subgoals. The Actor generates proposed actions given a state
and a subgoal. The Monitor gates these proposed actions based on whether they
violate certain constraints (e.g., task rules) and provides feedback to the Actor. The

Predictor predicts the next state given the current state and a proposed action. The
Evaluator is used to estimate the value of a predicted state. The Predictor and
Evaluator are used together to perform tree search. The Orchestrator determines
when each subgoal has been achieved, and when the final goal has been achieved, at
which point the plan is emitted to the environment as a series of actions.
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structure of the environment (given in the task description provided to
the model). Importantly, we investigate problems in which the plan-
ning task (e.g., the set of all possible states S and the transition func-
tion 7) is not formally specified, but is instead informally described in
natural language. Rather than receiving the transition function
directly, the components of the model must infer from this natural
language description which state will result from a particular action,
whether a particular action is valid or invalid, etc., meaning that clas-
sical planning algorithms cannot be directly applied to these problems.

Architecture and approach

Figure 1 depicts the MAP architecture. MAP consists of a set of
modules, each of which is implemented by an LLM, and a set of
algorithms through which they interact to generate a plan. The
modules and algorithms employed by MAP are inspired by the
factorization of planning in the human PFC. In the following
sections, we first describe each of the modules, highlighting the
specific ways in which they are inspired by specific brain regions
involved in planning, and then provide a formal specification of
the algorithms that employ these modules to perform planning.
Throughout our description of the architecture and algorithm, we
refer to the Tower of Hanoi task shown in Fig. 2A as an illustrative
example.
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Fig. 2 | Tower of hanoi task and results. A Depiction of Tower of Hanoi (ToH) task.
Original formulation involves disks of different sizes stacked on a set of pegs. Disks
must be moved from initial state to goal state while avoiding invalid moves. To test
LLMs, an alternative formulation was created involving lists of digits, ensuring that
the task could not be solved based on standard solutions that may be found in the
LLMs' training data. B ToH results. “% solved' indicates the percentage of problems
solved without proposing invalid actions (* better). % invalid' indicates the per-
centage of moves that are invalid (V better). Note that 4-disk problems are out-of-
distribution (OOD). ICL: in-context learning; CoT: chain-of-thought; MAD: multi-

MAP employs a set of brain-inspired modules, each constructed
from a separate LLM instance. For each module, the LLM is provided
with a description of the environment and task, along with a descrip-
tion of the role that the module is supposed to play, and in-context
examples (<3 examples) that illustrate this role. More details on the
specific prompts can be found in Supplementary Section S4. The
modules are described below:

* TaskDecomposer. The TaskDecomposer receives the start state
So and a goal sz, and generates a set of subgoals S that will allow
the agent to gradually work toward its final goal:

TaskDecomposer (S, Sgoqr) = Sz =(S;,

Sy,

) 3
For example, in the ToH task (Fig. 2A), the number O must be
moved from list A to list C, but in order to do so, the larger
numbers must first be moved out of list A. In this case, a subgoal
might be to move the larger numbers into list B. To implement
this module, the in-context examples included chain-of-thought
reasoning that illustrated how to identify effective subgoals for a
given task (see Supplementary SectionS4). This module is
inspired by the anterior PFC (aPFC), which is known to play a
key role in task decomposition (among other functions) through
the generation and maintenance of subgoals*.
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agent debate; ToT: tree-of-thought. GPT-4 Zero-shot, ICL, CoT, and MAD baselines
are deterministic and reflect a single run. Gray error bars reflect 95% binomial
confidence intervals. Black dots indicate performance for individual runs. Colored
dots reflect values of 0%. Dark bars indicate average performance over multiple
plans/runs. Light bars indicate best performance. MAP results for 3-disk problems
reflect the average over 5 runs + the standard error of the mean (black error bars).
MAP results for 4-disk problems reflect a single run, due to the high computational
cost of multiple runs. See Supplementary Section S3 for results in tabular form.
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* Actor. The Actor receives the current state s, and a subgoal Sz, and
proposes B potential actions:

Actor (s;,S;,,€) > {ay, ..., agt € A “4)

The Actor can also receive feedback € from the Monitor about its

proposed actions. This module can be viewed as being analo-

gous to the dorsolateral PFC (dIPFC), which plays a role in

decision-making through top-down control and guidance of

lower-order premotor and motor regions®.

* Monitor. The Monitor assesses the actions proposed by the Actor
to determine whether they are valid (e.g., whether they violate the
rules of a task). Invalid actions are any actions not contained in the
transition function T for the current state s,. The Monitor emits an
assessment of validity g, and also feedback € in the event the
action is deemed invalid:

Monitor (s, a) — (o € {0,1}, €) 5)

For example, in the ToH task, this module is responsible for
determining whether any of the proposed actions are invalid
moves (see Fig.2A). This module is inspired by the Anterior
Cingulate Cortex (ACC), which is known to play a role in conflict
monitoring?, i.e., detecting errors or instances of ambiguity.

* Predictor. The Predictor receives the current state s,, and a pro-
posed action a, and predicts the resulting next state S,

Predictor (s;, a) —> $;,; €S (6)

The Predictor is inspired by the Orbitofrontal cortex (OFC),
which plays a role in estimating and predicting task states. In
particular, it has been proposed that the OFC plays a key role in
encoding cognitive maps: representations of task-relevant states
and their relationships to one another®.

¢ Evaluator. The Evaluator receives a next-state prediction s, ; and
produces an estimate of its value v in the context of goal syo4. This
is accomplished by prompting the Evaluator (and demonstrating
via a few in-context examples) to estimate the minimum number
of steps required to reach the goal (or subgoal) from the current
state:

Evaluator (S 1, Sgoar) > V € Ry )

The Evaluator is also inspired by the OFC, which, in addition to
predicting task states, plays a key role in estimating the moti-
vational value of those states?.

Orchestrator. The Orchestrator receives the current state s,, and

asubgoal s, and emits an assessment Q of whether the subgoal
has been achieved:

Orchestrator (s;,s,,) — Q € {0,1} 8

When the Orchestrator determines that all subgoals (including
the final goal) have been achieved, the plan is emitted to the
environment as a series of actions. This module is also inspired
by the aPFC, which is thought to both identify subgoals and
coordinate their sequential execution®.

MAP’s modules interact via the following algorithms to generate
a plan:

* Action Proposal Loop. The Actor and Monitor interact via the
ProposeAction function (Algorithm 1). The Actor proposes a set of
potential actions, which are then gated by the Monitor. If the
Monitor determines that the actions are invalid (e.g., they violate
the rules of a task), feedback is provided to the Actor, which then

proposes an alternative action. The output of the ProposeAction
function is a set of potential actions, one of which will be selected
as the action at the next time step (as described in the following
section).

* Tree Search. ProposeAction is embedded in a Search loop
(Algorithm 2). The actions emitted by ProposeAction are passed
to the Predictor, which predicts the states that will result from
these actions. A limited tree search is then performed, starting
from the current state, and then exploring B branches recursively
to a depth of L layers. Values are assigned to the terminal states of
this search by the Evaluator, and the action leading to the most
valuable predicted state is selected. In the brain, this search pro-
cess is thought to be coordinated by the aPFC, which enables the
parallel consideration of multiple plans (i.e., cognitive
branching)®. This process is known to be significantly capacity-
limited (i.e., the breadth and depth of the search process are
severely constrained). This is in line with the limited search
performed by our model.

* Plan Generation. Algorithm 3 describes the complete MAP
algorithm. To generate a plan, the TaskDecomposer component
of MAP first generates a set of subgoals based on the final goal and
current state. These subgoals guide the search and are internally
pursued one at a time, utilizing the Search loop to generate
actions until the Orchestrator determines that the subgoal has
been achieved. For some simpler tasks, we do not employ the
TaskDecomposer, and only the final goal is pursued (though this is
only for simpler tasks - for more complex tasks, ablating the
TaskDecomposer significantly impairs performance). The actions
are accumulated in a plan buffer P until either the Orchestrator
determines that the final goal has been reached, or the maximum
allowable number of actions N is accumulated.

Benchmarks

We investigate several benchmarks that instantiate this problem. First,
we investigated a classic multi-step problem-solving task, the Tower of
Hanoi (ToH). ToH was a popular testbed for the development of early
symbolic planning methods®, but it exemplifies the type of complex,
multi-step planning tasks that are still challenging for LLMs. The task is
illustrated in Fig. 2A. In the original task, there are three pegs and a set
of disks of different sizes. The disks must be moved into a particular
goal configuration, while observing a set of constraints that prevent
simple solutions. In our experiments, we designed an alternative (but
isomorphic) formulation of this task in which the inputs are text-based
rather than visual. This text-based formulation made it possible to
evaluate language models on the task, but it also resulted in a task that
does not share any surface features with the original task, making it
unlikely that GPT-4 could rely on exposure to descriptions of ToH in its
training data to solve the problem.

We also investigated a set of graph traversal tasks from the
CogEval benchmark', which was recently proposed to study the
navigation and planning capabilities of LLMs. For each task, a complete
description of a graph was first provided, consisting of nodes and
pairwise edges. Figure 3A depicts some of the tasks, including the
Steppath task, involving navigation from a start state to a goal state,
and the Valuepath task, involving navigation from a start state to the
location with the highest reward.

We also evaluated our approach on tasks from PlanBench, a large-
scale benchmark consisting of planning tasks in various domains®.
Planning problems in this task consist of a set of initial configurations,
a goal configuration, and a set of constraints that are specific to each
domain. We investigate two of the most challenging domains: Logis-
tics, featuring problems involving the transportation of goods with
different forms of transportation (airplanes, trucks, etc); and the
‘Mystery Blocksworld’ (MBW) domain, which is structurally isomorphic
to Blocksworld (an easier domain that involves stacking blocks), but
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Fig. 3 | Graph traversal tasks and results. A Graph traversal tasks. Steppath: Agent
must identify the shortest path from a start state to a goal state. Valuepath: Agent
must identify the shortest path from a start state to the state with the largest
reward, while avoiding the state with the smaller reward. B Graph traversal results. -
% solved' indicates the percentage of problems solved without proposing invalid
actions (1 better). GPT-4 Zero-shot, ICL, COT, and MAD baselines are deterministic,
and therefore, a single run was performed on all problems. Note that MAP did not
employ tree search on the Steppath task, and did not employ task decomposition
on any of the graph traversal tasks. Without tree search, MAP's performance is
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deterministic, and therefore only a single run was performed on the Steppath task,
whereas we performed 5 runs with ToT. Gray error bars reflect 95% binomial con-
fidence intervals (for models evaluated on a single run). Black dots indicate per-
formance for individual runs. Colored dots reflect values of 0%. Dark bars indicate
average performance over multiple plans/runs. Light bars indicate best perfor-
mance. For Valuepath, Detour, and Reward Revaluation, we performed 10,10, and 5
runs, respectively, with MAP and ToT, and present average performance + the
standard error of the mean (black error bars). See Supplementary Section S3 for
results in tabular form.

involves objects and actions with meaningless or confusing names
(thus requiring a greater degree of abstraction).

Finally, to evaluate the extent to which the proposed approach
can be useful in more real-world settings, we investigated the Strate-
gyQA dataset™, a task that consists of unusual questions that require
multi-step reasoning and retrieval of general knowledge. For example,
the task involves questions such as ‘Did Aristotle use a laptop?’, which
require the reasoner to first generate and answer a series of inter-
mediate questions (e.g., ‘When did Aristotle live?’, ‘When was the lap-
top invented?’), and then integrate the results of these intermediate
inferences to generate an answer.

Problem solving: Tower of Hanoi

Figure 2B shows the results for the ToH task. As expected, the alter-
native, text-based formulation of the task was very difficult for LLMs,
with GPT-4 zero-shot only solving 11% of standard 3-disk problems.

This is in contrast to MAP, which achieved an average performance of
74% solved problems, and solved every problem at least once out of
five attempts. MAP also outperformed a number of baseline methods,
including: a version of GPT-4 that was given access to in-context
examples of successful solutions (GPT-4 ICL); a version of GPT-4 that
was also given access to detailed explanations of those solutions,
sometimes referred to as chain-of-thought®* (GPT-4 CoT); Tree-of-
Thought (ToT)”, a method that combines LLMs with tree search,
similar to the search performed by MAP; and Multi-Agent Debate
(MAD)*, These results illustrate several important points. First, the
comparison between MAP and GPT-4 ICL indicates that MAP’s
improved performance cannot be explained purely as a consequence
of the in-context examples that are used to specialize the modules.
Second, the comparison between MAP and GPT-4 CoT indicates that
planning cannot be comparably improved simply through additional
inference-time computation (i.e., chain-of-thought), but that it is
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Table 1| Ablation study on ToH (3-disk problems)

Model % solved problems % invalid actions
MAP w/ 2 subgoals 82 (100) o
MAP 74 (100) (0}
w/o Task Decomposer 50 (67) o
w/o Tree Search 32 (42) (0]
w/o Monitor 27 (33) 31

Values within parentheses indicate best performance.

important to modularize this inference-time computation as in MAP.
Third, the comparison between MAP and ToT indicates that MAP’s
improved performance is not due solely to the use of tree search, but
also depends on the other modules (though, as shown in the ablation
results presented below, tree search does play an important role).
Finally, the comparison between MAP and MAD indicates that is not
sufficient to use several LLM instances to perform planning (as is done
with multi-agent debate), but that it is important to also give specia-
lized roles to each of the LLM instances.

To study the robustness and generalizability of MAP’s planning
abilities, we also investigated a set of out-of-distribution (OOD)
problems involving 4 disks (the prompts and in-context examples
used for each of the modules involved only 3-disk problems). We
found that MAP demonstrated some capacity for OOD general-
ization (solving 24% of problems correctly), whereas the baseline
methods solved very few problems in this setting (GPT-4 CoT, the
best performing baseline, solved only 5% of OOD problems).
Importantly, we also found that MAP’s performance in this OOD
setting was on par with its performance in a comparable in-
distribution setting (Supplementary Table S3). Specifically, MAP
performed similarly when presented with in-context examples that
were also from 4-disk problems, whereas the GPT-4 ICL baseline
showed significantly worse performance in the OOD vs. in-
distribution setting (and worse performance than MAP in both set-
tings). This suggests that the lower performance observed for MAP
on 4-disk problems is driven primarily by their greater complexity,
rather than the use of out-of-distribution in-context examples.

We also carried out an ablation study to determine the relative
importance of each of MAP’s major components, focusing on the
3-disk ToH problems. Table 1 shows the results. We found that the
Monitor was the most important component, as ablating this module
resulted in significantly fewer solved problems, due primarily to an
increased tendency to propose invalid moves (31% invalid moves vs.
0% for other ablation models). This highlights the importance of hav-
ing a separate, modularized monitoring process, which prevented
MAP from proposing any invalid actions, even in the OOD setting
(Fig. 2B), whereas all of the baseline methods proposed some number
of invalid actions. Ablating the tree search and TaskDecomposer
module also resulted in significantly fewer solved problems, indicating
the importance of these components. Furthermore, a version of MAP
in which the TaskDecomposer generated two subgoals outperformed
the default version that used only a single subgoal, further under-
scoring the usefulness of subgoals. Overall, these results suggest that
all major components played an important role in MAP’s performance,
with the Monitor playing an especially important role.

One concern with the proposed approach is that it incurs sub-
stantially greater computational costs than simpler LLM methods (see
Supplementary Section S1). We addressed this in two ways. First, we
developed a more efficient version of MAP that cached and reused
module outputs for redundant prompts, reducing computational
costs by a factor of 3 (while retaining the same level of performance,
Table S6). Second, we investigated the extent to which MAP could be
combined with smaller, less costly LLMs by implementing a version
that used the open-source model Llama3-70b for all modules instead

Table 2| Results on ToH (3-disk problems) using a smaller LLM
(Llama3-70B)

Model % solved problems % invalid actions
Llama3-70B Zero-shot 19.2 33.8

Llama3-70B ICL 12.5 1.4

Llama3-70B CoT 29.2 33.3

GPT-4 ICL 46 12

Llama3-70B MAP 50 2

of GPT-4. In experiments on 3-disk ToH problems, we found that MAP
still outperformed other baselines that employed the same Llama3-
70b language model, and even outperformed the best GPT-4 baseline,
GPT-4 ICL (Table 2), suggesting that smaller LLMs may enable a more
cost-efficient version of the proposed approach.

Navigation: CogEval

Figure 3B shows the results for the graph traversal tasks from the
CogEval benchmark™. On Steppath, MAP outperformed all baselines,
achieving perfect performance for 2-step and 3-step paths. The dis-
crepancy was especially pronounced for 4-step paths, where MAP still
achieved nearly perfect performance (95% of problems solved), while
all baselines showed a dramatic drop in performance (with the best
performing baseline, ToT, only solving 50% of problems). MAP also
achieved perfect performance on the Valuepath task, again out-
performing all baselines. Notably, the ToT baseline was able to solve
each of the Valuepath problems on at least one attempt (i.e., best
performance of 100%), but was not able to do so reliably, whereas MAP
reliably solved these problems on every attempt. This indicates that,
although the tree search process enabled ToT to occasionally identify
a correct solution, the model had no method for reliably determining
when a goal had been achieved. This is in contrast to MAP, which uses
the Orchestrator module to determine when the tree search process
has converged on a correct solution, enabling MAP to reliably solve
these problems.

We also investigated two tasks that probe the flexibility of MAP’s
planning capabilities by altering the task following the initial problem
description. In one task, Detour, an edge is removed from the graph. In
the other task, Reward Revaluation, the value associated with the two
reward locations is changed, such that the higher reward location
becomes the lower reward location, and vice versa. We found that MAP
outperformed all baselines on the Detour task, and performed on par
with the baselines on the Reward Revaluation task (while still out-
performing GPT-4 zero-shot), demonstrating that MAP can flexibly
adjust to new circumstances when generating plans. Additionally, we
found that, aross all four graph traversal tasks, MAP proposed very few
(<1%) invalid actions (i.e., actions that involved traversal of non-
existent edges), whereas many baselines proposed a significant num-
ber of invalid actions (Fig. 4). This further emphasizes the importance
of having a separate Monitor module, which filtered invalid actions
proposed by the Actor. Overall, our experiments with graph traversal
tasks indicated that MAP can improve the robustness and flexibility of
goal-directed navigation in LLMs.

Planning: PlanBench

Table 3 shows the results for the PlanBench dataset, where MAP out-
performed all of the baselines that we considered. Notably, due to the
complexity of the problems in this dataset, it was very costly to per-
form tree search (Supplementary Table S3), so we evaluated a minimal
version of MAP that did not involve tree search. For this same reason,
we were unable to evaluate a ToT baseline on the full set of problems.
However, we performed an evaluation on a smaller subset of problems,
finding that MAP substantially outperformed ToT (Table 4). Overall,
these results indicate that MAP can provide significant performance

Nature Communications | (2025)16:8633


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63804-5

Valuepath Steppath
100 100
= 80 T 80
S 60 C 60
£ 40 £ 40
x 20 X 20
ol M., o mnm,. Hea

2-stép 3-step 4-step

Fig. 4 | Invalid actions in graph traversal tasks. "% invalid' indicates the per-
centage of moves that are invalid (V better). GPT-4 Zero-shot, ICL, CoT, and MAD
baselines are deterministic, and therefore, a single run was performed on all pro-
blems. Note that MAP did not employ tree search on the Steppath task, and did not
employ task decomposition on any of the graph traversal tasks. Without tree
search, MAP's performance is deterministic, and therefore only a single run was
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performed on the Steppath task, whereas we performed 5 runs with ToT. Gray error
bars reflect 95% binomial confidence intervals (for models evaluated on a single
run). Colored dots reflect values of 0%. For Valuepath, Detour, and Reward Reva-
luation we performed 10, 10, and 5 runs respectively with MAP and ToT, and pre-
sent average performance + the standard error of the mean (black error bars).

Table 3 | PlanBench results

Table 6 | Transfer between different planning tasks

Model Logistics Mystery BW Model n7tree - n15star BW -> MBW ToH > MBW
GPT-4 Zero-shot 7 0.2 GPT-4 ICL 51 0.2 0

GPT-4 ICL 12 7.8 GPT-4 CoT 65 1.4 0

MAD 16.2 7.3 MAP 80 12.2 6.6

GPT-4 CoT 17 10.6 Results reflect % solved problems.

MAP 24 27.4

Results reflect % solved problems for a single run.

Table 4 | PlanBench results for a smaller subset of problems
(the first 30/200 problems for Logistics, and the first 100/
500 problems for Mystery BW) comparing MAP with ToT

Model Logistics Mystery BW
ToT 10.4 (16.7) 0.6 (3)
MAP 53.3 35

Values within brackets indicate best performance.

Table 5 | StrategyQA results

Model Accuracy
ToT 81.7 £1.2

GPT-4 CoT 84.7 +0.3
MAP 87.7 +0.7
Human 87.0

Results reflect accuracy on a fixed (but randomly selected) subset of 100/229 questions aver-
aged over 3 runs ( + standard error).

benefits even when tree search is not feasible, and can even outper-
form methods that employ tree search, such as ToT. Note also that we
did not apply the TaskDecomposer for the Mystery BW domain, since
MAP already significantly outperformed all baselines, whereas the
TaskDecomposer was applied to the Logistics domain, where it
improved performance (24% accuracy with TaskDecomposer vs. 20.5%
accuracy without TaskDecomposer).

Real-world reasoning: StrategyQA
Table 5 shows the results for the StrategyQA dataset®. We found that
MAP outperformed both the GPT-4 CoT and ToT baselines, and per-
formed on par with human participants. These results indicate that
MAP can also yield benefits in more real-world settings, such as multi-
step reasoning with natural language.

Transfer experiments

Finally, we performed transfer experiments to study whether few-shot
in-context learning would support generalization to different planning
tasks. For ToH, we studied whether in-context learning on 3-disk pro-
blems could be generalized out-of-distribution to 4-disk problems.
Here, we extend these results to study out-of-distribution general-
ization between tasks. Table 6 shows the results for these experiments,
including results for transfer from planning on a smaller graph to
planning on a larger graph (n7tree > nl5star, using the CogEval
dataset'’), transfer to a semantically distinct but structurally iso-
morphic task (blocksworld (BW) > mystery blocksworld (mystery BW),
using the PlanBench dataset®), and transfer between completely dif-
ferent tasks (ToH > Mystery BW). We found that MAP outperformed
both GPT-4 ICL and CoT in each of these settings, indicating that MAP
can improve the generalizability and robustness of planning in LLMs.

Discussion

In this work, we have proposed the MAP architecture, a modular
agentic approach aimed at improving planning with LLMs. In experi-
ments on four challenging domains, we found that MAP significantly
improved multi-step planning and decision-making performance over
other LLM methods (e.g., Chain of Thought, Multi-Agent Debate, Tree
of Thought). We also found that MAP could be effectively combined
with a smaller, less costly LLM (Llama3-70b), supports improved
(albeit imperfect) transfer and generalization between different plan-
ning tasks, and, through a series of ablation experiments, established
that each of MAP’s components makes an important contribution to
overall performance.

Related work
Early work in Al formalized planning as a problem of search through a
combinatorial state space, typically utilizing various heuristic methods
to make this search tractable**°. Problems such as ToH figured pro-
minently in this early research”, as it affords the opportunity to
explore ideas based on hierarchical or recursive planning (in which a
larger problem is decomposed into a set of smaller problems). Our
proposed architecture adopts some of the key ideas from this early
work, including tree search and hierarchical planning.

A few recent studies have investigated planning and multi-step
decision-making in LLMs. These studies suggest that, although LLMs
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can perform relatively simple planning tasks", and can learn to make
more complex plans given extensive domain-specific fine-tuning*>*,
they struggle on tasks that require zero-shot or few-shot generation of
multi-step plans®'®. These results also align with studies that have
found poor performance in tasks that involve other forms of extended
multi-step reasoning, such as arithmetic’. Our approach is in large part
motivated by the poor planning and reasoning performance exhibited
by LLMs in these settings.

Our approach is similar to other recently proposed black-box
approaches in which ‘thoughts’ - meaningful chunks of natural lan-
guage - are utilized as intermediate computations to solve more
complex problems. These approaches include ‘scratchpads’ or chain-
of-thought****, methods that incorporate explicit tree search®*, ‘least-
to-most’ prompting (incorporating task decomposition)*®, and meth-
ods for combining planning with external tools*”*® or external model-
based verifiers®. All of these approaches can be viewed as imple-
menting a form of controlled, or ‘system 2’, processing (as contrasted
with automatic, or ‘system 1’, processing)****. Our approach has a
similar high-level motivation, and shares some components with other
black box approaches (e.g., tree search® and task decomposition*®),
but also introduces a number of new components. These include our
LLM-based Monitor (which is distinct from the use of domain-specifc
model-based verifiers in previous work*’, and distinct from the use of
LLM-verification at the level of entire plans™), and the Orchestrator
(responsible for determining whether a goal or subgoal has been
achieved). We also combine these components in a novel manner and
provide a collective framework that allows them to autonomously
interact to generate a plan. Importantly, we find that the combined
architecture substantially outperforms the most competitive variants
of these approaches (e.g., tree-of-thought) across all of the experi-
ments that we performed.

Our approach is also related to a classic line of work in cognitive
science on the topic of cognitive architectures™°. The aim of that
work was to develop systems of interacting cognitive components,
including processes for perception, memory, and decision-making,
typically instantiated with symbolic components. More recently, the
rise of language model agents-integrated systems consisting of mul-
tiple interacting language models performing specialized roles-can be
viewed as an instantiation of cognitive architectures, albeit with
components formed from pretrained language models instead of
symbolic programs”. In this work, we have proposed a specific cog-
nitive architecture for reasoning and decision-making. In future work,
it will be useful to integrate this with components that carry out other
processes, such as perception or memory.

There have also been a number of proposals for incorporating
modularity into deep learning systems, including neural module
networks®, and recurrent independent mechanisms*’. Our approach is
distinguished from these approaches by the proposal of modules that
perform specific high-level component processes, based on knowl-
edge of specific subregions within the PFC. This approach is also clo-
sely related to a recent proposal to augment deep learning systems
with PFC-inspired mechanisms”. MAP can be viewed as a concrete
framework for accomplishing this goal.

Our proposal is also related to reinforcement learning (RL)*°,
which has a close connection to the PFC'®*"%, In particular, many of
the modules in the MAP algorithm are closely related to aspects of
traditional RL algorithms. Specifically, the Actor and Evaluator mod-
ules bear some resemblance to the actor and the critic in the popular
actor-critic framework®®, and the TaskDecomposer is related to hier-
archical RL"%°, in which temporal abstractions are learned to achieve
subgoals. The Predictor is also closely related to the world model that
can substitute for direct interaction with the environment in model-
based RL°°7°. An important difference in each of these cases is that the
modules in MAP only receive a task description and a couple of
examples, relying on the general-purpose knowledge of the LLM to

effectively perform the task, rather than being trained through RL. This
also distinguishes the approach from other recent efforts to combine
LLMs and RL”7, and to train LLMs to perform search’*”’, both of
which involve training LLMs directly on decision-making and planning
tasks, whereas MAP generates plans internally. Finally, there are also
some modules that have no obvious analog in previous RL algorithms,
but which were necessitated by weaknesses that LLMs display in the
planning domain. These include the Monitor, which was necessitated
by the tendency of LLMs to hallucinate or violate task constraints, and
the Orchestrator, which allows MAP to autonomously determine when
a goal has been achieved (without ground truth evaluation) and thus
terminate planning.

Limitations and future directions

It is worth emphasizing a few limitations of the proposed approach.
First, in this work, we only considered problems in which the envir-
onment is fully observable and deterministic. Although even this set-
ting is challenging for LLMs, it will be important in future work to
investigate how the proposed approach can be extended to more
complex open-ended environments. This will likely necessitate the
incorporation of additional components, including memory mechan-
isms for storing knowledge about the environment as it is accumulated
in partially observable settings. Additionally, the model still has less
than optimal performance in some tasks, including Tower of Hanoi,
the Reward Revaluation graph traversal task, and the PlanBench
benchmark (see Supplementary Section S2), and although it improves
transfer performance and out-of-distribution generalization, these
settings are still very challenging for the model. This may be due in part
to the inherent limitations of prompting and in-context learning as
methods for the specialization of MAP’s modules. This limitation is
particularly pronounced for the TaskDecomposer module, which
currently requires carefully designed chain-of-thought prompts to
identify effective subgoals. More work is needed to develop an effec-
tive general-purpose approach to task decomposition.

One promising avenue for further improvement may be to
jointly fine-tune smaller open-source LLMs to serve as modules
across a range of diverse tasks, rather than relying only on black box
methods (as with GPT-4). This approach would also eliminate the
need for task-specific prompts and may further improve zero-shot
planning on novel tasks. Finally, the proposed approach incurs
substantially greater computational costs than simpler LLM meth-
ods. Although this aligns well with the deliberative nature of con-
trolled (i.e., system 2) processes™, it would nevertheless be desirable
to find ways to reduce these costs. In this work, we found that costs
can be partially mitigated through the use of a smaller LLM (Llama3-
70B), though performance was not as strong as the version that used
GPT-4. A fine-tuning approach would thus also likely reduce costs by
enabling smaller models to more effectively perform the specialized
roles of each module.

Finally, it should be noted that MAP does not constitute a detailed
computational model of the prefrontal cortex. Instead, our goal in the
present work was to take high-level inspiration from what is known
about planning in the prefrontal cortex—including both the general
modular organization, as well as the specific component processes and
the ways in which they interact—and to leverage these insights to
improve planning with LLMs. However, it may be beneficial in future
work to more directly apply the MAP framework as a neuroscientific
model of PFC function. In particular, though much previous work has
characterized the function of individual PFC subregions® %, there has
been less emphasis on the development of integrative models in which
these functions interact to carry out coordinated behavior. The pre-
sent work represents a first step in that direction. An important next
step will be to directly evaluate MAP as a model of neural data, which
may then lead to further refinements of the model. We look forward to
investigating these possibilities in future work.
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Methods

Experiment details

We implemented each of the modules using a separate instance of
GPT-4 (32K context, 2023-03-15-preview’ model index for ToH and
cogeval tasks, and 128K context, ‘0125-preview’ model index for stra-
tegyQA and planbench tasks from Microsoft Azure openAl service)
through a combination of prompting and few-shot in-context exam-
ples. We set Top-p to O and temperature to O, except for the Actor (as
detailed in Supplementary Section S4). The Search loop explored B=2
branches recursively for a depth L =2.

For ToH, we used two randomly selected in-context examples
of three-disk problems and a description of the problem in the
prompts for all the modules. For the graph traversal tasks, we
used two in-context examples for all modules, except for the
Actor and Evaluator in the Steppath task, where we used three in-
context examples, one each for 2-, 3-, and 4-step paths. For
strategyQA, we didn’t use any in-context examples. For the
logistics task from Planbench, we used two incontext examples
for all modules except for Actor which used three in-context
examples. For the mystery blocksworld (deceptive) task from
Planbench, we used two in-context examples for all modules
except for Actor and Predictor, which used three in-context
examples. For both the tasks from Planbench, we extracted the
goal from the initial state conditions, and the state and the goal
was separately fed as input to the modules as required. The
prompt also described the specific task that was to be performed
by each module (e.g., monitoring, task decomposition). For more
details about the prompts and specific procedures used for each
module, see Supplementary Section S4.

For three-disk ToH problems, we allowed a maximum of N=10
actions per problem, and evaluated on 24 out of 26 possible problems
(leaving out the two problems that were used as in-context examples
for the Actor). We also evaluated on four-disk ToH problems, for which
we allowed a maximum of N =20 actions per problem. The same three-
disk problems were used as in-context examples, meaning that the
four-disk problems tested for out-of-distribution (OOD) general-
ization. For the graph traversal tasks, we allowed a maximum of N=6
actions per problem. For strategyQA, we allowed N=1 action per
problem. For the Planbench tasks, we allowed a maximum of N=4 +
number of actions in the optimal plan.

For ToH, the TaskDecomposer generated only a single subgoal by
default, but we also evaluated a version of the model in which the
TaskDecomposer generated two subgoals. For the graph traversal
tasks, we didn’t use a separate Predictor, since the action proposed by
the Actor directly specifies the next state. We also did not include the
TaskDecomposer for these tasks, and did not use the Search loop for
the Steppath task, as the model’s performance was already at ceiling
without the use of these components. For strategyQA, we didn’t use
the Evaluator or the Orchestrator. For the Planbench tasks we didn’t
use tree search, and for mystery blocksworld task we didn’t use the
TaskDecomposer. To compare MAP with ToT on a smaller subset of
PlanBench problems, we used the first 30 (out of 200) problems from
the logistics domain, and the first 100 (out of 500) problems from the
mystery blocksworld domain.

For the ToT baseline in StrategyQA, Yao et al.”’ reported a per-
formance of 83%, but since the subset of 100 questions they used for
evaluation is unknown, we ran ToT using the publicly released code on
a fixed subset of 100 questions for fair comparison with MAP. Human
performance on this task reflects a random subset of 100 questions, as
reported by Geva et al.*.

Algorithms

Algorithm 1. Action proposal loop. ProposeAction takes a state s, and
a goal sy and generates B potential actions A=ap-;...ap-g. This is

implemented via a loop, in which the Actor first proposes potential
actions, and the Monitor then assesses those actions according to
certain constraints (e.g., task rules), providing feedback if any of the
actions are deemed to be invalid. This continues until the proposed
actions are considered valid.

function ProposeAction(s. sgoat, B)
o + false
E{}
while o is false do
A Actor(s;, 8 goat, B, B)
0, ¢  Monitor(s;, A)
E+ EU{e}
end while
return A
end function

©> Initialize validity
& Initialize feedback

> Sample B actions
> Determine validity and provide feedback
> Accumulate feedback

Algorithm 2. Search loop. Tree search with a depth of L layers, with B
branches at each layer L. For each branch, a proposed action is sam-
pled, and the Predictor predicts the next state s, , ;. This process con-
tinues recursively until the terminal layer L, at which point the value
vi-; of the terminal states is estimated by the Evaluator. The values are
backpropagated to their parent states in the first layer, and the action
that leads to the most valuable state is selected. In our implementation,
we accelerate this process by caching the actions and predicted states
from deeper search layers and then reusing them in subsequent
searches. We also employ the Orchestrator to prematurely terminate
the search if the goal state is achieved.

function Search(l, L, B, s1, $g0a1)
Vi {}
S+ {}

© Initialize value record
© Initialize next-state record

A + ProposeAction(st, $goa, B) > Propose B actions
for b=1...B do
5 « Predictor(st, Aip) > Predict next state
Si S U {an} > Update next-state record
Q « Orchestrator (5, $goat) > Terminate search if goal is achieved
if [ <L and 2 is false then
@1, 81415 011 Search(l + 1, L, B, 31, Sgoat) & Advance scarch depth
Vi ViU {va} & Updated value record
else
v +— Evaluator(8y,. $goat) > Evaluate predicted state
Vi ViU {up} > Updated value record
end if
end for
vy < max(V;) > Maximum value
@+ Ay, " > Select action
51 ¢ (Vi > Predicted next-state

return a;, 5, v
end function

Algorithm 3. Modular Agentic Planner (MAP). MAP takes a state so
and a goal g and generates a plan P, a series of actions with a
maximum length of N. The TaskDecomposer first generates a set of
subgoals S,. The agent then pursues each individual subgoal s, in
sequence, followed by the final goal sg,q. At each time step, Search
(Algorithm 2) is called to generate an action and a predicted next state.
Actions are added to the plan until the Orchestrator determines that
the goal has been achieved, or the plan reaches the maximum length N.

function MAP(sq, $y0u1 N, L, B)
> > Initialize plan
Sy « TaskDecomposer(so, sgoat) & Generate subgoals
for g in 1...length(S7) + 1 do
if g < leng
s, Sz,
else

& Update current subgoal

> Final goal

end if

@ « Orchestrator(sy, s.)

while (2 is false and length(P) < N do
a, 50,0 ¢ Search(l = 1, L, B, sy, 5.)
P« P.append(a)
2 « Orchestrator(s,, s.)

> Initialize subgoal assessment

& Search
> Update plan
> Determine if subgoal is achieved
end while
end for
return P
end function
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Data availability

Information regarding all datasets used for evaluation is available at
https://github.com/Shankal23/MAP or https://zenodo.org/records/
16877941.

Code availability
Code for all experiments is available at https://github.com/Shanka123/
MAP or https://zenodo.org/records/16877941.
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