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A doubly stochastic renewal framework for
partitioning spiking variability

Cina Aghamohammadi 1,2, Chandramouli Chandrasekaran 3,4,5,6 &
Tatiana A. Engel 1,2

The firing rate is a prevalent concept used to describe neural computations,
but estimating dynamically changing firing rates from irregular spikes is
challenging. An inhomogeneous Poisson process, the standard model for
partitioning firing rate and spiking irregularity, cannot account for diverse
spike statistics observed across neurons. We introduce a doubly stochastic
renewal point process, a flexible mathematical framework for partitioning
spiking variability, which captures the broad spectrum of spiking irregularity
from periodic to super-Poisson. We validate our partitioning framework using
intracellular voltage recordings and develop a method for estimating spiking
irregularity from data. We find that the spiking irregularity of cortical neurons
decreases from sensory to association areas and is nearly constant for each
neuron under many conditions but can also change across task epochs.
Spiking network models show that spiking irregularity depends on con-
nectivity and can change with external input. These results help improve the
precision of estimating firing rates on single trials and constrain mechanistic
models of neural circuits.

The vast array of diverse brain functions arises from irregular spiking
across neural populations, observable on recording electrodes in
experiments. Yet, most current hypotheses about neural computation
employ the firing rate, an abstract mathematical quantity describing
the propensity of a neuron to spike. For example, prevalent theories
suggest that neurons change their firing rate to signal features of
sensory stimuli1,2 or parameters of body movements3. Moreover,
complex cognitive computations emerge from the dynamics of latent
variables tracing trajectories through a state space, where each axis
corresponds to the firing rate of one neuron in the population4–9. Since
the firing rate is a latent quantity not directly observable in experi-
ments, testing any of these theories requires relating the firing rate to
experimentally measured spikes. Specifying this relationship effec-
tively partitions the total variability in the spiking output of a neuron
into two components: changes in the firing rate and irregularity of the
process generating spikes from this firing rate10,11.

The traditional partitioning method defines the firing rate as the
average of spikes over repeated trials under the same experimental
conditions, thus attributing any trial-to-trial variability entirely to the
irregular spike generation in single neurons1,2,4. This definition implies
that the firing rate is the same on each trial and deterministically
locked to experimentally controlled events, e.g., stimulus or move-
ment onset. However, neural responses fluctuate significantly across
trials due to many factors beyond experimental control, including
changes in behavioral state12–14 and endogenous network
dynamics10,15,16. Capturing the dynamics of these latent factors requires
a partitioning framework that accounts for the firing rate fluctuations
on single trials.

The most common approach to account for the firing rate fluc-
tuations is to assume an inhomogeneous Poisson process as a model
for spike generation on single trials11. In this model, spikes occur
independently of each other, with the probability of spiking at each
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moment controlled by the instantaneous firing rate17. The mathema-
tical convenience of the inhomogeneous Poisson process led to its
widespread application in existingmethods for inferring the dynamics
of firing rates and associated latent variables on single trials18–25.
However, the spiking of neurons across many brain areas deviates
significantly from the inhomogeneous Poisson assumption. For
example, many neurons have a Fano factor (FF, the variance-to-mean
ratio of spike counts) less than one10,26–28, which is theminimal FF value
theoretically possible for an inhomogeneous Poisson process. Unfor-
tunately, incorrect assumptions about the irregularity of the spiking
process can lead to errors in estimating the link between changes in
firing rates and behavior and to misleading conclusions when arbi-
trating between alternative hypotheses about single-trial dynamics of
latent variables29,30. Despite these limitations, there is no alternative
model for accurately partitioning spiking variability in experimental
data. While few previous methods attempted to estimate spiking
irregularity moving beyond the Poisson assumption10,28,31, these
methods relied on heuristic assumptions that are not always true and
therefore, as we show, are sensitive to nuisance parameters, e.g., firing
rate and bin size.

We introduce a doubly stochastic renewal (DSR) point process, a
mathematical framework for partitioning spiking variability, which
accounts for firing rate fluctuations and provides a flexible model to
capture the broad spectrum of spiking irregularity from periodic to
super-Poisson. Using our framework, we devise a method for esti-
mating spiking irregularity and show that it accurately recovers
ground truth on simulated spike trains with a wide range of firing rate
dynamics and spiking irregularity. We further validate the theoretical
assumptions in our framework using intracellular recordings of
membranepotential fromneurons in thebarrel cortex of awakemice32.
We apply our approach to quantify the spiking irregularity of cortical
neurons and find that spiking irregularity decreases from visual to
higher sensory-motor areas, mirroring the gradient of unpartitioned
variability26,27,33,34. Moreover, the spiking irregularity is nearly constant
for each neuron under many conditions but can also change across
task epochs. Using spiking network models35,36, we show that spiking
irregularity depends on connectivity and biophysical properties of
single neurons and can change with external input. Our work estab-
lishes that a DSR point process is a flexiblemodel to capture the broad
spectrum of spiking irregularity of cortical neurons and improve the
precision of methods for estimating latent dynamics on single trials.

Results
Wedevelop theDSRpoint processmodel as a flexible alternative to the
standard inhomogeneous Poisson process, capable of accounting for
the diverse spiking irregularity of cortical neurons. We first introduce
our mathematical framework and precisely define the spiking irregu-
larity as a parameter ϕ within the DSR model. We then present a
method for estimating ϕ from data and validate its accuracy using
synthetic spike trains and intracellular voltage recordings. Finally, we
describe our observations of spiking irregularity in several cortical
areas,which reveal systematic differences from sensory tomotor areas
and indicate that Poisson irregularity is a rare exception, not a rule.

Doubly stochastic renewal framework
Mathematically, a spike train is a point process, that is, a sequence of
discrete events occurring randomly in time. A doubly stochastic point
process generates spikes stochastically from the firing rate that also
fluctuates over time and from trial to trial. To define a doubly sto-
chastic point process, we need to specify two components: a non-
negative real-valued stochasticprocess λ(t) for the instantaneousfiring
rate and a point process generating spikes from a realization of the
firing rate λ(t).

The simplest point processmodel is the Poisson process17, in which
spikes occur independently of each other with the probability λ(t)dt in

any infinitesimal time interval [t, t+dt]. The Poisson point process gen-
erates spikes with fixed irregularity: for a constant firing rate, the FF
equals one for a time bin of any size. Since firing rate fluctuations only
increase variability10, FF is always greater than one for Poisson processes
with fluctuating firing rate11. Therefore, the inhomogeneous Poisson
process cannot account for diverse spiking statistics across neurons, in
particular, neurons with FF smaller than one10,26–28.

A more flexible model is a renewal point process, in which the
probability of generating a spike depends on the time elapsed since
the last spike17,37. Mathematically, the dependence between con-
secutive spike times can be described by the probability density g(⋅) of
interspike intervals (ISIs). For the constantfiring rate, theprobability of
the next spike occurring in the interval [t, t + dt] is proportional to g(t
−tl)dt, where tl is the time of the last spike. The shape of the ISI dis-
tribution g(⋅) controls the irregularity of the renewal point process. A
narrow distribution peaked around a set ISI value will produce a nearly
periodic spike train, whereas an exponential distribution results in an
irregular spike train equivalent to the Poisson process.

Here, we introduce a DSR point process, whichwe define by a pair
{g(⋅),λ(t)} via a three-step algorithm forgenerating spike trains (Fig. 1a).
First, we sample a realization of the firing rate λ(t) for a specific trial.
Next, we sample ISIs from the probability density g(⋅) to generate
spikes in operational time t0. We set the mean of the ISI probability
density function to one: μg =

R1
0 θgðθÞdθ= 1 s, which implies the firing

rate of the point process in operational time is μ�1
g = 1 Hz. Finally, we

map the spike times from the operational time t0 to the real time t by
locally squeezing and stretching time in proportion to the inverse
cumulative firing rate t =Λ�1ðt0Þ, where

t0 =ΛðtÞ=
Z t

0
λðsÞds : ð1Þ

This transformation ensures that the spike density in real time follows
the instantaneous firing rate λ(t)38,39.

In our framework, the spiking irregularity is defined by the ISI
distribution g(⋅) in the operational time, which controls spiking irre-
gularity independently of the firing rate. In particular, using the same
distribution g(⋅) (the same spiking irregularity), our DSR model can
generate spike trains with high or low firing rate using different λ(t).
Conversely, for the same firing rate, our DSRmodel can generate spike
trains with high or low spiking irregularity using different distributions
g(⋅). A special case is when g(⋅) belongs to a two-parameter family of
continuous probability distributions uniquely determined by its mean
μg and standard deviation σg. In this case, we denote the squared
coefficient of variation40 (CV2) of the distribution g(⋅) by

ϕ � σ2
g

μ2
g
: ð2Þ

With these assumptions, ϕ uniquely determines the distribution g(⋅),
since μg = 1 s by our definition of the DSR process. Therefore, a single
parameterϕ fully controls the spiking irregularity. For different values
of ϕ and firing-rate fluctuations, our DSR model can generate a broad
spectrum of spiking activity, ranging from nearly periodic to highly
irregular both within and across trials (Fig. 1b).

Partitioning variability in data
In experiments, we only have access to the total spiking variability that
includes contributions from both firing rate fluctuations and spiking
irregularity. A common metric of the total spiking variability is the
variance Var(NT) of spike count NTmeasured in time bins of size T. For
doubly stochastic processes, the total variance Var(NT) arises from the
firing rate and point process components. We assume that the
instantaneous firing rate changes on a timescale τ longer than the bin
size τ > T, which implies λ(t) is approximately constant λ within a bin.
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Then, we can use the law of total variance41 to decompose the total
spike-count variance into the firing rate and point process
components10:

VarðNT Þ = VarðE½NT jλ�Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
firing rate variance

+ E½VarðNT jλÞ�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
point process variance

: ð3Þ

Within our DSR framework, we can express the two terms in this
decomposition via {g(⋅), λ}. The first term is the firing rate variance and
equals Var(E[NT∣λ]) = Var(λT) (Methods). The second term is the point
process variance and, for moderately large bin size T > 1/E[λ], we can
approximate it as (Supplementary Note 1.1):

E ½Var ðNT jλÞ�=
σg

μg

 !2

E ½NT �+
1
6
+
1
2
� σg

μg

 !4

� 1
3
�
μ3g

μ3
g

+OðT�1Þ: ð4Þ

Hereμg, σg, and μ3g are themean, standard deviation, and third central
moment of the distribution g(⋅), and OðT�1Þ indicates the approxima-
tion error scaling as T −1. Since μg = 1 s by our definition of the DSR
process, two parameters σg and μ3g control the point process variance.

Next, we introduce simplifying assumptions to develop this gen-
eral theoretical result into a practical data analysis method. We

consider g(⋅) to be the gammadistribution, a particular case of the two-
parameter distribution family that has proven useful for modeling ISI
data38,42,43. For the gamma distribution, the third central moment is
given as μ3g = 2ϕ

2 (Methods), and we can simplify the partitioning
equation Eq. (4) to be

Var ðNT Þ= Var ðλTÞ+ 1
6
ð1� ϕ2Þ+ϕ E ½NT �+OðT�1Þ: ð5Þ

The second and third terms in this equation express the point process
variance via a single parameter ϕ. For ϕ= 1, the gamma distribution
reduces to the exponential distribution, and the renewal point process is
a Poisson process with variance equal to themean spike count in Eq. (5).

In summary, we partitioned the total spike-count variance Var(NT)
into the firing rate and point process components, with spiking irre-
gularity controlled by a single parameter ϕ. To make this partition
unambiguous29, we constrained the spike generation to be a renewal
point process and enforced the smoothness of the firing rate.

Estimation from data
In partitioning equation Eq. (5), the spike-count mean E[NT] and var-
iance Var(NT) can be measured directly from data, whereas ϕ and the
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Fig. 1 | Doubly stochastic renewal point process model. a We define a doubly
stochastic renewal point process by a pair {g(⋅), λ(t)}. A neuron-specific function g(⋅)
is the ISI probability density in the operational time t0 which controls the irregu-
larity of the renewal point process, that is, the variability of spike generation (lower
left, blue). A stochastic process λ(t) defines the dynamics of firing rate on single
trials and controls the trial-to-trial firing rate fluctuations (upper left, green). The
pair {g(⋅), λ(t)} defines the spike generation process via a three-step algorithm. First,
a realization of the firing rate λ(t) for a specific trial is sampled from the process λ(t)
(upper center, green—λ(t) for a specific trial, gray—λ(t) for multiple trials). Second,
spike times are sampled in the operational time from the ISI probability density
function g(⋅) (lower center, blue ticks). Since the mean of the ISI distribution g(⋅) is
set to μg = 1 s, themeanfiring rateof spikes in the operational time is 1 Hz. Third, the

spikes are mapped from the operational time t0 to the real time t via t =Λ�1ðt0Þ,
where the map is defined by the cumulative firing rate function t0 =ΛðtÞ= R t0 λðsÞds
(right, green line). b Examples of diverse spiking activity generated from a doubly
stochastic renewal model. We consider firing rate λ(t) that is constant within and
across trials (upper row) or follows a drift-diffusion process with sticky boundaries
on single trials (lower row). From each realization of the firing rate λ(t) (color
gradient, first column), we generate spikes using the doubly stochastic renewal
model in which g(⋅) is a gamma distribution with ϕ =0.3 (sub-Poisson, second
column),ϕ = 1 (Poisson, third column), and ϕ = 1.7 (super-Poisson, fourth column).
Differences in firing rate variability and spiking irregularityϕ are difficult to discern
from the resulting diverse patterns of spiking activity.
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firing rate variance Var(λT) are unknown. Thus, to partition variability
in spike data, we first need to estimate ϕ. We devise an estimation
method forϕ, whichwe call theDSRmethod, basedonour assumption
that the firing rate changes smoothly and is approximately constant
within a bin.We apply Eq. (5) to spike countsmeasured in twobin sizes,
T and 2T, to yield two equations, which we solve to obtain a quadratic
equation for ϕ (Methods):

1
2

ϕ2
DSR � 1

� �
� ð4 E ½NT � � E ½N2T �ÞϕDSR + 4Var ðNT Þ � Var ðN2T Þ=0 :

ð6Þ

Here, the spike-countmean and variance for eachbin size E[NT], E[N2T],
Var(NT), Var(N2T) aremeasureddirectly fromthe spikedata, andϕDSR is
the only unknown variable. Thus, we can solve Eq. (6) to estimateϕDSR

from data. Then, we can separate the firing rate and point process
variance using the estimated ϕDSR in Eq. (5).

We consider two criteria for selecting the bin size T used to esti-
mate spiking irregularity. On one hand, we require T > 1/E[λ] to ensure
that the partitioning Eq. (5) holds. On the other hand, the bin size
should be as small as possible, given the assumption that the firing rate
remains constant within each bin. To satisfy both conditions, we set
T = 2/E[λ] for each neuron in all analyses (Methods).We confirmed that
our estimation method remains robust across a broad range of bin
sizes (Supplementary Note 1.2, Supplementary Figs. 1–3).

Comparison with previous estimation methods
Wederive our partition equation Eq. (4) and estimationmethod Eq. (6)
rigorously using the theory of renewal point processes17,37. Two other
methods have been broadly used for estimating point process
variance10,27,28,39,44,45, but these previous methods relied on several
assumptions and heuristics that are not always applicable. We first
theoretically analyze how these assumptions impact the estimation
accuracy of previous methods. We then evaluate these previous
approaches and our method on synthetic data with known
ground truth.

The first method, which we refer to as the deterministic time
rescaling (DTR)method39, assumes that the time-dependent firing rate
λ(t) is deterministic, i.e., does not fluctuate from trial to trial. Accord-
ingly, the firing rate is the same on each trial and can be estimated by
averaging spike counts in a bin across trials λ̂ðtiÞ, which is called a
peristimulus time histogram46. One can then substitute the estimated
firing rate λ̂ðtiÞ in Eq. (1) to map the spike times into the operational
time t0. This mapping removes the effect of the time-dependent
changes in firing rate locked to experimentally controlled events,
assuming that the ISI distribution in the operational time reflects only
the point process variability, which corresponds to g(⋅) in our theory.
Accordingly, CV2 of the rescaled ISIs provides an estimate of the
spiking irregularity parameter ϕ, which we denote by ϕDTR. If the
ground-truth firing rate is indeed the same on each trial, ϕDTR con-
verges to the ground-truth ϕ for a large trial number (Methods, Sup-
plementary Note 1.3). However, in the presence of the trial-to-trial
firing rate fluctuations, this method always overestimates the point
process variability, with the error increasing for larger trial-to-trial
variability in the firing rate (Methods, Supplementary Note 1.3, Sup-
plementary Fig. 4).

The secondmethod, to which we refer as theminimum ratio (MR)
method10, allows for firing-rate fluctuations but assumes that the point
process variance in Eq. (3) is proportional to the mean spike count:

E ½Var ðNT jλÞ�=ϕ E ½NT �, ð7Þ

where the coefficient ϕ is a neuron-specific constant. For renewal
processes, this assumption Eq. (7), is only valid in the limit T → ∞ or in
the special case when μ3g =

3
2ϕ

2 + 1
2 (Methods, Supplementary

Note 1.4). The latter condition does not hold in general; for example,
when g(⋅) is a gamma distribution, it holds only for ϕ = 1, i.e., for the
Poisson spike generation process (Eq. (5)). Using the ansatz Eq. (7) and
the constraint that spike-count variance in Eq. (3)must be positive, the
MR method then estimates ϕ as the minimum FF across all time bins:

ϕMR = min
t

Var ðNT ðtÞÞ
E ½NT ðtÞ�

� �
: ð8Þ

We show that for DSR processes, the estimation error of this method
depends on the bin size T, themean and variance of the firing rate λ(t),
and on the ground truth ϕ itself (Methods, Supplementary Note 1.4).
The dependence of ϕMR on all these nuisance parameters is incon-
sistent with the assumption that ϕ is a constant characterizing the
renewal process that controls spiking irregularity. Moreover, it shows
thatϕMR is affectedby several sources of bias, leading to unpredictable
estimation errors. Other methods for estimating ϕ in Eq. (7) with a
finite bin size have similar limitations31,47 (Methods), although accurate
estimation is possible using large bin sizes48.

We compared the performance of our DSR method with these
previous methods on synthetic data generated from DSR point pro-
cesses with known ground truthϕ (Fig. 2). Specifically, we chose g(⋅) to
be a gamma distribution, and the firing rate λ(t) either to be constant
on each trial sampled from a uniformdistribution ½μ� w

2 ,μ+ w
2� across

trials or to follow a drift-diffusion process on single trials as in pro-
minent decision-making models49. Since the DTR assumes an inho-
mogeneous renewal process as a generative model—a special case of
our DSRmodel with zero trial-to-trial firing rate variability—it performs
well when this variability is low, in a regime consistent with its
assumptions. When trial-to-trial firing rate variability is nonzero, DTR
always overestimates ϕ, with error increasing as the firing rate varia-
bility grows. Since the MR method is based on heuristics lacking a
generative model, it is not possible to evaluate its accuracy in a setting
consistent with its assumptions. Accordingly, the MR method can
overestimate or underestimate ϕ, and the degree of bias depends on
the firing-rate variability and the ground-truth ϕ. In contrast, our DSR
method accurately estimates ϕ, and its accuracy is independent of the
firing-rate variability and the ground-truth ϕ (Fig. 2c). Thus, the DSR
method can reliably estimateϕ for point processes across awide range
of spiking irregularity and firing rate variability.

Validation with intracellular voltage recordings
After confirming the accuracy of our partitioningmethod on synthetic
data, we sought to validate our theoretical framework on neural
recording data. For such validation, extracellular spike recordings are
unsuitable because they do not provide an objective, independent
measure of instantaneous firing rate on single trials. Instead, we use
whole-cell recordings of intracellular membrane potential to estimate
the instantaneous firing rate from the subthreshold voltage traces. We
base our analysis on theoretical studies showing that, for a variety of
leaky integrate-and-fire neuron models, the average firing rate is a
power law function of the membrane potential50,51, which was con-
firmed experimentally in many cases52,53. Accordingly, we model the
firing rate of a neuron as a deterministic function of the average sub-
threshold membrane potential. Using this function, we can obtain the
instantaneous firing rate from the subthreshold voltage. With this
independently estimated instantaneous firing rate, we can map spikes
from real to operational time via time rescaling (Fig. 1a). Sinceϕ in our
framework is defined as CV2 = σ2

g=μ
2
g of the ISI distribution g(⋅) in

operational time, CV2 of the rescaled ISIs provides an independent
estimate of ϕ which we can compare to ϕ estimated with the DSR
method from spike times alone. A good agreement between these
different estimates of ϕ would indicate that our DSR framework
faithfully captures the statistics of biophysical processes relating
subthreshold voltage dynamics to spikes.
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We analyzed a dataset of whole-cell intracellular recordings of the
membrane potential in parvalbumin-positive (PV) inhibitory neurons
from layer 2/3 of the barrel cortex in awake head-fixed mice32 (Meth-
ods). We analyzed eight neurons from five mice (Fig. 3a). For each
neuron, we first computed the empirical relationship between the

average subthreshold voltage and firing rate estimated from spike
counts in 50ms time bins (Fig. 3b, Methods). Consistent with previous
studies52,53, this relationship showed a lawful monotonically increasing
trend on average, whichwe approximatedwith a smooth deterministic
function f(v) by fitting a spline to the data points (Fig. 3b).We assumed
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renewal point processes {g(⋅), λ(t)}, where g(⋅) is the gamma distribution and the
ground-truth value of ϕ ranges from 0.1 to 1. The firing rate λ(t) is either constant
within a trial, sampled across trials from a uniform distribution with the width w
(upper row), or a drift-diffusion process with sticky boundaries and the diffusion
coefficient D (lower row). The parameters w and D control the trial-to-trial varia-
bility of the firing rate. We varied w from 10 to 30Hz, and D from 5 to 13Hz2/ms.
b The ground-truth ϕ (x-axis) versus estimated ϕ (y-axis) for the ensemble of
doubly stochastic renewal point processes with uniform (upper row) and drift-
diffusion (lower row) firing rate fluctuations. The deterministic time rescaling
(DTR) method always overestimates ϕ with error increasing for larger trial-to-trial

variability of the firing rate (left). The minimum ratio (MR) method can under-
estimate or overestimate ϕ depending on the mean and variance of the firing rate,
bin size, and the ground truth ϕ itself, producing unpredictable estimation errors
(center). The doubly stochastic renewal (DSR)method accurately estimatesϕ in all
cases (right). Everypoint in the scatter plots is the average over 20 simulations for a
fixed ϕ and fixed D or w. Each simulation had 100 trials. c Estimation error (root-
mean-square error, RMSE, across 20 simulations) for ϕ estimated by the three
methods for different values ofw (upper row) andD (lower row), which control the
trial-to-trial variability of the firing rate. The RMSE increases with the firing rate
variability for bothDTRandMRmethods,whereas the RMSE is consistently lowand
independent of the firing rate variability for our DSR method. Source data are
provided as a Source data file.
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that the function f(v) defines the instantaneous firing rate from the
subthreshold voltage on single trials and that variability of spike
counts for a fixed voltage can be captured with a stochastic spike
generationmechanism in our DSR framework. Thus, we applied f(v) to
the subthreshold voltage to obtain the instantaneous firing rate, which
we then used to map ISIs to the operational time to estimate ϕ.

We observed that the spiking irregularity estimated from the
subthreshold voltage was consistent with our theoretical DSR frame-
work. First, the mean μ̂g of the rescaled ISIs was close to 1
(jμ̂g � 1j<0:031 for all neurons), validating the condition μg ≈ 1 s in the
DSR framework. This agreement indicates that the subthreshold vol-
tage transformed via f(v) is a good proxy for the instantaneous firing
rate in theDSR framework. Second,ϕ estimated from the subthreshold
voltage corresponded well with ϕ estimated from spikes alone by the
DSR method (Fig. 3c). The two estimates of ϕ differed by only 23% on
average. Moreover, our DSRmethod and the partitioning based on the
subthreshold voltage attributed a similar fraction of the total spiking
variability (measured by CV 2

raw of ISIs in real time) to the spiking
irregularity (Fig. 3d, ϕ=CV 2

raw: 0.26 ± 0.02 for the DSR method,
0.27 ± 0.04 for the subthreshold voltage method, mean ± std across
neurons). These results validate the theoretical assumptions of the
DSR framework and confirm the accuracy of the DSR estimation
method.

The diversity of spiking irregularity across neurons and
cortical areas
Equippedwith the reliablemethod forpartitioning spiking variability,we
askedhowspiking irregularityϕvaries across neurons andcortical areas.
We analyzed spikes recorded from areas spanning different stages of
cortical hierarchy: from sensory (visual area V4, 282 neurons54), to the
association (lateral intraparietal area, LIP, 61 neurons55), and premotor
regions (dorsal premotor cortex, PMd, 343 neurons56), in monkeys
performing behavioral tasks (Methods). The spiking irregularity varied
systematically across these areas (Fig. 4a). On average, the spiking irre-
gularity was slightly super-Poisson in V4 (ϕ= 1.22 ±0.03, mean ± std
across neurons) and became sub-Poisson and more regular in LIP
(ϕ =0.68 ±0.04) and PMd (ϕ=0.51 ±0.02). In addition, the diversity of
spiking irregularity across neurons within each area also systematically
decreased fromV4 to LIP to PMd (Fig. 4a, standard deviation ofϕ across
neurons: 0.45 in V4, 0.34 in LIP, 0.21 in PMd). While nearly all PMd
neurons had sub-Poisson spiking irregularity ϕ< 1, spiking of different
V4 neurons ranged from clock-like regular (ϕ ≈ 0) to highly irregular
(ϕ >2). Since our V4 and PMd recordings similarly sampled all cortical
layers, these differences likely reflect differences in the circuitry and
functional specialization of neurons in these areas. These results reject

the assumption that the spike generation process is Poisson-like for
most cortical neurons57,58, which is a common assumption in statistical
models of neural dynamics on single trials11,19,21,59,60. Our results agree
with the observation that spiking variability (FF) of many parietal10,26,27

and PMd neurons27,28 is sub-Poisson, whereas it is super-Poisson in visual
cortical areas11,26,27,34. The advance of our results over previous observa-
tions is that the spiking irregularityϕ reflects solely the neuron’s renewal
function and is unaffected by the firing rate fluctuations.

The diversity of ϕ across neurons in each area raises a question
about the relationship betweenϕ and themean firing rate of a neuron.
In all areas, neurons with high-firing rates had low spiking irregularity:
among the 25% neurons with the highest firing rates, only a few neu-
rons had ϕ within the top 25% (Fig. 4b). Low spiking irregularity may
allow these neurons to transmit signals with reduced noise to other
brain regions26. In particular, neurons with high FF and low ϕ may
transmit high-fidelity information about dynamically changing firing
rate on single trials. Overall, themean firing rate andϕwere negatively
correlated in V4 (Pearson correlation coefficient ρ = −0.27, p = 4 ⋅ 10−6,
n = 282) and LIP (ρ = −0.34, p = 7 ⋅ 10−3, n = 61), and not significantly
correlated in PMd (ρ =0.03, p =0.62, n = 343). This correlation did not
arise solely from the refractory period effects of high-firing rate neu-
rons (Supplementary Note 1.5). The lack of correlation in PMd resulted
from the prevalence of neurons with low-to-moderate firing rates and
low ϕ, likely due to prominent beta-band synchronization in this
area61,62. The observed inverse relationship between the mean firing
rate and spiking irregularity is nontrivial because ϕ in our DSR fra-
mework is independent of the firing rate. These findings suggest that
spiking irregularity may serve varying functions in different cortical
areas, challenging the idea that it stems solely from inherently irre-
ducible sources of noise63.

Partial invariance of spiking irregularity
Our finding thatϕ ≠ 1 formost cortical neurons suggests incorporating
non-Poisson spiking irregularity into methods for estimating firing
rates on single trials. An important consideration for developing such
methods is whether the spiking irregularity of a neuron changes
dynamically or is approximately constant, invariant to changes in
behavioral and cognitive state. The total spiking variability, usually
measured by the FF, changes dynamically in many conditions (e.g.,
during stimulus onset33 or selective attention58), but these changes
may reflect modulations of either the firing rate, spiking irregularity48,
or both. Therefore, we proceeded to examine whether ϕ of each
neuron was invariant or changed across conditions and epochs of
behavioral tasks,which correspond todifferentmodesof computation
associated with distinct operating regimes of network dynamics.
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Fig. 4 | The diversity of spiking irregularity across neurons and cortical areas.
aDistributions of spiking irregularityϕ across neurons in cortical areasV4 (red), LIP
(green), and PMd (blue). Triangles mark the mean ϕ across neurons in each area.
The probability densities are computed using a Gaussian kernel density estimator
(with kernel widths of 0.15, 0.15, and 0.08 for V4, LIP, and PMd, respectively).
Shading indicates the standard deviation across 100 bootstrap samples obtained
by resampling neurons. b Spiking irregularity ϕ (x-axis) versus mean firing rate (y-

axis) for each neuron (dots) in V4 (left), LIP (center), and PMd (right). The lines
indicate 0.75 quantiles of ϕ (red vertical line) and firing rate (black horizontal line).
In all areas, among 25% neurons with the highest firing rates (above the black line),
only a few neurons hadϕwithin the top 25% (to the right of the red line).Most PMd
neurons with low-to-moderate firing rates (below the black line) had low ϕ (to the
left of the red line), likely due to prominent beta-band synchronization in this area.
Source data are provided as a Source data file.
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First, we compared ϕ of each V4 neuron across behavioral con-
ditions in the spatial attention task performed by monkeys15. In this
task, monkeys detected changes in a visual stimulus in the presence of
three distractor stimuli and reported the change with an antisaccade
response (Fig. 5a). In each trial, a cue indicated the stimulus that was
most likely to change, which was thus the target of covert attention,
and the stimulus opposite to the cue was the target of overt attention
due to the antisaccade preparation. It is well established that variability
of neural responsesmeasuredby the FFdecreases during attention58,64,
but whether the FF decrease results from a reduction in the firing-rate
fluctuations, spiking irregularity, or both has not been tested. We
compared ϕ estimated on trials when the monkeys directed their
attention (either covert or overt) to the location of the neuron’s
receptive field (RF) and on trials when they attended to locations
outside the RF and found no significant differences in estimated ϕ
across these attention conditions (Fig. 5b, p =0.10, n = 237, two-sided
Friedman test, Methods). This result indicates that spiking irregularity
ϕ is invariant to the attentional modulation of the network state in V4,
and that reduction in FFprimarily reflects suppressionof thefiring-rate
fluctuations. Thus, attention stabilizes firing rates over longer time-
scales without affecting the spiking irregularity of single neurons. This
result suggests that attention enhances information transmitted
through thefiring rates rather thanprecise spike patterns andprovides
tight constraints for biophysical network models of attention.

Next, we compared ϕ of each PMd neuron across behavioral
conditions in the decision-making task performed by monkeys56. In
this task, monkeys discriminated the dominant color in a static
checkerboard stimulus composed of red and green squares and

reported their choice by touching the corresponding left or right tar-
get (Fig. 5c). The proportion of the same-color squares in the check-
erboard (coherence) varied across trials to control the stimulus
difficulty, with seven coherence levels used for each left and right
response side, resulting in 14 stimulus conditions total.Weestimatedϕ
in each of these conditions separately during the decision epochof the
task after the checkerboard onset and found no significant differences
in ϕ across stimulus conditions (Fig. 5d, p =0.11, n = 272, two-sided
Friedman test, Methods). Thus, while PMd dynamics change sub-
stantially across conditions in correlation with the chosen side and
reaction time9,56, the spiking irregularity ϕ was invariant to these
changes. Similarly, spiking irregularity ϕ of LIP neurons during the
decision epoch was invariant between two-choice and four-choice
decision-making tasks (p =0.84, n = 60, two-sided Wilcoxon signed-
rank test). Thus, in different tasks and cortical areas, we found that the
spiking irregularity was invariant across behavioral conditions during
the same task epoch.

Finally, we tested whether ϕ of a neuron was the same between
different task epochs that engage distinct computations. For PMd
neurons, we compared ϕ during the decision epoch while monkeys
were making their choice and during the pre-stimulus fixation period
while monkeys held their hand still on a fixation target waiting for the
stimulus to appear (Fig. 5c, Methods). The spiking irregularity ϕ was
significantly greater during the decision epoch than during pre-
stimulus fixation (Fig. 5f, modulation index 2(ϕdecision−ϕfixation)/
(ϕdecision +ϕfixation) = 0.16, p =0.003, n = 262, two-sided Wilcoxon
signed-rank test). The lower spiking irregularity ϕfixation likely reflects
elevated beta-band synchronization during the fixation period,
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Fig. 5 | Dependence of spiking irregularity on the behavioral and
cognitive state. a Attention task performed by monkeys during V4 recordings.
Monkeys detected an orientation change in one of four peripheral grating stimuli,
while an attention cue (short white line) indicated which stimulus was likely to
change. Monkeys reported the change with a saccade to the stimulus opposite to
the change (black arrow). The cued stimulus was the target of covert attention,
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trials (pink and purple frames), neither the attended stimulus nor the saccade
target was in the RF. The scatter plots show estimated ϕ for every pair of task
conditions. Each dot represents one V4 neuron. cDecision-making task performed

bymonkeys during PMd recordings. Monkeys discriminated the dominant color in
a checkerboard stimulus composed of red and green squares and reported their
choice by touching the corresponding target (upper panels). Task conditions var-
ied by the response side indicated by the stimulus (left versus right) and stimulus
difficulty controlled by seven coherence levels c1 through c7 (lower panels). d The
scatter plots show estimated ϕ for each pair of coherence levels, combined across
chosen sides. Eachdot is one PMd neuron. e The scatter plot shows estimatedϕ for
right versus left choice trials, combined across coherence levels. Each dot is one
PMd neuron. f Histogram across PMd neurons of the modulation index of ϕ esti-
mated during the fixation (when targets were visible) and decision epochs of the
task.The trianglemarks themedianmodulation index,which is significantly greater
than zero (***p = 3 ⋅ 10−7, n = 262, one-sidedWilcoxon signed-rank test). Source data
are provided as a Source data file.
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characteristic of the movement preparatory activity in PMd61,62. In
contrast, the spiking irregularity of LIP neurons was not significantly
different between the fixation and decision epochs of the task
(p = 0.84, n = 45, two-sided Wilcoxon signed-rank test). Our results
show that the spiking irregularity ϕ of a neuron is invariant to
alterations of the network state in many conditions, such as
different attention states or decisions, but ϕ can also change across
different modes of network operation associated with distinct
computations.

Network mechanisms of spiking irregularity
We finally asked what biophysical mechanisms could explain our find-
ings that cortical neurons have diverse spiking irregularity, which is
inversely related to the mean firing rate and remains nearly constant
across many conditions for individual neurons. To test possible
mechanisms, we used a spiking recurrent neural network model that
accounts for several characteristics of spiking variability in the visual
cortex and its attentional modulation35 (Fig. 6a, Methods). The model
consists of a three-layer hierarchy (thalamus-V1-MT), in which the V1 and
MT layers are two-dimensional balanced networks of excitatory and
inhibitory neurons with spatially ordered recurrent connectivity. The
connection probability within recurrent layers falls off with distance
between neurons, mimicking lateral connectivity in the visual cortex65.
The V1 layer receives an excitatory feedforward input from the thalamus
layer modeled as Poisson neurons firing at a uniform rate, while exci-
tatory neurons in V1 project to the MT layer. Recurrent interactions in

the network generate turbulent dynamics, which give rise to low-
dimensional population-wide fluctuations in spiking activity35.

Since all neurons in the model have the same deterministic vol-
tage threshold for spike generation, the spiking irregularity arises
entirely from fluctuating inputs to a neuron shaped by the recurrent
network dynamics. Similar to our cortical data, the spiking irregularity
ϕ in the V1 layer varied broadly across neurons in the network model
(Fig. 6b). The diversity of ϕ across neurons was not due to hetero-
geneous single-cell properties, since all excitatory and inhibitory
neurons in the model had identical parameters, but due to differences
in how neurons were embedded in the network. The connections
between neurons in the model are made randomly with distance-
dependent probability. Thus, by chance, some neurons receive more
excitation than inhibition and reside near or even above the firing
threshold and therefore spike regularly, while others receive stronger
net inhibition, reside far from the firing threshold, and fire irregularly,
driven by large fluctuations. Consistent with this mechanism, ϕ was
negatively correlated with the average firing rate of a neuron (Fig. 6c)
and with the difference between the number of excitatory and inhi-
bitory connections it receives (Fig. 6d). The synaptic input balance is
not the sole source of diverse spiking irregularity, as heterogeneous ϕ
also arises from chaotic dynamics in a balanced random network
model, where each neuron receives the samenumber of excitatory and
inhibitory connections36 (Supplementary Note 1.6, Supplementary
Fig. 5). Hence, the spiking irregularityϕ arises from both the recurrent
networkdynamics andneuron’s embeddingwithin this network. These
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(solid lines) and Layer 3 (dashed lines). The diversity of spiking irregularity across
Layer 2 neurons aligns with experimental observations (cf. Fig. 4). Excitatory neu-
rons in Layer 3 exhibit highly regular spiking, while inhibitory neurons display a

broad range of spiking irregularity. c Spiking irregularity of neurons in Layer 2
decreases with the firing rate (blue dots—excitatory neurons, red dots—inhibitory
neurons, lines—linear regression). d Spiking irregularity of neurons in Layer 2
decreases with the balance in the total number of excitatory and inhibitory con-
nections received by a neuron nfe + nee−nie. e Attentional modulation of FF, spiking
irregularityϕ, and firing rate variability Var(λT) in Layer 3. The FFmodulation index
(MI) is defined as (FFattended−FFunattended)/(FFattended + FFunattended), and similarly for
spiking irregularity and firing rate variability. FF is significantly reduced during
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mediated reduction in firing rate variability (right, ***p < 10−10), while spiking irre-
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and the blue triangle indicates the mean of the distribution. Source data are pro-
vided as a Source data file.
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results show that probabilistic spike generation in doubly stochastic
point process models is compatible with a deterministic voltage
threshold for spike firing in single neurons.

The distribution of ϕ in the spatially ordered balanced network
model peaked below one, similar to that for LIP and PMd but not
matching the greater diversity and larger values of ϕ in V4 (Fig. 6b).
This observation suggests that other features of the V4 circuitry not
included in this model may contribute to the spiking irregularity, such
as a distinct dynamical regime (Supplementary Note 1.6, Supplemen-
tary Fig. 5), heterogeneous single-cell properties, cell types, and non-
Poisson input. In addition, changes in the network state can dynami-
cally modulate both the average firing rate and spiking irregularity via
multiple biophysical mechanisms, such as inputs to excitatory or
inhibitory neurons or changes in the membrane conductance (Sup-
plementary Note 1.7, Supplementary Fig. 6), providing a possible
mechanism for the change in ϕ observed in PMd (Fig. 5f). Thus, mea-
surements of spiking irregularity in experimental data can provide
tighter constraints on biophysical neural circuit models.

Finally, it has been shown previously that this spatial network
model accounts for the reduction in FF during attention35, and we
testedwhether the FF reduction in themodel resulted from changes in
spiking irregularity or firing rate fluctuations. We model top-down
attentional modulation as a static depolarizing input current to MT
inhibitory neurons35 (0.2mV/ms in the unattended state, 0.4mV/ms in
the attended state, Methods). While FF in the model was significantly
reduced during attention (Fig. 6e, FF modulation index MIFF = −0.06,
p < 10−10, n = 35, 944, two-sided t-test), the spiking irregularity
remained unchanged (Fig. 6e, ϕ modulation index MIϕ = −0.001,
p =0.51,n = 35, 944, two-sided t-test), consistentwith our experimental
observations (Fig. 5b). Accordingly, the source of FF reduction in the
model was a decrease in firing rate variability, which we estimated
using Eq. (5) (Fig. 6e, Var(λT) modulation index MIVar(λT) = −0.12,
p < 10−10, n = 35, 944, two-sided t-test). Thus, a reduction in FF in the
model resulted from a decrease in firing rate fluctuations while spiking
irregularity remained unchanged, consistent with our observations in
experimental data, therefore supporting the proposed circuit
mechanism of attentional modulation. Our method is uniquely suited
todetect this dissociation, providing tighter constraints onbiophysical
circuit models of attention.

Discussion
We introduced a DSR process, a mathematical framework for parti-
tioning the total spiking variability of neurons into firing rate fluctua-
tions and spiking irregularity. The standard model used to relate
dynamically changing firing rates to spikes is an inhomogeneous
Poisson process. However, the inhomogeneous Poisson process can
only produce a fixed spiking irregularity, corresponding toϕ = 1 in our
DSR framework. Hence, it cannot account for diverse spiking statistics
of neurons, e.g., regular spiking with FF smaller than one. On the other
hand, a stationary renewal point process37 can generate spike trains
with a fixed firing rate and any irregularity, from nearly periodic to
super-Poisson. A previously proposed non-stationary extension of the
renewal process incorporated a time-dependent firing rate but did not
account for trial-to-trial firing rate fluctuations39,66,67. Our DSR process
generalizes these previous models by encompassing both stochastic
firing rate fluctuations and a broad spectrum of spiking irregularity. A
subset of stationary renewal processes can be expressed as inhomo-
geneous Poisson processes68–70, leading to potential ambiguity in
assigning variability to the firing rate versus spiking irregularity29. We
resolve this ambiguity by imposing a minimal set of constraints: the
renewal property in the operational time and smoothness of the firing
rate over short timescales. With these constraints, our DSR framework
enables unambiguous partitioning of variability.

We validated the accuracy of our estimation method on synthetic
data with known ground truth. In contrast, we find that previous

methods for partitioning spiking variability are less reliable either due
to an inability to account for fluctuating firing rate39 or due to
assumptions that do not always hold true10,28,31. This latter observation
agrees with the previous work showing that any partitioning of varia-
bility is ambiguous without an underlying mathematical model29.

Furthermore, we confirmed that our DSR model aligns with the
biophysical properties of neural circuits. This connection had not been
tested despite the widespread use of doubly stochastic point pro-
cesses for modeling spiking activity. In fact, the reliable spiking of
cortical neurons in response to time-varying inputs71 may seem to
suggest that stochastic spike generationmodels are incompatible with
circuit biophysics. We show that the spiking irregularity can arise from
recurrent dynamics and reflect a neuron’s embedding within the net-
work, even when individual neurons have a deterministic voltage
threshold for spike generation. Our validation of the DSRmodel using
intracellular voltage recordings and spiking network simulations jus-
tifies the widespread use of doubly stochastic models in single-trial
spike-train analysis and establishes their connection with the under-
lying biophysical processes.

We applied our method to survey the spiking irregularity of
neurons across sensory, association, and premotor cortical areas. We
found that neurons within each area showed a wide range of spiking
irregularity, with the greatest diversity in area V4. The diversity of
spiking irregularity may arise from several possible sources: hetero-
geneity in neurons’ morphology, cell type, or differences in how a
neuron is embedded in the surrounding network. Our simulations of
the spiking neural network models show that diverse spiking irregu-
larity can arise from variations in the balance of excitatory and inhi-
bitory inputs across neurons as well as from recurrent network
dynamics. We further found that the average spiking irregularity
decreased systematically from V4 to LIP to PMd, consistent with pre-
vious observations that responses of parietal and PMd neurons are
more regular than Poisson26,27. These previous studies used various
metrics to quantify spiking irregularity in data, but lacked a generative
model. Therefore, it is difficult to assess the accuracy of these meth-
ods, leaving uncertainty about the reliability of derived conclusions.
Our work overcomes these limitations by introducing a mathematical
definition of spiking irregularity as a parameter within a generative
model, which enables us to verify the accuracy of our estimation
method and opens the possibility of integrating spiking irregularity
into models of single-trial neural dynamics beyond the standard
Poisson assumption. Our results confirm that spiking irregularity
decreases along the cortical hierarchy, suggesting it may be related to
the functional specialization of cortical areas.

While our results and previous studies26,27 show that spiking irre-
gularity decreases from visual to association to motor cortical areas,
intrinsic neural timescales systematically increase along the cortical
hierarchy72–75. Intrinsic timescales are defined by the exponential decay
rate of the autocorrelation functionof spiking activity and typically range
from tens to several hundred milliseconds, reflecting primarily slow
firing-rate dynamics rather than spiking irregularity. Thus, firing rate
timescales andspiking irregularity follow inversegradients thatalignwith
the functional specialization of cortical areas. A precise Bayesian esti-
mation method76 revealed that spiking activity in the primate visual
cortex unfolds on at least two timescales: a fast ~5ms timescale and a
slow ~100ms timescale77. The millisecond range of the fast timescale
may partly reflect spiking irregularity. Moreover, the slow—but not the
fast—timescale increasedduring selective attention77, consistentwith our
observation that spiking irregularity remains invariant while firing rate
fluctuations are stabilized during attention. Together, these findings
suggest that spiking irregularity and intrinsic timescales reflect distinct
yet complementary features of neural dynamics, each influencing how
cortical areas process information over time.

We testedwhether spiking irregularity is aneuron-specific constant,
invariant to changes in network dynamics due to variations in behavioral
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andcognitive state. Indeed, the spiking irregularitywas invariant inmany
cases, such as across different attention states or decision difficulties.
However, we also found that the spiking irregularity of PMd neurons
changed between different epochs of the task48, which indicates that
spiking irregularity can also change as a function of the network state.
Our spiking network simulations show that depolarization of excitatory
neurons combinedwith an increase in theirmembrane conductance can
simultaneously increase the spiking irregularity andfiring rate, similar to
the modulation we observed in PMd. The effective membrane con-
ductance increaseswith depolarization in conductance-basedmodels of
spiking neurons78,79, which are therefore especially useful for studying
mechanisms modulating spiking irregularity.

Changes in neural variability can furnish insights intomechanisms
of diverse brain functions10,11,80. For example, FF decreases in many
brain regions during sensory stimulus onset33, motor preparation3,81,
and selective attention58,82, whichhas been interpreted as amechanism
for enhancing thefidelity of neural representations. However, FFmixes
contributions from both firing rate fluctuations and spiking irregular-
ity, making such a mechanistic interpretation more challenging48.
Going beyond FF, some studies partitioned neural variability into firing
rate fluctuations and spiking irregularity10,31,48. This partitioning
approach revealed that firing rate variability on longer timescales
increases through the decision period, while assuming that spiking
irregularity isfixed across different taskepochs10. In contrast, we found
that although spiking irregularity was invariant in many cases, it
changed across different epochs of the decision-making task in PMd.
Thus, our DSR framework and estimation method enable more
nuanced analyses of neural variability, opening a possibility to identify
how changes in the firing rate variability and spiking irregularity
independently contribute to neural computations.

While our DSR model assumes that ISIs are independent in
operational time, it can generate serial ISI correlations in real time
through temporally correlated instantaneous firing rates. Such serial
correlations between ISIs are commonly observed in data83,84 and can
arise from either correlated input or firing rate adaptation in
mechanistic integrate-and-fire models85–88. Our DSR model can incor-
porate ISI correlations in real time via temporally correlated firing rate
fluctuations, while maintaining approximately uncorrelated ISIs in
operational time (Supplementary Note 1.8). Thus, our DSR framework
can be broadly applied to model spiking responses.

While an inhomogeneous Poisson process is widely used in
methods for inferring latent neural dynamics on single trials18–25, our
results highlight the need for incorporating non-Poisson spiking irre-
gularity into these methods. One approach for incorporating non-
Poisson spiking is to augment the inhomogeneous Poisson process
with the instantaneous firing rate that depends on the spike
history60,89,90. OurDSR frameworkoffers twoadditional approaches for
including non-Poisson spiking irregularity into latent variable models.
First, we can estimate ϕ from data with our DSR method and then
model the spike generation from the firing rate as a renewal point
process with g(⋅) being a gamma distribution uniquely defined by the
estimated ϕ. Second, we can simultaneously infer the distribution g(⋅)
and latent dynamics91–93. In our framework, the inference of g(⋅)
amounts to the estimation of a single parameterϕper neuron and thus
is maximally parameter-efficient. Finally, our DSR framework provides
an accurate metric for evaluating the goodness of fit of latent variable
models, whereas Poisson likelihood may produce misleading results
when applied to spikes with non-Poisson statistics30.

Together, our results uncover the great diversity in the spiking
irregularity across neurons, cortical areas, and cognitive states, which
cannot be captured with the conventional inhomogeneous Poisson
model. Our theoretical framework and estimation method provide a
flexible tool for quantifying spiking variability to investigate its role in
neural computation and the underlying biophysical mechanisms. Our
DSR point process provides a flexible model to capture the broad

spectrum of spiking irregularity of cortical neurons and improve the
precision of methods for estimating latent dynamics on single trials.

Methods
Partitioning variability
For a pair of randomvariablesX andY, the lawof total variance (LOTV)
decomposes the variance of Y into two parts: Var(Y) = E[Var(Y∣X)] +
Var(E[Y∣X]). We assume that λ(t) is approximately constant within a
time bin of size T, then choosing X = λ and Y =NT, we obtain Eq. (3):
Var(NT) = E[Var(NT∣λ)] + Var(E[NT∣λ]). Next, we calculate E[NT∣λ] and
Var(NT∣λ) for a DSR point process {g(⋅), λ(t)}.

First, we consider a simple renewal point process fully defined by
its ISI probability density f(x), meaning that after generating a spike,
the probability of the next spike occurringwithin the interval [x, x +dx]
is f(x)dx. Denoting the first three central moments of f(x) by μ, σ2, and
μ3, we show that the mean and variance of the spike count NT in a bin
with the size T are (Theorem 1 in Supplementary Note 1.1):

EðNT Þ=
T
μ
, ð9Þ

Var ðNT Þ=
σ2

μ3 T +
σ4

2μ4 +
1
6
� μ3

3μ3 +OðT�1Þ: ð10Þ

Next, we consider a DSR point process {g(⋅), λ(t)}. Assuming λ(t)
changes on a timescale longer than T, we can consider λ to be
approximately constant within a bin. Then, within a single bin, the
spike-generating process is a renewal point process fully defined by its
ISI probability density, which we denote by fλ since it depends on the
value of λ in the bin. We derive that E[NT∣λ] = λT (Theorem 2 in
Supplementary Note 1.1), which we substitute in Eq. (3) to get
Var(NT) = E[Var(NT∣λ)] + Var(λT). We further derive that for a moder-
ately large bin size T > 1/E[λ], we can express E[Var(NT∣λ)] via the first
three moments of the probability density g(⋅) as stated in Eq. (4)
(Theorem 4 in Supplementary Note 1.1). With these results, we obtain

Var ðNT Þ= Var ðλTÞ+ σg

μg

 !2

E ½NT �+
1
6
+
1
2

σg

μg

 !4

� 1
3

μ3g

μ3
g

+OðT�1Þ:

ð11Þ

To simplify the partitioning equation, we assume that g(⋅) belongs to
the two-parameter family of continuous probability distributions and
is uniquely determined by its first two moments μg and σg

2. Since
μg = 1 s, the probability density g(⋅) is uniquely determined by
ϕ= σ2

g=μ
2
g . Thus, the third central moment is a function of ϕ, which

we denote by μ3 =ψ(ϕ). With this parametrization, we obtain our
general partitioning equation:

Var ðNT Þ= Var ðλTÞ+ϕ E ½NT �+
1
6
+
1
2
ϕ2 � 1

3
ψðϕÞ+OðT�1Þ: ð12Þ

As a special case of the two-parameter family, we consider g(⋅) to be a
gamma distribution38,42,43

gðτÞ= 1

ΓðkÞθk
τk�1e�

τ
θ, ð13Þ

which we can reparameterize in terms of ϕ:

gðτÞ= ðΓðϕ�1ÞÞ�1
ϕ� 1

ϕτ
1�ϕ
ϕ e�

τ
ϕ: ð14Þ

In the special case of ϕ = 1, the ISI distribution reduces to the expo-
nential distribution g(τ) = e−τ, which corresponds to the Poisson spiking
process. We can compute the central moments of the gamma
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distribution g(τ) in terms ofϕ, specifically, μg = kθ = 1, σ2
g = kθ

2 =ϕ, and
μ3g =2kθ

3 = 2ϕ2. Substituting these expressions in Eq. (11), we obtain
our final partitioning equation Eq. (5).

Estimation methods for ϕ
We develop a DSR method for estimating ϕ from spike data. The data
consist of spike times for multiple trials. We choose a bin size T and
estimate E[NT] and Var(NT) as the mean and variance of spike counts
across trials in bins [t, t + T], where t is a time within a trial. Besides ϕ,
the only other unknown term in the partitioning equation Eq. (12) is
Var(λT). Using the fact that Var(λT) = T2Var(λ) for every bin, we express
this unknown part through other terms

T2 Var ðλÞ � Var ðNT Þ � ϕ E ½NT � �
1
6
� 1

2
ϕ2 +

1
3
ψðϕÞ: ð15Þ

In this equation, E[NT], Var(NT), and T2Var(λ) are all functions of the bin
size T. Thus, by changing the bin size, we can obtain a system of two
equations for two bins [t, t + T] and ½t, t + eT �:

T2 Var ðλÞ � Var ðNT Þ � ϕ E ½NT � � 1
6 � 1

2ϕ
2 + 1

3ψðϕÞ,eT2
Var ðλÞ � Var ðNeT Þ � ϕ E ½NeT � � 1

6 � 1
2ϕ

2 + 1
3ψðϕÞ:

8<: ð16Þ

Denoting α = eT=T > 1, we eliminate the unknown Var(λ) in this system
of equations and obtain a single equation in which ϕ is the only
unknown variable:

ðα2 � 1Þ ψðϕDSRÞ
3

� ϕ2
DSR

2

 !
� ðα2 E ½NT � � E ½NeT �ÞϕDSR

+α2 Var ðNT Þ � Var ðNeT Þ � α2 � 1
6

=0:

ð17Þ

Here we denote the solution of this equation by ϕDSR, which is an
estimate of ϕ with the DSR method. The coefficients in this equation
include four terms E ½NT �, E ½NeT �, Var ðNT Þ and Var ðNeT Þ that can be
directly estimated from data with a moderate number of trials. In the
case when g(⋅) is the gamma distribution, μ3g =ψðϕÞ=2ϕ2, and we
obtain a quadratic equation for ϕDSR:

α2 � 1
6

ϕ2
DSR � ðα2 E ½NT � � E ½NeT �ÞϕDSR +α

2 Var ðNT Þ

� Var ðNeT Þ � α2 � 1
6

=0:

ð18Þ

To derive this equation, we assumed that for every realization of λ(t),
the firing rate λ(t) changes slowly relative to the timescales T andeT =αT . Thus, we assume that λ(t) is constant within the bin eT , hence, α
cannot be too large. However, if α is very close to 1, the two equations
for different bin sizes T and eT are nearly identical, leading to a large
error in estimated ϕ. Through simulations, we found that α = 2 pro-
duces accurate results for wide ranges of parameters, and therefore,
we set α = 2 in all analyses. Substituting α = 2 in Eq. (18), we obtain the
final estimation equation Eq. (6).

We compared the accuracy of our estimation method with two
previously proposed methods. The first method, the DTR39, assumes
that the time-dependent firing rate is the same on every trial, deter-
ministically locked to a trial event. The method then estimates the
firing rate as the average spike count in a bin across trials:
λ̂ðtiÞ= 1=K

PK
k = 1 N

k
T , i, where Nk

T , i is the number of spikes in the bin
½ti � T

2 , ti +
T
2� in the kth trial, andK is the number of trials. If the ground-

truth firing rate is the same on each trial, ϕDTR converges to the
ground-truth ϕ for large trial number: limVar½λðtÞ�!0,K!1ϕDTR =ϕ
(Supplementary Note 1.3). However, in the presence of trial-to-trial
firing rate fluctuations, we derive that the estimation error of this

method is ϕDTR � ϕ= ðA� 1Þðϕ+ 1Þ, where A is a monotonically
increasing function of the average firing rate variance (Supplementary
Note 1.3).

The second family of methods10,31,47 assumes that the point pro-
cess variance is proportional to the mean spike count
E[Var(NT∣λ)] =ϕE[NT], where ϕ is a neuron-specific constant (Eq. 7).
This assumption was motivated by the renewal theory37, which states
that for a stationary renewal process with a constant firing rate, the FF
converges to the squared coefficient of variation of ISIs (CV2) in the

limit of an infinite bin size: limT!1 FF =CV2. However, this relation
strictly applies only in the limit of infinite bin size (T → ∞) and a con-
stant firing rate94, and for a finite bin size, the FF of a renewal process
depends on both the bin size and firing rate. Using Eq. (4), we derive
that for a renewal process with a constant firing rate in a finite bin size,

it holds FF=CV2 + c1
E ðNT Þ +

1
T �

c2
E ðNT Þ +OðT�2Þ, where the coefficients c1

and c2 depend on g(⋅). This relation shows that ϕ, defined via Eq. (7)
with a finite bin size, is not a constant characterizing the renewal
process, but a function of the bin size and firing rate. Therefore, any
method for estimatingϕ using Eq. (7) with a finite bin size will produce
results that do not uniquely characterize the spiking irregularity of a
neuron, but depend on nuisance parameters such as the bin size and
firing rate. While it is possible to accurately estimate ϕ (i.e., CV2 of ISIs
of a renewal process) by considering the asymptotic behavior of FF(T)
for large bin sizes48, this asymptotic method requires the firing rate to
be constant over time bins T longer than fast timescales involved in
behavior, e.g., decision-making.

Based on Eq. (7), theMRmethod10 estimatesϕ as theminimumFF
across all time bins. We show that for DSR processes, the estimation
error of this method is (Supplementary Note 1.4)

ϕMR � ϕ � min
t

T
Var ðλðtÞÞ
E ½λðtÞ� +

1
T
�
1
6 + 1

2 ðϕÞ2 � 1
3ψðϕÞ

E ½λðtÞ�

( )
: ð19Þ

Other methods were also proposed for estimating ϕ in Eq. (7) with
better accuracy than the MR method under the assumption that the
firing rate obeys an unbounded drift-diffusion process31,47. However,
these methods require a priori knowledge of the firing rate dynamics.
In addition, they start from the same premise, Eq. (7), as the MR
method, and therefore have similar limitations for a finite bin size.

Synthetic data generation
For the drift-diffusion model with sticky boundaries (Figs. 1 and 2), we
generate the firing rate from

dλðtÞ
dt

=

0, λðtÞ=bl ,

ν +
ffiffiffiffiffiffi
2D

p
ξ ðtÞ, bl < λðtÞ<bu,

0, λðtÞ=bu:

8><>: ð20Þ

Here, ν is the drift, ξ(t) is a white Gaussian noise 〈ξ(t)〉 =0,
hξ ðtÞξ ðt0Þi= δðt � t0Þ,D is the diffusion coefficient, and bl and bu are the
lower and upper boundary values, respectively. We use bl = 1Hz,
bu = 20Hz, ν = 0Hz ⋅ms−1, and the initial firing rate value λ = 10Hz
(Fig. 1) and bl = 1Hz, bu = 60Hz, ν =0.0138Hz ⋅ms−1, and the initial fir-
ing rate value λ = 30Hz (Fig. 2).

Estimation of ϕ from spike data
To estimate ϕ with the DSR method in synthetic and experimental
data, we foundϕ as a solution of Eq. (6) for each time point tiwithin an
analysis window with two time bins [ti, ti + T] and [ti, ti + 2T]. We then
obtained the final ϕ by averaging the results across all time points ti
within the analysis window. To ensure that Eq. (5) holds, we require
T > 1/E[λ]. Since we assume the firing rate is constant within a bin, we
also need to choose a bin size as small as possible. To satisfy both
conditions, we set T = 2/E[λ] for each neuron in experimental and
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synthetic data, where E[λ] is the average firing rate of the neuron over
the analysis period. We confirmed that our inferencemethod is robust
and largely insensitive to bin size across a wide range of values, and
remains reliable even in the presence of occasional rapid changes in
firing rate (Supplementary Note 1.2).

To estimateϕwith theDTRmethod (Fig. 2), we estimated the trial-
averaged firing rate using a 60ms sliding window with 10ms incre-
ments. We used this firing rate and Eq. (1) tomap spike times from real
time t to operational time t0. We then computed ϕ as the squared
coefficient of variation CV2 of ISIs in operational time. For the MR
method (Fig. 2), we used Eq. (8) with a bin size of 60ms.

Intracellular voltage recordings
We used a previously described dataset32 of whole-cell intracellular
recordings of membrane potential from PV neurons in L2/3 of barrel
cortex in awakehead-restrainedmice (six 5–10weekold female andmale
PV-IRES-Cre mice). All experiments were carried out in accordance with
protocols approvedby theSwiss Federal VeterinaryOffice (authorization
VD1628). The sampling rate of the membrane potential measurements
was 20KHz.Weonly analyzedneuronswith a trial-averagedfiring rate of
at least 20Hz that had data for at least 10 trials of 20 s duration each.
These criteria yielded eight neurons from five female mice.

We estimated the function that relates subthreshold membrane
potential to instantaneous firing rate, similar to previous studies52,53.
First, we removed action potentials from the voltage traces. We define
the spike time as the time when the membrane potential crosses a
−30mV threshold (the average membrane potential for cells is typically
much lower at about −60mV). We then remove the segment of the
voltage trace from 3ms before to 5ms after each spike time and linearly
interpolate between these twopoints. Second,we segment the recorded
voltage trace inΔt= 50ms timebins. For each timebin i, we compute the
average membrane potential Vi and the number of spikes Ni within that
time bin. We plot Ni/Δt versus Vi for all time bins (blue dots in Fig. 3b).
Next, we divide the voltage range [−68, −40]mV intoΔV = 1mV binsΔVk
(k= 1, 2,⋯, 28).We find the set of all data points fallingwithin the kth bin
Sk= [ ∀i : Vi∈ΔVk], and compute the average firing rate

rk =
1

jSk jΔt
X
i2Sk

Ni ð21Þ

and the average voltage Vk =
1
2 � ð�68+ kΔV Þ in that bin. Finally, we fit

this average relationshipwith a spline to approximate the dependence
of the instantaneousfiring rate rkon subthresholdmembranepotential
Vk using the deterministic function f(v).

Neural recording data
We analyzed three experimental datasets described previously: record-
ings from area V4 during a spatial selective attention task54, recordings
from the LIP during two-choice and four-choice decision-making tasks55,
and recordings from the dorsal premotor cortex (PMd) during a
decision-making task56. Experimental procedures for the V4 and PMd
datasets were in accordance with the NIH Guide for the Care and Use of
Laboratory Animals, the Society for Neuroscience Guidelines and Poli-
cies, and the Stanford Institutional Animal Care and Use Committee.
Experimental procedures for theLIPdatasetwere in accordancewith the
NIH Guide for the Care and Use of Laboratory Animals and approved by
the University of Washington Animal Care Committee.

V4 dataset. During recordings, the monkeys (G and B, Macaca
mulatta, male, between 6 and 9 years old) detected orientation
changes in one of the four peripheral grating stimuli whilemaintaining
central fixation. Each trial started by fixating a central fixation dot on
the screen, and after several hundredmilliseconds (170ms formonkey
B and 333ms for monkey G), four peripheral stimuli appeared. Fol-
lowing a 200–500ms period, a central attention cue indicated the

stimulus that was likely to change with ~90% validity. The cue was a
short line from a fixation dot pointing toward one of the four stimuli,
randomly chosen on each trial with equal probability. After a variable
interval (600–2200ms), all four stimuli disappeared for a brief
moment and reappeared. Monkeys were rewarded for correctly
reporting the change in orientation of one of the stimuli (50% of trials)
with an antisaccade to the location opposite to the change, or main-
taining fixation if none of the orientations changed. Due to the
anticipation of an antisaccade response, the cued stimulus was the
target of covert attention, while the stimulus in a location opposite to
the cue was the target of overt attention. In the cue-RF condition (Cue-
RF), the cue pointed to the stimulus in the RFs of the recorded neurons
(covert attention). In the cue-opposite condition (Cue-opp), the cue
pointed to the stimulus opposite to the RFs (overt attention). The
remaining two cue directions were cue-orthogonal conditions (Cue-
orth-1 and Cue-orth-2), in whichmonkeys attended away from the RFs.

Recordings were performed in the visual area V4 with linear array
microelectrodes inserted perpendicularly to the cortical layers. Data
were amplified and recorded using the Omniplex system (Plexon).
Arrays were placed such that the RFs of recorded neurons largely
overlapped. Each array had 16 channels with 150μm center-to-center
spacing. After spike sorting and quality control, the dataset had 285
well-isolated single neurons from two monkeys.

LIP dataset. During recordings, two monkeys (Macaca mulatta, male,
between 11 and 13 years old) performed the random dot motion dis-
crimination task with either two or four choice alternatives. After a
variable fixation period, two or four peripheral choice targets
appeared to signal the direction alternatives on the trial. After a ran-
dom delay (250–800ms), dynamic random dot motion was displayed
around the fixation point. The percentage of coherently moving dots
on each trial controlled the task difficulty. Monkeys reported the net
direction of motion in dynamic random dots by making a saccade to a
peripheral choice target. The motion stimulus ended by the time of
saccade initiation.

Single neuron activity was recordedwith AlphaOmega electrodes
introduced into the LIP area. Data were amplified and recorded using
the Omniplex system (Plexon). Neurons were selected according to
anatomical and physiological criteria, and all had spatially selective
responses during the delay on the overlap and memory saccade
tasks55. The dataset consists of extracellular recordings from 70 well-
isolated neurons.

PMd dataset. During recordings, the monkeys (T and O, Macaca
mulatta, male, between 6 and 9 years old) discriminated the dominant
color in a static checkerboard stimulus composed of red and green
squares and reported their choice by touching the corresponding
target. At the start of each trial, a monkey touched a central target and
fixated on a cross above the central target. After a short holding period
(300–485ms), red and green targets appeared on the left and right
sides of the screen. The colors of each side were randomized on each
trial. After another short delay (400–1000ms), the checkerboard sti-
mulus appeared on the screen at the fixation cross, and the monkey
had tomove its hand to the target matching the dominant color in the
checkerboard. The difficulty of the task was parameterized by an
unsigned stimulus coherence expressed as the absolute difference
between the number of red (R) and green (G) squares, normalized by
the total number of squares ∣R−G∣/(R +G). The checkerboard was
15 × 15 squares, which led to a total of 225 squares. The task was per-
formedwith 7 different unsigned coherence levels formonkey T and 8
levels for monkey O, and we analyzed the 7 overlapping coherence
levels for twomonkeys. SincePMdneurons are selective for the chosen
side but not for color56, we divided the trials according to the side
indicated by the stimulus (left or right) for each coherence level,
resulting in 14 analyzed conditions in total.
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Neural activity was recorded with a linearmulti-contact electrode
(U-probe)with 16 channels with 150μmcenter-to-center spacing. After
spike sorting and quality control, the dataset had 801 well-isolated
single neurons from two monkeys.

Selection of units for the analyses
For all datasets, we selected units for our analyses based on two cri-
teria: (i) we included conditions that had at least 20 trials, (ii) we
included units that had at least 500 spikes in total across all trials of
each condition within the analysis window.

For the V4 dataset, we estimated ϕ during the attention epoch of
the trial in a window from 400 to 2300ms aligned to the attention cue
onset. 282 out of 285 single units passed the two criteria for all
attention conditions combined and were used for quantifying the
diversity ofϕ across neurons. 237 single units passed the two criteria in
each of the four attention conditions and were used for comparing ϕ
across attention conditions.

For the LIP dataset, we estimated ϕ in two trial epochs: fixation
epoch, awindow from −200 to0ms aligned to the stimulus onset; and
decision epoch, a window from 0 to the minimum of 1200ms or
reaction time aligned to the stimulus onset. Sixty-one out of 70 single
units passed the two criteria during the decision epoch and were used
to quantify the diversity of ϕ across neurons. 60 units passed the two
criteria for both two-choice and four-choicedecision-making tasks and
were used for comparingϕ across the tasks. Forty-five units passed the
two criteria for both the fixation and decision epochs and were used
for comparing ϕ across trial epochs.

For the PMd dataset, we estimated ϕ in two trial epochs: fixation
epoch, awindow from −600 to0msaligned to the stimulus onset; and
decision epoch, a window from 0 to the minimum of 500ms or reac-
tion time aligned to the stimulus onset. 343 out of 801 single units
passed the two criteria during the decision epoch and were used to
quantify the diversity of ϕ across neurons. Two hundred seventy-two
units passed the two criteria for each of 14 different task conditions (2
response sides times 7 stimulus difficulties) and were used for com-
paring ϕ across task conditions. Two hundred sixty-two units passed
the two criteria for both the fixation and decision epochs and were
used for comparing ϕ across two epochs.

Comparing spiking irregularity across task conditions
To test whether ϕ is a neuron-specific constant invariant to changes in
behavioral and cognitive states, we estimated ϕ of each neuron sepa-
rately in each task condition.We then usedDemšar’s comparison test95

on these populations of paired measurements of ϕ using the autorank
package96. The test is conducted forMpopulations (M is the number of
compared conditions) with N paired samples (N is the number of
neurons). The family-wise significance level of the tests is α = 0.05.
First, we test the null hypothesis that the population is normal for each
population. This null hypothesis was rejected for at least some popu-
lations in all our tests (detailed summary of the results in Supple-
mentaryNote 1.9). Sincewehavemore than twopopulations and some
of themare not normal, we use the non-parametric Friedman test as an
omnibus test to determine if there are any significant differences
between the median values of the populations. We use the post-hoc
Nemenyi test to infer which differences are significant. We report the
median, the median absolute deviation, and the mean rank among all
populations over the samples (Supplementary Tables 1–5). Differences
between populations are significant if the difference of themean ranks
is greater than the critical distance CD of the Nemenyi test.

For comparison between attention conditions in V4 data, we
estimated ϕ separately on correct trials of each attention condition
during the cue period (from 400 to 2300ms aligned to cue onset),
combined across different stimulus orientations. For comparison
between two-choice and four-choice decision tasks in LIP data, we

estimated ϕ separately for each task during the decision epoch (from
0ms to the minimum of 1200ms or reaction time aligned to stimulus
onset), combined across different coherence levels and chosen sides.
For comparison between fixation and decision epochs in LIP data, we
estimatedϕ separately during the fixation (from −200 to 0ms aligned
to stimulus onset) and decision epochs, combined across two-choice
and four-choice decision tasks. For comparison between coherence
levels in PMd data, we estimatedϕ separately for each coherence level
during the decision epoch (from 0ms to the minimum of 500ms or
reaction time aligned to stimulus onset), combined across the left and
right chosen sides. For comparison between left and right choices in
PMd data, we estimated ϕ separately on left and right choice trials
during the decision epoch, combined across coherence levels. For
comparison between fixation and decision epochs in PMd data, we
estimatedϕ separately during the fixation (from −600 to 0ms aligned
to stimulus onset) and decision epochs, combined across coherence
levels and chosen sides.

The Friedman test failed to reject the null hypothesis that there is
no difference in the central tendency of the populations for compar-
ison between attention conditions in V4 data (p = 0.10, M = 4, N = 237,
Supplementary Table 1), two-choice and four-choice decision tasks in
LIP data (p =0.109,M = 2,N = 60, Supplementary Table 2), fixation and
decision epochs in LIP data (p =0.84, M = 2, N = 45, Supplementary
Table 3), coherence levels and left and right choices in PMd data
(p = 0.11, M = 14, N = 272, Supplementary Table 4). Wilcoxon’s signed-
rank test rejected the null hypothesis that there is no difference in the
central tendency of the populations for comparison between fixation
and decision epochs in PMd data (p = 3.35 ⋅ 10−12, M = 2, N = 262, Sup-
plementary Table 5).

Spiking neural network model
We simulated the three-layer spatial balanced spiking network model
using the parameters and code from ref. 35. The network consists of
three layers. Layer 1 contains Nf = 2500 excitatory neurons that gen-
erate spikes as independent Poisson processes at a uniform rate
fin = 10Hz. Layers 2 and 3 are recurrently connected networks, each
comprising Ne = 40,000 excitatory (α = e) and Ni = 10,000 inhibitory
neurons (α = i). All neurons (Nf,Ne, andNi) are uniformly distributed on
a unit square. Layer 1 provides feedforward input to Layer 2, where

each neuron in Layer 1 connects to exactly Pð2Þ
fe � Ne excitatory and

Pð2Þ
fi � Ni inhibitory neurons in Layer 2, with connection probabilities

Pð2Þ
fe = 0:1 and Pð2Þ

fi = 0:05. Only excitatory neurons in Layer 2 project to

Layer 3, where each neuron connects to exactly Pð3Þ
fe � Ne excitatory and

Pð3Þ
fi � Ni inhibitory neurons, with Pð3Þ

fe = 0:05 and Pð3Þ
fi = 0:05. Both Layer

2 and Layer 3 are recurrently connected. Within each layer, every
excitatory neuron connects to exactly Pee ⋅Ne excitatory and Pei ⋅ Ni

inhibitory neurons, while every inhibitory neuron connects to exactly
Pie ⋅Ne excitatory and Pii ⋅Ni inhibitory neurons. The corresponding
connection probabilities are Pee = 0.01, Pii = 0.04, Pei = 0.03, and
Pie = 0.04.

For each population, neurons are uniformly distributed on a
unit square where the position (xj, yj) of neuron j (1 ⩽ j ⩽ N) is
0⩽ xj =

1ffiffiffi
N

p
�1

� mod ð j � 1,NÞ, yj =
1ffiffiffi
N

p
�1

� floordivision ð j � 1,NÞ⩽ 1,
where N is the total number of neurons in that population. The prob-
ability of a synaptic connection depends on the distance between
units. Unit i from group α∈ {f,e,i} at location (xi, yi) connects to unit j
from group β ∈ {f,e,i} at location (xj, yj) with the probability
Pαði, jÞ= f ðxj � xi,σαÞf ðyj � yi,σαÞ, where

f ðr, σαÞ=
1

σα

ffiffiffiffiffiffi
2π

p
X1

k =�1
exp �ðr +2kÞ2

2σ2
α

" #
, ð22Þ
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with −1⩽ r⩽ 1, σð1Þ
f = 0:05, σð2Þ

e = σð2Þ
i = 0:1, σð2Þ

f = 0:1, and σð3Þ
e = σð3Þ

i = 0:2.
A presynaptic neuron can form multiple synaptic connections with a
single postsynaptic neuron.

Each neuron is an exponential integrate-and-fire model, in which
the membrane potential follows the dynamics:

Cm

dVβ
j

dt
= � gβ Vβ

j � EL

� �
+ gβΔTe

Vβ
j
�VT

ΔT + Iβj ðtÞ: ð23Þ

gβ is the membrane conductance of neurons of type β. Cm is the
membrane capacitance. EL is the resting potential. VT is the spike
initiation threshold, the voltage level at which the neuron begins to
exhibit rapid depolarization, leading to spike generation. ΔT is the
sharpness parameter. It controls the steepness of the exponential rise
in themembrane potential as the neuron approaches the threshold VT.
When Vβ

j exceeds a threshold Vth, the neuron emits a spike, and the
membrane potential is then set to a fixed valueV re for a duration of the
refractory period τref. The total input current received by neuron j is

Iβj ðtÞ
Cm

=
X

α2f f, i, e g

XNα

k = 1

Jαβkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne +Ni

p X
s

ηα t � tαks
� �

+μβ : ð24Þ

Here Jαβkj is the synaptic weight from neuron k to neuron j, where β
indicates the type of postsynaptic neuron j and α indicates the type of
presynaptic neurons. μβ is the static current injected into neurons of
typeβ. The times tαks indicate the timeof sth spike of neuron k from the
population α. The postsynaptic current triggered by a single spike is

ηα =
1

ταd � ταr

e
� t

τα
d � e

� t
ταr t >0,

0 t <0,

(
ð25Þ

where ταr and ταd are the synaptic rise and decay time constants,
respectively, for population α. The feedforward synapses from Layer 2
to Layer 3 consist of both fast and slow components
ηF(t) = 0.2 ⋅ ηe(t) + 0.8 ⋅ ηs(t), where ηs(t) has the same form as Eq. (25)
with a rise time constant τsr =2 ms and a decay time constant τsd = 100
ms. All other parameters of neurons are provided in Table 1 and the
connectivity parameters are provided in Table 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The synthetic data used in this study can be reproduced using the
source code. Intracellular recordings of the membrane potential are
presented in ref. 32 and available on Zenodo at https://zenodo.org/
records/1304771. Neural recording data from V4 during the attention
task are presented in ref. 54 and available on Fighshare at https://doi.
org/10.6084/m9.figshare.16934326.v3. Neural recording data from

PMd during the decision-making task are presented in ref. 56 and
available on Figshare at https://doi.org/10.6084/m9.figshare.
29052116.v1. Neural recording data from LIP during the decision-
making tasks are presented in ref. 55 and are available on Figshare at
https://doi.org/10.6084/m9.figshare.29604614.v1. Source data are
provided with this paper.

Code availability
The source code to reproduce the results of this study is available as a
Python package on GitHub at https://github.com/engellab/DSRP.
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