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Resolving chemical-motif similarity with
enhanced atomic structure representations
for accurately predicting descriptors at
metallic interfaces

Cheng Cai 1,2,3 & Tao Wang 1,2,3

Accurately predicting catalytic descriptors with machine learning (ML) meth-
ods is significant to achieving accelerated catalyst design, where a unique
representation of the atomic structure of each system is the key to developing
a universal, efficient, and accurateMLmodel that is capable of tackling diverse
degrees of complexity in heterogeneous catalysis scenarios. Herein, we inte-
grate equivariant message-passing-enhanced atomic structure representation
to resolve chemical-motif similarity in highly complex catalytic systems. Our
developed equivariant graph neural network (equivGNN) model achieves
mean absolute errors <0.09 eV for different descriptors at metallic interfaces,
including complex adsorbates with more diverse adsorption motifs on
ordered catalyst surfaces, adsorption motifs on highly disordered surfaces
of high-entropy alloys, and the complex structures of supported nano-
particles. The prediction accuracy and easy implementation attained by
our model across various systems demonstrate its robustness and potentially
broad applicability, laying a reasonable basis for achieving accelerated
catalyst design.

Heterogeneous catalysis plays a crucial role in achieving energy sus-
tainability and implementing chemical production processes, where
the design of high-performance catalysts is an appealing research area
for both experimentalists and theorists. In computational catalysis,
descriptor-based high-throughput computational screenings have
successfully identified promising catalysts for multiple essential
reactions1. However, the high computational costs make whole che-
mical space screening challenging today. In this case, the surrogate
machine learning (ML) model has been introduced to accelerate
computational catalyst screening by replacing ab initio calculations
with accurately predicted descriptor values at low costs2. Indeed, a
reliable representation of the atomic structure, the numerical input

used to describe chemical systems of interest, has been regarded as a
crucial basis for developing good ML models3,4. Moreover, it is widely
accepted that a robust representation of an atomic structure should
possess the following merits5: (1) it should be applicable to the struc-
tures of the entire material domain of interest; (2) it should be more
easily accessible and easier to compute than the target property; and
(3) it should be capable of accurately reflecting and distinguishing the
(dis)similarity between two similar structures.

In computational catalysis scenarios, the binding energies of the
important intermediates on catalyst surfaces, which are derived from
density functional theory (DFT) calculations, are widely used as
descriptors to predict the activity and selectivity trends among
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different catalysts6. However, the chemical motifs of diverse adsor-
bates on various material-based catalysts exhibit different levels of
complexity, ranging from the prototype model with simple mono-
dentate adsorbates on pure metal surfaces to complex catalytic sys-
tems, i.e., high entropy alloys (HEAs) and supported nanoparticles
(Fig. 1). Apparently, atomic structure representations suffer from the
challenge of completeness7–10 as the complexity of chemical motifs
increases, particularly in resolving chemical-motif similarity.

As illustrated in Fig. 1a, predicting the binding energies from the
initial structures with simple adsorbates in monodentate adsorption
motifs on ordered metal and alloy surfaces is a classical ML task in
computational catalysis11–28. For example, a convolutional neural net-
work (CNN)model using ab initio features derived from the electronic
density of states (DOSnet)20 demonstrated remarkable ML perfor-
mance, with a mean absolute errors (MAE) of 0.10 eV across 11 diverse
adsorbates. However, obtaining such ab initio features typically
involves a high computational burden. Thus, ML models that use non-
ab initio features are appealing. For example, models employing

labeled site representations with non-ab initio features, along with
crystal graph convolution neural networks29 (CGCNN) and SchNet30,
achieved goodprediction performances, withMAEs of 0.116 and0.085
for CO* and H*, respectively17. Notably, an active ML model with a
coordinate-based representation successfully accelerated the process
of discovering active electrocatalysts for CO2 reduction14,19. With
respect to the complex adsorbates included in bi- and higher-dentate
adsorption motifs on ordered metal surfaces31–35, resolving the
chemical-motif similarity is a challenging task if two distinct bidentate
adsorption motifs have the same coordination environments. As illu-
strated in Fig. 1b, the bidentate adsorption motifs of the C*C*H and
N*N*H intermediates on the hcp- and fcc-hollow adsorption sites of
ordered metal surfaces are two specific examples.

Indeed, resolving chemical-motif similarity for chemically com-
plex materials is an even more challenging task. The representative
examples are high-entropy alloys (right side in Fig. 1c), which are
typically composedoffive ormoreprincipal elements andhaveunique
active sites on highly disordered surfaces36–42. More specifically,

Fig. 1 | Chemical motifs at different metallic interfaces with various degrees of
complexity. a Monodentate adsorption (the numbers in the cycles represent the
layers) and (b) bidentate adsorption with hcp- and fcc-hollow sites on ordered
catalyst surfaces. cAdsorptionmotifs on disordered catalyst surfaces. Left: the first

nearest neighbors (1NN) around a top site on a dilute alloy as the simplest case;
right: a high entropy alloy surface with much greater complexity. d Illustration of
the supported cluster catalysis systems, and a specific case: a pair of 8-atomclusters
as the 4-body achiral counterexample.
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considering a 13-atom group consisting of a central atom and its first
coordination environment with 12 atoms in a five-element face-cen-
tered cubic (FCC) crystal, there are more than 100 million distinct
chemical motifs in 9100 different chemical compositions43. This high
chemical complexity extends farbeyond that ofmono-, bi-, andhigher-
dentate adsorption motifs on ordered catalyst surfaces. Moreover,
dilute alloy (left side of Fig. 1c) and ternary alloy surfaces can be clas-
sified as simplified analogs of HEA surfaces44–46.

Furthermore, for isolated clusters and the supported
nanoparticles47,48, a simple cluster exists as an achiral 4-body
counterexample7,10 with only eight atoms, as shown in Fig. 1d. It is
very challenging to obtain a unique representation to resolve the
similarity between the A± pairs. Thus, such highly complex catalytic
systems necessitate the introduction of more information-rich and
unique atomic structure representations to bypass the 4-body coun-
terexample and resolve highly complicated adsorptionmotif similarity.

In this work, we developed a site representation-based approach
to elucidate the significance and impact of atomic structure repre-
sentations on the predictive performance of ML models, whereby

graph fingerprints weremanually constructed with varying degrees of
atomic structure representations. Then, graphneural networks (GNNs)
were employed to enhance the representations of atomic structures,
where the edge features were constructed using a connectivity-based
method. This allowed us to clarify the importance of resolving
chemical-motif similarity. Two datasets composed of the catalytic
systems presented in Figs. 1c, d were subsequently constructed to test
the resolving power of equivariant message-passing for chemical-
motif similarity with high complexity. Finally, we developed an
equivariant GNN (equivGNN)model to provide robust representations
of the adsorbate-metal motifs and accurately predict the associated
energetic properties (e.g., binding energies). Themodel demonstrated
superior prediction performance, with all MAEs <0.09 eV on several
datasets spanning the diverse catalytic systems represented in Fig. 1.
Notably, our model was easy to implement and outperformed the
available prominent ML models that were specifically designed for
individual systems, i.e., DOSnet20, TinNet23, WWL-GPR33, GAME-Net34,
and augmented CGConv37. The universality and efficiency of our
developed equivGNN model across different systems were proven.

Fig. 2 | Schematic illustrations and prediction performances on the Cads

Database of the RFR and GAT models. a Schematic illustrations of site
representation-based random forest regression (RFR) models. Parity plots of the
density functional theory (DFT) calculated versusmachine learning (ML) predicted
formation energies ofmetal‒carbonbonds (M‒C) from the combinedvalidation set
in 5-fold cross-validation (CV) using the RFR models with different site repre-
sentations through (b) sites, (c) sites and site neighbors, as well as (d) sites, site
neighbors and coordination numbers (CN). e Schematic illustrations of the

connectivity-based graph attention network (GAT) models without embedded CN
(GAT-w/oCN) or with embedded CN (GAT-wCN) using GAT convolution (GAT-
Conv). Parity plots of the DFT-calculated versus ML-predicted formation energies
of M‒C with 5-fold CV using (f) GAT-w/oCN and (g) GAT-wCN models. The Cads

Databasewith 5096 entries is provided in theGitHub repository atData Availability.
Mean absolute error (MAE) and R2 values are provided in parity plots from the RFR
and GATmodels; the violin plot in the inset shows the absolute error distributions;
the inner dashed line represents the median (unit: eV).
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Results
Prediction accuracy versus atomic structure
representation levels
We start with a relatively simple case to illustrate the importance of
atomic structure representations for developing surrogateMLmodels
for predicting binding energies, i.e., monodentate adsorbates on the
ordered catalyst surfaces shown in Fig. 1a. To decrease uncertainties
caused by using complex data sources, we start with datasets of single
adsorbates in themonodentate adsorptionmotifs on the close-packed
surface of binary alloys, and more details are provided in the
“Methods” section.

Owing to its good performance in systems with high similarity24,
the random forest regression (RFR) method is first chosen to evaluate
the prediction performances achieved with different levels of site
representations for the adsorption motifs in the atomic-carbon
monodentate adsorption dataset (Cads Dataset). Figure 2a depicts a
schematic of RFR models with three different levels of site repre-
sentations, and more details are shown in Supplementary Note 1. The
resulting parity plots of the DFT-calculated versus ML-predicted for-
mation energies of metal‒carbon bonds (M‒C) with fivefold cross-
validation (5-fold CV) are shown in Figs. 2b–d. The plots reveal that the
levels of site representations highly influence the performance of the
RFR models. Notably, adding coordination numbers (CNs)49,50 as a
local environment feature greatly improves the model performance,
and the MAE significantly decreases from 0.346 eV to 0.186 eV.

Notably, adsorbate-surface structures (adsorption motifs) can be
naturally transformed into graph-structured data, where nodes
represent atoms and edges represent the connections between pairs
of atoms. By providing efficient frameworks to learn from graph-
structured data, graph neural networks (GNNs) are easily applicable to
predict the relationships between adsorption motifs and binding
energies as a graph-level task. Thus, we further choose graph attention
networks (GATs)51 to enhance the atomic structure representation of
adsorptionmotifs from unrelaxed structures and test themon the Cads

Dataset.
Figure 2e shows the schematics of connectivity-based GAT mod-

els, which employ atomic numbers as node inputs, and their edge
weights are based on the connectivity of the adsorption motifs. The
message-passing process in GAT updates the node features by aggre-
gating messages from the node neighbors, and global pooling is used
to extract graph characteristics from all node features for obtaining
graph-level predictions. More details are shown in Supplementary
Note 1. By mitigating the need for manual feature engineering, this

approach simplifies the feature construction process. The parity plots
of the DFT-calculated versus ML-predicted formation energy of M-C
for GAT models without (GAT-w/oCN) and with CN (GAT-wCN) are
shown in Fig. 2f, g, respectively. Overall, the connectivity-based GAT
models perform better than the RFR models in predicting the forma-
tion energy of M-C on the Cads Dataset. With the help of the CNs, the
MAE decreases from0.162 eV to 0.128 eV in the GATmodels. However,
this enormous enhancement in prediction performance, achieved by
including the CNs, indicates that the original connectivity-based
structure representation might be intrinsically deficient for the
adsorption motifs in the Cads Dataset.

False-positive prediction accuracy caused by the failure to dis-
tinguish the similarity of adsorption motifs
A close inspection reveals that the GAT-w/oCNmodel cannot produce
unique structural representations for similar chemical motifs in sys-
tems at metallic interfaces (i.e., the monodentate adsorption motifs
shown in Fig. 1a) because of the utilization of the connectivity among
atoms as edge attributes. Here, we construct a dataset containing only
the 3-fold adsorption structures included in the Cads Dataset, termed
the 3-fold-only Cads dataset, to address the deficiency of connectivity-
based GNNs in terms of distinguishing the chemical similarity of pairs
of hcp-/fcc-hollow site adsorption motifs.

Figure 3a shows the resulting prediction performance, with a
training MAE of 0.11 eV for the connectivity-based GAT-w/oCN model
on the 3-fold-only Cads dataset, where all the data points are set as
training sets. However, the deficiency andmisleading characterization
exhibited by the GAT-w/oCN on the 3-fold-only Cads dataset lie behind
these seemingly reasonable prediction results. Figure 3b shows the
parity plot of the ML-predicted versus DFT-calculated formation
energy of M-C in the weak adsorption range. The pairs of hcp-/fcc-
hollow site adsorptionmotifs are connected by short dashed lines, but
the ML values predicted via the GAT-w/oCN are identical for the pairs.
The results demonstrate that the GAT model with connectivity-based
structure representations is deficient in its sensitivity for distinguish-
ing between pairs of 3-fold adsorption motifs.

Figure 3c shows the parity plots of the ML-predicted (using GAT-
wCN) versus DFT-calculated formation energy of M-C on the 3-fold-
only Cads database, and the pairs of hcp-/fcc-hollow site adsorption
motifs are colored according to the differences between their ML
predictions. The inset in Fig. 3c illustrates that the GAT-wCN, which
contains the local environment features of the embedded CN, can
resolve the discrepancy between the pairs of hcp-/fcc-hollow site

Fig. 3 | Enhancing prediction accuracy by distinguishing similar adsorption
motifs. a Parity plots of the ML-predicted (GAT-w/oCN) versus DFT-calculated
formation energy of M-C on the 3-fold-only Cads database. Mean absolute error
(MAE) andR2 values are provided in the parity plot; the violin plot in the inset shows
the absolute error distributions, and the inner dash line represents the median
(unit: eV). The pairs of hcp-/fcc-hollow site adsorption motifs in the weak adsorp-
tion range (b) with identical ML predictions derived from the GAT-w/oCN joined

with dashed lines. c Results colored with the differences in the ML predictions
obtained from the GAT-wCN; the diagram in the inset shows the predictions from
GAT-w/oCN and GAT-wCN plotted with the hexagons and circles, respectively. The
3-fold-only Cads Databasewith 3262 entries is provided inGitHub repository atData
Availability. ML machine learning, DFT density functional theory, GAT graph
attention network, CN coordination number.
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adsorptionmotifs in the Cads Database. As a result, the addition of CNs
yields higher overall accuracy in terms of predicting the formation
energy of M-C on the Cads Dataset (Fig. 2g) than do the predictions
produced by the GAT-w/oCN (Fig. 2f). Therefore, by improving the
atomic structure representations, the importance of enhancing the
power to resolve adsorption motif similarity for the development of
surrogate ML models is evident.

Nevertheless, the efficacy of these subgraph-based site repre-
sentation methods will diminish when attempting to resolve chemical
motif similarity in systems with even greater complexity. For example,
we tested the GAT-wCN on Complex Dataset33, an external dataset in
the literature that contains the adsorption motifs of complex adsor-
bates such as bi- and higher-dentate motifs adsorbed on metal and
alloy surfaces (Fig. 1b). The GAT-wCN had inferior prediction perfor-
mance, with a root-mean-square error (RMSE) of 0.30 eV (Supple-
mentary Fig. 1) compared with 0.18 eV in the original work.
Furthermore, the similarity problem becomes severe for chemically
complex materials, such as the chemical motifs on highly disordered
surfaces and supported nanoparticles (Figs. 1c, d). To improve the
structure representations of adsorptionmotifs and guarantee accurate
representations for any two distinct chemical motifs, high-order GNN
models are necessary and highly desirable.

Enhanced atomic structure representationswith the equivariant
GNN model
To address the challenge mentioned above, GNNs with equivariant
message-passing were applied in this work to resolve adsorptionmotif
similarity between different catalytic systems with various degrees of

complexity. To illustrate the power of equivariantmessage-passing for
resolving chemical-motif similarity in complex systems, we start with
the disordered surfaces of dilute alloys shown in Fig. 1c.

Considering a system with adsorbates forming monodentate
adsorption on a close-packed surface of FCC metal A, the top site
contains nine atoms in its first nearest neighbors (1NN). There are 512
(29) possible chemical motifs in the 10 different compositions that can
be constructed when we randomly replace several of these nine atoms
with anothermetal B. However, there are some identical motifs among
the 512 possible chemical motifs, i.e., only two distinct motifs for A8B
composition among the nine possibilities. Here, we construct all 512
possible 1NN structures and convert them into graphs using radius
graphs. The graph fingerprints Zi are generated through a randomly
initialized GNN model with equivariant message-passing but without
training (implemented using the e3nn package52). Figure 4a shows the
eight distinct adsorption motifs with A7B2 compositions, which are
identified from 36 possibilities by kicking out all equivalent structures
through equivariantmessage-passing. The 104distinctmotifs included
in the 512 possibilities are shown in Supplementary Fig. 2. This result is
confirmed by the Polya enumeration theorem53, which is a general
mathematical formalism based on group theory that can analytically
count the number of distinct chemical motifs43,54. The details of the
dataset construction and Polya enumeration processes are shown in
Supplementary Note 2.

Next, we evaluate the resolving power of equivariant message-
passing on more challenging catalytic systems in the heterogeneous
catalysis field, specifically, the highly complex 4-body achiral coun-
terexample, as illustrated in Fig. 1d. This counterexample consists of a

8 A7B2

doping

b

a

0

0

 | 

Fig. 4 | Resolving adsorption motif similarity via equivariant message-passing
on highly complex catalytic systems. a Polya enumeration and distinguishing of
the top site adsorption motifs on dilute alloy, which are plotted with dissimilarity
ΔZi as the difference between graph fingerprint Zi with the minimum value of the
corresponding composition; the inset graphs represent the first nearest neighbors
around top site with A9, A7B2 and B9 compositions; yellow points represent the top

site, pink points are atom A and blue points are atom B. b Plots of the 70 A± pairs
with their graph fingerprints, (X1, X2, X3), plotted with pairs of circle and cross and
joined with dashed lines; the inset image is a pair of A± as 4-body counterexample
structure, and the inset diagrams show that the 4-body counterexample can be
distinguished by performing equivariant message-passing that generates a dis-
similarity measure d± > 0.
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pair of inequivalent 8-atom clusters that share identical inversion-
invariant 4-body correlation features. Here, we construct a dataset
comprising 70 pairs of 8-atom clusters, denoted as A± , with the con-
struction details summarized in Supplementary Note 3. These clusters
are subsequently converted to graphs and processed through an
untrained and randomly initialized GNN model with equivariant mes-
sage-passing, thereby generating graph fingerprints X 2 R3. As shown
in Fig. 4b, the 70 A± pairs are joined by short-dashed lines, plotted in a
2D space using coordinates (X 1,X2) and colored with X3 in their graph
fingerprints. The distance between the graph fingerprints of any A±

pair is greater than zero, which is denoted as d± >0, this quantifies the
dissimilarity between the pairs. Unique atomic structure representa-
tions have been developed to address the 4-body counterexample.
Consequently, the results in Fig. 4 demonstrate that equivariant
message-passing can distinguish any possible chemical motif in the
diverseheterogeneous systems in Fig. 1, regardlessof their complexity.
These capabilities identified in our study hold significant potential for
the development of surrogate ML models that can provide highly
accurate predictions of descriptor values.

Universally improved prediction accuracy with the equivGNN
The architectureof our developed equivariant GNNmodel (equivGNN)
is illustrated in Fig. 5a, which integrates atom embedding, equivariant
message-passing, and readout blocks. The details of the equivariant
message-passing process are shown in the “Methods” section. For
node inputs, we map the atomic numbers to 92-dimensional vectors
using atomic embedding from CGCNN29. As shown in Supplementary
Table 1, we explore the influences of self-connection layers with

various node attributes on the prediction performance and training
efficacy of the model. Compared with the z-type and atomic node
attributes, the one-hot-encoded group and period (G-P) as atom
attributions with 26-dimensional vectors have the highest model pre-
diction performancewith the lowest time consumption. Therefore, the
G-P (26) embedding method for node attributes is employed in the
self-connection layer. The development details of the equivGNN are
shown in the “Methods” section.

Indeed, our developed equivGNN model exhibits superior pre-
diction performance, with anMAE of only 0.076 eV on the Cads Dataset
under 5-fold CV, as shown in Supplementary Fig. 3a. Moreover, we
apply the equivGNN to the 3-fold-only Cads dataset, as shown in Sup-
plementary Fig. 4, and the equivGNN can distinguish similar 3-fold
adsorption sites on ordered metal or alloy surfaces. We turn to three
additional datasets with simple adsorbates (H, O, and CH3) in mono-
dentate adsorption motifs on the ordered surfaces of 1998 binary
alloys. The excellent prediction performances achieved by the
equivGNN model on these datasets using unrelaxed structures are
shown in Supplementary Figs. 3b–d, with MAEs of only 0.047, 0.087,
and 0.062 eV for H, O, and CH3, respectively. For the case involving a
single monodentate adsorbate on ordered catalyst surfaces in a com-
putational catalysis scenario, ourmodel dramatically outperforms two
prestigious models in this field, i.e., DOSnet20, which utilizes the key
features extracted from the electronic densities of states, and TinNet23.
The details of the model training are shown in the “Methods section”
and Supplementary Table 2.

Having demonstrated the efficacy of the equivGNN model in
terms of predicting outcomes on datasets with a single adsorbate in
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Fig. 5 | Schematic illustration and prediction performances of the
equivGNNmodel. aOverview of the equivGNN architecture, which integrates atom
embedding, equivariant message-passing, and readout blocks. Parity plots of the
DFT-calculated versus ML-predicted binding energies derived from the combined
validation set under 5-fold cross-validation (CV) via the equivGNN model on (b)
Simple Dataset33, c Complex Dataset33, and (d) HEA Dataset37. e The prediction

performance of the equivGNN on B8-cluster Dataset
10 with a fixed training set. The

samples, mean absolute errors (MAE) and root mean square errors (RMSE) are
provided in parity plots from the equivGNN; the violin plots in the inset show the
absolute error distributions, and the inner dash line represents themedian (unit: eV);
the inset images are simplifieddiagrams for catalytic systemswith variousdegreesof
complexity. DFT density functional theory, ML machine learning.
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monodentate adsorption motifs, we proceed to evaluate the predic-
tion performance of the equivGNN on datasets concerning different
catalytic systems with various degrees of complexity that have been
reported in the literature. These datasets include Simple Dataset33

(Fig. 1a, simple adsorbates in monodentate adsorption motifs on
ordered metal surfaces), Complex Dataset33, and Organic Dataset34

(Fig. 1b, complex adsorbates in bi- and higher-dentate adsorption
motifs on ordered metal surfaces), HEA Dataset37 (Fig. 1c, adsorption
motifs on highly disordered surfaces), and B8-clusters Dataset10

(Fig. 1d, structures for supported nanoparticles). The early-stopping
strategy is used during model training, and the other details of the
training strategies applied to all the datasets are shown in Supple-
mentary Note 4.

Monodentate adsorption motifs
First, for the heterogeneous catalysis systems of simple adsorbates on
ordered surfaces with monodentate adsorption motifs (as illustrated in
Fig. 1a), we evaluate our equivGNN model on an external dataset, i.e.,
SimpleDataset33 with 1422 entries, which comprises 8 simple adsorbates
(C,H,O,CO,OH,CH,CH2andCH3)withmonodentate adsorptionmotifs
on orderedmetal and alloy surfaces. Figure 5b shows the parity plots of
the DFT-calculated versus ML-predicted binding energies derived from
the combined validation set under 5-fold CV using our equivGNNmodel
on the Simple Dataset. The prediction performance of the equivGNN is
excellent, with anMAE of only 0.058 eV and anRMSE of 0.092 eV, which
are much better than those of Gaussian process regression with a Was-
sersteinWeisfeiler–Lehman graph kernel (WWL-GPR), which attained an
RMSE of 0.13 eV in the original work33.

Higher-dentate adsorption motifs
Next, for complex adsorbates on ordered surfaces with bi- and higher-
dentate adsorption motifs (as illustrated in Fig. 1b), we evaluate our
equivGNNmodel on two external datasets, the Complex Dataset33 and
Organic Dataset34. These two datasets can be used to quickly evaluate
the prediction performance of our ML model for systems with com-
plex adsorbates on ordered metal surfaces.

The Complex Dataset with 1679 entries comprises 41 complex
adsorbates (e.g., CHCO, CCHOH, CH2CH2O, and CH3CH2OH) with bi-
and higher-dentate adsorption motifs on the fcc(111)/(211) facets of
pure metals, which can be seen as a much denser sampling of diverse
adsorption motifs than the OC2031 dataset. On this more challenging
complexdataset, our equivGNNmodel has superior performance,with
anMAE of only 0.065 eV and anRMSE of 0.108 eV (as shown in Fig. 5c),
outperforming the WWL-GPR model with an RMSE of 0.18 eV in the
original work33. Another well-balanced and chemically diverse dataset,
the Organic Dataset with 3108 adsorption structures of 207 closed-
shell organic molecules adsorbed on 14metals, is used to evaluate our
equivGNN model. Notably, better prediction performance is achieved
by the equivGNNon theOrganicDataset, with anMAEofonly 0.089 eV
(details in Supplementary Fig. 5). Graph-based adsorption on a metal-
energy neural network (GAME-Net) yields an MAE of 0.18 eV34. Speci-
fically, the MAE for aromatic compounds is 0.12 eV (as shown in Sup-
plementary Fig. 6), and the accuracy improvement over that of GAME-
Net (MAE of 0.34 eV) is greater than 60%.

Adsorption motifs on HEAs
For catalytic systems with adsorption motifs on highly ordered sur-
faces (as illustrated in Fig. 1c), our equivGNN model is subsequently
evaluated on the HEA Dataset obtained from Chang et al. 37, which
comprises 1984 entries for OH* and O* with unrelaxed monodentate
adsorption motifs on the surfaces of quinary materials belonging to
the FeCoNiIrRu HEAs family. Chang et al. trained an augmented
CGCNNmodel29 on theHEADataset with a digital annealer (DA)-driven
similarity feature, which played a similar role as the CN embedding in
the GAT models used in our study; their fixed training data had 1580

entries, and good prediction performance was achieved, with an MAE
of 0.080 eV over 10000 training epochs. Compared with the above
augmented CGCNN model, our equivGNN is trained for only 200
training epochs and achieves superior prediction performance on the
HEA Dataset, with an MAE of 0.074 eV (shown in Fig. 5d) on the com-
bined validation set under 5-fold CV. This result confirms the efficiency
and robustness of the equivGNN in terms of predicting complex
adsorption motifs on highly disordered surfaces.

Four-body achiral counterexample clusters
To further evaluate the performance of our equivGNN model in cata-
lytic systems of supported nanoparticles (as illustrated in Fig. 1d), a
prediction task is implemented utilizing the B8-cluster Dataset

10, which
contains 8000 entries with 4000 pairs of B8 clusters of A

+ and A- as the
4-body counterexample. Following the same training/test split ratio as
that in the original study, our equivGNN model is trained on the first
3500 pairs of B8 clusters, with the remaining 500 pairs allocated as the
test set. On this test set, themodel demonstratesminimal errors, with a
mean energy error of 0.006 eV and an energy difference error of
0.002 eV for the 500 pairs. These results are significantly better than
the original predictions, which yielded a mean error of 0.026 eV and a
difference error of 0.035 eV. Furthermore, Fig. 5e shows the parity plot
of the DFT-calculated versus ML-predicted energies of the B8 clusters
obtained using the equivGNNmodel, and the prediction performance
is excellent, with an MAE of only 0.048 eV.

Indeed, the evaluation of our equivGNNmodel conducted on nine
datasets constitutes a universal test domain, spanningdifferent systems
in the heterogeneous catalysis field with various degrees of complexity,
as shown in Fig. 1. The prediction performances, with all MAEs below
0.09 eV, are also very noteworthy andhavenot yet beenachievedby the
previous ML models, i.e., DOSnet20, TinNet23, WWL-GPR33, GAME-Net34,
and augmented CGConv37. To further understand catalytic reactions,
we apply equivGNNonacoveragedataset32 obtained fromthework that
published the ACE-GCN model. Supplementary Fig. 7 shows the parity
plot of the DFT-calculated versus ML-predicted average NO* binding
energies for an equivGNNmodel with NO* configurations consisting of
1–4 NO* molecules per unit cell. The prediction performance, with an
MAE of 0.014 eV, is better than that of the original ML model (which
attained an MAE of 0.02 eV), while the data split is the same as that
employed in the original work. To explore the performance of our
model on large databases, we apply the equivGNN to the formation
energy dataset of the Materials Project with 132752 entries55. The
equivGNN model achieves excellent performance, with an MAE of
17.4meV atom−1, and the accuracy improvement attained over
M3GNET56 is 10%, as shown in Supplementary Table 3. Furthermore, the
implementation of our model is easy and has low computational and
training costs. Thus, the universality and efficiency of our equivGNN
model for different heterogeneous catalysis systems are evident, indi-
cating its great potential for addressing the challenging complexities of
heterogeneous catalysis systems.

Discussion
In this work, we specifically illustrated the importance and influence of
atomic structure representations on ML models by implementing site
representation-basedRFR regressionmodelson thedatasetswith simple
adsorbate monodentate adsorption motifs. We subsequently imple-
mented connectivity-based graph attention network (GAT) models to
improve the representations of atomic structures, where edge features
were constructed using a connectivity-based approach. We then iden-
tified and emphasized the importance of resolving chemical-motif
similaritywith enhanced atomic structure representations to avoid false-
positive predictionswhen developingMLmodels. Eventually, to address
the different degrees of complexity observed at metallic interfaces, we
strived to enhance the representations of atomic structures using
equivariant message-passing and developed the equivGNN model to
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resolve adsorption motif similarity. Our developed ML model attained
superior prediction accuracies on both simple monodentate datasets
and several complex datasets in the literature, with all of itsMAEs below
0.09 eV, which has not yet been achieved in previous studies. Notably,
the complexities of these tested catalytic systems cover different sce-
narios in heterogeneous catalysis, i.e., simple or complex adsorbates
with mono- or higher-dentate adsorption motifs on ordered metal sur-
faces; adsorption motifs on the highly disordered surfaces of high-
entropy alloys; and complex structures for supported nanoparticles.
Apart from the high prediction accuracy, the implementation of our
model is facile, with low computational and training costs. The uni-
versally improved prediction accuracies for different datasets in the lit-
erature achievedby using our developedmodel indicate the importance
of resolving chemical-motif similarity with equivariantmessage-passing-
enhanced atomic structure representations, which have not yet attrac-
ted sufficient attention in the field of MLmodel development. Thus, our
developed equivGNN-based surrogate ML model could be a promising
alternative to computationally expensive DFT calculations, working as a
helpful tool for screening largematerial spaces to accelerate the process
of discovering new catalysts.

Methods
Computational details of the monodentate datasets
The dataset of the monodentate adsorption motifs on the close-
packed surfaces of binary alloys was constructed. All DFT calculations
are carried out with the QUANTUM ESPRESSO code57, using the peri-
odic plane-wave-based DFT method with pseudopotentials GBRV
version 1.558, and the surface models are constructed based on the
1998 binary alloys from our previous work59. The contribution of the
exchange-correlation to the electronic energy is described by the
BEEF-vdW (Bayesian Error Estimation Functional - van der Waals)
functional. The energy cutoffs for the plane wave and electron density
are set to 500 and 5000 eV, respectively. The close-packed surfaces of
the alloys are simulated using four-layer (2 × 2) supercells with two
relaxed top layers and two constrained bottom layers. A vacuum layer
with 12 Å is set between periodically repeated slabs. The (4 × 4 × 1)
Monkhorst–Pack k-point grids60 are applied for sampling. Structure
optimizations are done when the energy difference is lower than 10−5

eV and the forces are less than 0.05 eV/Å.

Equivariant message-passing
The process of enhancing atomic structure representation through
equivariant message-passing has been demonstrated to possess a
good ability to resolve the adsorption motif similarity encountered in
heterogeneous catalysis systems, as shown in Fig. 4. The equivariant
message-passing process is achieved through the equivariant Tensor
Product in the e3nn 0.5.1 package52, and the associated formula is as
follows:

f 0i =
1
ffiffiffi

z
p

X

j2∂ ið Þ
f j � h jxijj

� �

Y
xij

jxijj

 !

ð1Þ

where f j and f 0i are the node input and output, respectively; xij is the
relative vector; z is the average degree of the nodes; ∂ðiÞ is the set of
neighbors of node i; h is amulti-layer perceptron; and Y represents the
spherical harmonics.

Development of the equivGNN model
Our equivGNN model is developed on top of the open-source e3nn
repository. First, we test an original GNN model with equivariant
message-passing, with e3nn-v2103 as the baseline, on the Cads Dataset.
The graph nodes have the one-hot encoded atomic type (z) as their
inputwith a 92-element-long array; this setting is labeled as z-type (92).
The prediction performance of the model, with anMAE of 0.103 eV, as
shown in Supplementary Table 1, is superior to that of the GAT-wCN

(with anMAE of 0.128 eV, as shown in Fig. 2g) because of the enhanced
atomic structure representations. However, the convolution block in
e3nn-v2103 uses too many fully connected TensorProduct layers,
which seem redundant and result in low training efficiency. To further
improve the training efficiency of the model, the convolution block is
replacedwith a NequIP interaction block61 by using linear layers as self-
interactions. As shown in Supplementary Table 1, the training effi-
ciency increases by more than 30% without a loss of accuracy.

Then, for node inputs, we map the atomic number to a 92-
dimensional array using the atomic features embedding acquired from
the CGCNN29, this setting, labeled as atomic features (92), improves the
accuracy by 11% without increasing the training cost. Next, we explore
the influences of self-connection layers with various node attributes on
the resulting prediction performance, training efficacy, and total num-
ber of parameters of themodels, which are presented in Supplementary
Table 1. When the 26-dimensional G-P embedding vectors are used as
node attributes, this setting is labeled as G-P (26), themodel parameters
increase fivefold compared with those employed without node attri-
butes, while the training speed decreases by 1 s/epoch, and the predic-
tion error decreases significantly by 13%. Compared with using z-type
and atomic features as node attributes, employing the one-hot encoded
G-P (26) embedding as the node attributes yields the highest model
prediction performance with the lowest time cost. Therefore, the G-P
(26) embedding scheme for node attributes is employed in the self-
connection layer. Notably, the accuracy and efficiency are greater than
20% (22% and 28%, respectively),more than those of the baseline. All the
models are trained on the same randomly shuffled training (80%) and
validation (20%) sets but without CV.

Graph construction
For adsorption systems, the distance criterion for the graph con-
struction process is based on the covalent radius. Atoms i and j are
connected by edges, where the distance between them is less than
their total covalent radius multiplied by 1.35, as follows:

dcut
ij = 1:35 × ðrcovi + rcovj Þ ð2Þ

where dcut
ij is the cutoff distance between atom i and atom j; and rcovi

and rcovj are the covalent radius of atom i and atom j, respectively.
For the Materials Project database, the graphs of the crystal

structures are constructed using the kth nearest distance, which is
determined by the kth nearest neighbors.

Model training
For the monodentate datasets, the training/test splits are set to 8:2,
consistent with the data splits used for the Simple Dataset and Com-
plex Dataset. For the Organic Dataset and HEA Dataset, the training/
validation/test splits are set to 6:2:2 and 8:1:1, respectively. For B8-
cluster Dataset, the first 7000 entries (3500 pairs of B8) are used for
training, and the last 1000 entries (500 pairs) are reserved for testing,
following the same split as described in the corresponding reference.
For the coverage dataset, we use the same training/test splits in the
original work, and it is 260:65. For all tasks implemented on the
datasets, we use the weighted adaptive moment estimation (AdamW)
optimizer with a weight decay rate of 1e-5 and a one-cycle learning rate
scheduler. The batch size is set to 8. We use the mean squared error
metric (MSELoss) as the loss function for training, except for the
Organic and HEA datasets, for which the mean absolute error metric
(L1Loss) is used. We only slightly adjust the learning rates and training
epochs for different tasks conducted on the ten datasets, as shown in
Supplementary Table 2. We use PyTorch 2.1.0 to implement our
equivGNN models. For all the tasks implemented on the datasets, we
use one NVIDIA RTX 4090 GPU (24 GB) to train our equivGNNmodels.
For the formation energy prediction task performed on the Materials
Project database, the batch size is set as 64, and two hidden layers with
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448×0e + 64×1o+ 64×2ehidden irreps are used in the equivGNNmodel,
which is trained on one NVIDIA V100 GPU (32 GB) with the mean
absolute error metric.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The DFT-calculated formation energies of metal‒carbon bonds (M‒C)
and relaxed structures of Cads Database and 3-fold-only Cads Database
have been deposited into a public repository: (https://github.com/
woshicc/asp) and Zenodo62. All other data that support the findings of
this study are available at (https://github.com/woshicc/asp). Source
data are provided with this paper.

Code availability
The source code is available in a public repository: (https://github.
com/woshicc/asp) and Zenodo62.
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