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Unlocking data in Klebsiella lysogens to
predict capsular type-specificity of phage
depolymerases

Robby Concha-Eloko 1 , Beatriz Beamud1,2,3, Pilar Domingo-Calap 1 &
Rafael Sanjuán 1

Viral entry is a critical step in the infection process. Klebsiella spp. and other
clinically relevant bacteria often express complex polysaccharide capsules
that act as a barrier to phage entry. In turn, most lytic phages targeting Kleb-
siella encode depolymerases for capsule removal. This virus-host arms race
leads to extensive genetic diversity in both capsules and depolymerases,
complicating our ability to understand their interaction. This study exploits
the genetic information encoded in Klebsiella prophages to model the inter-
play between the bacteria, the prophages, and their depolymerases, using a
directed acyclic graph and a sequence clustering-based method. Both
approaches show significant predictive ability for prophage capsular tropism
and, importantly, are transferrable to lytic phages. In addition to creating a
comprehensive database linking depolymerase sequences to their specific
targets, this study demonstrates the predictability of phage-host interactions
at the subspecies level, providing insights for improving the therapeutic and
industrial applicability of phages.

Host recognition is considered a critical step for successful bac-
teriophage (or phage) infection1. This process is mediated by
virus-encoded receptor-binding proteins (RBPs), which mostly
comprise tail fiber and tail spike proteins. Tail fiber proteins are
generally non-enzymatic and bind to a protein receptor on the host
surface2. In contrast, tail spikes are characterized by the presence
of a polysaccharide-degrading domain, also referred to as
depolymerase3,4. The depolymerase domain is responsible for the
specific recognition and degradation of complex sugars like exo-
polysaccharides (EPS), capsular polysaccharides (CPS) or lipopoly-
saccharide (LPS)5. This primary binding to the capsule by the
depolymerase allows subsequent access to the secondary receptor
located on the membrane surface before entry into the host6,7. Once
inside, the phage continues its cycle by either replicating into the
bacteria and propagating, or remaining dormant as a prophage in
the host, referred to as a lysogen.

Phages are particularly relevant against ESKAPE pathogens, which
are regarded as being among themost urgent threats to global health8.
This group includesKlebsiella pneumoniae, a Gram-negative bacterium
with a highly diverse capsule with 77 serotypes and over 180 K-loci (KL
types) identified through analysis of the K-locus, the region respon-
sible for capsule biosynthesis9,10. The KL type is the most determining
factor of infectivity for most phages targeting Klebsiella11–13, but our
ability to determine the KL tropism of a given phage based on depo-
lymerase sequence alone remains limited. This challenge is further
complicated by the rapid evolution of the capsule locus in bacteria and
depolymerases in phages, frequently subjected to horizontal gene
transfer (HGT)14–19.

Recent advances in the field of machine learning have paved the
way for addressing important questions related to phages20. Many of
these advancements have been grounded in the attentionmechanism,
which can be defined as the ability of amodel to focus on specific parts
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of the input to enhance its performance21–23. This has led to the
development of transformer architectures, including protein language
models (PLM)24. PLMs, such as Evolutionary Scale Modeling 2 (ESM2),
can capture complex patterns and relationships between amino acids
in protein sequence into embedded representations25. These embed-
dings have been successfully applied to downstream tasks such as
sequence or token classification, yielding remarkable results26,27. PLMs
offer a promising approach for modeling phage-bacteria interactions,
enabling the extraction of relevant sequence features and improving
predictive accuracy28–31. However, in some specific settings, such as the
therapeutic one, predictions at the genus and species levels are not
satisfactory as phages typically infect a few strains within a species32,33.

Three aspects are crucial for attaining a higher level of resolu-
tion when predicting the outcome of phage-bacteria interactions: (i)
extensive high-quality training data, (ii) strong biological premises
and (iii) state-of-the-art machine learning techniques. Recent
studies34,35 made great progress in this direction, but still reported
limitations related to the lack of training data. While this is an
inherent limitation when using experimentally validated phage-
bacteria interactions, here this challenge is addressed by leveraging
information contained in Klebsiella lysogens. Large numbers of
prophage-encoded depolymerase domain sequences were retrieved
alongside with the K-locus of the host to predict the capsular spe-
cificity of depolymerases based on their sequence. This approach
introduced several technical challenges for modeling: phages often
encode multiple depolymerases with varying specificities, individual
depolymerases can exhibit multi-KL targeting (i.e., binding to mul-
tiple capsular types), and frequent HGT among depolymerases
obscures direct sequence-KL correlations36–38.

To address this multi-label classification task and its inherent
challenges, we conceptualized a hierarchical framework, akin to a
binary relevance method39. First, KL-specific binary classifiers were
designed to isolate depolymerase features associated with individual
KL types. Second, an ensemble recommender system integrated pre-
dictions across classifiers to rank KL targets based on the output
probabilities, explicitly accommodating the multi-label nature of
depolymerase-KL interactions. Two complementary approaches were
employed to model interactions between depolymerase domains,
prophages, and bacterial hosts: a directed acyclic graph-based model
(TropiGAT) and a sequence clustering-based model (TropiSEQ).
Moreover, these approaches enabled the generation of a compre-
hensive database linking depolymerase domain sequences to their
respective KL targets, offering valuable insights into phage-bacteria
interactions. This resource holds promise for therapeutic applications,
such as targeted phage therapy, and industrial uses, where accurate KL
type specificity is crucial40,41.

Results
A comprehensive profiling of prophage-encoded depoly-
merases targeting Klebsiella
To gather a collection of prophages with labeled KL type, all Klebsiella
genomes were first downloaded from the NCBI database (n = 14,601),
retaining those with a confident assigned KL type (n = 12,003). The
screening of these bacterial genomes identified 77,802 prophages.
Clusters of prophage sequence showing high identity (99% over more
than 80% of their genome) were identified to remove redundancy,
resulting in a total of 16,077 prophage vOTUs. Then, for eachprophage
within a prophage vOTU, the KL of the last common ancestor of the
infected bacteria was identified and used as a proxy of the most
probable KL type of the host at the time of phage infection (see
method section). Out of the 77,802prophages, only 3500presented an
ambiguous target KL type, resulting in a collection of 74,302 KL-
labeled prophages.

Next, the depolymerase domain sequences within these pro-
phages were screened using three methods (Fig. 1A). Two methods

relied on alignment against experimentally validated depolymerases
(BLASTp) and HMM profiles of domains associated with
polysaccharide-degrading enzymes. The third method employed
DepoScope, a machine learning tool combining a fine-tuned ESM-2
protein language model with convolutional neural networks to
detect structural folds characteristic of depolymerases42. Identifi-
cation with one of the three methods was sufficient to include a
depolymerase in our dataset. This identified 19,600 depolymerase
domain sequences, with 3908 unique sequences after removing
redundancies (100% coverage and 100% percentage identity).
Interestingly, for 80% of the prophages, no depolymerase was
detected, suggesting prophage degradation or alternative modes of
infection33,43. For the remaining 15,230 prophages with at least one
depolymerase, ~72% harbored a single depolymerase, ~20% encoded
two depolymerases, with some encoding as many as 12. This diver-
sity resulted in an average of 1.3 depolymerase sequences per
prophage across the database. The depolymerase domain can take
on different structural folds, as previously described in studies of
carbohydrate-active enzymes42,44,45. In the present prophage analy-
sis, these folds were found in varying frequencies: the most pre-
valent fold was the right-handed β-helix, representing 69% (2722) of
the identified sequences, followed by the n-bladed β-propeller at
18% (714). The other folds represented a smaller fraction, among
which the TIM β/α-barrel with 7.5% (294), the α/β hydrolase fold with
3% (114), and finally the triple-helix (32) and α/α toroid (29) repre-
sented less than 1% (Fig. 1B, C).

To prepare the dataset for modeling, redundant prophages ori-
ginating from the same bacterial clone were removed, yielding a final
dataset of 8,871 prophages, each labeled with one of 128 distinct KL
types. (Fig. 1D). The distribution of prophages in the database was not
uniform across KL types. Indeed, ~44% of the prophages were assigned
to 6 KL types: KL107 (1121), KL64 (897), KL47 (551), KL106 (488), KL17
(481) and KL2 (351). Among the remaining 122 KL types, half contained
between 20–300 prophages, while the other half had fewer than 20
prophages.

Developing models to predict depolymerase tropism
To optimize individual KL classifiers, two different approaches were
employed: a DAG-based approach, denoted TropiGAT, and a
sequence clustering-based approach, referred to as TropiSEQ. In
TropiGAT, depolymerases encoded by a given prophage were
represented as embedding vectors computed using the ESM2model.
These vectors were aggregated using two strategies: an attention-
based method and a baseline averaging method. The aggregated
vector was then passed through a forward neural network for binary
classification. Each model was trained on unique sets of depoly-
merases corresponding to a specific KL type.Model performancewas
evaluated using weighted MCC values, a robust metric for classifier
quality that accounts for the number of training instances. The
attention-based aggregation outperformed the baseline, achieving a
weightedMCC of 0.547 compared to 0.528 for the averagingmethod
(P = 0.0477). The attention-based aggregator generalized well for the
most represented KL types, notably KL17 (n = 223), KL102 (n = 128)
and KL3 (n = 147) with MCC scores > 0.8 (Pearson coefficient = 0.41;
P-value < 1.10-5) (Supplementary Data 1). In contrast, KL types with
limited training data, such as KL31, KL6, and KL9 (fewer than 25
prophages), performed poorly, with MCC scores near zero, sug-
gesting limited predictive capacity for those KL types. Given its
superior performance, the attention-based aggregator was retained
for further analysis (Fig. 2A–C and Supplementary Data 2A).

In TropiSEQ, prophages were represented as binary vectors
indicating the presence or absence of depolymerase domain clus-
ters. These vectors were classified using two classifiers: Random
Forest and logistic regression. Among the tested configurations, the
Random Forest classifier at a clustering threshold of 0.85 achieved
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the best performance, with a weighted MCC of 0.367 and was
therefore retained for further analysis. Similar to TropiGAT, Tropi-
SEQ performed best for KL types with abundant training data,
though this trend was less pronounced (Pearson coefficient = 0.35;
P-value < 5.10-4) (Fig. 2B–D and Supplementary Data 2B). Well-
represented KL types such as KL17 and KL60 exhibited strong pre-
dictive performance. However, some KL types with comparable
sample sizes, such as KL62 (n = 124) and KL2 (n = 151), showed more
modest MCC scores of 0.35 and 0.30, respectively. Surprisingly,
certain KL types with limited training data, such as KL7 (n = 39) and
KL128 (n = 37), performed unexpectedly well, achieving MCC scores
of 0.57 and 0.79, respectively. Despite these promising results,
caution is warranted when interpreting the predictive power of
underrepresented KL types due to their limited sample sizes. Fur-
ther evaluation of the models is required to assess their efficiency.

Ensemble strategy for multi-label prediction
Both TropiGAT and TropiSEQ presented varying performances, with
the strongest results observed for KL types supported by abundant
training data. These findings motivated the development of an
ensemble strategy to integrate predictions across KL types and
enhanceoverall performance. Two strategies were compared to assess
the impact of training data curation on model performance: the first
utilized unique sets of depolymerases associated with each KL type,
enabling the exclusion of identical training instances to promote
generalization. The second strategy weighted training data by the
natural distribution of depolymerase-KL pairs across lysogens,
emphasizing evolutionarily prevalent interactions. Evaluation against a
dataset of 25 experimentally validated right-handed β-helix depoly-
merases revealed complementary strengths. TropiGAT ranked 11 of 25
depolymerase-KL pairs within the top 10 predictions, whereas

Fig. 1 | Pipeline for the identification and characterization of the depolymerase
domains.APipeline for the identificationof depolymerase domain sequences from
prophage proteomes. B Venn diagram of the depolymerase domain identified
through the 3 methods employed. They involved the deep learning based method
Deposcope, a method based on HMM profiles of proteins with depolymerase
polysaccharides degrading activity using HHMscan and BLASTp to scan the

proteins against a collection of characterized depolymerases from the literature.
C Proportions of the depolymerase folds identified. D Bar plot of the number of
prophages carrying at latest one depolymerase on the y-axis across each KL types
represented on the x-axis. The KL types represented by less than 5 prophages were
assigned to the “Other” category.
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TropiSEQ achieved 14 correct rankings (Supplementary Data 3). When
predictions of both models were combined, 16 targets (64%) were
prioritizedwithin the top 10, demonstrating synergistic value (Table 1).
Distinct prediction patterns were observed across KL types: depoly-
merases targeting KL47 were consistently ranked first by both meth-
ods, while those targeting KL64 achieved ranks between 1 and 2.
Conversely, KL1 and KL102 depolymerases were ranked outside the
top 10 by both methods, aligning with reported divergence between
prophage and lytic phage depolymerases12.

Performance was further quantified using themean rankmetric.
TropiGAT performed optimally when trained on unique depoly-
merase sets (mean rank of the correct label: 24.09 vs. 29.33 for
weighted data), whereas TropiSEQ worked best with infectious
event-weighted training (mean rank of the correct label: 31.42 vs.
36.23 for unique sets). Consequently, the final ensemble combined
TropiGAT (trained on unique depolymerases) and TropiSEQ (trained
on weighted data).

Discrepancies in method-specific predictions highlighted their
complementary roles. The depolymerase KP32gp37 (targeting KL3)
was ranked third by TropiGAT but outside the top 15 by TropiSEQ.
Conversely, the depolymerase depoKP36 (targeting KL63) was ranked
first by TropiSEQ but 23rd by TropiGAT. A particularly interesting case
was the depolymerase of Klebsiella phage vB_KpnP_KpV74, which
TropiSEQ ranked first and second for interactions with KL2 and KL13,
two KLs with known cross-reactivity46,47.

In conclusion, the ensemble approach, combining TropiGAT and
TropiSEQ, included 64% of targets within the top 10 predictions, high-
lighting its potential for guidingphage therapy andhost rangeprediction.

Benchmarking TropiGAT and TropiSEQ: a comparative evalua-
tion of ranking systems for predicting phage-KL type interac-
tions on lytic phage
Typically, phage host range is determined by incubating isolated
phages with a collection of bacterial strains, a process that becomes
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increasingly tedious as thenumber of strains increases. To evaluate the
applicability of the developed models as recommendation systems, a
comprehensive dataset was generated from three publicly available
infection matrices. These matrices were used to benchmark model
performance. In the matrix by Ferriol-Gonzales et al, 202413, interac-
tions between 71 phages and 77 bacteria covering asmany different KL
types were presented. The context of that study was the isolation of
phages capable of infecting the full diversity of the 77 serotypes in
Klebsiella. In the second matrix, Beamud et al, 202312 described the
outcome of the interaction between 46 isolated phages and 138 bac-
terial strains covering 59different KL types. There, the bacterial strains
were sequenced in a clinical context. Finally, Townsend et al, 202148

presented 30 phages isolated and tested against 24 bacterial strains
covering 18 different KL types. Twodepolymeraseswerepresent in the
training data and therefore discarded for further analysis. Overall, 89
different KL types were covered in thematrix. Each phage within these
matrices was re-annotated for depolymerases using the pipeline
described above. The re-annotation resulted in the identification of
249 depolymerase domain sequences in 126 phages targeting bacteria
for which the KL type was predicted with a good level of confidence.
The depolymerase domain folds consisted of 139 right-handed β-helix,
75 n-bladed β-propeller, 34 triple-helix and 1 α/α toroid (Supplemen-
tary Data 4).

To benchmark the developed methods, their predictions were
compared to SpikeHunter19, a sequence-cluster-based approach that
associates depolymerases with KL types by analyzing prevalence in
lysogen-derived clusters. Additionally, a Monte Carlo simulation
(bootstrap = 1000) was implemented to model random predictions49.
Predictions were evaluated to assess the extent to which they aligned
with KL-type tropism reported in the matrices (Fig. 3 and Supple-
mentary Data 5-6).

Initial testing focused on helical depolymerases (i.e., right-handed
β-helices and triple helices). When considering only the top-ranked
prediction for each helical depolymerase, TropiSEQ correctly asso-
ciated 48 of 164 depolymerases with a target KL type, outperforming
SpikeHunter (44/164) and TropiGAT (25/164) (Fig. 4A). All three
methods significantly surpassed the randomapproach (2/164). Among
the top predictions, 13 depolymerase-KL pairs were consensus across
allmethods,while 29were sharedbetweenTropiSEQandSpikeHunter.

Expanding the recommendation scope to the top five predictions
significantly improved correct associations for TropiSEQ and Tropi-
GAT: TropiSEQ achieved 76/164 correct associations, while TropiGAT
identified 49, and the random approach reached 11. In contrast, Spi-
keHunter generated no additional predictions beyond the top-ranked
KL type due to its cluster-based design, which restricts predictions to
single KL associations per depolymerase19. This limitation arises from
SpikeHunter’s reliance on sequence-cluster prevalence rather than
probabilistic ranking, making it unsuitable for multi-label predictions.
At higher rank thresholds, TropiGAT demonstrated progressive recall
improvement, linking 62/164 depolymerases to KL targets within the

top 15 predictions, compared to TropiSEQ’s 78/164. Collectively, the
methods successfully associated 100/164 helical depolymerases with
KL targets. TropiSEQexhibited superior rankingprecision,with amean
rank of the correct label of 1.8 versus TropiGAT’s 3.6 among the top 15
predictions. TropiSEQ also performed robustly on underrepresented
KL types. For example, despite KL58 being represented by only six
prophages in the training data, TropiSEQ ranked the right-handed β-
helix of Klebsiella phage K58PH129C2 (CDS 47) first.

In contrast, TropiGAT demonstrated a unique ability to predict
novel KL type associations, particularly for depolymerases with no
homology to the training data. For instance, TropiGAT accurately
predicted interactions between the triple-helix on CDS 25 of Klebsiella
phage K29PH164C1 with KL24 (rank 4) and the right-handed β-helix on
CDS 165 of phage NBNDMPCG with KL2 (rank 6), despite the absence
of homology to the training data. These findings suggest TropiGAT
leverages patterns beyond sequence similarity. By capturing folding
patterns, the embeddings enable the model to infer structural rela-
tionships and make accurate predictions at a higher level. This
observation draws attention to the top predictions that did not match
the reported targets. Among these predictions, 54% (TropiGAT) and
37% (TropiSEQ) corresponded to KL types absent from the validation
datasets, suggesting potential novel associations that have not yet
been experimentally validated.

The depolymerase fold impacts the prediction of capsular
specificity
The right-handed β-helix has been the most extensively character-
ized depolymerase fold50–52, while the characteristics and properties
of other folds are less understood. The previous section has rein-
forced the idea that KL type tropism can be predicted for the right-
handed β-helix and the triple-helix, but the predictability of other
folds remains unclear. In order to explore these factors, the pre-
dictability of the different depolymerase folds was investigated for
lytic phage dataset.

Significant differences in model performance were observed
between folds. First, helical depolymerases showed higher correct
association rates than n-bladed β-propellers in the top 15. TropiSEQ
and TropiGAT correctly associated 48% (78/164) and 38% (62/164) of
helical depolymerases, respectively. In contrast, for n-bladed β-pro-
pellers, correct associations were 22% (16/75) with TropiSEQ and 43%
(32/75) with TropiGAT. Second, the mean rank of correct predictions
for n-bladed β-propellers was significantly higher (poorer perfor-
mance) at 4.21 (TropiSEQ) and 6.34 (TropiGAT), compared to 1.78 and
3.56 for helical depolymerases, respectively.

To further investigate these differences, MCC scores were
computed for each model instance, corresponding to individual KL
types, using a threshold of 0.5 for a positive prediction. For both
TropiGAT and TropiSEQ, clear discrepancies in MCC scores were
observed between helical depolymerases and n-bladed β-propellers.
In TropiGAT, the average MCC score for helical depolymerases was

Table 1 | Overview of the modeling approaches used for predicting phage KL type tropism

Modeling
approach

Positive instances Negative instances Input Data Shape Aggregator
(method)/
Classifier

Hyperparameter Optimization

DAG A single prophage
instance for each infec-
tious event
OR
A single prophage
instance with a unique set
of depolymerases

Randomly selected from prophages
whose depolymerase sets do not overlap
with positive instances

Set of embedding
representation of
1280 dimensions

Attention-
based (GATv2)

learning weight, weight decay,
dropout, attention heads

Average
(SAGE)

learning weight, weight decay,
dropout

Sequence
clustering

Binary vector of 989
dimensions

Random
Forest

bootstrap,max depth, max feature,
min samples leaf, min samples
splits, n estimators

Logistic
regression

penalty, C (regularization strength),
max iterations, L1 ratio
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Fig. 3 | Compilation of the three experimental infection matrices used for
evaluating the models. In the x-axis are represented KL types and in the y-axis
their corresponding phages. In white: combination not tested; gray: no observable

infection; dark gray: infection not predicted by neither of the predictors; green:
infection predicted by TropiSEQ; golden: infection predicted by TropiGAT; red:
infection predicted by both models.
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0.10, compared to 0.02 for n-bladed β-propellers (P = 0.011; Student
t-test; Fig. 4B). For TropiSEQ, the difference was even more pro-
nounced, with MCC scores of 0.20 and 0.0065 for helical depoly-
merases and n-bladed β-propellers, respectively (P < 0.0001; Welch t-
test; Fig. 4C). These findings indicate that the models are more effi-
cient at predicting KL-type tropism for helical depolymerases com-
pared to n-bladed β-propellers.

Despite the overall lower predictability of n-bladed β-propellers,
certain KL types exhibited strong model performance, suggesting
some specificity in their predictive capabilities. For instance, KL21
achieved MCC scores of 0.28 and 0.56 for TropiGAT and TropiSEQ,
respectively. TropiGAT also showed good performance for KL27
(0.42), KL52 (0.37), and KL57 (0.64). These findings indicate that KL-
type tropism predictability for n-bladed β-propeller folds may be
achievable for certain KL types. Notably, the underlying basis for this
predictability appears to extend beyond simple protein sequence
identity. Instead, it may depend on specific residues and structural
features that are not readily captured by sequence clustering-based
methods such as TropiSEQ. This observation highlights the need for
further investigation to uncover the mechanisms driving these asso-
ciations and to enhance the predictive performanceofmodels across a
broader range of depolymerase folds.

Analysis of depolymerase-KL association clusters
Associations between depolymerase sequences and KL types were
analyzed using the learned features to uncover distinct patterns. For
TropiSEQ, relationships between depolymerase domain clusters and
KL typeswere explored using vector representations of clusters,which
estimated interaction likelihoods. A probability threshold of 0.5 iden-
tified 550/989 clusters as associatedwith 96 KL types, with 110 clusters
(20%) linked to ≥2 KL types. The most frequent associations included
KL106-KL107, which shared seven depolymerase domain clusters, and
KL47-KL64, which shared five. However, most clusters were small: 180
were singletons, 115 contained two sequences, and the largest clusters
comprised 156 and 153 sequences.

TropiGAT employed an attentional aggregation layer to assign
weights to depolymerase domains within prophages, reflecting their
importance in KL-type predictions. Associations were deemed sig-
nificant when attention weights exceeded 0.5 and predicted infection
probabilities surpassed 0.8. This high-confidence threshold mapped
1627 depolymerase domains to 82 KL types.

Comparison of TropiGAT and TropiSEQ predictions revealed
congruence in 1318/1761 (74.8%) depolymerase-KL associations. Cross-
reactivity was observed in ~5% (79/1627) of depolymerases, with
structural folds exhibiting distinct patterns. Notably, two n-bladed β-
propellers were associatedwith 10 and 9KL types, two TIMβ/α-barrels
were linked to 8 and 5 KL types, and three right-handed β-helices each
targeted 4 KL types. These cross-reactive depolymerases may possess
broad-spectrum activity, highlighting their potential for further func-
tional and therapeutic uses. This observed cross-reactivity could also
point towards conserved structural elements within the poly-
saccharides of the implicated KL types. Although the models do not
directly learn correlations between KL types, these results could pro-
vide insights into similarities between such structures. These insights
are especially valuable given the lack of known structural information
for many KL types, thus guiding future research into these poly-
saccharide structures and their depolymerase interactions.

Discussion
This study presents an innovative framework for modeling phage-
bacteria interactions at the subspecies level in Klebsiella spp.,
addressing a critical challenge in the field. By leveraging prophage
data, the study developed predictive models to determine phage
capsular tropism based on depolymerase domain sequences. The
models demonstrated several key capabilities: resolving predictions at
the individual depolymerase level, identifying cross-reactive depoly-
merases, and accurately predictingKL types for depolymerases lacking
sequence homology with the training data. This approach provides an
actionable framework for characterizing phage host range and is
supported by a comprehensive database mapping depolymerase
domain sequences to their target KL types. Compared to traditional
associations through direct sequence homology, this strategy offers
greater practicality and predictive accuracy, particularly for sequences
with low similarity to known data. These advancements not only
enhance our understanding of phage-host specificity but also offer
innovative possibilities for applications in targeted phage therapy and
industrial processes.

The developed methods, TropiGAT and TropiSEQ, function as
binary classifiers designed to predict the KL type specificity of depo-
lymerase sequences. They demonstrated high predictive performance
for KL types with substantial training data, such as KL2, KL17, KL47,
KL64, KL106, and KL107. These KL types are well-represented as they
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Fig. 4 | Model performance on lytic phages. A Recall @N for TropiGAT (green),
TropiSEQ (gold), the combinationof TropiGAT andTropiSEQ (red) and the random
approach (gray). Box plots of the MCC values reported for the KL types when only
considering the helical depolymerases (right-handed β-helix & triple-helices) and
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depolymerases, n = 67 for the n-bladed β-propeller).
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are associated with high-risk Klebsiella spp. clones53–55. Their frequent
occurrence in clinical sequencing data, therefore, makes the models
targeting them particularly relevant in this setting. Furthermore, the
models showed encouraging results even for KL types under-
representedduring training. For instance, despite having only 11 and 13
training examples, respectively, KL103 and KL157 achieved strong
MCC scores of 0.697 and 1.0 when TropiGAT was evaluated on lytic
phage sequences. While these underrepresented KL types performed
well on the specific lytic phage dataset, their performance might not
extend to sequences more distant from the training data, due to lim-
ited generalization ability. This challenge could be addressed in future
workbyenriching the trainingdatawith sequences fromother bacteria
employing the Wzy capsule synthesis system, such as Escherichia coli
or Acinetobacter baumannii. These related systems, also targeted by
phageswith depolymerases56,57, could represent a valuable pool of new
informative patterns for model improvement18,19.

Beyond direct prediction, these binary classifiers were leveraged
to build a recommender system designed to prioritize candidate KL
type specificities for uncharacterized depolymerases. This system
proved effective, with TropiSEQ consistently ranking correct
depolymerase-KL type pairs within the top five associations (lower
mean rank of the correct target) and TropiGAT performing better at
higher rank thresholds, indicating superior recall. However, certain
models for low-data KL types exhibited poor classification perfor-
mance by TropiGAT (MCC ≤0) yet were consistently assigned high
ranks due to frequent, high-probability false positive predictions (e.g.,
involving KL4, KL34, KL26), introducing significant noise detrimental
to the system's reliability. These unreliable classifiers should therefore
be used with caution or filtered in practice. To capitalize on com-
plementary strengths while mitigating such issues, we recommend a
combined approach: utilizing TropiSEQ for high-precision initial can-
didate generation (top 5 predictions) followed by TropiGAT to refine
results and capture less obvious specificities, including potential cross-
reactivities which hold significant therapeutic value.

Evaluation of the models on the lytic phages revealed varying
levels of predictive power across the different depolymerase domain
folds, prompting questions on the origins of these discrepancies. The
right-handed β-helix is the most described polysaccharides degrading
depolymerase in phages due to its widespread presence and stable
trimer structure58,59, typically targeting one or a few different KL
types37. In contrast, while ongoing research explores the properties of
the n-bladed β-propeller in bacteria and eukaryotes60, its character-
istics in phages remain unclear. Several factors could account for the
weak predictive power of this fold. Firstly, the scarcity of training data,
as the detectable n-bladed β-propeller is less abundant than the right-
handed β-helix in phages42. Secondly, recent studies demonstrated
vast structural diversity within this fold. The β-propeller structure
results from the duplication of four antiparallel β-strands, which can
then act as a monomer or dimer, leading to variation in the number of
blades61. This diversity could complicate the identification of patterns
at the primary structure level. Finally, the n-bladed β-propeller can
accommodate awide range of substrates depending on environmental
conditions62, exerting diverse functions that can go beyond catalytic
activity63. This is exemplified by the n-bladed β-propeller encoded by
Sugarlandvirus phages targeting Klebsiella spp., which exhibit the
broadest host range in terms of KL types, supporting the idea that this
depolymerase fold plays a crucial role in the breath of the infectivity
spectrum64. These features align with the findings of this study, as
phages encoding an n-bladed β-propeller tended to target more KL
types than those lacking it, with an average of 3.1 versus 1.9 bacterial
strain targets, respectively. Further research into the precise activity of
this fold in phages is needed to gain deeper insights.

Focusing exclusively on the depolymerase domain sequence in
modeling phage-bacteria interactions has limitations. The recognition
process can be mediated by the tail fiber and occur independently of

the depolymerase64, or in conjunction with it6, particularly in phages
exhibiting depolymerase activity with specific KL types but not others.
The complexity of the phage recognition system could lead to an
overestimation of false negatives, to the extent that successful infec-
tions may not always involve depolymerase activity, despite the phage
encoding one. Moreover, the ability of a phage to recognize its host
does not necessarily lead to successful infection due to post-entry
defense mechanisms. This scenario could lead to potential false posi-
tives in cases where a phage can exert depolymerase activity but fails
to induce a successful infection. Another limitation arises from the
dependence of the method on the initial bacterial strains adequately
representing the diversity of the population. If the dataset lacks suffi-
cient phylogenetic coverage, the approach may be prone to biases or
artifacts, potentially failing to accurately infer the KL type of the
ancestral bacteria.

To address limitations associated with the approach of this study,
models could be expanded by integrating other factors involved in the
recognition of the host. This could entail integrating tail fibers and the
secondary bacterial receptors. Recent genomic foundation models
capable of generating embedding representations for DNA sequence
were developed with context windows spanning hundreds of thou-
sands of kilobases65. These tools could be leveraged to encode the
whole K-loci and allow the incorporation of more informative data
about the capsule and its modifications. Such a unified model would
represent an upgrade over the current set of binary classifiers for two
main reasons. First, it would simplify the architecture and enable
analysis of bacterial strainswithin the sameKL type, thereby increasing
sensitivity. Second, by allowing the model to learn depolymerase
patterns across different KL types, it could facilitate knowledge
transfer from well-represented KL types to those with fewer training
examples, improving performance on underrepresented targets.
Moreover, the model could be extended by integrating data on
downstream processes such as phage replication, host defense sys-
tems (e.g, CRISPR), and agents involved in bacterial lysis (e.g, holin,
endolysin)66. This would allow TropiGAT to predict more compre-
hensively the success of phage infection, making it a valuable tool for
various applications, particularly in clinical settings.

In summary, this study demonstrates innovative approaches to
modeling phage-bacteria interactions by combining advanced
machine learning models and architectures with an evolutionary per-
spective. The significant role and versatility of the depolymerase
sequence enables the scope of this work to go beyond the therapeutic
applications, offering potential utility in industrial contexts as well.

Methods
Bacterial genomes and capsule typing
The genomes of Klebsiella strains were downloaded from the NCBI
Reference Sequence Database through the PanACoTa package67. In
order to retrieve all the strains from theGenusKlebsiella, the “prepare”
command with the “-T 570” parameter was used. Genome assemblies
with an L90 (the minimum number of contigs necessary to get at least
90% of the whole genome) value superior to 100 were discarded. The
K-loci type (KL type) of the bacterial strains was then predicted using
Kleborate (https://github.com/klebgenomics/kleborate)10. The strains
that presented a level of confidence of “perfect”, “very high”, “high”
and “good”werekept for the analysis. These stringent assemblyquality
criteria ensure high genomic data reliability for downstream analyses.
Finally, the genomes were annotated with Prokka v.1.1368.

Prophage prediction
Prophages were predicted using the PhageBoost program based on a
machine learning approach trained to distinguish the viral signal from
the background signal of a bacterial genome, based on 1587 different
features69. A threshold of 0.70 confidence was applied, allowing the
number of called prophages to be in concordance with the reported
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mean number of prophages in Klebsiella spp. in previous studies11. In
order to identify prophages belonging to the same viral operational
taxonomic unit (vOTU), the pairwise average nucleotide identity (ANI)
was computed between the prophages from the dataset using
FastANI70. The ANI is defined as the mean nucleotide identity of
orthologous gene pairs shared between two genomes. Two prophages
were considered from the same vOTU if the calculated ANI was higher
than 99% with a bi-directional coverage above 80%.

Phylogenetic tree
The PanACoTa pipeline was used in a similar manner as used by Hau-
diquet et al. 202114. Briefly, the set of genes present in the genomes of
the dataset (or pan-genome) was determined with the “pangenome”
command. The output was then used to compute the set of genes
present in more than 99% of the genomes in the dataset (or core-
genome) using the “corepers” command with the “-t 0.99” parameter.
Subsequently, the genes from the core genomewere aligned using the
“align” command. The alignednucleotide sequences of eachgenewere
then concatenated, resulting in a 498,179 bp alignment. Phylogenetic
inferences were executed with IQ-TREE (v.2.1.4-beta COVID-edition)
using the ModelFinder Plus parameter “-m MFP”, with 1000 replicates
for ultrafast bootstrap “-B 1000”71. The resulting best model was the
(GTR+F+I) corresponding to the general time-reversible model with
empirical base frequencies allowing a proportion of invariable sites.
The tree was well supported with an average ultrafast bootstrap value
of 99.85%.

Recovering the KL type of the infected ancestral bacteria
To limit the bias induced by the horizontal gene transfers of the K-
locus, the KL type of the bacteria before phage infection, i.e., of the
infected ancestor, was investigated for each prophage. First, the
states of the ancestors of the bacteria from the dataset were inferred
using the phylogenetic tree and the KL types computed for each
strain with PastML (v1.9.34)72. The maximum likelihood algorithm
MPPA with the recommended character evolution model F81 was
used, allowing the attribution of multiple states when they had
similar and high probabilities. Subsequently, a tailored algorithmwas
built with the Bio.Phylo package73 was used to identify the last
common ancestor of the infected bacteria (Fig. 5A). This approach
assumes a good phylogenetic sampling for which the ancestor likely
represents the KL at the time of the infection. Of note, infection
could have occurred earlier, and the KL-type of the last common
ancestor might have already diverged from that of the infected
ancestor. Overall, capsule swaps along the branches can obscure the
reconstruction of the infected bacteria, with assumptions on longer
branches being more susceptible to uncertainty (Fig. 5B–D). An
overview of this process is provided in Fig. 5E.

Identification of the depolymerase domain sequences
Phage sequences were annotated with Prodigal from Pyrodigal v.0.2.1
(https://github.com/althonos/pyrodigal), integrated in Phageboost.
Sequences with a length less than 200 amino acids were discarded.
Three different approaches were employed to identify the depoly-
merase domain sequences in the prophages. The first approach
leveraged a database of Hidden Markov Models (HMM) profiles of
domains associated with a polysaccharides-degrading (PD) activity42.
Multiple sequence alignments (MSA) were built around the candidate
protein sequences using MMseqs74 along the UniRef90 database. The
resulting MSAs were then scanned against the HMMprofiles of the PD
domains using the HHsearch75. Hits with a score exceeding 20 and an
alignment spanning at least 30 amino acidswere considered candidate
depolymerases.

In the second approach, prophage protein sequences were
directly screened against a database of 333 depolymerase proteins

from previously described phages12 using BLASTp76. Hits presenting
a bitscore exceeding 75 were added to the set of candidate depo-
lymerases. Subsequently, the candidate depolymerase set resulting
from the two approaches above was pooled for downstream struc-
tural analysis. The 3D structures of the candidate depolymerases
detected by the first and second approaches were predicted using
ESMfold25. Then, the predicted structures were scanned using
FoldSeek77 against a database of 3D domain folds involved in a PD
activity. The folds represented in the database included the α/α
toroid, the right-handed β-helix, the TIM β/α-barrel, the n-bladed β-
propeller (with at least 4 antiparallel β-strands), the flavodoxin-like
fold and the α/β hydrolase fold. The hits that presented a probability
of being a true positive greater than 0.5, or 0.2 when the query was
the right-handed β-helix, were considered depolymerase proteins.
Next, the 3D structure of the depolymerase proteins was dissected
into protein units using SWORD278. These protein units were scan-
ned against the database of 3D structures of PD domains to infer the
definitive depolymerase domain from the best match.

The third approach, independent of structural analysis, was based
on the deep learning model DepoScope42. This model performs a
binary classification of proteins for the identification of depolymerase
proteins, as well as the delineation of the catalytic domain. The final
depolymerase domain databasewasgeneratedby sequences thatwere
identified by any of the threemethods. An overview of the subsequent
data processing is given in Figs. 1A, 5E.

Directed acyclic graph-based approach for modeling prophage-
CPS Interactions (TropiGAT)
Graphs represent complex relationships between objects using nodes
to encode them and edges to encode their connections79. In this study,
directed acyclic graphs (DAG) were designed with three node types:
the infected bacteria (nodes A), the prophages (nodes B1) and the
depolymerases (nodes B2). Two types of directed edges connected the
nodes: (B2→B1) linked depolymerases to the prophages where they
were identified, and (B1→A) linked prophages to their corresponding
infected bacteria. Eachnode typewas associatedwith specific features:
nodes A were characterized by the KL type of the infected ancestor;
nodes B1 had no initial specific feature; and nodes B2 were char-
acterized by the 1280-dimension embedding representations of the
depolymerase domain’s amino acid sequence, computed using the
ESM2 model esm2_t33_650M_UR50D25.

Subsequently, a deep learning model was designed using an
encoder-classifier-like architecture to process the input graph. For
each node B1 (prophage), the encoder module aggregates features
from the set of associated nodes B2 (depolymerases) using a graph
attention layer (GATv2)80,81.

For that, a scoring function e : Rd ×Rd ! R computes a score for
every edge connecting a node B1 (annotated i) to its neighboring
nodes B2 (annotated jwith andj 2 B2 represented by the features j),
which indicates the importance of the features of the neighbor jto the
node i

eðhjÞ= aTLeakyReLUðWhjÞ ð1Þ

where a,W 2 Rd0
are learned. These attention scores are normalized

across all neighbors using softmax, and the attention function is
defined as:

αij = softmaxjðeðhjÞÞ=
expðeðhjÞÞP

j02B2
expðeðhj0 ÞÞ

ð2Þ

Finally, GATv2 computes a weighted average of the features of the
nodes B2 (followed by a non-linearity σ) as the representation hi with
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1280 dimensions of the node i:

hi = σ
X
j2B2

αijWhj

0
@

1
A ð3Þ

Through these attention coefficients, the model prioritize relevant
neighborsbasedon the computed loss. This aggregation approachwas
compared to a baseline method that computes the average value
across the set of feature vectors of the B2 nodes at each dimension82.

The updated features of B1 are then passed into the classifier. The
classifier module consists of 3 linear layers, interspersed by batch
normalization, LeakyRelu activation and dropout layers. The raw out-
puts of the final layer are passed through a sigmoid function, giving an
appropriate estimate of the probability of node B1, given the nodes B2
it is connected to, to be able to infect the KL type of node A. The
architecture was illustrated in Fig. 2A.

Sequence clustering-based approach for modeling prophage-
CPS interactions (TropiSEQ)
The second approach for modeling phage-KL type interactions relied
on a presence-absence matrix representing depolymerase domain

repertoires within each prophage. To generate this matrix, depoly-
merase domain sequences identified in the prophages were clustered
using CD-HIT, a rapid clustering tool for biological sequences83. A
range of clustering thresholds (0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90,
0.95, 0.975) were assessed, each with aminimal alignment coverage of
80% set by the “-G 0 -aL 0.8” parameters. These thresholds were used
to explore the effect of different levels of sequence similarity on the
performance of the model. A presence-absence matrix was con-
structed to represent the depolymerase domain repertoirewithin each
prophage. Each columnof thematrix corresponded to a depolymerase
domain sequence cluster generated by applying CD-HIT for a specific
similarity threshold. Two models, a Random Forest and a logistic
regression, were tested for classifying the matrix to predict phage-KL
type interactions. The clustering threshold with the best predictive
power was determined by computing the weighted Matthew Coeffi-
cient Correlation (MCC) for each KL type. The outline of this approach
is detailed in Fig. 2B.

Training and evaluating the models
Both modeling approaches, TropiGAT and TropiSEQ, employed an
ensemble method, generating distinct binary classifiers for each KL type
(KL-classifier). Positive instances were defined as prophages encoding a
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genetic trees to showcase how the methodology functions under different condi-
tions, with KL types represented by blue and green colors. B In a straightforward
scenario, the prophage is part of a vOTU identified in strains within the same clade
(e.g., strains D3 and D4) but absent from other clades at the next hierarchical level
(n + 1) connected to node B. Here, the KL type at the time of infection is inferred
from the last commonancestorof these strains, corresponding to nodeC2.C In this

scenario, the prophage's presence in strains D1, D3, and D4 suggests a single
infection event. Consequently, the KL type at the time of infection aligns with that
of the ancestor at node B. D In cases where the phylogenetic tree lacks adequate
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Representations of phages and bacteria are from BioRender.

Article https://doi.org/10.1038/s41467-025-63861-w

Nature Communications |         (2025) 16:8798 10

www.nature.com/naturecommunications


depolymerase domain repertoire (or depolymerase set), linked to
ancestral bacterial hosts carrying the corresponding KL type. To ensure
high-quality training data, two curation strategies were applied to these
positive instances. The first strategy consisted of keeping a unique
representative of each set of depolymerases among the positive instan-
ces. The elimination of duplicate sets reduced redundancy and allowed
for the best assessment of themodel’s ability to generalize. The resulting
dataset comprised4271 training instances. The second strategy consisted
of grouping the prophages of the positive instances based on vOTU,
ancestral bacterial host, and depolymerase domain repertoire. Within
each group, a single representative was retained to address the issue of
highly similar genomes from bacterial strains sequenced during epi-
demic outbreaks. This grouping preserved the natural distribution of
depolymerase-KL associations while reducing sampling bias. Although
this approach risks inflating performance metrics by retaining phylo-
genetically related depolymerases, it may enhance confidence in pre-
dictions by emphasizing evolutionarily prevalent features. The strategy
yielded 8871 training instances. Negative instances were randomly
selected from prophages whose depolymerase domains did not overlap
with positive instances, minimizing false negatives. The final dataset
maintained a 1:5 ratio of positive to negative instances, ensuring a
balanced training set for robust model evaluation.

For TropiGAT, each training instance consisted of a set of 1280-
dimension tensors, corresponding to the embedding representation
of the depolymerase domains from a prophage instance. Labels were
assigned as 1 for positive instances and 0 for negative instances. For
eachKL type, amodel was trainedusingfivefold cross-validationwith a
shuffle split method, where 70% of the data was used for training, 20%
for validation, and 10% for testing. The final evaluation metrics (e.g.,
accuracy, MCC) were computed by averaging model performance
across all folds during testing. Model instances were generated for KL
types with at least 10 prophages, employing three forward layers in the
classifier module. To prevent overfitting, early stopping was applied,
halting training after 60 epochs if MCC performance showed no
improvement. The hyperparameters were optimized using Optuna84.

For TropiSEQ, each training instance was encoded as a 989-
dimensional binary vector, with each dimension indicating the pre-
sence or absence of a specific depolymerase domain cluster. The
models also underwent fivefold cross-validation, using a stratified
KFold method. Hyper-parameters were optimized via a Bayesian
search using fivefold cross-validation through scikit-optimize. A sum-
mary of the training process is provided in Table 2.

The models developed for each KL type were structured as a
recommender system to address amultilabel classification task. Binary
classifiers generatedprediction scores, whichwere ranked to prioritize
KL types most likely to be targeted. Model success was determined by
two key factors: the ability to generate high prediction scores and the
capacity to rank target KL types higher than non-susceptible ones.
Performance evaluation was conducted at two levels: specific KL-
classifiers and recommender system-wide. At the KL-classifier level,
metrics were computed focusing on binary classification for each
KL type.

Predictions were classified as positive or negative using a
threshold of 0.5. Standard performance metrics included: recall
( TP
TP+FN), accuracy ( TP+TN

TP+TN+FP+ FN), precision ( TP
TP+FP), F1 score

(2×precision× recall
precision + recall ), area under the ROC curve (AUC), and Matthews

Correlation Coefficient (MCC; TP×TN�FP× FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP+FPÞðTP+FNÞðTN+FPÞðTN+FNÞ

p ), with TP,

FN, TN, and FP representing true positives, false negatives, true
negatives, and false positives, respectively. At the recommender sys-
tem level, the mean rank of the correct label was used as the primary
metric: ((1 / n) * Σ rank), where n is the total number of ranks. This
metric reflects how well the system prioritizes the correct KL types
among potential candidates.

Prediction on lytic phages
To assess the predictive capability of our models for lytic phages, two
datasets were used. The first one consisted of lytic phage depoly-
merases whose association with KL types were experimentally vali-
dated. The second one comprised publicly available infectionmatrices
of Klebsiella phages, which reported the phage-bacteria outcome for
all the possible interactions12,13,48. To ensure the identification of all the
depolymerase domain sequences in the lytic phages, the three iden-
tification methods described earlier were used, complemented with
the information reported by the authors. The depolymerase domain
sequences that appeared in the training data were discarded to avoid
inflating the predictive power. A phage was considered effective
against a givenKL type if the authors reported an instance of the phage
infecting a bacterium from the corresponding KL type. This criterion
accounted for the fact that a depolymerase activity does not neces-
sarily manifest as a visible halo in plaque assays3,85. For TropiGAT,
predictions were made directly from the ESM2 representation of each
depolymerase domain sequence. For TropiSEQ, the amino acid
sequence of the depolymerase domains were first scanned against the
representatives of the depolymerase domain clusters using BLASTp.
Then, depolymerase domains were assigned to the cluster of the top
hit only if the bitscore was exceeding 75 with a minimal alignment
coverage of 80%. Finally, target KL types were inferred from the KL
types associated with the corresponding depolymerase domain
cluster.

Statistics & reproducibility
All statistical tests were performed using Python (version 3.11.4) with
the scipy.stats module (version 1.11.1). The primary metric for evalu-
ating individual KL-type classifier performance was the Matthews
Correlation Coefficient (MCC). Pearson's correlation coefficient was
used to assess the linear relationship between model performance
(MCC scores) and the number of training instances. To test for

Table 2 | Rankings of KL types predicted bymodels trained on
twodata representations: single infectious events and unique
depolymerase sets (in parenthesis)

KL types TropiGAT
(Trained
on single
infectious
events)

TropiGAT
(Trained on
unique sets of
depolymerases)

TropiSEQ
(Trained
on single
infectious
events)

TropiSEQ
(Trained on
unique sets of
depolymerases)

KL64 [7, 6, 1] [2, 2, 1] [1, 1, 1] [1, 1, 1]

KL47 [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1]

KL2 [16, 35, 37] [2, 59, 57] [1, NC, NC] [1, NC, NC]

KL21 [69, 65] [61, 47] [NC, 2] [NC, 3]

KL24 [1] [2] [1] [2]

KL3 [3] [1] [106] [NC]

KL63 [53] [23] [1] [1]

KL35 [12] [12] [1] [1]

KL13 [63] [49] [2] [3]

KL30 [4] [9] [1] [NC]

KL25 [42] [33] [NC] [1]

KL11 [NC] [NC] [8] [106]

KL1 [59, 83,
59, 57]

[19, 26, 23, 20] [NC, NC,
NC, NC]

[NC, NC,
NC, NC]

KL102 [92] [36] [NC] [NC]

Mean rank 29.33 24.09 36.23 31.42

Results are shown for TropiGAT (DAG approach) and TropiSEQ (sequence clustering-based
approach). Values represent prediction ranks, and themean rank for eachmodel configuration is
included at the bottom. Lower ranks indicate better predictive performance. “NC”: non-
classified.When computing themean rank, NCwere replacedwith 106, the number ofmodeled
KL types.

Article https://doi.org/10.1038/s41467-025-63861-w

Nature Communications |         (2025) 16:8798 11

www.nature.com/naturecommunications


significant differences between groupmeans, such as comparingMCC
scores across different depolymerase folds, two-sample, two-sided
Student’s t-tests and Welch’s t-tests were utilized. The choice between
these tests was determined by the equality of variances between the
groups being compared, assessed using a two-tailed F-test with an
alpha of 0.05. For each statistical test reported, the specific test, the
corresponding p-value, and the sample size are provided in the Results
section or figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Relevant data used related to the training of the models can be found
at the Zenodo accession: 10.5281/zenodo.14065540. Those include: (i)
the csv file containing the data used for the training and the evaluation
of the models (ii) the weights and biases of the binary classifiers for
each KL types trained with TropiGAT and TropiSEQ approa-
ches. Source data are provided with this paper.

Code availability
The complete workflow, from data collection to model training and
evaluation, is available for access and reuse at https://github.com/
conchaeloko/DpoTropiSearch.
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