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Tectonic–astronomical interactions in
shaping late Paleozoic climate and organic
carbon burial

Ren Wei 1,2, Zhijun Jin 1,2 , Mingsong Li 2, Shuai Yuan 3, Yongyun Hu 3,
Lin Dong 2, Rui Zhang4 & Juye Shi5

Tectonic processes and astronomical cycles are key drivers of Earth’s climate
and carbon systems. However, their interplay in shaping late Paleozoic climate
variability remains poorly constrained. Here, we divide the late Paleozoic
(~360–250Ma) into three distinct tectonic phases based on full-plate tectonic
reconstructions, geochemical datasets, and carbon cycle modeling, thereby
elucidating how global sea levels and organic carbon burial responded to
astronomically forced climate fluctuations under different tectonic phases.
Our results show that intervals spanning ~360–330Ma and ~280–250Ma were
characterized by elevated atmospheric CO2 levels and intensified tectonic
activity, which coincided with heightened climate variability and reduced
regularity in orbitally paced sea-level changes. In contrast, during
~330–280Ma, multiple proxies indicate reduced tectonic forcing and lower
CO2 concentrations, which were accompanied by more stable climate condi-
tions and clearer expression of astronomical cycles. These conditions facili-
tated rhythmic deposition and widespread organic carbon burial.

The late Paleozoic (~360 to 250Ma) was a transformative period in
Earth’s history, marked by extensive tectonic reorganization, the for-
mation of the supercontinent Pangaea, widespread glaciation, and
significant shifts in global climate and sea levels1,2. These processes not
only reshaped Earth’s surface but also played pivotal roles in driving
carbon cycling and altering biological productivity3–6. Notably, this era
witnessed the formation of extensive organic-rich shales and coal
deposits7,8, which served as a major mechanism for carbon sequestra-
tion, contributing to long-term reductions in atmospheric CO2 and
potentially driving global cooling9–11. These deposits today represent a
substantial portion of Earth’s fossil fuel reserves, underpinning sig-
nificant global energy resources. Understanding the driving forces
behind climate and carbon cycle dynamics during this period is
therefore essential for reconstructing how the Earth system responded
and for appreciating the origins and distribution of key fossil resources.

Over the past few decades, substantial progress has beenmade in
elucidating the impact of tectonic processes on global climate,
including subduction zone activity, mid-ocean ridge expansion, and
large igneous province eruptions12,13. These tectonic drivers influenced
atmospheric CO2 levels through processes such as volcanic out-
gassing, silicate weathering, and the reorganization of oceanic
circulation14,15. By altering the distribution of continents and ocean
basins, tectonics further modulated coupled ocean–atmosphere
dynamics, thereby affecting regional and global climate systems16.
Simultaneously, the relatively stable components of Earth’s astro-
nomical forcing, particularly eccentricity, have long been fundamental
to understanding past climate variations17, as they modulate solar
radiation received at Earth’s surface and profoundly influence global
climate states18,19. Under relatively stable conditions, these orbital
cycles are expected to produce distinct and continuous sedimentary
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records, providing reliable proxies for reconstructing past climates20.
However, recent spectral analyses in cyclostratigraphy have frequently
demonstrated substantial variations in the clarity and continuity of
astronomical signals within sedimentary archives, raising critical
questions regarding the factors that control orbital signal stability21.
Specifically, the processes responsible for obscuring or disrupting
these astronomical imprints remain inadequately understood, hin-
dering our ability to interpret sedimentary records confidently and
accurately reconstruct past climate dynamics.

Although previous studies have debated the relative impacts of
tectonic processes and astronomical forcing on late Paleozoic climate
variability22–25, most have assessed these factors in isolation, thereby
overlooking their potential interactions and combined influence on
climate system dynamics. To address this limitation, we adopt an
integrative framework that combines geological datasets with
numerical Earth system modeling. Specifically, we incorporate full-
plate tectonic reconstructions, geochemical proxies such as strontium
isotopes and detrital zircon geochronology, and cyclostratigraphic
analyses. These are integrated with climate simulations using the
Community Earth System Model (CESM1.2.2) and carbon cycle mod-
eling based on the Long-term Ocean-Atmosphere-Sediment CArbon
cycle Reservoir (LOSCAR) model. This combined approach enables a
systematic evaluation of how tectonic processes influence the sensi-
tivity of the climate system to astronomical forcing and affect the
preservation of orbital signals in sedimentary archives. By explicitly
quantifying the interactions between tectonic and orbital controls, our
approach offers a distinct perspective on the mechanisms underlying
climate state variability and organic carbon burial during one of Earth’s
most dynamic geological intervals.

Results and Discussion
Tectonic phases in the late Paleozoic
Tectonic activity during the late Paleozoic profoundly impacted
Earth’s climate system, shaping the geological landscape2,13 while
simultaneously influencing polar ice sheet dynamics and global sea-
level changes26,27. To characterize its temporal evolution, we compiled
multiple complementary datasets, including subduction zone and
mid-ocean ridge (MOR) lengths, surface production rates (km2 Myr−1),
global detrital zircon age densities, marine strontium isotopic ratios
(87Sr/86Sr), atmospheric pCO2 reconstructions, and LOSCAR-based
carbon cycle simulations (Fig. 1). These records collectively constrain
patterns of lithospheric recycling, continental crustal growth, mantle
CO2 degassing, and their climate feedbacks across the Carboniferous
and Permian.

Subduction zone and MOR lengths, together with surface area
production rates (km2 Myr−1), provide direct constraints on litho-
spheric recycling, crustal accretion, and the reorganization of plate
boundaries13. Peaks in global detrital zircon age densities further
indicate pulses of continental arc magmatism and crustal
addition22,28,29, while troughs reflect tectonic slowdown and reduced
magmatic fluxes. 87Sr/86Sr values provide geochemical insight into the
balance between continental weathering and MOR-derived mantle
inputs. High 87Sr/86Sr ratios indicate increased contributions from
continental sources, while low ratios are associated with enhanced
MOR activity, offering critical insights into the global geochemical
cycle and its linkage to tectonic dynamics30,31. Simultaneously, LOSCAR
model results capture changes in carbon release magnitude and iso-
topic composition, offering an integrated perspective on how tectonic
outgassing shaped atmospheric pCO2 levels and carbon isotope
trends32–34 (Fig. 1a–d). Based on consistent cross-validation among
thesedatasets, three tectonic phases can be recognized during the late
Paleozoic, providing a framework for understanding the episodic
nature of tectonic processes and their impact on magmatism and
geochemical cycles. The intervals are defined as follows: 360–330Ma
(Phase I) and 280–250Ma (Phase III) represent periods of elevated

tectonic activity, while 330–280Ma (Phase II) corresponds to a phase
of reduced tectonic activity (Fig. 1). These phases are defined by rela-
tive changes in tectonic intensity rather than discrete geochronologi-
cal boundaries, reflecting long-term trends in Earth system behavior.

Phase I (360–330Ma) is marked by widespread subduction and
MOR expansion, with detrital zircon frequencies reaching high
values, indicating widespread continental magmatism. 87Sr/86Sr
values trend lower, reflecting greater mantle input from seafloor
spreading. In the LOSCAR simulations, this phase is represented by
relatively elevated carbon input rates (averaging ~0.041 Pg C yr−1;
Fig. 1h; Fig. S1), consistent with enhanced volcanic outgassing and
active crustal recycling. Phase II (330–280Ma) is characterized by a
pronounced decline in subduction zone and MOR lengths, reduced
crustal production rates, and troughs in zircon age distributions
(Fig. 1). This interval shows elevated 87Sr/86Sr ratios, suggesting
dominance of continental inputs and diminished MOR influence. In
the carbon cycle simulations, this interval is represented by sig-
nificantly lower carbon input rates (averaging <0.02 Pg C yr−1; Fig. 1h;
Fig. S1), resulting in relatively stable or declining pCO2 concentra-
tions. These factors collectively support an interpretation of this
interval as a time of tectonic slowdown, with reduced volcanic
degassing. This period was accompanied by the expansion and sta-
bilization of large polar ice sheets, particularly in the Southern
Hemisphere35. Phase III (280–250Ma) marks a renewed phase of
elevated tectonic activity. Subduction zone lengths and surface
production increase, accompanied by resurgent magmatism recor-
ded in detrital zircon peaks (Fig. 1). Concurrent decreases in 87Sr/86Sr
ratios suggest intensified MOR input, consistent with enhanced
mantle-derived strontium fluxes. Carbon input rates rise significantly
during this phase in LOSCAR simulations (averaging ~0.063 Pg C yr−1;
Fig. 1h; Fig. S1), reflecting a shift toward intensifiedmantle outgassing
and large-scale magmatism. This resurgence likely contributed to the
retreat of polar ice sheets and more pronounced global sea-level
fluctuations36,37. While the precise transitions between phases are
inherently gradual and somewhat uncertain, our classification
emphasizes the existence of distinct phases defined by robust tem-
poral trends rather than rigid geochronological cutoffs. We
acknowledge the simplification involved in applying discrete phase
boundaries, yet this framework is effective for identifying first-order
relationships among tectonic background, carbon emissions, and
climate sensitivity across the late Paleozoic Earth system.

Instability and obscuration of astronomical signals
Sea-level fluctuations offer a sensitive proxy that integrates multiple
climate and geological processes operating across various
timescales12,38,39 (Supplementary Information). On tectonic time-
scales, processes such as subduction and mid-ocean ridge expansion
significantly impact global sea level by redistributing water between
Earth’s interior and surface reservoirs12. At shorter, climatic time-
scales, sea-level variations primarily reflect the cyclic growth and
retreat of ice sheets, thermal expansion of seawater, and changes in
continental water storage, all of which are closely modulated by
astronomical forcing through variations in solar insolation40–42.
Therefore, orbital signals preserved in sea-level records represent a
valuable means to investigate how tectonic activity might alter the
expression and detectability of astronomical climate forcings. Clar-
ifying this interaction is essential, as misinterpreting tectonically
influenced sea-level changes solely as orbital signals risks distorting
our understanding of past climate behavior and the underlying
mechanisms driving global climate variability.

To assess how tectonic background influences the expression of
astronomical forcing in sedimentary archives, short-period sea-level
cycles across the late Paleozoic were analyzed using multiple lines of
evidence. Statistically significant differences in sea-level cycle dura-
tions are observed when comparing intervals characterized by
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reduced tectonic activity (Phase II; ~330–280Ma)with those exhibiting
elevated tectonic activity (Phases I and III; ~360–330and ~280–250Ma)
(Fig. 2; Fig. S3). To assess whether the observed cyclicities reflect
periodicities consistent with astronomical control, circular spectral
analysis (CSA) was performed on both sea-level cycle and sequence
duration datasets. These results reveal that cyclicities within the range
of 0.5–2.0Myr are statistically significant during intervals of reduced
tectonic activity, whereas signal coherence diminishes under
more tectonically active conditions (Fig. 2; Fig. S3). Besides, during
intervals of reduced tectonic activity (Phase II; ~330–280Ma), sea-level
cycles were consistently shorter and more tightly clustered
(mean = 1.44 ±0.61Myr, n = 38). In contrast, periods of elevated tec-
tonic activity (Phases I and III; ~360–330Ma and ~280–250Ma) were
associated with longer and more dispersed cycle durations
(mean = 1.85 ± 1.00Myr, n = 31) (Fig. 2a). These differences are statis-
tically robust, supported byWelch’s t-test (t = −4.44, p =0.0001), F-test
(F = 6.85, p <0.0001), and one-way ANOVA (F = 23.03, p <0.0001)
(Supplementary Data 3). A similar pattern is also evident in the
sequence stratigraphic records (Fig. S3; Supplementary Data 3).

Several plausible mechanisms may account for the observed dif-
ferences in sea-level cycle durations and variabilities. Most notably,
during tectonically reduced intervals, sedimentary basins likely

experienced more stable accommodation space, lower sedimentation
variability, and reduced environmental noise, facilitating clearer
astronomical pacing. In contrast, elevated tectonic activity may have
disrupted signal fidelity through enhanced basin subsidence, variable
sediment supply, and localized deformation43 (Figs. 2, S3). The-
se alterations might modify the boundary conditions of the climate
system, thereby reducing its sensitivity to orbital forcing and dimin-
ishing the fidelity of preserved orbital signals19. Second, variations in
long-term orbital modulation cycles or chaotic behavior within the
solar system could potentially introduce uncertainties into sedimen-
tary records44, although clear evidence supporting this hypothesis
remains limited during the late Paleozoic. Lastly, biases and chron-
ological uncertainties inherent in sea-level reconstructions might
introduce variability; however, sensitivity analyses and multi-region
cross-validation largely mitigate this possibility (Fig. S2). Although
multiple mechanisms warrant consideration, the impact of varying
tectonic intensity on the stability of orbital signals remains one of the
most strongly supported explanations.

Late Paleozoic climate state variability
Climate variability, defined as the degree of fluctuation in climate
variables suchas temperature andprecipitation, profoundly influences
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responding to ~360–330Ma, ~330–280Ma, and ~280–250Ma, respectively.
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biological habitats, resource availability, and ecosystem stability45,46.
To assess the relative contributions of continental configuration,
orbital parameters, and atmospheric CO2 concentrations to climate
state variability, targeted sensitivity experiments were conducted
using CESM for three representative time slices: 340Ma, 300Ma, and
260Ma (Fig. 3). These intervals span the entire duration of our study
and capture contrasting tectonic and climatic regimes. The results
indicate that variations in paleogeographic boundary conditions alone
account for only minor differences in the spatial and temporal struc-
ture of climate variability (Fig. 3). In contrast, simulationswith elevated
atmospheric CO2 levels yield substantially greater variability in GMST
and GMP (Fig. 4). These findings are consistent with the well-
established principle that warmer climate systems exhibit heigh-
tened sensitivity to both internal variability and external forcings47,48.
Therefore, the pronounced increase in variability during Phases I and
III was likely primarily driven by elevated atmospheric CO2 con-
centrations (Figs. 4, S5–S8). Elevated atmospheric CO2 levels during
Phases I and III likely arose predominantly from intensified tectonic
degassing associated with enhanced subduction and volcanic activity
(Fig. 1). Additionally, secondary mechanisms such as increased silicate
weathering49,50 (which removes CO2 through chemical reactions) and
reduced efficiency of organic carbon burial (which limits long-term
carbon storage; Fig. 6) may further modulate atmospheric CO2 con-
centrations. However, a notable exception arises at 250Ma, where
elevated CO2 levels are paradoxically associated with a slight decrease
in GMST andGMP (Fig. 4). A similar pattern has been observed in other
modeling studies of the earliest Mesozoic, where reduced climate
variability is reported around 250Ma despite high atmospheric CO2

levels51. We hypothesize that this anomaly reflects the unique paleo-
geographic context of that time. Unlike earlier periods, the paleo-
geographic reconstruction for 250Ma reveals nearly complete
assembly of Pangaea and the closure of low-latitude seaways in the
Tethys domain. These changes likely disrupted equatorial heat and
moisture transport pathways52,53, thereby dampening the expected
amplification of climate variability under high-CO2 conditions.

Atmospheric CO2 appears to play a central role in amplifying the
climate system’s sensitivity to astronomical forcing. As demonstrated
by the sensitivity experiments (Fig. 3), elevated pCO2 levels markedly
increase GMST variability under a range of orbital configurations.

Spatial patterns at 300Ma (Fig. 5) further show that the differences in
surface temperature and precipitation between high and low
eccentricity–obliquity scenarios are significantly enhanced under ele-
vated pCO2. These results indicate that elevated atmospheric CO2

intensifies radiative forcing and concurrently enhances the climate
system’s sensitivity to insolation variability driven by orbital para-
meters. This enhanced sensitivity may be mediated by threshold
behaviors and nonlinear feedbacks54,55, including abrupt
glacial–interglacial transitions driven by ice volume sensitivity and
ocean circulation reorganizations that modulate nutrient supply and
biological productivity. Therefore, the observed climate instability
during Phases I and III maymainly reflect a coupled response to rising
atmospheric CO2 concentrations and orbital-scale insolation
variability.

Organic carbon enrichment during icehouse period
Our synthesis of late Paleozoic organic-rich shale and coal deposits
(Fig. 6) reveals a pronounced increase in deposition frequency during
Phase II (~330–280Ma), an interval characterized by relatively reduced
tectonic activity compared to the preceding and following stages of
intensified tectonism. Both volcanic activity and astronomical forcing
are commonly identified as two crucial factors that influence organic
matter accumulation56,57. Volcanic activity influences organic carbon
dynamics through complex and bidirectional mechanisms. Moderate
volcanism enhances nutrient availability by promoting silicate weath-
ering and supplying trace elements such as phosphorus and iron,
which together stimulate marine primary productivity50,58. In contrast,
excessive volcanic episodes can perturb the climate system across
multiple timescales. While short-lived eruptions may trigger transient
cooling through stratospheric sulfate aerosol formation, particularly in
the context of large igneous province volcanism, prolonged CO2 out-
gassing leads to sustained warming and environmental stress59,60. Over
multimillion-year timescales, volcanism thus serves as a major source
of greenhouse gases, reducing the preservation potential of organic
matter through climatic destabilization61. Given that multiple geolo-
gical indicators and carbon cycle model results suggest a substantial
decline in volcanic activity during Phase II compared to Phases I and III
(Figs. 1, S1). Such subdued volcanic conditions may have acted to
enhance nutrient availability and primary productivity without
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triggering climate instability, thereby contributing positively to the
observed organic matter enrichment. Astronomical forcing, in con-
trast, modulates climate variability by regulating seasonal and latitu-
dinal patterns of solar insolation, thereby influencing temperature,
precipitation, and hydrological cycling18,62. While the fundamental
frequencies of orbital parameters are set by planetary mechanics and
evolve on predictable timescales17,23, their climatic expression is
strongly modulated by boundary conditions, including atmospheric
CO2 levels, ice volume, and tectonic configurations (Figs. 3–5). Con-
sequently, the climatic and depositional imprint of orbital cycles can
vary substantially across geologic intervals. The observed increase in
organic-rich sedimentation during Phase II, coupled with evidence of
more coherent astronomical cyclicity during this interval (Fig. 2),
suggests that reduced tectonic disturbance may have facilitated the
clear imprint of astronomical forcing in sedimentary systems.

We propose that comparatively reduced tectonic activity, in
combination with low climate variability, played a key role in pro-
moting organic matter accumulation during the late Paleozoic. Unlike
the more geodynamically active intervals, Phase II (~330–280Ma)
coincided with an icehouse regime characterized by relatively low
atmospheric CO2 levels, reduced climate variability in model simula-
tions, and a more coherent expression of astronomical forcing
(Figs. 3, 4). The cyclic patterns in sea-level variability and depositional
architecture during this phase are commonly interpreted to reflect
orbitally paced fluctuations in continental glacier volume and con-
tinental water storage42,63. Under reduced tectonic forcing, diminished
crustal disturbance and enhanced accommodation continuity likely
facilitated the preservation of such sedimentary rhythms, thereby
improving the fidelity of astronomical signal expression in strati-
graphic archives64–66 (Fig. 7a). This climatic backdrop created favorable
conditions for biological productivity and rhythmic organic matter

deposition, which facilitated the widespread development of organic-
rich shales and coal beds in several regions, including North America,
Europe, South China, and North China, sustaining an organic-rich
icehouse period (Fig. 6b). Additionally, the spatial distribution of
organic-rich shales and coals during this phase was predominantly
concentrated between paleo-latitudes of 0° to 40°, although several
occurrences are also observed between 40°S and 60°S (Fig. 6b). This
pattern suggests that warm and humid equatorial to mid-latitude
conditions facilitated both high productivity and effective preserva-
tion under relatively stable depositional settings. Within this frame-
work, astronomical forcing likely paced climate fluctuations, further
reinforcing the cyclic nature of organic carbon burial54,67. Collectively,
the coupling of low-frequency climatic variability with enhanced
orbital pacing provided optimal conditions for sustained organic
matter accumulation during this critical interval.

Elevated climate variability associated with periods of intensified
tectonic forcing (Fig. 4), involving frequent fluctuations in tempera-
ture and precipitation, likely exerted substantial ecological stress
through multiple interconnected pathways. Pronounced temperature
fluctuations could periodically shorten or disrupt plant growing sea-
sons, suppressingnet primaryproductivity and consequently reducing
the efficiency of terrestrial carbon sequestration capacity68,69. Simi-
larly, greater precipitation variability likely amplified hydrological
extremes (e.g., floods and droughts) during specific intervals. These
extremes could further disturb sedimentary environments via abrupt
sediment transport or erosion and impose long-term ecological stress,
including nutrient loss and reduced resilience of biological commu-
nities to environmental fluctuations70. These environmental stressors
did not universally suppress ecosystem productivity, as shown by
flourishing ecosystems during certain warm intervals of the Cretac-
eous. In contrast, the late Paleozoic, characterized by extensive gla-
ciation and large ice-volume variability1, ecosystems appear to have
been more vulnerable to rapid environmental shifts71.

Further, intensified tectonic processes such as major volcanism,
widespread mid-ocean ridge expansion, and continental orogeny
during active intervals significantly modified Earth’s surface topo-
graphy and ocean circulation patterns (Fig. 7b). These large-scale
perturbations likely increased the variability and instability of regional
climate systems, particularly through enhanced fluctuations in tem-
perature andprecipitation (Fig. 4). Such conditionsmay have impaired
the recording and preservation of astronomical signals in sedimentary
archives, as demonstrated by the broader and more irregular dis-
tribution of sea-level cycle durations during periods of elevated tec-
tonic activity (Fig. 2; Fig. S3). A reduced number and fragmented
distribution of organic-rich shales and coals observed during these
intervals (Fig. 6) suggest significant disruptions to sedimentary con-
tinuity, consistent with increased depositional environmental
instability caused by tectonic disturbances. These lines of evidence
indicate that tectonic-driven environmental instability likely posed
substantial challenges to ecosystems and sedimentary processes,
ultimately limiting organic matter accumulation.

These results reveal the pivotal influence of tectonic conditions
on how the climate system responded to astronomical forcing during
the late Paleozoic. Intervals of reduced tectonic activity appear to have
provided a relatively stable climatic background that facilitated
coherent orbital pacing, enhanced biological productivity, and pro-
moted widespread burial of organic matter in the form of shales and
coals. In contrast, during intervals of elevated tectonic activity, the
Earth system likely responded to astronomical forcing inmore variable
and nonlinear ways, amplifying climatic oscillations and disrupting
depositional continuity. Notably, this variability does not imply
instability in the orbital parameters themselves; instead, it reflects the
dynamic response of the Earth system to external forcing under
varying tectonic regimes (Fig. 7). While this study focuses on physical
drivers of climate and carbon cycle interactions, the evolution of
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terrestrial vegetation likely also influenced organic carbon burial1,72.
Changes in plant diversity and productivity, such as the expansion of
seed plants and the collapse of tropical rainforests, may have affected
carbon sequestration by altering biomass, soil formation, and sedi-
ment transport73,74. Although not included in the present modeling
framework, such vegetation feedbacks are relevant to the broader
Earth system and merit integration in future coupled simulations.
Together with tectonic forcing, these biotic processes likely shaped
how the climate system responded to astronomical variations.
Recognizing this interaction provides a framework for interpreting
carbon burial patterns in deep-time archives and offers useful analogs
for other icehouse intervals.

Methods
Climate model experiments
Late Paleozoic climate dynamics (360–250Ma) were investigated
using the Community Earth SystemModel (CESM1.2.2), a fully coupled

Earth system model incorporating atmosphere, ocean, land, and sea
ice components75. The atmospheric and land components use the
Community Atmosphere Model version 4 (CAM4) and Community
LandModel version 4 (CLM4), respectively76,77, both configured with a
horizontal resolution of 3.75° × 3.75° (T31 grid). The ocean (POP2) and
sea ice (CICE4) components operate on a nominal 3° horizontal grid
(g37), with 60 and 26 vertical layers, respectively78,79. Twelve simula-
tions were conducted, each representing a 10-million-year time slice
spanning from360Ma to 250Ma (Fig. S4; SupplementaryData 4). Each
run was initialized using reconstructed paleogeography consistent
with the corresponding time interval. All other greenhouse gases,
orbital parameters, and aerosol properties were held constant. Orbital
parameters were fixed to a maximum eccentricity scenario (eccen-
tricity = 0.066, obliquity = 24.5°, longitude of perihelion = 90°) to
ensure consistent astronomical forcing across time slices. Each simu-
lation was integrated for a minimum of 2000 years, and the final 100
years were used for analysis only after equilibrium was reached,

SS
T_

lo
w

 la
tit

ud
e 

(℃
)

35

25

15

45

360 350 340 330 320 310 300 290 280 270 260 250

0

4

8

12

-160 -80 0 80 160

Time (Ma)

Phase I Phase II Phase III

pC
O

2 (
×1

00
 p

pm
)

G
M

ST
 (℃

)

12

8

16

20

G
M

P 
(m

m
/m

on
th

)

76

80

84

88

92

340 Ma

290 Ma 250 Ma

250 Ma

290 Ma
340 Ma

0 8 16-8-16

Early
Mississippian

Middle
Mississippian

Late
Miss.

Early
Penn.

Middle
Penn.

Late
Penn. Loping.GuadalupianCisuralian

Modelled SST (±5° to ±30°)
Tropical SST (conodont)

Fig. 4 | Late Paleozoic climate variability in temperature and precipitation
(360–250Ma). The temporal evolution of global mean surface temperature
(GMST, °C) and global mean precipitation (GMP, mm/month) variability during the
late Paleozoic (360–250Ma) is derived from a suite of fully coupled Community
Earth System Model (CESM) simulations conducted at 10-million-year intervals
across 12 time slices. The red shaded area with box plots represents monthly
variability in globalmean surface temperature, while the blue shaded area with box
plots corresponds to monthly variability in global mean precipitation. The dashed
lines denote the mean values for each period, and the boxes indicate the inter-
quartile range (25–75%). Six additional inset maps show zonal surface temperature

differences and zonal precipitation differences for the timepoints 340Ma, 290Ma,
and 250Ma. CESM-simulated SST (sea surface temperature) averaged over paleo-
latitudes of ±5° and ±30° define the upper and lower bounds of the shaded band
(dark blue), representing tropical SST variability across time. Conodont-based SST
reconstructions (black crosses) are compiled from equatorial regions corre-
sponding to paleolatitudes within the tropical belt, and the probability density
distribution is visualized as a light blue background. Themodeled SST consistently
align with the empirical range, supporting the validity of CESM temperature
outputs94. At the base, atmospheric pCO2 estimates and LOWESS trendline as
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defined by a global net top-of-atmosphere (TOA) radiative flux below
0.1Wm−2 (Fig. S4)80. These simulations reveal broadly consistent cli-
mate patterns across the Carboniferous and Permian. Surface tem-
peratures and precipitation are highest near the equator and in
tropical regions, whereas high-latitude zones remain cold and rela-
tively dry (Fig. S5, S6).

In addition to the 12 baseline simulations, a series of targeted
sensitivity experiments was conducted to examine the combined
effects of orbital forcing and atmospheric CO2 concentrations (Fig. S4;
Supplementary Data 4). At 260Ma and 340Ma, two simulations were
performed under maximum eccentricity and obliquity conditions
(eccentricity = 0.066; obliquity = 24.5°), with atmospheric pCO2 fixed
at 400 ppm. At 300Ma, four simulations tested the combined effects
of orbital geometry and CO2 levels: (1) Emax & Omax at 400 ppm pCO2,
(2) Emax & Omax at 800 ppm pCO2, (3) Emin & Omin at 800 ppm pCO2

(eccentricity = 0; obliquity = 22.5°), and (4) Emin & Omin at 400 ppm
pCO2. These experiments provide critical insights into how orbital
variability and CO2 radiative forcing jointly influence GMST variability
and precipitation responses at orbital time scales (Figs. 3, 5).

LOSCAR carbon cycle model
Long-term carbon cycle dynamics during the Late Paleozoic were
simulatedusing the LOSCAR (Long-termOcean-Atmosphere-Sediment
CArbon cycle Reservoir) model. LOSCAR is a box-model framework
designed to capture the partitioningof carbon among the atmosphere,
ocean, and sediments over long timescales, while explicitly tracking
δ13C evolution in the surface ocean and atmospheric pCO2 levels

32–34.
The model consists of coupled modules representing ocean circula-
tion, atmospheric exchange, biological productivity, weathering, and
sedimentation32. In this simulation, LOSCAR includes 10 ocean boxes,
subdivided into surface, intermediate, and deep layers for three major
paleo-ocean domains and a high-latitude reservoir. All surface boxes
are coupled to a single atmospheric box, enabling simulation of air-sea
carbon exchange.

In the original LOSCAR design, emission forcing files contain only
two columns: time and the carbon emission rate (PgCyr−1). This format
requires segmenting longer time-series runs whenever the carbon
isotopic composition (δ13C) of emissions needs to vary through time.
For studies involving geologically realistic, continuous changes in both
emission rates and isotopic composition, particularly relevant to the
late Paleozoic, this rigid structure constrains model flexibility and
reduces computational efficiency. To improve input flexibility, we
introduced a structural modification to the model input format,
enabling the revised LOSCAR version to accept a three-column emis-
sion file specifying: (1) time (yr), (2) carbon emission flux (Pg C yr−1),
and (3) δ13C of emitted carbon (‰). The model now directly integrates
variable isotopic trajectories, eliminating the need to manually seg-
ment emission events into artificial stepswith constantδ13C, whichwas
previously necessary for long-duration, high-resolution simulations.
The revised structure allows the model to continuously ingest time-
resolved changes in both flux and isotopic composition from a single
control file, improving simulation fidelity under geologically complex
boundary conditions.

To adapt the LOSCAR model to the late Paleozoic interval, key
initial parameters were revised to align with boundary conditions
constrained by global geochemical and climate reconstructions
(Supplementary Data 1). The initial global surface ocean dissolved
inorganic carbon (DIC) δ13C was adjusted to 3.5‰, approximating
observed late Paleozoic carbonate records81. The emitted arc volca-
nic CO2 is assumed to have δ13C=−3‰82. The modeled δ13C signal was
derived by calculating the area-weightedmean δ13C across all surface
ocean boxes, thereby integrating spatial heterogeneity while retain-
ing consistency with marine carbonate proxy data. The final steady-
state atmospheric CO2 concentration was set to 750 ppm to match
geological CO2 proxy constraints and ensure mass balance in the
silicate weathering–degassing cycle. Climate sensitivity was activated
by enabling temperature feedbacks (TSNS = 1), and the climate
response to CO2 doubling was set at 4.6 °C. All other physical and

Fig. 5 | Spatial differences in temperature and precipitation driven by orbital
forcing under varying atmospheric pCO2 levels at 300Ma. Maps illustrate the
climatic response to different orbital configurations (Emax & Omax versus Emin &
Omin) at 300Ma, evaluated under atmospheric CO2 concentrations of 400ppmand

800 ppm. a, b Annual mean surface temperature differences (°C) between Emax &
Omax and Emin & Omin configurations. c, d Monthly mean precipitation differences
(mm/month) under the same configurations.
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geochemical parameters (e.g., deep ocean temperature, biological
pump efficiency, shelf-basin rain ratio) were maintained at either
CESM-derived or default LOSCAR values, unless otherwise noted in
Supplementary Data 1. The prescribed δ13C trajectory used in the
emission input file was directly extracted from the global carbonate
compilation presented in GTS202081. While this dataset integrates
data from diverse depositional settings, including shallow-water
carbonate platforms with potential subaerial exposure, it remains
one of the few continuous δ13C records spanning the entire late
Paleozoic interval. Despite possible biases during specific intervals
such as the Carboniferous–Permian boundary, its temporal con-
tinuity and broad global scope make it suitable for long-term carbon
cycle modeling.

Model execution follows a two-stage approach. First, a spin-up
simulation under zero-emission conditions was performed for 2Myr
to ensure steady state (global net flux <10−3 Pg C yr−1). The resulting

system state (LPIA_ini.dat) served as the baseline for all subsequent
emission scenario simulations. Simulations were initiated using
control files (e.g., whole.inp) that specified the desired time-varying
emission fluxes and isotopic compositions through the modified
three-column emission file. The results of themodel runs are publicly
available on Zenodo83. The objective of this modeling framework is
to investigate relative trends in the Earth’s carbon cycle under tec-
tonically- and orbitally-modulated forcing, rather than reproducing
exact absolute values of each geochemical proxy. As such, minor
discrepancies in ocean salinity, temperature distribution, and box
boundary interactions, all of which are held constant in the model,
are not expected to significantly influence the long-term trajectories
of carbon isotope or atmospheric CO2 evolution. This approach
enables robust, comparative analysis of carbon perturbation
dynamics across varying tectonic and climatic states during the late
Paleozoic.
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accumulation of deposits in tropical to subtropical regions (0° to 40° paleolati-
tude) is evident, especially during tectonically relatively stable periods such as
Phase II. b The spatial distribution of organic-rich shales and coals during different
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Data compilation
The data used in this study were compiled from a comprehensive
review of existing literature and stratigraphic records to inform the
late Paleozoic climate state, organic matter burial patterns, and tec-
tonic settings. The primary dataset includes organic-rich shale, coal,
and lacustrine deposits from various basins around the world, span-
ning critical time intervals from the Early Carboniferous to the late
Permian (360–250Ma). This dataset is detailed in Supplementary
Data 5, which categorizes the formations according to their paleolati-
tudinal positions, geological settings, and lithologies. These data
provide key insights into how organic matter burial was distributed
geographically and temporally during different phases of tectonic
stability and activity. In this study, paleolatitudinal positions were
derived from established paleogeographic reconstructions, and
refined using the GPlates platform for paleolatitude recovery13,84.

Specifically, the formations and locations presented in the Sup-
plementary Data 5were selected based on the presenceof organic-rich
shales, coals, and lacustrine sediments acrossmarine, transitional, and
terrestrial environments. Data sources were compiled from peer-
reviewed articles, including stratigraphic studies, paleogeographic
reconstructions, and lithological analyses. These data informed the
reconstruction of organic matter burial patterns, offering critical

insights into howorganic carbon accumulation coincidedwith periods
of tectonic stability (Phase II, 330–280Ma) and tectonic activity
(Phases I and III, 360–330Ma and 280–250Ma, respectively). To
ensure the reliability of the sea-level dataset, strict selection criteria
were applied, including biostratigraphic constraints and lithological
validation. Only formations with well-constrained radiometric dating
or robust biostratigraphic correlations were included. Each entry was
cross-referenced with lithological descriptions to confirm the pre-
sence of organic-rich strata, particularly focusing on shale, coal, and
lacustrine deposits known for significant organic matter content.

Sea-level analysis and periodicity detection
To evaluate the existence of periodic signals in late Paleozoic sea-level
variations, we combined classical peak-interval estimation with cir-
cular spectral analysis (CSA) and statistical variance testing. Our pri-
mary sea-level dataset is based on the widely adopted global eustatic
curve developed by Haq and Schutter (2008), which provides bios-
tratigraphically constrained sea-level fluctuations throughout the
Carboniferous and Permian85. Although interpretive in nature, this
curve remains the most widely used reference for multimillion-year-
scale eustatic variations during the Carboniferous and Permian86,87.
Temporal resolution and robustnesswere enhancedby supplementing
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the global sea-level curve with high-resolution regional stratigraphic
sequences from the Tethyan domain and Donets Basin (Figs. S2, S3).

Short-period sea-level cycles were identified by calculating the
time intervals between successive peaks in the detrended sea-level
curve, as well as intersections between long-term and short-term
components (Fig. 1c). This approach was also applied to the regional
sequence datasets. The uncertainty introduced by manual identifica-
tion of peaks and crossing points is negligible compared to the
inherent resolution of the stratigraphic records. To statistically test for
the presence of cyclicity in these discrete event sequences, CSA was
applied to detect underlying periodic structures in event-based time
series without requiring amplitude modulation88. CSA has been suc-
cessfully used in analyzing periodicities in mass extinction events,
impact craters, and other episodic geologic phenomena89. In this
study, CSA was implemented using the Acycle 2.8 software90, which
enables event-based Rayleigh power spectral analysis with Monte
Carlo-based significance testing. The analysis was independently per-
formed for short-period sea-level events associated with each tectonic
phase. Statistically significant periodicities were identified by com-
paring Rayleigh power spectra against null distributions generated
through stochastic simulations. Importantly, the analysis does not rely
on the absolute amplitude or strict synchronicity of sea-level fluctua-
tions, which are susceptible to local tectonics, basin subsidence, or
glacio-eustatic coupling. Instead, we focus on the statistical distribu-
tion of cycle durations, which are less sensitive to absolute age cali-
bration and better reflect the imprint of astronomical forcing under
different tectonic regimes.

In parallel with spectral analysis, sea-level cycle duration dis-
tributions were statistically compared across different tectonic
regimes to evaluate the impact of tectonic conditions on astronomical
signal expression. The data were categorized into intervals of reduced
and elevated tectonic activity (Supplementary Data 2). Distributions
were tested using Welch’s t-test, F-test, and one-way ANOVA (Supple-
mentary Data 3), and visualized through kernel density estimation and
violin plots (Fig. 2a). This multi-method approach enabled us to detect
orbitally paced signals and quantitatively assess how tectonic activity
modulated the expression and preservation of astronomical forcing in
sedimentary sea-level records.

Data availability
All datasets generated and analyzed in this study are publicly archived
on Zenodo at https://doi.org/10.5281/zenodo.1564598283. The reposi-
tory includes outputs from climate simulations using CESM1.2.2 and
carbon cycle simulations using the LOSCAR model. In addition, Sup-
plementary Data 1–5 are archived in a separate supplementary file
provided with this article.

Code availability
The codes used in this study are publicly archived on Zenodo at
https://doi.org/10.5281/zenodo.15645982. These include Python
scripts used to generate selected figures in the main text and Sup-
plementary Information.
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