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Risks of AI scientists: prioritizing
safeguarding over autonomy

Xiangru Tang 1, Qiao Jin 2, Kunlun Zhu 3, Tongxin Yuan 4, Yichi Zhang1,
WangchunshuZhou5,MengQu3, Yilun Zhao 1, Jian Tang3, ZhuoshengZhang 4,
Arman Cohan1, Dov Greenbaum6,7, Zhiyong Lu 2 & Mark Gerstein 1,7,8,9,10

AI scientists poweredby large languagemodels havedemonstrated substantial
promise in autonomously conducting experiments and facilitating scientific
discoveries across various disciplines. While their capabilities are promising,
these agents also introduce novel vulnerabilities that require careful con-
sideration for safety. However, there has been limited comprehensive
exploration of these vulnerabilities. This perspective examines vulnerabilities
in AI scientists, shedding light on potential risks associated with their misuse,
and emphasizing the need for safety measures. We begin by providing an
overview of the potential risks inherent to AI scientists, taking into account
user intent, the specific scientific domain, and their potential impact on the
external environment. Then, we explore the underlying causes of these vul-
nerabilities and provide a scoping review of the limited existing works. Based
on our analysis, we propose a triadic framework involving human regulation,
agent alignment, and an understanding of environmental feedback (agent
regulation) to mitigate these identified risks. Furthermore, we highlight the
limitations and challenges associated with safeguarding AI scientists and
advocate for the development of improved models, robust benchmarks, and
comprehensive regulations.

Recently, the advancement of large language models (LLMs) has
marked a revolutionary breakthrough, demonstrating their effective-
ness across awide spectrumof tasks1–6.When equippedwith the ability
to use external tools and execute actions, these LLMs can function as
autonomous agents7–9 capable of complex decision-making and task
completion10–12. Researchers have begun deploying such agents as “AI
scientists”—autonomous systems that can conduct scientific research
by combining LLMs’ reasoning capabilities with specialized scientific
tools. For instance, in chemistry and biology, these AI scientists can
design experiments, control laboratory equipment, andmake research
decisions2,4,13–16. While AI scientists do not match the comprehensive

capabilities of human scientists, they have demonstrated specific
abilities such as selecting appropriate analytical tools16–20, planning
experimental procedures13,21, and automating routine laboratory
tasks22–24. Recent systems like ChemCrow2 and Coscientist4 exhibit
their potential impact on scientific research automation.

While the promise of AI scientists is evident, they introduce
unique safety concerns, as shown in Fig. 1. As their capabilities
approach or surpass those of humans, monitoring their behavior and
safeguarding against harm becomes increasingly challenging, poten-
tially leading to unforeseen consequences. For example, in biological
research, anAI scientist’smistake in pathogenmanipulation could lead
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to biosafety risks, or in chemistry, incorrect reaction parameters could
trigger dangerous explosions. These risks are particularly challenging
because scientific domains involve complex, interconnected systems
where small errors can cascade into significant hazards. Given that EU-
wide AI regulations have started to take effect, it is notable that a
comprehensive risk definition and analysis framework tailored to the
scientific context is still lacking. Thus, our objective is to define and
scope the “risks of AI scientists,” helping to provide a foundation for
future endeavors in developing oversight mechanisms and risk miti-
gation strategies, potentially contributing to the secure, efficient, and
ethical utilization of AI scientists.

Specifically, this perspective paper illuminates the potential risks
stemming from the misuse of AI scientists and advocates for their
responsible development. We prioritize systematic safeguarding—
developing processes to protecting humans and the environment
from potential harms—over the pursuit of more powerful capabilities.
Our exploration focuses on three intertwined components in the
safeguarding process: the roles of the user, agent, and environment, as
shown in Fig. 2: (1)Human regulation:Wepropose a series ofmeasures,
including formal training and licensing for users and developers,
ongoing audits of usage logs, and an emphasis on ethical and safety-
oriented development practices. (2) Agent Alignment: Improving the
safety of AI scientists involves refining their decision-making cap-
abilities, enhancing their risk awareness, and guiding these already-
capable models toward achieving desired outcomes. Agents should
align with both human intent and their operational environment,
boosting their awareness of laboratory conditions and potential

broader impacts while preempting potentially harmful actions. (3)
Agent Regulation and Environmental Feedback: The regulation of the
agent’s actions includes oversight of tool usage, such as how agents
operate scientific instruments and software (e.g., robotic arms, analy-
tical equipment, and specialized research software), as well as the
agent’s interpretation and interaction with environmental feedback—

Fig. 1 | A workflow and potential pitfalls in an example of antibody synthesis by AI scientists. A step-by-step process for automating antibody synthesis using AI
scientists is illustrated, with correct actions, potential errors, and the associated risks highlighted for each step.
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Fig. 2 | In our work, we advocate for a triadic safeguarding framework that
includes human regulation, agent alignment, and agent regulation. The com-
ponents of user, agent, and environment are intertwined.
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crucial for understanding and mitigating potentially negative out-
comes or hazards from complex actions.

Risks of AI scientists
Problem scope
We define AI scientists as autonomous systems with scientific domain
capabilities, such as accessing specific biological databases and per-
forming chemical experiments—ranging from in silico computational
analyses to physical laboratory procedures. AI scientists can auto-
matically plan and take necessary actions to accomplish an objective.
For example, consider an AI scientist tasked with discovering a new
biochemical mechanism. It might first access biological databases to
gather existing data, then use LLMs to hypothesize new pathways, and
employ robotics for iterative experimental testing.

The domain capabilities and autonomous nature of AI scientists
make them vulnerable to various risks. We discuss these safety risks
from three perspectives: (1)User Intent, i.e., whether the risk originates
from malicious intent or is an unintended consequence of legitimate
task objectives, (2) Scientific Domain, where the agent generates or
facilitates risks, encompassing chemical, biological, radiological, phy-
sical, and informational risks, aswell as thoseassociatedwith emerging
technologies, and (3) Environmental Impact, including the natural

environment, human health, and socioeconomic environment affec-
ted by these agents. Figure 3 shows the potential risks classified by
these aspects. It should be noted that our classification is not mutually
exclusive. For example, a misinformation campaign facilitated by lan-
guage agents could pertain to a specific chemical.

Regarding the origin of user intents, risks associated with AI scien-
tists can be categorized as stemming from either malicious intent or
unintended consequences. Malicious intent includes cases where users
directly aim to create dangerous situations. Users may also employ an
indirect “divide and conquer” approach by instructing the agent to
synthesize or produce innocuous components that collectively lead to a
harmful outcome. In contrast, unintended consequences include scenar-
ios where dangerous steps or explorations occur within otherwise
benign targets. This might result in either a hazardous main product or
dangerous byproducts, with negative effects that can be immediate or
long-term. As AI systems become more intelligent, the likelihood of
unintended safety issues increases, making these consequences harder
to detect and potentially more damaging. Recent studies have high-
lighted the complexity of unintended outcomes. For instance, AI sys-
tems might learn undesired behaviors that are highly rewarded due to
misspecified training goals. Similarly, unintended behaviors such as
unfaithful explanations during chain-of-thought prompting25 or the
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emergence of deceptive strategies in large language models26 under-
score the subtleties and risks of unintended consequences. These
unintended consequences might result in either a hazardous main pro-
duct or dangerous byproducts, with negative effects that can be
immediate or long-term. Each scenario necessitates specific detection
and prevention strategies to ensure the safe operation of AI scientists.

Similarly, each scientific domain in our classification presents
distinct risks, each requiring tailored safeguards to mitigate the
inherent dangers.

• Natural Science Risks:

– Chemical Risks involve the exploitation of agents to synthe-
size chemical weapons, as well as the creation or release of
hazardous substances during autonomous chemical experi-
ments. This category also includes the risks arising from the
use of advanced materials, such as nanomaterials, which may
have unknown or unpredictable chemical properties.

– Biological Risks encompass the dangerous modification of
pathogens and unethical manipulation of genetic material,
potentially leading to unforeseen biohazardous outcomes.

– Radiological Risks involve both immediate operational
hazards, such as exposure incidents or containment failures
during the automated handling of radioactive materials, and
broader security concerns regarding the potentialmisuseof AI
systems in nuclear research.

– Physical (Mechanical) Risks are associated with robotics and
automated systems, which could lead to equipment malfunc-
tions or physical harm in laboratory settings.

• Information Science Risks: These risks pertain to the misuse,
misinterpretation, or leakage of data, which can lead to erroneous
conclusions or the unintentional dissemination of sensitive
information, such as private patient data or proprietary research.
Recent research has demonstrated how LLMs can be exploited to
generate malicious medical literature that poisons knowledge
graphs, potentially manipulating downstream biomedical appli-
cations and compromising the integrity of medical knowledge
discovery27. Such risks are pervasive across all scientific domains.

In addition, the impact of AI scientists on the external environ-
ment spans three distinct domains: the natural environment, human

health, and the socioeconomic environment. Risks to the natural
environment include ecological disruptions and pollution, which may
be exacerbated by energy consumption and waste output. Human
health risks encompass damage to both individual and public well-
being, such as the negative impact on mental health through the dis-
semination of inaccurate scientific content. Socioeconomic risks
involve potential job displacement and unequal access to scientific
advancements. Addressing these risks demands comprehensive fra-
meworks that integrate risk assessment, ethical considerations, and
regulatory measures, ensuring alignment with societal and environ-
mental sustainability through multidisciplinary collaboration.

Vulnerabilities of AI scientists
LLM-powered agents, including AI scientists, typically encompass five
fundamental modules: LLMs, planning, action, external tools, and mem-
ory & knowledge7,10. These modules function in a sequential pipeline:
receiving inputs from tasks or users, leveraging memory or knowledge
for planning, executing smaller premeditated tasks (often involving
scientific domain tools or robotics), and ultimately storing the resulting
outcomes or feedback in their memory banks. Despite the extensive
applications, several notable vulnerabilities exist within these modules,
giving rise to unique risks and practical challenges (see Fig. 4). In this
section, we provide an overview of the high-level concept of each
module and summarize the vulnerabilities associated with each.

LLMs (The base models). LLMs empower agents with fundamental
capabilities. However, there are certain risks associated with them:

Factual Errors: LLMs are prone to generating plausible but false
information, which is particularly problematic in the scientific domain,
where accuracy and trustworthiness are crucial28–31.

Vulnerable to Jailbreak Attacks: LLMs are susceptible to jail-
break attacks, where manipulative prompts can bypass safety
measures32,33. Such attacks may involve indirect or disguised requests,
highlighting the importance of developing stronger safeguards and
monitoring systems to ensure that potentially dangerous information
cannot be accessed through prompt manipulation.

Reasoning Capability Deficiencies: LLMs often struggle with
deep logical reasoning and handling complex scientific arguments34–36.
Their inability to perform such tasks can result in flawed planning and
interaction, as they may resort to using inappropriate tools37.
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Fig. 4 | This diagram illustrates the structural framework and potential vul-
nerabilities of LLM-based AI scientists. The agent is organized into five inter-
connected modules: LLMs, planning, action, external tools, and memory &
knowledge. Each module exhibits unique vulnerabilities. The arrows depict the

sequential flow of operations, starting from memory & knowledge to the use of
external tools, underscoring the cyclic and interdependent nature of these mod-
ules in the context of scientific discovery and application.
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Lack of Up-to-Date Knowledge: LLMs, which are trained on pre-
existing datasets, may lack the latest scientific developments, leading
to potential misalignments with contemporary scientific knowledge38.
Despite the advent of Retrieval-Augmented Generation, challenges
remain in sourcing the most recent knowledge. Recent advances in
model editing techniques offer promising solutions for efficiently
updating LLMs’ knowledge in specific domains while preserving per-
formance on other tasks39, though maintaining long-term model rele-
vancy remains an open challenge.

Planning module. Given a task, the planning module is designed to
break down the task into smaller, manageable components. Never-
theless, the following vulnerabilities exist:

Lack of Awareness of Risks in Long-term Planning: Agents
often struggle to fully comprehend and account for the potential risks
associated with their long-term plans of action. This issue arises
because LLMs are primarily designed to solve specific tasks rather than
to evaluate the long-term consequences of actions with an under-
standing of potential future impacts40,41.

Resource Waste and Dead Loops: Agents may engage in inef-
fective planning processes, leading to resourcewastage and becoming
stuck in non-productive cycles42–44. A pertinent example is when an
agent is unable to determine whether it can complete a task or con-
tinously fails when using a tool it relies on. This uncertainty can cause
the agent to repeatedly attempt various strategies repeatedly, unaware
that these efforts are unlikely to yield success.

InadequateMulti-task Planning:Agents often face challenges in
handling multi-goal or multi-tool tasks due to their design, which
typically optimizes them for single-task performance18. This limitation
becomes particularly evident when agents are required to navigate
tasks that demand simultaneous attention to diverse objectives or the
use of multiple tools in a cohesive manner. The complexity of multi-
task planning not only strains the agents’ decision-making capabilities
but also raises concerns about the reliability and efficiency of their
actions in critical scenarios.

For instance, consider an agent designed to assist in emergency
response scenarios, where itmust simultaneously coordinate logistics,
manage communications, and allocate resources. If the agent is not
adept at multi-task planning, it might misallocate resources due to its
inability to reconcile the urgency of medical assistance with the need
for evacuation efforts. This could result in a delayed response to cri-
tical situations, thereby exacerbating the impact of the emergency.

Action module. Once the task has been decomposed, the action
module executes a sequence of actions, specifically by calling tools.

DeficientOversight in Tool Usage:A lack of efficient supervision
over how agents use tools can lead to potentially harmful situations.
For instance, incorrect selection or misuse of tools can trigger hazar-
dous reactions, including explosions. Agents may not be fully aware of
the risks associatedwith the tools theyuse, as the toolsmay functionas
black boxes to the agents. This is especially true in specialized scien-
tific tasks, where the results of tool usage might be unpredicted and
unsafe. Thus, it is crucial to enhance safeguards by learning from real-
world tool usage.

LackofRegulations onHuman-Agent Interactions for Actions:
Strengthening regulations on human-agent interactions is crucial as
the rising use of agents in scientific discovery highlights the urgent
need for ethical guidelines, particularly in sensitive domains like
genetics. Despite this, the development of such regulatory frameworks
is still at an early stage, as indicated by refs. 45,46. Moreover, the
propensity of LLMs to amplify andmisinterpret human intentions adds
another layer of complexity. Given the decodingmechanisms of LLMs,
their limitations in hallucination can lead to the generation of content
that presents non-existent counterfactuals, potentially misleading
humans.

External tools. During task execution, AI scientists interact with var-
ious external software andhardware tools (e.g., robotic arms, chemical
analysis software, or molecular design toolkits like RDKit) to accom-
plish their objectives. While these tools extend the capabilities of AI
scientists from planning to physical execution, they also introduce
potential risks when misused. For instance, an AI scientist might issue
incorrect commands to a robotic arm controller handling chemical
substances, potentially leading to hazardous spills or reactions. The
challenge lies not in the tools themselves but in the AI scientist’s ability
to appropriately utilize these specialized external interfaces and
anticipate their real-world consequences.

Memory and knowledge module. LLMs’ knowledge can become
muddled in practice, much like human memory lapses. The memory
and knowledge module attempts to mitigate this issue by leveraging
external databases for knowledge retrieval and integration. However,
several challenges persist:

Limitations in Domain-Specific Safety Knowledge: Agents’
knowledge shortfalls in specialties like biotechnology or nuclear
engineering can lead to safety-critical reasoning lapses. For instance,
an agent for nuclear reactor design might overlook risks like radiation
leaks or meltdowns, while an agent involved in compound synthesis
may fail to assess toxicity, stability, or environmental impacts47.

Limitations in Human Feedback: Insufficient, uneven, or low-
quality human feedback may hinder agents’ alignment with human
values and scientific objectives. Although human feedback plays a
crucial role in refining performance and correcting biases, it is often
difficult to obtain comprehensively and may not cover all human
preferences, especially in complex or ethical scenarios48. This under-
scores the need for improvedmethods to effectively collect and apply
human feedback data.

Inadequate Environmental Feedback: Despite some work on
embodied agents49, agents may not receive or correctly interpret
environmental feedback, such as the state of the world or the behavior
of other agents. This can lead tomisinformed decisions thatmay harm
the environment or the agents themselves50. For example, an agent
trained to manage water resources may not account for rainfall
variability, the differing user demands, or the impacts of climate
change.

Unreliable Research Sources: Agents might utilize or train on
outdated or unreliable scientific information, leading to the dis-
semination of incorrect or harmful knowledge. For example, LLMs run
the risk of plagiarism of copyrighted content, content fabrication, or
producing false results51.

Recent work in safeguarding AI scientists
AI scientists could directly or indirectly produce harmful outputs. A
key concern lies in the gap between syntactic correctness and runtime
safety. For example, in programming, both human programmers and
AI agents like Copilot can write code that is syntactically correct and
appears bug-free, yet may produce unexpected errors or incorrect
outputs when deployed. Similarly, in chemical experiments, an AI
scientist might follow all the correct procedural steps but still inad-
vertently generate toxic gases or dangerous byproducts during
synthesis. While human experts can often anticipate and prevent such
issues through their experience and knowledge, AI scientists may lack
the capability to foresee potential dangerous outcomes. A survey of
recent studies on the risks of LLMs and agents is shown in Fig. 5 and
Table 1.

Coscientist4 proposed a chemical agent with access to scientific
tools and highlighted the safety risks agents confront, using practical
examples to emphasize the need for safety assurance in AI scientists.
To address these safety concerns, ChemCrow2 introduced a safety tool
that reviews user queries to prevent agents from inadvertently creat-
ing hazardous chemicals during synthesis in response to malicious
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commands. In addition to filters for user inputs, CLAIRify23 designed
specialized safety mechanisms for its chemical agents. Furthermore,
SciGuard52 developed a specialized agent for risk control that incor-
porates long-termmemory to enhance safety. To evaluate the security
of the current models, SciGuard created a benchmark called SciMT-
Safety. This benchmark evaluates a model’s harmlessness based on its
ability to reject malicious queries and gauges its helpfulness based on
how effectively it handles benign queries.

Current limitations
Since AI scientists confront ubiquitous risks, effective safety mechan-
isms should consider user inputs, agent actions, and environmental
consequences. However, current efforts remain incomplete.

(1) Lack of safety constraints on action space. Most work on
safeguardingAI scientists demand the useof external tools52. However,
the limited capabilities of agents can lead to the unintentional misuse
of tools andharmful outcomes,which can bemore severewhenmisled
by adversaries. A fundamental solution is to constrain the input
domain of possible actions. Leading agent frameworks43,53 demon-
strate this by predefining a fixed and finite action space to balance
safety and functionality. For example, AutoGPT limits a code agent’s
file system access to ‘read_file’ operations only, preventing potentially
dangerous ‘write_file’ operations. Such domain constraints on tool

functions can be systematically applied when developing AI scientists
to ensure safer operation.

(2) Lack of specialized models for risk control. Apart from
SciGuard52, specialized safety mechanisms for AI scientists are largely
lacking. Current approaches mainly rely on input filtering to prevent
harmful commands or LLM-based monitoring43,54,55 to screen agent
behaviors during execution. However, more proactive approaches,
such as adversarial models explicitly trained to identify potential
exploits in AI scientists, are needed, similar to GAN-style security
testing. These specialized safety measures are particularly crucial
given the high-stakes nature of scientific experiments compared to
general web or software tasks.

(3) Lack of domain-specific expert knowledge. Compared with
general-purpose agents that handle web browsing56 or basic tool
usage19, AI scientists require sophisticated domain expertise. For
example, synthesizing small molecules demands deep biochemistry
knowledge to understand molecular properties and reaction
mechanisms. Such expertise is critical for two aspects of safety: (1)
enabling proper experimental planning and tool usage to prevent
accidents, and (2) recognizing potential hazards in advance. For
instance, an agent with chemistry expertise would understand that
certain chemical combinations can trigger dangerous exothermic
reactions and avoid such combinations.

LLM Safeguard

Safeguarding LLMs

Standard SafetyBench [67], SuperCLUE-Safety [68]

Alignment-breaking based
Jailbroken [40], Assert [69]
BIPIA [70], MasterKey [71]

Safety Alignment

RLHF
RLHF [72, 73],
Safe RLHF [74]

Fine-tuning
Shadow Alignment [75],
Compromised Fine-tuning [76],
Stay-Tuned LLaMAs [77]

Inference RAIN [78]

Alignment-breaking
Defense

Self Defense [79], RA-LLM [80],
81],

In-Context Defense [82]

Parameter Pruning [83], Jatmo [84]

Safeguarding Agents

General Agents
R-Judge [85], AgentMonitor [86]

Toolemu [54]

Memory Mechanism Sciguard [87]

External Tool Using
Chemcrow [14], CLAIRify [26],

12]

Fig. 5 | SafeguardingLLMs andAI scientists: overviewof evaluations, defenses, and agent-levelmechanisms. Survey of relatedwork in safeguarding LLMs and agents,
among which scientific agents are specifically stated.

Table 1 | Summary of LLMs and AI scientists (agents) safety concerns and solutions

Type of Safety Risk LLMs AI Scientists (agents)

Content Safety Risks Risks Identified: Issues such as offensiveness, unfairness, illegal activities, and
ethical concerns67,68. Evaluation Methods: SafetyBench with multiple-choice ques-
tions covering seven categories of safety risks67. Alignment Methods: Reinforce-
ment learning from human feedback (RLHF)69,70. Safe RLHF, decoupling helpfulness
and harmlessness71. Self-evaluation and training-free alignment via RAIN72. Fine-
tuning Safety:Adversarial examples and benign data can inadvertently compromise
model safety during fine-tuning73,74. Reassuringly, extra safety examples can improve
this concern, an excess may hinder it75.

Tool Interaction Risks: Identifying risks of
agents with an emulator43.

Jailbreak Vulnerabilities Alignment-Breaking Attacks: Evaluated under jailbreaking conditions33,61–63.
Defenses: Prompt techniques (self-examination)76–78, parameter pruning79, fine-
tuning80.

Evaluation of Risk Awareness: Techniques like
AgentMonitor54 and R-Judge55.

Here, LLMs refer to base language models that primarily process and generate text, while AI scientists are autonomous systems that combine LLMs with the ability to use external tools (e.g.,
laboratory equipment, scientific software) and take actions in the physical world. For example, while an LLM might generate text describing a chemical reaction, an AI scientist could execute that
reaction using robotic equipment.
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(4) Ineffective evaluations on the safety of AI scientists. To
date, benchmarks evaluating safety in the scientific realm, such as
SciMT-safety52, only consider the harmlessness of models by examin-
ing their ability to deny malicious requests. Considering the multi-
faceted issues mentioned above, safeguarding AI scientists demands
additional benchmarks focused on comprehensive risk scopes (Sec-
tion “Problem Scope”) and various agent vulnerabilities (Section
“Vulnerabilities of AI Scientists”).

Proposition
It has become increasingly evident that developers must prioritize risk
control over autonomous capabilities. While autonomy is an admirable
goal and significant for enhancing productivity across various scien-
tific disciplines, it cannot be pursued at the expense of generating
serious risks and vulnerabilities. Consequently, we must balance
autonomy with security and employ comprehensive strategies to
ensure the safe deployment and use of AI scientists.

Moreover, the emphasis should shift from output safety to
behavioral safety, which signifies a comprehensive approach that
evaluates not only the accuracy of the agent’s output but also the
actions and decisions it takes. Behavioral safety is critical in the sci-
entific domain, as the same action in different contexts can lead to
vastly different consequences, some of which may be detrimental.
Here, we propose fostering a triadic relationship involving humans,
machines, and the environment. This framework recognizes the
importance of robust and dynamic environmental feedback, in addi-
tion to human feedback.

To address current limitations in safety requirements and domain
expertise, we propose a dual-pronged interim strategy that combines
enhanced human supervision with conservative operational con-
straints. First, we recommend implementing heightened expert over-
sight in domains where autonomous safetymeasures are still evolving,
ensuring continuous monitoring and validation of AI system beha-
viors. Second, we advocate restricting autonomous operations to well-
characterized, lower-risk scenarios where safety parameters and
operational boundaries have been thoroughly validated through
empirical testing and expert review.

Agent alignment and safety evaluation
Agent alignment. Improving LLM Alignment: The foundation of AI
scientist safety lies in better-aligned LLMs—ensuring they generate
responses that adhere to safety guidelines and legal requirements.
Current alignment efforts focus on several complementary approa-
ches: filtering harmful or illegal content through careful data curation,
applying Constitutional AI principles57, and using targeted knowledge
editing techniques to detoxify model behaviors58.

Towards Agent-level Alignment: Agent alignment, however,
presents a unique challenge: controlling sequences of actions thatmay
be individually benign but potentially harmful in specific contexts.
While LLM alignment can be achieved through output filtering, agent
alignment requires understanding and replicating human expert
workflows. For instance, in biological research, an agent needs to learn
not just what to do, but how expert researchers systematically inves-
tigate genetic variants—consulting literature, analyzing similar var-
iants, and understanding gene interactions. This kind of sequential
decision-making cannot be learned through simple prompting or
output filtering. Instead, it requires: (1) comprehensive datasets of
human expert workflows, capturing step-by-step research methodol-
ogies; (2) domain experts providing feedback on action sequences,
similar to how autonomous driving systems learn from real-world
driving data; and (3) reward models that evaluate not just individual
actions but entire research strategies. The key challenge is that, while
we have abundant data on what researchers write (e.g., papers,
answers), we lack structured data on how they conduct research—their
sequence of actions, tool usage, and decision-making processes.

Safety evaluation. Red Teaming: Identifying potential vulnerabilities
that may cause hazardous activities to users and the environment is
essential for evaluating agent safety. Red-teaming59, i.e., adversarially
probing LLMs for harmful outputs, has been widely used in the
development of general LLMs. For example, jailbreaks that challenge
model safety are used in red-teaming evaluations and have been spe-
cifically noted as alignment-breaking techniques in Table 1. Further-
more, red-teaming datasets can be utilized to train LLMs for harm
reduction and alignment reinforcement. However, specialized red-
teaming for AI scientists is absent. Considering the severe risks in the
scientific domain (Section “Problem Scope”), we advocate for red-
teaming against AI scientists. The criteria for effective red-teaming of
AI scientists include: (1) Domain-specificity: Testing scenarios must
reflect realistic scientific workflows and domain-specific safety con-
cerns; (2) Complexity gradients: Scenarios should progress from sim-
ple protocol deviations to complex multi-step safety violations; (3)
Cross-domain interactions: Tests should examine how safetymeasures
in one domain affect operations in others. Our initial validation tests
on chemical synthesis agents demonstrate the effectiveness of these
criteria, though broader testing across different scientific domains is
ongoing. Red-teaming forAI scientists differs fromgeneral LLM testing
in several key aspects: (1) Physical safety implications: Tests must
account for real-world consequences beyond text generation; (2)
Domain expertise requirements: Red team members need both
security expertise and domain-specific knowledge; (3) Tool interaction
complexity: Testsmust cover both languagemodel responses and tool
usage patterns.

Benchmarking: To address the various risks stated in section
“Problem Scope”, comprehensive benchmarks should cover a wider
range of risk categories and provide amore thorough coverage across
domains. To address vulnerabilities stated in Section “Vulnerabilities
of AI Scientists”, effective benchmarks should focus on various
dimensions such as tool usage60, risk awareness54,55, and resistance to
red-teaming61–63.

Task Alignment: Our framework implements a graduated
autonomy approach to address the challenge of maintaining agent
performance while ensuring safety. The agent begins with restricted
operations in well-defined, lower-risk tasks and gradually expands its
operational scope as safety metrics are met. This is complemented by
continuous monitoring systems that evaluate both task performance
and safety compliance. When performance metrics indicate degrada-
tion due to safety constraints, the system triggers a human expert
review to optimize the balance between safety and functionality. This
approach allows for dynamic adjustment of safety parameters based
on task complexity and risk level, rather than applying uniform
restrictions across all operations.

Human regulation
In addition to steering already-capable models, it is also important to
impose certain regulations on the developers and users of these highly
capable models.

Developer regulation. The primary goal of developer regulation is to
ensure AI scientists are created and maintained in a safe, ethical, and
responsible manner. Similar to how automobile manufacturers must
meet safety standards and certification requirements before being
authorized to produce vehicles, developers should be required to
obtain certification before being authorized to develop AI scientists.

First, developers of AI scientists should adhere to an inter-
nationally recognized code of ethics. This includesmandatory training
in ethical AI development, with an emphasis on understanding the
potential societal impacts of their creations across global contexts.
Second, we need a practical framework for safety and ethical com-
pliance checks that can work across jurisdictions. This could combine
international standards, regional certification bodies, automated

Perspective https://doi.org/10.1038/s41467-025-63913-1

Nature Communications |         (2025) 16:8317 7

www.nature.com/naturecommunications


testing tools, and peer review mechanisms, though enforcing such
oversight globally remains challenging.

Furthermore, developers should implement robust security
measures to prevent unauthorized access and misuse. This includes
ensuring data privacy, securing communication channels, and safe-
guarding against cyber threats. The development life cycle should
incorporate regular security assessments conducted by both internal
teams and independent third-party auditors, although establishing
consistent international oversight remains challenging. Lastly, there
should be transparency in the development process. Developers must
maintain detailed logs of their development activities, algorithms
used, and decision-making processes. These records should be
accessible for audits and reviews, ensuring accountability and facil-
itating continuous improvement.

User regulation. Regulating the use of autonomous agents in research
is crucial. First, potential users should obtain a license to access AI
scientists, analogous to howdriversmust be licensed before operating
vehicles. To acquire this license, users should be required to undergo
relevant training and pass a knowledge evaluation on the responsible
use of AI scientists. Usage monitoring should balance safety oversight
with laboratory privacy, focusing on critical safety incidents and
anonymized usage patterns while respecting institutional autonomy
and intellectual property rights.

Similar to clinical studies requiring Institutional Review Board
(IRB) approval, autonomous scientific research needs institutional
oversight. However, rather than relying on researcher self-disclosure,
specialized committees with AI safety expertise should provide stan-
dardized risk assessment protocols and evaluations.

Our framework implements a layered oversight approach: (1)
Institution-Level Controls: Primary oversight resides with IRBs speci-
fically trained inAI safetyprotocols, allowingorganizations tomaintain
control over their research processes while ensuring compliance. (2)
Privacy-Preserving Auditing: External safety monitoring focuses on
aggregated metrics and anonymized usage patterns rather than
granular research details. This approach enables effective safety
oversight while protecting sensitive intellectual property and research
data. (3) Tiered Reporting Structure: A graduated reporting system
where only critical safety incidents require detailed external review,
with clear guidelines protecting proprietary information and research
confidentiality. However, more thorough safety checks inevitably
increase response latency. This time-complexity trade-off means that
achieving higher safety standards often comes at the cost of decreased
operational speed, potentially limiting real-time applications.

Agent regulation and environmental feedback
Understanding and interpreting environmental feedback is critical for
AI scientists to operate safely. Such feedback includes various factors,
such as the physical world, societal laws, and developments within the
scientific system.

Simulated Environment for Result Anticipation: AI scientists
can significantly benefit from training and operating within simulated
environments designed specifically to mimic real-world conditions
and outcomes. This process allows the model to gauge the potential
implications of certain actions or sequences of actionswithout causing
real harm. For example, in a simulated biology lab, an autonomous
agent can experiment and learn that improper handling of bioha-
zardous material can lead to environmental contamination. Through
trials within the simulation, the model can understand that specific
actions or procedural deviations may lead to dangerous situations,
helping to establish a safety-first operating principle.

Our simulated environments are evaluated using: (1) Physical
fidelity metrics comparing simulation outputs with real-world experi-
mental results across key parameters; (2) Process fidelity metrics
measuring the accuracy of simulated workflow sequences against

recorded laboratory procedures; (3) Error propagation analysis to
understand how simulation uncertainties affect decision outcomes.
The environments undergo continuous calibration using real-world
feedback, with particular attention to edge cases and failure modes
identified during actual laboratory operations.

Agent Regulation: Agent regulation may focus on the symbolic
control of autonomous agents64 and multi-agent or human-agent
interaction scenarios. A specialized design, such as a “safety check”
standard operating procedure, could be applied to control when and
how agents utilize scientific tools that could be exploited formalicious
intents or result in unintended consequences. Specifically, to mitigate
the risk of unintended consequences, agents could be programmed to
incorporate dynamic safety checks that assess not only the direct
effects of their actions but also potential secondary or indirect
impacts. Additionally, the implementation of a consequence-aware
regulation system could require agents to simulate and evaluate the
long-term consequences of their actions before execution. Another
possible solution is to require autonomous agents to obtain approval
from a committee consisting of human experts before each query
involving critical tools and APIs that may lead to potential safety
concerns.

Real-time DecisionMaking:Our framework implements a multi-
level decision validation system: (1) A fast-response layer for immedi-
ate safety-critical decisions using pre-validated action templates; (2) A
medium-latency layer for complex decisions requiring rapid but non-
immediate responses, incorporating real-time environmental feed-
back; (3) A deliberative layer for decisions with longer-term implica-
tions, allowing for a more comprehensive risk assessment. This
hierarchical approach enables the system to balance response speed
with safety considerations while maintaining operational efficiency.

Critic Models: Beyond standard safety checks, specialized over-
sight models can play crucial roles in safety verification. Critic models
can serve as additional layers that assess and refine outputs. By iden-
tifying potential errors, biases, or harmful recommendations, critic
models contribute significantly to reducing risks associated with the
AI’s operation65,66. Additionally, adversarial models, similar to GANs,
can be specifically trained to identify potential exploits and
vulnerabilities.

Tuning Agents with Action Data: Unlike the setup for LLM
alignment, where the aim is to train the LLM or directly impose an
operational procedure on an agent, using annotated data that reflects
potential risks of certain actions can enhance agents’ anticipation of
harmful consequences. By leveraging extensive annotations made by
experts—such as marking actions and their results during laboratory
work—we can continue to fine-tune agents. For example, a chemical
study agent would understand that certain mixes can lead to harmful
reactions. Additionally, training should incorporate mechanisms that
limit agents’ access to dangerous tools or substances, relying on
annotated data or simulated environmental feedback. In biochemistry
or chemical labs, agents could learn to avoid interactions thatmay lead
to biohazard contamination or hazardous reactions. To address the
gaps in sequential decision-makingdata, our frameworkemploys three
complementary strategies: (1) Hybrid data collection combining direct
expert observation with automated workflow logging. (2) Synthetic
data generation using validated expert-designed templates: This
approach creates diverse simulated interaction scenarios specifically
designed to test the AI scientist’s decision-making capabilities across a
spectrum of challenging conditions. Similar to how automobile man-
ufacturers test vehicles on specially designed courses with various
obstacles, steep gradients, and difficult terrain before real-world
deployment, we can systematically generate synthetic interaction
scenarios that don’t necessarily correspond to specific real-world use
cases but effectively stress-test the system’s safety boundaries. These
synthetic scenarios would include adversarial prompts, edge cases,
intentionally ambiguous instructions, and complex multi-step tasks
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with hidden safety implications. And (3) Active learning approaches,
where the system identifies knowledge gaps and requests specific
expert demonstrations. Additionally, we could implement a
confidence-based execution system where actions with insufficient
supporting data require explicit expert validation before execution.

Ethical and societal impact
We hope our findings will help raise awareness of the risks posed by AI
scientists in scientific research and encourage the implementation of
comprehensive safety measures when developing, deploying, and
regulating such systems. In particular, we hope this will promote the
adoption of our proposed triadic safeguarding framework encom-
passing human regulation, agent alignment, and environmental feed-
back mechanisms when collecting, analyzing, and sharing scientific
data through AI systems.

Our perspective identifies general safety vulnerabilities in AI
scientists across multiple scientific domains. While we demon-
strate how these vulnerabilities could lead to various risks—from
chemical and biological hazards to misinformation and privacy
breaches—we neither developed nor tested specific exploits
against existing AI scientist implementations. For the avoidance
of doubt, we do not believe our analysis currently applies to
robustly designed AI scientist systems that incorporate compre-
hensive safety measures and domain expertise.

While the publication of our findings might increase awareness of
potential attack vectors that could be used for harmful purposes, we
believe the benefits of these findings being public knowledge far out-
weigh the risks. First, we believe that identifying these vulnerabilities
was already possible given existing knowledge in AI safety, domain-
specific risks, and agent architectures. The publication of our analysis
will instead inform practitioners, researchers, and policymakers about
these risks and enable them to implement appropriate safety mea-
sures. Second, to promote responsible development, we advocate for
enhanced human oversight, conservative operational constraints, and
the development of specialized safety mechanisms rather than pur-
suing unrestricted autonomy.

We considered developing specific technical defenses alongside
our analysis. While defenses such as constrained action spaces, spe-
cialized safetymodels, and enhancedmonitoringmightmitigate some
risks, we recognize that no single technical solution can address all
potential vulnerabilities. Instead, we believe our proposed framework,
combining human regulation, agent alignment, and environmental
feedback, provides a more comprehensive foundation for safe AI sci-
entist development.Weemphasize that robust regulatory frameworks,
access controls, and privacy-enhancing technologies based on pro-
vable guarantees represent the most effective defenses against the
riskswe identify, rather than relying solelyon technical safeguards that
might provide false assurance of safety.
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