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Learning plasma dynamics and robust
rampdown trajectories with predict-first
experiments at TCV

Allen M. Wang 1,2 , Alessandro Pau 3, Cristina Rea1, Oswin So2,
Charles Dawson2, Olivier Sauter 3, Mark D. Boyer4, Anna Vu3, Cristian Galperti3,
Chuchu Fan2, AntoineMerle3, Yoeri Poels 3, Cristina Venturini3, Federico Felici3,
Stefano Marchioni3, TCV Team*

The rampdown phase of a tokamak pulse is difficult to simulate and often
exacerbates multiple plasma instabilities. To reduce the risk of disrupting
operations, we leverage advances in Scientific Machine Learning (SciML) to
combine physics with data-driven models, developing a neural state-space
model (NSSM) that predicts plasmadynamics duringTokamak àConfiguration
Variable (TCV) rampdowns. The NSSM efficiently learns dynamics from a
modest dataset of 311 pulses with only five pulses in a reactor-relevant high-
performance regime. The NSSM is parallelized across uncertainties, and rein-
forcement learning (RL) is applied to design trajectories that avoid instability
limits. High-performance experiments at TCV show statistically significant
improvements in relevant metrics. A predict-first experiment, increasing
plasma current by 20% frombaseline, demonstrates theNSSM’s ability tomake
small extrapolations. The developed approach paves the way for designing
tokamak controls with robustness to considerable uncertainty and demon-
strates the relevance of SciML for fusion experiments.

Upcoming burning plasma tokamaks, such as SPARC1 and ITER2,
require reliable plasma control to avoid operational delays and
machine damage due to plasma disruptions, a challenge that will only
increase for tokamak pilot plants3, like ARC4 and DEMO5. Given that
this risk becomes intolerable at high plasma current, Ip, and stored
energy,Wtot, a key mitigation strategy is to de-energize the plasma by
performing a rampdown of the plasma current, but doing so typically
pushes the plasma closer tomultiple instability boundaries6–8. Figure 1
depicts the phases of a tokamak pulse, beginning with rampup of the
plasma current to the steady-state flattop phase, and ending with a
rampdown. Notably, Fig. 1 also shows an example of a quantity cor-
related with plasma instability growing during the rampdown phase, a
challenge that motivates the algorithmic design of safe rampdown
trajectories. This challenge is especially acute in reactor-relevant high-

performance (HP) plasmas, which operate close to instability bound-
aries to achieve the high normalized plasma density, typically quanti-
fied by the Greenwald fraction fGW9, and normalized plasma pressure,
βN

10, important for economical energy production. The importance of
designing robust rampdowns for reactor-relevant fusion plasmas is
highlighted by the recent record-breaking HP campaign at the Joint
European Torus (JET), for whichmost disruptions occurred during the
termination phase11. For the baseline scenario, a ≈ 15% increase of the
plasma current, from 3MA to 3.5MA, increased the disruptivity con-
siderably from ≈20% to ≈50%11. This challenge motivates the devel-
opment of tools that can rapidly adapt rampdown trajectories to
manage disruptivity as fusion performance is increased.

Due to the stochasticity of plasma dynamics, hardware and con-
trol imperfections, and the possibility of off-normal events (ONEs), it is
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important to design scenarios, trajectories, and controllers with
robustness to distributional uncertainty in the dynamics of the plasma.
The biggest barrier to designing for robustness in this context is the
difficulty of simulating plasma dynamics during the highly transient
rampdown phase, during which multiple physical quantities, many of
which are not well-modeled with a principles-based approach, can
change drastically. Due to this challenge, prior rampdown studies
using existing simulators6,7,12–15 typically make assumptions on impor-
tant effects like the confinement regime transition, which is subject to
significant uncertainty. These simulation limitations motivated recent
experiments at DIII-D designing rampdown trajectories with black box
Bayesian Optimization on three control variables, which achieved
improvements in the plasma current at time of termination8. This
experiment showed that relatively small adjustments canmake an out-
sized impact; however, reported pulses, also known as shots, were all
at low performance, and a predictivemodel-based approach is desired
for upcoming tokamaks. These limitations motivate the development
of models that efficiently learn difficult-to-simulate dynamics from
experimental data, and which are massively parallelizable across
uncertainties to enable robust model-based design of trajectories.

To address these challenges, this work takes a data-driven
approach, leveraging recent advances made by the Scientific
Machine Learning (SciML) community16–18 and new machine learning
frameworks, namely JAX19, which enable the training of dynamics
models that combine physics-based equations with data-driven mod-
els. A data-driven approach is not without precedent; aircraft flight
control and simulation primarily utilize data-driven models of aero-
dynamics derived from flight test data in lieu of computational fluid
dynamics20,21, often with classical linear state-space models (SSMs)22.
While prior works on learning plasma dynamics using unstructured
neural networks required large datasets, often spanning thousands of
shots23–25, we gain sample efficiency by embedding physics structure
into a neural state-space model (NSSM)26,27. This model was trained to

generate sufficiently accurate predictions using a modest amount of
data, with 311 rampdowns at low performance and only five shots with
incomplete rampdowns in the relevant HP regime, with βN > 2 and near
the density limit. The model is capable of simulating ≈104 rampdown
trajectories per secondona single A100GPU, enabling the usage of the
NSSM in a reinforcement learning (RL) training environment.

The RL environment is massively parallelized to design trajectories
with robustness to uncertainties, including the initial conditions of the
plasma and its time-varying dynamics.We leverage the capabilities of RL
for offline design of robust trajectories, which ismore readily applicable
to the safety-critical settingsof upcoming tokamaks thanRL for real-time
control28–31. A similar approach has previously been demonstrated at
KSTAR for designing feed-forward trajectories that reach target
states32,33. After a small number of initial trial shots, the plasma reliably
terminated at low plasma current and stored energy for five consecutive
HP shots, with statistically significant improvements relative to baseline,
althoughwe encourage caution in interpreting the statistics of the result
due to the small sample size. As a test of the viability of this approach for
performing small extrapolations in an incremental HP campaign, which
upcoming tokamaks like SPARC and ITER will undergo, we design a
rampdown trajectory and perform a predict-first experiment by
increasing the plasma current by 20%, from 140 to 170 kA, for a high βN
plasma near the density limit, a scenario for which zero shots of ramp-
downdata exist for TCV. In this extrapolation test, we apriori predict the
dynamics of key quantities to within sufficient accuracy to successfully
terminate the plasma on both attempts.

The paper is organized as follows. We begin with an overview of
the experiment and report the achieved rampdown improvements, as
measured by the key figures of merits of plasma current Ip and stored
energyWtot at the time of plasma termination. Then, an overviewof the
NSSM is provided along with medium-scale validation metrics
demonstrating its predictive power. This is followed by an analysis of
two shots in the experiment demonstrating the importance of

a) b)

Fig. 1 | Examples of plasma disruptions during rampdowns, and an example
non-disruptive result obtained after deployment of the developed method.
a Data from an illustrative TCV pulse (#62370), showing the rampup, flattop, and
rampdown phases, which are defined by the plasma current Ip. The bottom subplot
shows how the rampdown pushes the plasma closer to an instability limit, in this
case, the Greenwald density limit, defined by the Greenwald fraction fGW = 1. Note

this limit is approximate due to the, at present, incomplete physics understanding
of the density limit73,74. Also note that the flattop phase is abbreviated here tomore
clearly highlight the rampup and rampdown. b A comparison of the current, Ip,
stored energy, Wtot, and neutral beam injection power, PNBI, trajectories for a
baseline shot and an optimized shot, showing a faster and non-disruptive decrease
in the plasma current and stored energy relative to the baseline.
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accounting for control errors in trajectorydesign for preventing a class
of disruptions known as vertical displacement events (VDEs). Then, an
analysis of 140 kA shots in the experiment shows how incremental re-
training between run days resulted in rampdowns that are both faster
and less disruptive. Results from the predict-first extrapolation test are
reported, demonstrating the ability of the NSSM to make small
extrapolations. Finally, we discuss future work and implications for
upcoming tokamaks like SPARC and ITER.

Results
Experiment overview
The reported experiment was conducted as part of the 2024 TCV inte-
grated control, HP experimental campaign. Flattop plasmas operated at
a HP of βN>2.0 and near the density limit with a highly elongated
diverted geometrywith κ≈ 1.6 and q95≈4. Initial shots in the experiment
operated at Ip= 140 kA, henceforth known as the baseline HP scenario,
with a final extrapolation test at Ip= 170kA. Successful rampdowns from
these scenarios require careful management of multiple plasma
instability limits that can be exacerbated by details of the plasma tra-
jectories. At present, a comprehensive understanding of disruptive
limits remains an open problem, motivating many works on machine-
learning-based prediction of disruptions34–38. However, prior rampdown
studies7,8,12, a survey of disruption causes at TCV39, and the present
physics-based understanding of this high-density scenario motivated
constraints on four plasma parameters. Namely, we impose constraints
on the Greenwald fraction, fGW, the vertical instability growth rate γvgr,
theplasmapoloidal betaβp, and the edge safety factorq95.Managing the
density limit, which is correlated with the Greenwald fraction, in this
scenario is a particular challenge for fast terminations, as the relatively
longparticle confinement timescale is amajor constraint on the speedof
the rampdown. The considered constraints are further discussed in the
context of the reward function in the “Methods”.

To address the problem, anNSSMdynamicsmodelwas trained on
a modest dataset of past rampdowns, which contains only 5 incom-
plete rampdowns in the relevant HP parameter space, as shown in
Fig. 2a, b. This NSSM is then used in an RL environment to optimize a
reward function, designed tominimize time to a goal plasmacurrent of
40 kA and stored energy of 0.5kJ without disrupting, as shown in
Fig. 2c. The action space was chosen to be plasma current, Ip, shaping
parameters κ and aminor and neutral beam injection (NBI) power PNBI.
User-specified constraints were set on the Greenwald fraction fGW,
safety factor q95, and vertical instability growth rate γvgr as calculated
with the method in ref. 40, and poloidal beta βp. The optimized action
trajectories were then manually programmed into the TCV plasma
control system (PCS). Thedetails of the reward function, chosen limits,
and PCS programming process are further discussed in the “Methods”.

Statistical significanceof control results in fusion is typicallydifficult
to establish due to the scarcity of experimental time and relevant data
points. This experiment also faces this challenge, given that the ramp-
down experiment involved only nine shots, two ofwhichwere dedicated
to debugging a legacy software issue, with only five rampdowns in the
database near the relevantHP regimewith βN>2.Weuse thesefive shots
as our control set and define two test sets: onewith the debugging shots
and onewithout. As shown in Fig. 2d, theMann-Whitney U test41 shows a
statistically significant improvement in Wtot (p<0.05) at the time of
plasma termination of the experimental rampdowns for both definitions
of the test set. Improvements in Ip are only statistically significant when
we do not include the debugging shots. While the results of this statis-
tical test are encouraging, we urge caution in its interpretation, given the
small sample sizes involved, and the fact that tokamaks are highly
drifting distributions in practice, with uncontrolled variables such aswall
conditioning making a meaningful impact on experimental outcomes.

Every shot involved in the experiment is shown in Fig. 3, showing
improvements in Ip and Wtot at the time of plasma termination over the
course of the experimental runs. The unoptimized baseline rampdown

trajectory for this scenario was disrupted at relatively high current and
stored energy in #81101 and #81102 at Ip≈80kA and Wtot≈4kJ. The
experiment proceeded iteratively, with re-training of the NSSM on new
data and trajectories done after shots #81635, #81745, #81751, and
#81830. A preliminary optimized trajectorywas deployed in TCV#81635,
which reached the goal Ip andWtot before disrupting, but post-shot ana-
lysis showed poor radial control and tracking of the target shape, which
was determined to be due to a legacy software issue detailed in Fig. S1 in
the Supplementary Information. Shots #81741 and #81745 were spent
resolving this issue,with itproperly resolved in#81751, as shown inFig. S1.
#81751 is still disrupteddue toaVDE,whichwas found tobedue toa large
sensitivity of γvgr to small control errors in the inner gap. After #81751, an
uncertainty distribution on gap errors was added to the RL training
environment to gain robustness to this uncertainty, with subsequent
shots experiencing similar control errors but without similar increases in
γvgr, demonstrating the importance of designing trajectories with
robustness to real-worlduncertainties, as furtherdiscussed in the section.

For the final run-day, trajectories were re-optimized, and predic-
tions of the plasma dynamics were generated a priori for both two
reprisals of the baseline HP scenario, but also for the extrapolation
test. All four shots for both scenarios terminated successfully below
the goal Ip, with the baseline scenarios realizing both faster and non-
disruptive trajectories relative to baseline and successful a priori pre-
dictions of plasma dynamics for both scenarios.

Medium-scale validation of NSSM predictions
The NSSM was developed and trained to predict the time-dependent
dynamics of the set of observations in response to the set of actions
listed in Table 1. The primary goal of the model is to predict the
dynamics of key quantities relevant to completing the control task of a
fast disruption-free plasma rampdown in response to actuation of
controllable variables, to allow the trajectory optimization algorithm
to decide on actions that avoid user-specified limits on key quantities
correlated with disruptions.

The model underwent two training phases: an initial training
phase on a wider dataset with 311 shots in the training dataset and
131 shots in the validation dataset. To improve the predictive power of
the model for the relevant scenario, we fine-tune just the confinement
scaling of themodel by training only on 44 shots with Ip ≤ 200 kA, with
all other model weights frozen. Due to the relatively small size of the
fine-tuning dataset, we did not separate out a validation or testing
dataset for this fine-tuning phase. As shown in Fig. 4, the trainedmodel
is able to predict the time-dependent dynamics of key 0D kinetic and
disruptive quantities to within tens of percent for full rampdowns in
the validation dataset, even in the 95th percentile of error. The percent
errors for γvgr can be relatively large, but, as shown in Fig. S3 in
the Supplementary Information, this is largely attributable to the small
value of γvgr of limited plasmas, as the absolute error is relatively low.

The NSSMwas initially developedwith a neural network predictor
for the kinetic profiles on the full ρ grid, and initial training runs found
that the profile predictor can accurately predict kinetic profiles given
the set of 0D scalars specified in Table 1. Figure 5 provides an example
comparison of predictions of the Te and ne profiles against Thomson
measurements for a full shot in the validation dataset, showing accu-
rate prediction across all phases of the shot. This result corroborates
previous findings at NSTX-U that neural networks can accurately pre-
dict kinetic profiles given a set of similar 0D scalars42. Given that this
result suggests most of the relevant profile information is implicitly
captured by 0D scalars, the profile predictor was disabled prior to
running experiments to accelerate training, hence reported predic-
tions of kinetic profiles are not predict-first. This result also suggests a
structured data-driven approach to modeling tokamak transport
merits further research, in parallel with several ongoing principles-
based efforts43–45. Another noteworthy feature of this profile predictor
that should be explored in future work is its ability to function as a
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Thomson up-sampler, as the input variables are all sampled at a higher
time resolution, 1ms, than the TCV Thomson Scattering system,which
takes measurements every 17ms.

Preventing VDEs by designing for robustness to control error
The experiment also clearly highlighted the importance of accounting
for control errors when optimizing rampdown trajectories. The
rampdowns for the initial shots of the experiment were designed

without accounting for the impact of uncertainty in shape errors on
the vertical growth rate γvgr. This uncertainty had a highly sensitive
effect in TCV #81751, which ended in a VDE. Even though the γvgr at
zero control errorwas tolerable, a small increase in the deviation of the
high-field-side (HFS) gap, gHFS, from the planned value caused an
order-of-magnitude increase in γvgr, as shown in Fig. 6.

After #81751, an uncertainty distribution on the gap errors was
added to the RL training environments to encourage the optimization of

a) Data Distribution with Few Shots
at High Performance

b) Training a NSSM with
Embedded Physics Structure

Text

Optimizer

Adjoint Method
+ Automatic

Differentiation

Neural State
Space Model

Experimental
Campaign

Experimental
Data

Model
Predictions

Loss
Function

c) Robust Trajectory Optimization +
Deployment to TCV
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Fig. 2 | Overview of the methodology and key statistical results. a The training
data distribution, with amodest dataset size at lowperformance and very few shots
in the relevant high-performance regime. The target scenarios for this work at
140kAand 170 kAwith high normalizedperformance are shown.bDepiction of the
dynamics model training method, which involves comparing results from forward
simulation of an NSSM against experimental data to compute the gradient of loss
with respect to model parameters. c Depiction of the trajectory optimization
process. In addition to the trained dynamics model, the reinforcement learning

(RL) training environment is defined by a reward function specifying the desired
goal and a set of random variables that training environments are parallelized
against to find a trajectory that has robustness to uncertainties and off-normal
events. d Scatter plot of plasma current, Ip, and stored energy, Wtot, at time of
plasma termination. Bottom-right table shows p-values from the Mann-Whitney U
test comparing performance of experimental shots, with and without debug shots
included, relative to the control set of all shots in the database with βN > 1.5.
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trajectories that succeed despite this control error. The positive impact
of optimizing for robustness to this uncertainty was realized with TCV
#82875, which experienced similar control errors at similar HFS gap
values, butwithout the large increase in γvgr. This increased robustness is
likelydue toa change in theminor radius trajectory,whichdecreased the
low-field-side (LFS) gap, thus increasing the stabilizing effect of the LFS
wall whenever the plasma experiences an unexpected outward shift.
Prior work at TCV has shown the importance ofmanaging these gaps for
vertical stability40. The importance of accounting for this uncertainty is
furtherhighlightedby the fact that#82875 ismore stable inpractice than
#81751, despite a higher elongation, the quantity most typically asso-
ciated with vertical instability. In fact, we can see that #81751, with its
lower elongation, does have a lower γvgr than #82875when the gap error
is near zero, but it is also much more sensitive to control errors.

The fact that the trajectory in #82875 is more robust to control
error than in #81751 is corroborated by an analysis using the physics-
based model for γvgr used in this work40. Minor radius variations were
introduced to the RL-designed equilibrium trajectories for the two
shots, yielding distributions of γvgr trajectories. Figure 6 shows the
conclusion that the trajectories in #82875 almost uniformly have lower
γvgr than #81751, and stay largely within the soft constraint specified in
the RL training process, with the exception of the initial phase of the
rampdown process, as the flattop equilibrium has a large γvgr.

This result demonstrates that the optimal trajectory for minor
radius can differ, with significant consequences, once real-world errors
and uncertainties are accounted for. Given that existing studies on
rampdown design and optimization for ITER46 and DEMO12

find solu-
tions involving large reductions in minor radius, these experimental
results motivate the further advancement of techniques that enable
trajectory design with robustness to uncertainty.

Improving terminations by incremental re-training
Both theNSSMand trajectorieswere incrementally re-trainedonnewly
generated data from experimental run days, which resulted in more
robust and faster rampdowns for the baseline HP scenario, as shown in
Fig. 7. The speed of the model enabled re-training of both the model
and trajectories in fewer than 10 h total on a single A100 GPU. The
unoptimized solution in #81101 involved an NBI power rampdown
while keeping constant plasma current, to allow for a decrease in
density to avoid the Greenwald limit, a solutionwhich the RL approach
initially decided on as well, as shown with #81751, with an even more
conservative current ramp and introducing a reduction in κ. As dis-
cussed in, this shot resulted in a VDE, and with the introduction of an
uncertainty distribution on gHFS, the solution in #81830 resulted in less
of a reduction in the minor radius aminor, which helped eliminate the
γvgr spikes. Subsequent dynamics model training and trajectory opti-
mization resulted in a solution in #82876, which allows for an
immediate reduction in Ip without running into a density limit, high-
lighting the ability for the workflow to assist in gradually making
improvements. All optimized trajectories involved a fast initial drop in
PNBI, followed by a slower ramp phase, although the rates and critical
points for the transition differed from shot to shot.

Predict-first results for the extrapolation test
Learned dynamics models need not extrapolate far out of distribution
to assistwith control and trajectory design for net energy tokamaks, as
their operations will involve incrementally moving towards higher
performance. Thus, they simply need to be able to make reasonable
predictions under small extrapolations, and rapidly learn from
experimentwith as few shots of data as possible. To test the viability of
the developed approach in such a setting, we used the learned

Unoptimized
Baseline

Debug
Legacy Issue

Unexpected
Control Error

(Motivated
Accounting for

Control Uncertainty)

140kA
Successes

170kA
Extrapolation

Test

Fig. 3 | A shot-by-shot breakdown of every shot in the experiment. The results show the plasma current, Ip, and stored energy,Wtot, at the time of plasma termination,
along with additional contextual information. The arbitrary shading is for distinguishing groups of shots described by the labels.
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dynamics model to design trajectories for the extrapolation test sce-
nario, for which zero shots of rampdown data exist in our training
dataset for TCV, and generated a priori predictions of the distribution
of plasma dynamics during rampdown.

As shown in Fig. 8, experimental results from #82878 largely fell
within this distribution, with accurate predictions of the stored energy
and density dynamics. Arguably, the largest sources of error came from
unreliable control of the plasma shape, contributing to errors in quan-
tities like the rotational transform ι95 � 1

q95
, and also leading to an earlier

than expected H-L back-transition. #82878 also started near the density
limit, a challenging situationwhichmotivated the introductionof a delay
to the Ip ramp in the baseline scenario, but the RL algorithmwas able to
determine a trajectory to immediately decrease Ip, which is desirable,
while keeping fGW roughly constant. #82877 fell further out of distribu-
tion due to a loss of NBI power, and the presence of a neo-classical
tearing mode (NTM) at the beginning of rampdown that did not exist in
TCV #82878, as shown by Fig. S5 in the Supplementary Information.
Fortunately, these un-modeledONEs did not take the plasma far enough
out of distribution to cause a disruption. As discussed earlier, the profile
predictor was removed to help accelerate trajectory optimization, but
post-shot evaluation of the profile predictor on the0D scalars generated
by the training environment, shown in Fig. 8, shows reasonable agree-
ment against experimental Thomson measurements.

The results from this experiment demonstrate the ability of the
learned dynamics model to make small extrapolations to sufficient
accuracy to enable the design of robust disruption-free trajectories via
RL, and even the prediction misses in TCV #82877 further emphasize
the importance of further advancing the developed methodology to
design with robustness to as many ONEs as possible.

Discussion
Our resultsdemonstrate that thedevelopedapproach to learningplasma
dynamics can predict the highly transient rampdown phase with a
modest dataset and even make small extrapolations to higher perfor-
mance regimes. The relative sample efficiency of the approach, only
requiring five shots in the relevant HP regime, indicates this may be a
viable approach for upcoming tokamaks like SPARC and ITER, whichwill
initially operate at low performance before incrementally increasing
performance. Developing robust terminations during such incremental
campaigns is crucial, as highlighted by the 2020 JETHP campaign,where
a 15% increase in plasma current, from 3 and 3.5MA, raised disruptivity
from ≈20% to ≈50%11. Prediction metrics on the validation dataset, as
shown in Fig. 4, show that this approach yields accurate predictions for
the majority of rampdowns, but the 5% worst cases can involve large
prediction errors, meriting further investigation.

The developed RL approach for designing robust trajectories yiel-
dedpromising improvements in theplasmacurrent and storedenergy at
the time of termination, with incremental re-training improving the
ramp speed. This result represents one of the first successful demon-
strations of trajectory designwith robustness to real-world uncertainties
for tokamaks, which has historically been infeasible due to the compu-
tational cost of simulation. A degree of statistical significance is shown,
but the sample size is still relatively small; a larger-scale study would
more thoroughly determine the efficacy of the approach. Although a
large set of uncertainties was accounted for, detailed further in Table S1
in the Supplementary Information, experimental results involved addi-
tional uncertainties, suchas theNBI failure in#82877, that still need tobe
addressed to further improve the robustness of trajectories. Robustness
to hardware failure is of particular interest for future work, as an
exhaustive survey of disruption causes at JET has revealed hardware
failure as a significant contributing factor to disruptions47. It is also
noteworthy that the RL-designed action trajectories tended to be rela-
tively simple, suggesting that the key important ingredient is the fast and
parallelized simulation model, as a human expert may be able to find
similar trajectories if given access to the simulation model.

To improve the relevance of the developed approach to devices
like SPARC and ITER, future work shouldmodel additional physics like
impurity accumulation and NTM dynamics, both of which are difficult
to simulate, partially stochastic, and have been found to be significant
contributing factors todisruptions at JET47. Accounting for such effects
that can drastically change the plasma dynamics may motivate the
employment of real-time adjustments to the rampdown trajectory, or
the deployment of a library of trajectories as was done in previous
simulation studies48. Applying the developed approach to learning JET
rampdown dynamics would also further inform the application of this
approach to SPARC and ITER.

The developed approach also holds promise for full-shot simula-
tion, which ongoing work is investigating49. The ability for a neural
network to predict kinetic profiles using 0D scalars, demonstrated
both in this work and in prior work42, suggests a data-driven approach
may be sufficient for certain control tasks without principles-based
transport simulation, which can be extremely computationally
expensive and require strong assumptions on edge temperature and
density. The ability to deploy accurate, fast, and massively parallel
simulators of tokamakplasmaswould likely unlock newcapabilities for
tokamak trajectory and control design, allowing for more reliable
access to higher performanceplasmas, and ameliorating the riskposed
by plasma disruptions to future tokamaks.

Methods
The neural state-space model
Learning dynamical systems from data has been a core discipline
within control design for decades, including aircraft flight control20

and simulation21, and has historically been known as system
identification22,50. However, due to computational limitations of the

Table 1 | The set of observations predicted by the learned
dynamics model in response to action inputs

Parameter Description Units

Actions at

dIp/dt Plasma current ramp-rate MA/s

PNBI Neutral beam injection (NBI) heating MW

dκ/dt Elongation ramp-rate 1/s

daminor/dt Minor radius ramp-rate m/s

dδ/dt Triangularity ramp-rate (zeroed for tra-
jectory optimization)

1/s

gHFS Gapbetween the separatrix and the high-
field side wall (constant 0.02m and zer-
oed after NBI off)

m

PECRH Electron cyclotron resonance heating
(ECRH) injected power (zeroed for tra-
jectory optimization)

MW

Vgas Primary fueling gas valve voltage (zeroed
for trajectory optimization)

Volts

Predicted Observations ot

Wtot Plasma total stored thermal energy kJ

�ne, 20V Line-averaged electron density times
volume

1020

fGW Greenwald fraction -

βp Plasma poloidal beta -

q95 Safety factor at the 95% flux surface -

γvgr Vertical instability growth rate 1000 s−1

Te(ρ) Electron temperature profile (not pre-
dict-first)

keV

ne,20(ρ) Electron density profile (not predict-first) 1020m−3

The time derivatives of certain quantities are chosen as the action to allow the ramp rate to be
constrained during trajectory optimization. Note that certain actions are not optimized in this
work, but are important to include for the purpose of training the dynamicsmodel; these actions
are simply set to zero during the trajectory optimization process. Also note that the set of inputs
used for the profile predictor component is ½Wtot, �ne, 20,PNBI ,PECRH, Ip, κ, aminor , δ�.
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time, classical approaches have typically been restricted to linear
models, often in the form of linear SSMs:

_x =Ax +Ba ð1Þ

o=Cx+Da ð2Þ

Where A, B, C, and D are the matrices to be learned from datasets of
observables, o, actions, a, and, possibly, states, x. We note that the
controls literature typically uses the notation y in lieu of o and u in lieu
of a, reflecting a difference in notation between the controls and RL
communities, but here we use RL notation for consistency. In the
modern deep-learning learning era, this idea of learning dynamical
systems from data was rediscovered from a different perspective, with
the advent of the neural differential equation (NDE)18:

_x=NNθðxÞ ð3Þ

where it was discovered that, given datasets of x, a neural network,
NNθ, can be used as a systemof differential equations that is integrated
forward in time with a differential equations solver, and then adjoint
back-propagationmethods can be used in conjunction with automatic
differentiation to determine the gradient of loss with respect to the
network parameters θ16–18. The introduction of flexible machine

learning frameworks has enabled the development of the field of
SciML, based around the core idea of extending NDEs to include
physics, and other domain-specific, structure16,18. One extension that
completes the circle with the classical linear SSM is the NSSM, which
reintroduces the concepts of actions and observations:

_xðtÞ= f θðx,aÞ ð4Þ

oðtÞ=Oθðx,aÞ ð5Þ

Thanks to the power of new, highly flexible machine learning
frameworks such as JAX and the Julia SciML ecosystem, fθ and Oθ can
be programmed to include arbitrary combinations of neural networks,
physics formulas, and even classical data-drivenmodels such as power
laws, a capability whichwe exploit in this work. The training process of
an NSSM is shown in Fig. 9 and involves the simulation of the NSSM
forward in time using an initial state x0 and a time series of actions a0:T
from an experimental database. The error of the simulation results
against the experimental data is computed, and adjoint methods and
automatic differentiation are used to determine the gradient to reduce
the loss. In this work, the differential equation solver package diffrax17

is used, which includes the integration of multiple adjoint methods
with the JAX automatic differentiation system, which allows back-
propagation through all differential equation solvers in the package.

Fig. 4 | Model validation metrics. Model prediction accuracy as a function of
prediction horizon during rampdowns on the validation set of 131 shots. Both
individual data points and percentiles are shown. Shown quantities are the line-
averaged electron density times volume, �ne, 20V , the total stored energy, Wtot, the

Greenwald Fraction, fGW, the poloidal beta, βp, the vertical instability growth rate,
γvgr, and the safety factor at the 95th flux surface, q95. Figure S4 in the Supple-
mentary Information shows similar model performance on the smaller-scale fine-
tuning dataset.
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The dynamics function fθ(x, a). We begin by defining the following
confinement laws:

τn,predðx,aÞ= cnI
cI,n
p �ncn,n

e, 20P
cP,n
inputκ

cκ,nϵcϵ,n j_Ipj
c_Ip ,nNNconf , 0ðx, aÞ

ðcn,h�n
cn,n,h
e, 20 PcP,n,h

input Þ
hmodeðx,aÞ ð6Þ

τE,predðx,aÞ= cEI
cI, E
p �ncn, E

e, 20P
cP, E
inputκ

cκ, E ϵcϵ,E j_Ipj
c_Ip , E

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L�mode

NNconf , 1ðx,aÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NNcorrection

ðcE,h�n
cn, E,h
e, 20 PcP, E,h

input Þhmodeðx,aÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H�modecorrection

ð7Þ

hmode ðx,aÞ= tanhHeaviside ðPinput � ch�n
ch,n
e, 20a

ch,a
minor Þ ð8Þ

tanhClip ðxÞ � tanh
2k

max�min
ðx� centerÞ

� �
max�min

2
+ center ð9Þ

tanhHeaviside ðxÞ � 1
2
ðtanhðkx + 1ÞÞ ð10Þ

where the parameters to be learned include all coefficients c* and
neural network parameters. The laws are structured to multiply a
portion corresponding to L-mode, a neural network correction fac-
tor, and an H-mode correction factor. The L-mode term reflects
standard confinement scalings, but with the introduction of a _Ip,
which was found to help better capture the short-term effects of
ramping plasma current. The neural network output includes a
tanhClip final activation that constrains its output to the range
[0.75, 1.25], thus controlling themaximum adjustment the network is
allowed to make. The hmode function includes a tanhHeaviside
function, which provides a smooth transition between one to zero
once Pinput falls below the learned back-transition threshold, which is
structured to reflect the Martin scaling51. Note that the use of the
hmode function output as a power deactivates the H-mode
correction term once hmode transitions from one to zero. While,
in principle, the neural network should be able to learn the effects of
H-mode implicitly, we found that adding an explicit H-mode
correction factor helped improve model predictions in our low-
data regime. The k factor controls the smoothness of both the
tanhClip and tanhHeaviside functions.

These confinement laws are integrated as a part of the following
0Denergy andparticle balance equations, which is amodel that blends

a) b)

Fig. 5 | Demonstration of profile predictor performance. a An example of pre-
dictions made by the profile predictor on a validation dataset shot against Thom-
son measurements, showing both the ability of the model to up-sample Thomson
measurements and provide a smoothing effect. Error bars represent two standard
deviations. b The distribution of prediction percent errors on the validation set for
electron density,ne,20, and electron temperature,Te. The percent error is defined as

the integrated error between the prediction and measurement, normalized to the

average value of the profile. For the Te profile this is: 100
R 1

0
jTe,Thom ðρÞ�Te,pred ðρÞjdρR 1

0
Te,Thom ðρÞdρ

. Note

that this metric is a pessimistic performancemetric as it also captures error due to
random measurement noise.
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a)

b)

Fig. 6 | Demonstration of increased robustness to control uncertainty. a A
comparison of a shot designed prior to adding control uncertainty, #81751, and
after, #82875.We see that the vertical instability growth rate, γvgr, is highly sensitive
to control error in the high-field side gap, gHFS,error, in #81751, but similar control
errors experienced in #82875 result in negligible changes in stability. Time shown,
trelative, is the time relative to 1.4 s for #81751 and 1.3 s for #82875 to align the
moment the two shots experience similar control errors. Additional quantities

shown are the plasma elongation κ, minor radius aminor, high-field side gap, gHFS,
and low-field side gap, gLFS.b γvgrdistributions under 1.5 cmofminor radius control
error for #81751 and #82875. Control error was simulated by introducing variations
in the control points provided to the free-boundary equilibrium solver, FBT69,75,
used for shot preparation. The resulting equilibria were then input into the γvgr
computation method used in this work40.

Article https://doi.org/10.1038/s41467-025-63917-x

Nature Communications |         (2025) 16:8877 9

www.nature.com/naturecommunications


simple physics principles, power laws, and neural networks:

dWtot

dt
= � Wtot

τE,pred|fflfflffl{zfflfflffl}
Transport

+ I2pNNohm, rad, 0ðx, aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OhmicHeating

� �ne, 20VNNohm, rad, 1ðx, aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RadiatedPower

+ PNBI + PECRH|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Aux:Heating

ð11Þ

dð�ne, 20V Þ
dt

= �
�ne, 20

τn,pred|fflfflffl{zfflfflffl}
Transport

+ cNBIPNBI|fflfflfflfflffl{zfflfflfflfflffl}
NBIFueling

+ cgas, 0σðcgas, 1Vgas + cgas, 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GasValveFueling

+ NNwallðx, aÞ exp�cwallgHFS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
WallEffects

ð12Þ

where σ is the sigmoid function, NNohm,rad is a network that predicts
two quantities; the first ismultiplied by I2p to serve as anOhmic heating
term, and the second is multiplied by density and volume to serve as
the radiatedpower term.NNwall is included to account forpossiblewall

fueling effects when in a limited configuration, and is multiplied by an
exponential in the HFS gap to deactivate it when diverted. Additional
simple constants are included to account for fueling frombothNBI and
gas puffing. We note that, in both cases, the included terms do not
capture important state dependencies and time delays, but they
proved sufficient for this use case. The dynamics of density times
volume are predicted; in cases where density itself is used (e.g., to
compute the Greenwald Fraction), the following volume approxima-
tion is used to recover density:

V � 2πR2ϵ2κ π � π � 8
3

� �
ϵ

� �
ð13Þ

Since time derivatives of quantities, _Ip, _κ, _aminor ,
_δ are used as

actions, their integrated values are also added as state variables with
trivial dynamics.

The observation functionOθ(x, a). The observation function consists
of several components: a NN predictor for γvgr, a profile predictor, and

Fig. 7 | Incremental improvements for the baseline high-performance scenario.
Experimental traces of key actuators are shown (left), including plasma current, Ip,
neutral beam power inject, PNBI, elongation, κ, and minor radius, aminor. Additional
relevant quantities (right) include the stored energy, Wtot, line-averaged electron

density, �ne, 20, Greenwald fraction, fGW, and vertical instability growth rate, γvgr.
Time is set relative to the beginning of the termination phase. The plasma current,
Ip, and stored energy,Wtot, trajectories show improvement in rampdown speed and
disruptivity as the experiment progressed.
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Fig. 8 | A priori predictions and experimental results for the extrapolation test
scenario. a Action trajectories and a priori predictions of plasma dynamics during
rampdown, compared to experimental results from TCV #82877 and #82878. The
RL training environment accounts for uncertainty in actuationwithdistributions on
the action trajectory; the average of the distribution (in solid black) is used for shot
programming. Control of the plasma shape proved to be a challenge for this phase,
an issue also observed in previous rampdown studies6,8. Shown action variables

include the plasma current, Ip, neutral beam injected power, PNBI, minor radius,
aminor, elongation, κ, and high-field side gap, gHFS. Shown predictions and con-
straints include the stored energy, Wtot, the line-averaged electron density, �ne, 20,
poloidal beta, βp, Greenwald fraction, fGW, rotational transform at the 95% flux
surface, ι95, and vertical instability growth rate, γvgr. b Post-hoc predictions of
electron temperature,Te, anddensity,ne, profiles compared toThomsonScattering
measurements.
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simple physics formulae to compute derived quantities:

Oθðx, aÞ

βp =
8
3

Wtot

μ0R0I
2
p

ð14cÞ

f GW =
�ne, 20πa

2
minor

Ip,MA
ð14dÞ

q95 =
4:1a2

minorB0

R0Ip,MA
1 + 1:2ðκ � 1Þ +0:56ðκ � 1Þ2

� �
1 + 0:09δ +0:16δ2

� �
1 +0:45δϵ
1�0:74ϵ ð14eÞ

γvgr =NNvgr ðx,aÞ ð14fÞ
TeðρÞ,NeðρÞ=NNprof ðx,aÞ ð14gÞ

8>>>>>>>>>><
>>>>>>>>>>:

where βp is computed in accordance with the LIUQE definition52, fGW is
the usual Greenwald Fraction9, q95 is the approximation given in53 with
the squareness factor set to 1, NNvgr is a multi-layer perceptron (MLP)
with GELU activation and a scaled sigmoid output, and NNprof is a
neural-operator-based profile predictor, discussed further in the next
subsection.

Neural-operator-based profile predictor. Prior work at NSTX-U
trained a neural network to successfully predict kinetic profile
shapes using their averages plus zero-dimensional control parameters
such as plasma current, shaping, and auxiliary heating. Building upon
this prior work, we show that, on TCV data, kinetic profiles can be
predicted to reasonable accuracy with a neural network using the
stored energy Wtot, line-averaged electron density �ne, 20, and control
parameters. The key implication is that accurate predictionof the time-
dependent dynamics of just two scalars, Wtot and �ne, 20, implies rea-
sonable prediction of the dynamics of kinetic profiles.

We leverage methods developed by the neural operator54,55 lit-
erature, which has found success for solving machine learning pro-
blems in scientific domains involving PDEs. Letting fin denote an input
function and fout denote an output function, a neural operator F
parameterized by θ maps an input function to an output function:

f out =F θðf inÞ ð15Þ

In practice, the functions involved are approximated using a set of
basis functions; thus, the practical implementation results in a neural
network operatingonbasis function coefficients. In thiswork,wemake
use of cubic B-spline basis functions to represent the kinetic profiles:

TeðρÞ=
Xnbasis

i= 1

cT , iBi, 3ðρÞ ne, 20ðρÞ=
Xnbasis

i = 1

cn, iBi, 3ðρÞ ð16Þ

And we predict these profiles using a set of 0D scalars, where every
scalar is a control parameter except stored energyWtot and �ne, 20. The
full set of input and output parameters is specified in Table 1. During
training, the ρ grid corresponding to the dataset is chosen to evaluate
the basis functions, but arbitrary alternative grids can be used during
inference time.

Training methods. Training of the NSSM involved two stages. First,
NNohm,rad, NNvgr, and NNprof are trained independently of the rest of
the model on time-independent samples to predict their respective
quantities. These “pretrained” models are then integrated into the
NSSM, where they are further trained jointly with the rest of the
model through the time-dependent process specified in Fig. 9. The
AdamWoptimizer56 with an exponential decay learning rate schedule
is used for every training run. All NNs used in the dynamics function f
and NNvgr are simple MLPs with GELU57 activations on the hidden
state and tanhClip functions as final activations to constrain their
outputs to reasonable ranges. The profile predictor is further
detailed earlier in the methods. Hyperparameters for the optimizer
and model sizes are optimized via Bayesian Optimization using the
method implemented in the Weights and Biases platform58, which
was used in this work for experiment tracking. The final set of
hyperparameters is detailed in Table S2 in the Supplementary
Information.

Adjoint Method +
Automatic

Differentiation

Optimizer

Experimental Data

Function

Computed Quantity

Fig. 9 | Depiction of the neural state-space model (NSSM) training methodol-
ogy. The NSSM, defined by the dynamics function fθ and observation function Oθ

with parameters θ, is simulated forward in time, given an initial state x0 and an
action trajectory a0:T, to generate a sequence of simulated observations, ô0:T . The
simulated observations are compared with experimental observations via the loss

functionalL, which is defined as the time-integrated value of an instantaneous loss
function l. Adjointmethods in diffrax17 and JAX automatic differentiation then yield
the gradient of model parameters with respect to loss, ∇θL, which allows the
optimizer to update the parameters θ.
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Training data distribution
The dataset used for training models in this work consists of the 442
most recent shots with rampdowns that are at least partially complete
and have sufficient diagnostic availability, gathered with Disruption
and Event analysis framework for FUSion Experiments59. The initial
training phase involved training on 311 shots of data, with the rest of
the dataset used for validation. After the initial training phase, the
model is further trained on a fine-tuning dataset of 44 shots. During
this phase, all of themodel weights except those in the τE and τN hybrid
confinement laws described in are frozen. As shown in Fig. S8 in
the Supplementary Information, the dataset consists of only five shots
of data anywhere near the relevant HP region.

Reward function
The reward function is designed to balance the priority of achieving a
low plasma current and energy against the risk of disrupting the
plasma, and is given by:

rðxðtÞ, aðtÞÞ= �ctime|fflfflffl{zfflfflffl}
Penaltyfortime

� cWWtotðtÞ � cIp IpðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Penaltyforcurrentandenergy

�
Xnsof t

i= 1

csof tsiðxðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Softchance�constraints

�
Xnhard

i= 1

chardhiðxðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hardchance�constraints

ð17Þ

The reward function is active for every timestepbefore hitting the
goal state or the maximum allowed training episode time. The goal
state is chosen to be a stored energy of 500J and a plasma current of
40 kA, as, for the 170 kA extrapolation test scenario, 40 kA approxi-
mately corresponds to the relative plasma current for an ITER 15MA
benign termination, which is defined as 3MA60. A constant penalty
term is active for every time step before achieving the goal to encou-
rage time minimization. In addition, penalty terms that scale with
plasma current and energy are included to further prioritize moving
towards a safer state. To avoiddisruptive limits such as highGreenwald
fraction during the rampdown, penalty terms are added for states that
violate user-specified constraints on key quantities correlated with
disruptions.

One challenge with specifying constraint limits is the difference
in severity of violating different constraints, and the, at times,
weak correlations between physical quantities and disruptions.
To address this issue, we partition constraints into “soft”
constraints, which incur a small penalty to discourage, but not for-
bid, the algorithm from finding solutions that violate these limits,
and “hard” constraints, which incur a large penalty to strictly
enforce constraint violation. We note that while methods in the
constrained optimization literature often mathematically
express constraints separately from the objective function being
optimized, most practical implementations of constrained optimi-
zation algorithms enforce constraints by rewriting constraints as
penalty terms in the objective function61,62, an approach we also
adopt. Stochastic optimization across a distribution of outcomes
introduces a challenge: trying to avoid limits for every scenario
will likely result in excessively slow and conservative solutions63,
which itself poses its own risk. To address this challenge, we utilize
chance-constraints, a technique often utilized in the autonomous
driving literature64,65, and only activate the constraint if violation
probability exceeds a certain threshold. In this set of experiments,
this threshold is chosen as 5%. Reward function parameters used for
the final four shots are shown in Table S2 in the Supplementary
Information.

Uncertainty model
In experimental reality, the time evolution of plasma dynamics is highly
nonlinear and subject to considerable amounts of uncertainty, as evi-
denced by the two same-scenario shots shown in Fig. 8, which begin at
drastically different initial conditions. To design trajectories that have
robustness to large variability and ONEs, we defined an uncertainty
model for the RL training environments, and sampled from this uncer-
tainty model for each training environment used during training. The
uncertaintymodel includes random variables for both the initial state of
the plasma during rampdown and disturbances/model uncertainties
that affect the time-varying plasma dynamics. To account for the fact
that accidental H-L back-transition implies the initial state of the plasma
may start in either H or L-mode, the initial state distribution is modeled
as a bi-modalmixturemodel, with a 50% chance of any given RL training
environment starting in either H or L-mode. In some cases, uncertainty
distributions could easily be quantified from past experimental data
(such as tracking error in the plasma current), or frommodel prediction
accuracy (such as γvgr), but in other cases, the distributionwas chosen in
an ad-hoc fashion, upon identifying additional sources of uncertainty in
the experiment. Table S1 in the Supplementary Information summarizes
the random variables, parameterized distributions, and quantification
methods used in this work. As discussed in the section, this uncertainty
model proved to be non-exhaustive in the experiment. In addition, the
uncertainty model employed does not account for time-varying fluc-
tuations in uncertain variables; future work should employ time-varying
stochastic processes. Bothof these limitations further highlight theneed
to advance experimental uncertainty quantification and robust control
in the context of fusion plasma control.

RL methods
Standard RL problems involve optimizing a policy π to map observa-
tions to actions:

a=πðoÞ ð18Þ

from this perspective, trajectory optimization can be viewed as policy
optimization where the only observable is time:

a=πðtÞ ð19Þ

Given that time is the only observable, but there exist different
physical conditions in the parallel training environments that are
unobservable to the policy, the reward maximization process yields
a trajectory that is designed to succeed across the different condi-
tions specified in the subsection. After an initial trial with Proximal
Policy Optimization66, we foundOpenAI-ES, an evolutionary strategy
(ES) designed for policy optimization, to work better in practice67.
This is possibly explained by the theoretical analysis given in the
paper introducing OpenAI-ES, which suggests that RL problems with
long time horizons and actions that have long-lasting effects may be
better solved with ES approaches than the dominant paradigm of
policy gradient methods67. The policy π was parameterized by an
MLP with two hidden layers of width 64 and used ReLU activations
with a hyperbolic tangent final activation to constrain the action
space. A hyperparameter sweep of the architecture was not
employed, and it would be worthwhile to investigate for
future work.

Deployment to TCV
Shape trajectories determined via RL were mapped to last-closed-flux-
surface control points via re-scaling of the flattop shape for the diver-
ted phase, and using an analytic formula in the TCV MGAMS68 algo-
rithm for the limited phase. Feed-forward coil currents and voltages to
achieve the desired plasma current and shaping trajectories were then
determined with the free-boundary equilibrium code FBT and shot
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preparation algorithm MGAMS68,69, and the PNBI trajectory was pro-
grammed into the TCV supervisory control system SAMONE70,71.

Data availability
Data to generate figures found in this paper are available in the source
code repository at https://doi.org/10.5281/zenodo.1662112072. The
complete dataset used for training and validation can be obtained by
contacting A.P. or A.M.W.

Code availability
Source code is provided at https://doi.org/10.5281/zenodo.1662112072.
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