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IceQream: Quantitative chromosome
accessibility analysis using physical
TF models

Akhiad Bercovich 1,2, Aviezer Lifshitz 1,2, Michal Eldar1,2, Saifeng Cheng 2,
Roni Stok Ranen1,2, Yonatan Stelzer 2 & Amos Tanay 1,2

Single-cell mapping of chromosomal accessibility patterns has recently led to
improved predictive modelling of epigenomic activity from sequence. How-
ever, quantitative models explaining the epigenome using directly inter-
pretable components are still lacking. Here we develop IceQream (IQ), a
modelling strategy and inference algorithm for regressing accessibility from
sequences using physical models of transcription factor (TF) binding. IQ uses
spatial integration of sequences over a range of TF-DNA affinities and locali-
zation relative to the target locus. It infers TF effective concentrations as latent
variables that activate or repress regulatory elements in a non-linear fashion.
These are supplemented with synergistic and antagonistic pairwise interac-
tions between TFs. Analysis of both human and mouse data shows that IQ
derives similar, and in some cases, better performance compared to state-of-
the-art deep neural network models. IQ provides an essential mechanistic and
explicable baseline for further developments toward understanding gene and
genome regulation from sequence.

The diversity of cellular functions encoded by animal genomes relies
on flexible, plastic, and specific genome regulation. Such regulation
helps cells to determine, stabilize, and then differentiate their tran-
scriptional states. Recent breakthroughs in single-cell genomics and
epigenomics facilitate the reconstruction of detailed cellular manifold
models that describe phenomenologically these states at high
resolution1–4. Most current manifold models (nicknamed atlases) spe-
cify transcriptional states and possibly coupled profiles of chromoso-
mal accessibility5–7. The latter lists genomic loci in which nucleosome
depletion or instability is recorded either at transcription start sites
(TSSs) or, more abundantly, in distal genomic loci, which can be
broadly classified as cis-regulatory elements (CREs). Explaining TSSs
and CREs accessibility mechanistically and based on their underlying
sequences is a major open challenge in the field.

Predicting CREs from genomic sequence has a long history, and it
is recently being approached using increasingly complex models
leveraging deep neural networks and the extensive genome-wide data

provided by single-cell data organized over cellular manifolds8–13.
Complex black-box sequence specificity models can be equipped with
exploratory tools to enhance interpretability14. But whether their suc-
cessful deployment indicates simply rediscovery of mechanisms that
are already known, or alternatively, augments these non-linearly and
takes advantage of a gap in our mechanistic understanding of CRE
specificity, remains unknown. In simple words: it is still unclear if we
learned something new15–18.

DNA targeting by sequence-specific transcription factors (TFs) is
the major, and at present almost the only known mechanism for
genomic specificity of CREs19–22. Naively, CREs are defined by short
DNA sequences (or motifs) and their combinatorics. But as a rule,
mammalian (and other eukaryotic) TFs recognize their targets loosely,
such that their DNA binding preferences alone mark millions of false
positive targets across the genome23. Moreover, eukaryotic TFs also
engage with suboptimal binding sites given the appropriate chromo-
somal context and co-factor presence24. Predicting CRE activity from
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the presence or absence of optimal TF binding motifs is therefore
showing both low specificity and low sensitivity. Reconstructing the
precise and robust accessibility landscapes that can be observed in
cells in practice must therefore consider quantitative TF-DNA bio-
physics and complex multivariate interactions among dozens of TFs
that are typically active concurrently in any cell state.

The chromosomal state of a cell depends not only on the current
activity of TFs, but also on interactions occurring during the differ-
entiation leading to the current cell state-representing the cell’s epi-
genetic memory25,26. Not enough is known about the kinetics and
impact of suchmemory, but it is clear that modeling dynamics at TSSs
and CREs must consider at least the recent cellular history leading to
the state under investigation. Single-cell genomics data cannot directly
specify these dynamics, as it recovers snapshots of single-cell states.
But cellular manifold models can be interpreted as defining differ-
entiation trajectories, suggesting possible epigenetic histories for any
states based on the putative differentiation trajectory leading to it.

Here, we introduce IceQream (IQ), a model and inference algo-
rithm for quantitative fitting of chromosomal accessibility levels using
fully explicable physical TF model components. IQ sets the stage for
fully mechanistic models explaining gene and genome regulation, and
opens up multiple hypotheses for further investigation and develop-
ment, including integration of low-affinity TF-DNA interactions,
condition-specific non-linear interaction of CREs with TFs, and pair-
wise TF-TF links. We demonstrate this using the analysis of differ-
entiation manifolds describing mouse gastrulation and human
hematopoiesis. We suggest that bottom-up genome regulation analy-
sis, as implemented by IQ, can be developed in parallel to top-down
deep learningmodels. IQwill serve both as a platform for representing
and updating the continuously increasing mechanistic understanding
of the specificity of genome and cellular regulation and as a device for
discovering novel mechanisms if and when bottom-up models fail to
reproduce the performance of their deep learning analogs.

Results
Overview of IceQream quantitative accessibility modeling
IceQream (IQ) transforms single-cell ATAC raw counts (Fig. 1A, (i)) to
estimated access probability (AP), representing probabilities of loci
accessibility in an absolute range of 0 to 1. AP values of 1 represent a
locus that is accessible in all cells at all times, and lower values indicate
either transient accessibility in all cells or more stable accessibility in a
subset of the cells. For an idealized single cell and single locus,
accessibility may be represented as a binary variable of either open or
closed state, yet AP aims to quantify the frequency of observed loci
being accessible when sampling a large number of cells from the same
cellular state (and across time for dynamic processes). This motivates
the focus on quantification in a continuous variable rather than a
binary one. The IQ model (Fig. 1A, (ii)) is built upon components
representing transcription factors that are coupled together with
epigenomic context variables andpairwise interactions. EachTFmodel
integrates contributions from strong and weak affinity sequences as
predicted by a PSSMmodel, and these are weighted by a spatial curve
specifying binding preferences within and around the center of the
accessible hotspot (i.e., the nucleosome-depleted region). TF models
are linked together via a family of pre-defined non-linear dose-
response-like curves. For model initialization, the IceQream algorithm
(Fig. 1A (iii)) scans through candidate initial TF models from PSSM
databases12,27–30 and de-novo motif regression. Filtered clusters of
these candidates are used to initialize consolidative regression and
generalized linear modeling, so that one integrated model predicts
(Fig. 1A, (iv)) thedifferentialAPover a selectedmanifolddifferentiation
trajectory. Toallow systematic analysis of scATACdynamics, IceQream
can then fuse IQ models inferred from different manifold trajectories,
and recompute them using a common universal set of TF models
(Fig. 1A, (v)). IceQream is implemented modularly to provide users

with control over the main steps of the process (https://github.com/
tanaylab/iceqream) and to allow incorporation into scATAC and Mul-
tiome analysis pipelines.

Transforming scATAC read counts to normalized access
probabilities
We tested conversion of raw ATAC read counts to APs using data on
two manifolds capturing complex differentiation programs in mouse
gastrulation and human hematopoiesis, respectively (Fig. S1). To
derive estimations of APs, we identify a set of genomic loci that can be
assumed to be accessible with probability 1 (i.e., AP = 1) across all cells
regardless of their manifold state (denoted constitutively open loci).
Importantly, a natural set of loci with high and extremely well-
conserved raw ATAC UMI count is indeed observed in both manifolds
(and any other datasetwe studied). This set includesmostly promoters
of housekeeping genes (Fig. S2A) for which accessibility is indeed
constantly high. The raw ATAC UMI counts on such loci represent
significant technical variation that must be normalized. Variation in
raw ATAC read counts for constitutively open loci is strongly corre-
lated with local and regional GC content or, more generally, with the
background ATAC signal around it (defined as mean ATAC count in
20 kbp windows around the element but excluding the element itself)
(Fig. S2B). We thereby normalize the ATAC signal of any local element
through subtraction by the mean ATAC in 20 kbp windows around it
(excluding the center 1 kbp window). This corrects the initial asym-
metry in the intensity of constitutive and differential ATAC signal
(Fig. 1B), recovering some differential peaks as similarly accessible to
constitutive peaks. Assuming that constitutively open loci are repre-
senting AP = 1, we further transform the region-normalized data to
ensure that normalized ATAC in all other loci is scaled appropriately
(Fig. 1B, middle). We note that this is resulting in different cell types
showing up with higher or lower total accessibility (totalAP=

P
iαi),

which may be correlated with an overall more plastic or more
restricted epigenetic landscape per cell state. Indeed, we observe that
the more differentiated states in both the gastrulation (i.e., primitive
erythrocyte) and hematopoiesis (i.e., pro-B cells, platelets) datasets
show accessibility that is more concentrated on constitutive loci (and
therefore involves less activity on regulatory, non-constitutive loci),
when compared with the pluri- or multi-potent states (e.g., Epiblast,
HSC/MPP, Figure S2C). We note that the IQ normalization approach is
designed to maximize quantitative readout when regressing sequence
models, defining a different goal compared to information-theoretic
or statistical peak finding approaches (see Fig. S2D for comparison to
TF-IDF31,32).

Following normalization, IQ can process differential AP values on
endpoints of differentiation trajectories (Fig. 1C, D), focusing on loci
with high absolute and differential AP.

IceQream generates concise models without compromising
accuracy
We selected for analysis differentiation trajectories that provide
unambiguous endpoints, focusing on the transition of mouse epiblast
to mesoderm or endoderm and the differentiation of human hema-
topoietic stem cells toward myeloid and erythroid lineages. Figure 2A
shows key statistics on the IQ inference process as applied to mouse
mesoderm differentiation. The algorithm consolidates thousands of
database and de-novo derived TF components (level 0) into refined,
concisemodels (level 1–4), and adds pairwise interactions between the
consolidated models (level 5). This leads to models with a remarkably
lower number of TF componentswhile improving prediction accuracy.
Overall, themesodermmodel reduced 21867 initialmodels into 13final
models.We note that model accuracy can bemeasured conservatively
using the fit to the differential AP signal (Fig. 2B, C) or based on the
inherently better fit to absolute AP values in the differentiation end-
point (Fig. 2D). We note that an even better fit would be reported if
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using unnormalized ATAC values and including constitutive peaks or
TSS, as these are all highly predictable by GC content and other low-
information content sequence features. But predicting constitutive or
unnormalized ATAC will, of course, not be informative for under-
standing true CRE dynamics.

We compared the IQ complete scheme to alternative regression
approaches in Fig. 2E. We observed poor performance for a simple
linear model on the database motif, and gradual improvement when

using IQ consolidation of motif components with linear models, gen-
eralized additive models (GAMs), or IQ nonlinear functions without
pairwise interactions. Gradient boosting with IQ features performs
better but is still inferior to the complete IQ scheme. IQ is also per-
forming better when compared to a previous motif clustering and
consolidation strategy by SCENIC12 (Fig. S3A).

More crucially than improved technical performancemetrics, the
IQmodel allows direct interpretation globally and over individual loci.
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The TF components of the model in the mesoderm trajectory of the
mouse model (see Fig. S3B, C for similar analysis in the human MEP
trajectory), can be divided into a group of components with positive
response (including Mesp, Eomes, and Gata models, Fig. 2F, left) and
components with negative response (including Sox/Nanog, Pou3, and
Snai, Fig. 2F, right). TF components vary in their non-linearity, but only
two of the 14 models (annotated as Dmrta2 and Tbx1) showed a non-
monotonic response curve, suggesting that for these sequences,
additional interactions between factors are leading to preferences for
medium sequence affinity over both low and high affinity. The low
dimension of the final IQ model also facilitates a simple combinatorial
depiction of the relationship between TF models. For example, in the
mousemesodermmodel (Fig. 2G, Fig. S3E, F), Eomes (positive) andTcf
(negative) showed generally consistent correlation with AP differ-
ential, while Pou3, Nanog-Oct, and their combination were observed
only in defined subsets of the loci. We note the inferred PBMs repre-
sent TFs that have established roles in these developmental trajec-
tories, and we validate both their expected expression (Fig. 2H) and
enrichment in selected TF-ChIP-seq tracks (Fig. 2I). In summary, IQ can
infer a directly interpretable model without compromising accuracy,
thus supporting downstream quantitative and biophysically-inspired
analysis.

IceQream fits quantitative affinities to continuous accessibility
probabilities
DNA accessibility per locus is commonly conceptualized andmodeled
as a binary state. However, when observing ATAC signals over cell
populations, the average accessibility state is represented by IQ
quantitatively throughAP levels, defining a regression task, rather than
a classification problem. As shown in Fig. 3A, when grouping loci into
seven bins based on their IQpredictedATACdifferenceon the epiblast
to mesoderm mouse trajectory, we demonstrate a gradual shift in the
meanobservedATACdifference rather than a change in themixture of
differential vs conserved sites. This implies that using sequence and
epigenomic features alone, the model separates strongly induced
mesodermCRE fromweakly (but still significant) inducedones. Similar
separation is observed for endoderm-repressed CREs and for other
trajectories (Fig. S4A, B, p « 10−6).

Quantitative regulation ofCREactivity canbemodeledby IQ since
it fits the integrated contributions of short sequences across the
respective regulatory element, considering both optimal consensus
motifs and sequences that are only partially compatible with the TF’s
preferences. This approach is crucial for model accuracy, as shown by
tests inwhichwe replace IQ integratedmotif energywith the affinity of
only the top binding site for each CRE, leading to a significant reduc-
tion in model R2 (Fig. 3B). Combinations of lower-affinity sites are
therefore likely to contribute to CRE specificity and can compensate
for the lack of an optimal motif. This integrative capability may,
however, be restricted to only some of the TFs (as represented by

individual components in the integrated model). To test this directly
for any givenmotif, we classified CRE sequences into those containing
a single high-affinity locus or those containing multiple medium-
affinity loci. We then compared the differential ATAC signal on CREs
from thesegroups. Interestingly,we identified consistent behaviors for
specific factors over multiple trajectories (Fig. 3C). For example,
Mesp2 (promoting mouse mesoderm CREs) and Nanog/Sox (pro-
moting mouse epiblast CREs) showed a preference for a single near-
optimal binding site. In contrast, the Snai and Tcf mouse models were
susceptible to occurrences of two or more medium-affinity sites.
Affinity preferences for all inferred motifs are shown in Data S1,
Fig. S4C, D.

Spatial and epigenomic features provide IQ models with
predictive gains
Our analysis of AP differentials over trajectories is focused on localized
peaks of ATAC coverage that generally represent nucleosome-
depleted regions (NDRs). These elements are assumed to be
observed over a length scale of two spaced nucleosomes, or approxi-
mately 400–500 bp. IQ modeling can account for preferential posi-
tioning of TF binding relative to the NDR through spatial curves
defining probabilities per distance from the NDR center that are
inferred for each motif. For mouse gastrulation, we observed
remarkably homogeneous spatial curves representing general pre-
ference within −80: + 80 bp to −120: + 120 bp around the center
(Fig. 3D, compared to nucleosome positioning data in Fig. S5A–D).
Human models showed more varied spatial preference, with a highly
localized effect for key TFs, including Gata and PU.1. IQ can take into
account epigenomic features, if such features are measured for the
states at the base of the modeled trajectory (data on the epigenomics
of the trajectory itself or its endpoint is not used to avoid information
leakage). We indeed observed some improvement in model perfor-
mance (Fig. 3E) when considering the initial local epigenetic activity of
a locus as indicatedby the histonemodificationsH3K27acorH3K4me3
(Fig. 3F). The model can also consider the regional activity around of
locus, by integrating total accessibility within 20 kbp around it at the
base of the trajectory, gaining some additional predictive value in
some trajectories.

Inferred IQ Interactions highlight cooperative CRE specificity
Cooperative or antagonistic interactions between pairs of PBMs or
between PBMs and epigenetic features are modeled by IQ explicitly
and improvemodel predictions significantly (Fig. 2E, compare IQ to IQ-
no interactions). Of note, depending on the number of PBMs and data
size (number of considered CREs), IQ filters potential pairwise inter-
actions during the learning process (METHODS). Many interaction
terms showednon-negligible coefficients (Fig. 3G), anddistributionsof
ATAC difference for loci with strong affinity for such pairs were sug-
gestive of a true synergistic effect (Fig. 3H). Support for synergistic

Fig. 1 | IceQream overview. A Schematic of the IceQream (IQ) workflow: (i) Single-
cell ATAC raw counts are transformed into estimated access probabilities (AP). (ii)
The IQ model incorporates transcription factor (TF) models, epigenomic context
variables, and pairwise interactions of TF models. Each TF model integrates con-
tributions from strong and weak affinity sequences, weighted by spatial pre-
ferences around the accessible hotspot, which are transformed intodose-response-
like spatial binding preference curves using pre-defined non-linear functions. (iii)
Model initialization involves scanning candidate TF models from PSSM (position-
specific scoring matrix) databases and de novomotif regression. (iv) An integrated
IQmodel predicts differential AP (dAP) across a selectedmanifold trajectory. (v) IQ
models from multiple trajectories are fused to create a manifold-wide set of com-
mon TFmotif models. B Normalization steps from raw ATAC-seq data on peaks to
access probabilities (AP, left to right): Raw counts, region-normalized counts,
constitutive-loci-normalized counts, and final APs for mouse gastrulation (top) and
human hematopoiesis (bottom) datasets. Black points represent the constitutive

loci. The red dashed line indicates the threshold for loci with AP= 1 (-15.3 formouse
gastrulation, −12.4 for humanhematopoiesis).CAP for various cell types compared
to epiblast in mouse gastrulation (top) and compared to HSC in human hemato-
poiesis (bottom)manifolds. Red and blue dots represent loci that opened or closed
during the trajectory; gray dots show loci that did not change; and orange dots
represent loci with a small change (dAP≤0.4).D Examples of scATAC-seq signal at
specific genomic loci before and after region normalization in mouse (left) and
human (right) genomes. Top panels show the raw scATAC-seq signal (total number
of reads). Bottom panels show the signal after region normalization. This is cal-
culated as the raw signal divided by the mean ATAC signal in a 20 kbp window
around it, excluding the center 1 kbp window. Dashed horizontal lines indicate the
threshold for peak calling. Red shaded areas denote called peaks. Blue dashed
vertical lines represent transcription start sites (TSS). Source data are provided as a
Source Data file.
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interactions betweenTFs canbeprovidedwhen comparingdifferential
ATAC in loci that are grouped according to the relative spacing of their
putative interacting binding sites. For the potential interaction
between Eomes and Mesp in the mesoderm trajectory, such analysis
clearly shows that localization of binding sites for the two models
within 20 bp is correlated with much stronger responses when com-
pared to pairs observed within 100–200bp (p < 0.001, One-sided
Kolmogorov–Smirnov test) and even when comparing pairs within

50 bp (p <0.05). Significant pairwise interactions may represent the
formation of heterodimers and specific stable structures over a CRE33,
but such structures are yet to be fully defined.We hypothesize that the
quantitative impact of genomic spacing (exemplified also for Atf4-
Atf3, Fig. 3J–L) may also implicate some synergistic effect with a more
dynamical model leading to cooperativity through maintenance of an
open state over time. Such synergism may even involve changing TF
activities over the developmental trajectories under study, where a
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reduction in the activity of anearly factor (e.g., Eomes) is compensated
by an increase in the activity of a later factor (e.g., Mesp1), and com-
munication is facilitated by the epigenomic state of the locus.

Homogenization of CRE models across a single cell manifold
Each IQ regression task is solved given differential AP on a select
differentiation trajectory. In gastrulation, hematopoiesis, and in
most other cases, multiple trajectories on a manifold may be of
interest. Understanding regulatory activity through comparison of
PBMs across trajectories requires homogenization, where one set of
PSSM and spatial curves is inferred universally and used with dif-
ferent parametrization of response curves, weighting, and pairwise
interaction to regress all trajectories. To facilitate such homo-
genization, given a set of individual trajectory models, IQ is using
clustering of motif models across trajectories (exemplified in
Fig. 4A), followed by resubstituting each cluster’s motifs with one
common model that is inferred de novo to fit partial responses over
all trajectories. We applied homogenization in the mouse gastrula-
tion manifold (Fig. 4B) to derive one common set of 61 motifs.
Analyzing the human HSPC manifold led to a model with 20 motifs.
We demonstrated that homogenization is highly effective, since
when rerunning modeling on individual trajectories using the
homogenizedmotifs, we did not record any loss in performance, and
in fact quantified improved performance on cross validations
(Fig. 4C, Fig. S5A). Taken together, we can now study CRE dynamics
over an entire manifold (Fig. 4D) using A) clusters of loci (columns in
Fig. 4D) that show B) common AP levels across the manifold states
(Fig. 4D, top rows), which are compared to C) a controlled set of
motifs (Fig. 4D, bottom rows). Motifs that are enriched in specific
clusters of loci, or in combinations of such clusters, are powerful
building blocks for developing integrated regulatory models.

IQ predictive power matches deep learning counterparts
Language models and, more generally, deep learning (DL) models
have recently seen increased use in genomic predictive tasks. The
flexibility of these models to receive inputs on multiple scales,
together with the capacity to learn complex functions from large
datasets across entire genomes, holds great promise for modeling
the regulatory code. However, the black box nature of current DL
models raises questions about what new biological phenomena we
uncover with this increased predictive capacity. Comparing the
predictions of IQ to current genomic models can therefore direct
research into unmapped or underappreciated mechanisms learned

by DL models, as well as assist in the development of future models.
To address these goals, we first generated IQ models using motifs
from all the gastrulation or hematopoiesis manifolds combined
(Fig. 5A, METHODS). These yield the most accurate IQ model var-
iants, though with higher interpretation costs (80-180 motifs instead
of 17–31 motifs per model). We then trained several DL models using
the CREsted34 or Enformer35 frameworks to predict all trajectories
from the gastrulation and HSPC manifolds (METHODS). These DL
models can be subdivided into convolution (CNN) or transformer
(LM) based models, of which DeepTopic34 (CNN) and Borzoi36 (LM)
showed the best-in-class predictive power. Comparing the R² values
across differential accessibility scores (Fig. 5B, C, and METHODS), we
observed IQ accuracy on par with these state-of-the-art DL models.
The best predictive power was achieved bymodel ensembles, with IQ
+ Borzoi (LM) slightly outperforming an ensemble of all DL models
(Fig. 5D). CREs with significant errors in Borzoi predictions but
accurate predictions in IQ and ensemble models show higher ener-
gies for the IQ PBMs, such as Eomes and Mesp2 (Figs. 5E, S6C). LM
models are structured to model long-range patterns (sometimes
defined as regulatory “grammar”) that are inaccessible to the IQ
localized modeling approach. But powerful DL models can also
recast known local TF-DNA interactions within their extensive para-
meter space. Our results show that if non-local, grammar-like struc-
tures were discovered by current DL models, their impact is
somewhat limited to the performance gap quantified between IQ and
the ensemble IQ+Borozoi model. We believe that further comparison
of current and upcoming DL models to IQ models can highlight gaps
in our current mechanistic understanding of genome and chromo-
somal regulation, as well as guide the development of DL models
toward the more difficult challenges in genome regulation.

Exploratory analysis of CREs given an IQ model
IQ models can be interrogated globally (in-trans) given putative TFs
and their interactions over a trajectory, but also provide a valuable
toolkit (denoted IQ-plots or IQ-P) for understanding CREs in cis, given
the directly interpretable and localized semantics of the model’s
motifs. For each CRE, we can compare using IQ-P the spatial distribu-
tion of normalized ATAC intensities to the localization of sequences
providing high contributions to model predictions in each motif
component of the model (Fig. 6A). To allow exploration of these
sequences, IQ-P implements a new visualization scheme focusing on
and color-coding “important” sequences over a CRE. This strategy
identifies cases of partial overlap between putative binding sites

Fig. 2 | IQgeneratespreciseand interpretable accessibilitymodels. ANumber of
PWMmotifs at different stages of the IQ algorithm (methods, left) and theR² values
at each stage (right). B, C - Scatter plots comparing observed vs. predicted dAP on
the sets of 20% test CREs for the mouse (B; n = 19858), and human (C; n = 11057)
trajectories.DModel performance (R²) when predicting the change in accessibility
(dAP, the ATAC differential) vs predicting the absolute access probability (AP, the
ATAC signal). EModel performance (R²) across different regression approaches for
mouse gastrulation trajectories (methods). In brief, “DB motifs” uses top database
motifs without the IQ fusion and spatial weighting. “IQ-linear”, “IQ-GAM functions”,
and “XGBoost-IQ” respectively use a logistic regression model, Generalized Addi-
tive Models (GAM), or an XGBoost approach to combine the IQ models instead of
the non-linear response functions used by “IQ-no interactions”. These model var-
iants are compared to the full IQ model, including interactions. F Response curves
for inferred transcription factors (TFs) in the epiblast to mesoderm trajectory,
showing positive (left) and negative (right) components that are annotated by
comparison to databases and manual curation. Left - sequence logo representing
the position weight matrix (PSSM) of the fused motif, where y-axis shows infor-
mation content in bits. Right - response curve where X-axis represents binding
energy, and Y-axis shows the predicted response (dAP). ΔR² denotes the predictive
value added when the TF is included in the model. G - Heatmap illustrating the
relationship between TF binding and accessibility changes in the epiblast to

mesoderm trajectory. Columns represent transcription factors (TFs) and rows
represent loci with absolute dAP ≥ 0.2. Color intensity indicates motif energy. The
heatmap is split into two parts: the top shows loci that became more accessible
(n = 8972), and the bottom shows loci that became less accessible (n = 8815) during
the trajectory. Scatter plots at the right display the differential AP between epiblast
and mesoderm states for each locus. Positive values (top) indicate regions that
becamemore accessibleduring the trajectory, while negative values (bottom) show
regions that became less accessible. H Heatmap showing gene expression of TFs
inferred by IQ in the epiblast to mesoderm trajectory over metacells in the mouse
gastrulation manifold. I Box plots comparing motif binding energies between
background regions (n = 5000) and ChIP-seq peaks for Eomes/Tbox (n = 1618),
Mesp2 (n = 2156), and Nanog/Sox motifs (Nanog n = 1614, Sox2 n = 1827). Higher
energies indicate stronger binding affinity. Boxes showmedian, quartiles, and 1.5×
IQR whiskers. Two-sided Kolmogorov-Smirnov test: *** indicates p <0.001; ns
indicates not significant. Eomes/Tbox peaks vs background: Eomes D=0.4064,
p < 1 × 10⁻³⁰⁰; Mesp2 D =0.1613, p = 2.35 × 10⁻³⁴; Nanog D =0.1052, p = 3.73 × 10⁻³⁹.
Mesp2 peaks vs background: Eomes D =0.0662, p = 2.08× 10⁻¹⁵; Mesp2
D =0.8004, p < 1 × 10⁻³⁰⁰; Nanog D =0.0202, p = 7.45 × 10⁻² [ns]. Nanog/Sox peaks
vs background: Eomes D =0.4391, p < 1 × 10⁻³⁰⁰; Mesp2 D =0.2640,
p = 3.30 × 10⁻⁹¹; Nanog D =0.1308, p = 3.87 × 10⁻⁶⁰. Source data are provided as a
Source Data file.
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(Eomes and Snai, Fig. 6A), cases of flanked localization (Mesp and Hnf,
Fig. 6A), and the overall sequence architecture of a locus. All of these
sequence features are difficult to discern within the CRE 300 bp
without IQ’s highly specific modeling. IQ-P also detects and allows
examination of CREs with multiple sub-optimal binding sites (Fig. 6B).
Detailed architectural analysis of a CRE, as rendered by IQ-P, imme-
diately opens questions regarding the role of higher-level architecture,

or “grammar” between binding sites. Importantly, the IQ physical
model is completely blind to such higher-order effects and only inte-
grates independent spatial preferences for each motif and global
contribution for their pairwise interactions. As discussed above,
comparisons to DL models with the potential to infer more complex
grammar are inconclusive concerning the functional impact that such
higher-order signatures can have.
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Discussion
We introduce IceQream (IQ) to derive physical models fitting reg-
ulatory activity in cis-regulatory elements (CREs). The model is
composed of a limited number of components (“motifs”), each
defining sequence-specific binding probabilities integrated over the
CRE sequence with spatial preference and non-linear response.
Interaction between motifs and epigenetic memory indicators is
added to the model. This model is fitted to estimated CRE access
probabilities (APs) ranging between 0 and 1, normalized from raw
ATAC-seq reads. APs are assumed to specify the expected fraction of
cells in which a certain locus is accessible at any point in time, for a
given cell state. The IQ inference algorithm is running on endpoints
of specific manifold trajectories (e.g., epiblast to early mesoderm, or
hematopoietic stem cells to myeloid progenitors). It can then fuse
models from all manifold trajectories using a common set of motifs.
We showed that using this approach, IQ maximizes model inter-
pretability without compromising (and in fact while improving)
precision and robustness.

The strength of the IQ algorithm relies on concrete assumptions
about the interaction between TFs and DNA within nucleosome-
depleted regions. Our data is demonstrating that model performance
is enhanced by integrating the contribution of multiple potential
binding sites, rather than consideringonly a single best sequencemotif
hit. We also show that inferring spatial preference curves and chan-
neling the total predicted sequence affinity through a non-linear dose-
response curve are also important for model accuracy. Another key
feature of IQ is the modeling of pairwise TF interactions. These can
represent physical heterodimers or other direct effects (e.g., Eomes-
Gata4 predicted by IQ as a significant interaction and shown to have
physical interaction potential in33). But cooperativity of two TFs over a
trajectory can also be observed when the activity of one TF early in a
trajectory transitions into the activity of another one later in the tra-
jectory. IQ Interactions in these cases will represent forms of epige-
netic memory. More work is needed to allow distinction between the
different modes of action underlying the pairwise TF interactions
captured by IQ.

Recent modeling trends are promoting the use of deep net-
works, and in particular, large language models (LLMs), for predict-
ing chromosomal accessibility from sequence. IQ analysis defines a
biophysics-inspired baseline for such models, and we suggest that it
is the method of choice for understanding and further exploring CRE
dynamics, given both its expressive power and direct functional

relevance. Whenever LLMs (or any black-box architecture) can out-
perform significantly the principled physical model outlined here, it
will suggest the existence of mechanisms that are currently unap-
preciated and lead to new discoveries. Importantly, we already
observe improved performance of ensembles of IQ and DL models.
Understanding the residual benefits gained from such ensembles can
lead to possible new insight into the biological mechanisms ensuring
CRE specificity.

The modeling strategy of IQ avoids linkage between motifs and
the expression of genes coding for the TFs they represent. Motif-TF
association remains ambiguous, given the complexity of the TF
repertoire regulating any cell state. In most studied conditions, a large
number of TFs are expressed simultaneously, and their effective reg-
ulatory role may be driven by post-translational modification and
protein-protein interactions. Furthermore, rich TF repertoires are
organized in families that show massive overlap in sequence binding
preferences, and in many instances, members of one family are reg-
ulating distinct differentiation lineages (e.g., GATA factors in gas-
trulation). IQ results should therefore not be interpreted at this stage
as outlining a gene regulatory network with complex feedback and
implied dynamics.

To move toward more complete modeling of genome regulation
over a manifold, IQ (or IQ-like) models would have to be extended to
include more explicit models of TF identities and activities. IQ can be
enhanced to go beyond regression of ATAC differentials over trajec-
tory endpoints and toward modeling of accessibility kinetics across
developmental and fine-grained trajectories or an entire manifold.
Aiming at models that involve an explicit temporal dimension37,38

would be essential to derive predicted regulatory kinetics. Only once
this can be demonstrated, the road toward unified analysis of pre-
dicted TF binding anddownstream transcriptional effectswill beopen.
Even before this grand challenge can be tackled, the precision and
simplicity of the IQmodel can lead to amechanistic understanding and
follow-up experiments interrogating the regulatory effect of specific
factors in trans and specific sequences in cis.

Methods
The IceQream Model Overview
IceQream (IQ) is a quantitative framework designed to infer chromo-
somal accessibility differentials from sequence and epigenetic fea-
tures. It is a hierarchical model based on a small number of motif
models PB1::PBn that compute energies from typically short (500bp)

Fig. 3 | IQ use of low-affinity binding, spatial preferences, and transcription
factor interactions. A Density plots showing the distribution of observed AP for
loci grouped into seven bins based on their IQ-predicted dAP on the epiblast to
mesoderm mouse trajectory. Gray dots represent all loci in the dataset, while
colored dots represent the density of loci in the specific bin of each plot. The
gradual shift in distributions demonstrates IQ’s ability to distinguish between
strongly and weakly induced/repressed cis-regulatory elements (CREs).
B Comparison of model performance (R²) when using IQ’s integratedmotif energy
approach (methods) versus considering only the top binding site for each CRE,
across different mouse gastrulation trajectories. C Comparison of the impact of
low-affinity versus high-affinity binding sites. Y-axis:meandAP for lociwithmultiple
low-affinity sites minus the mean dAP for loci with a single high-affinity site
(methods). X-axis: residual R² of each motif in the trajectory model. Each point
represents one mouse gastrulation trajectory. D Heatmaps showing the inferred
spatial binding preferences for transcription factor models in a mouse (left) and
human (right) trajectories. Columns represent different distances from the CRE
center. E Comparison of model performance (R²) with and without epigenomic
features for different trajectories in mouse gastrulation. F Residual R² values
showing the predictive power of different epigenomic features across the mouse
gastrulation trajectories in 3E. G Network diagram illustrating inferred pairwise
interactions between transcription factor models in the mouse epiblast to meso-
derm trajectory. Edge thickness represents the magnitude of the beta coefficient

for each pairwise interaction. The purple edge highlights the interaction between
Mesp2 and Eomes, further examined in panels H and I. H Empirical cumulative
distribution function (ECDF) of dAP for loci with strong affinity for Mesp2 (red,
n = 2715), Eomes (blue; n = 2844), both factors (purple; n = 136), and negative con-
trols (gray; n = 93596), demonstrating synergistic effects in the mouse epiblast to
mesoderm trajectory. Strong affinity was defined as motif energy ≥ 8. I Boxplots
showing the distribution of dAP for loci grouped by the distance between Mesp2
and Eomes binding sites within the same CRE. Boxes: median (center), IQR (box),
whiskers = 1.5×IQR; points outside whiskers = outliers. One-sided
Kolmogorov–Smirnov tests compared the (0,20] bp group against each other
spacing group. * p <0.05, *** p <0.001. (0,20] bp vs. others: (20,50] D =0.1126,
p = 4.94 × 10⁻²; (50,100] D =0.1719, p = 5.99 × 10⁻⁴; (100,200] D =0.2362,
p = 3.49 × 10⁻⁷; (200,300] D =0.4205, p = 7.47× 10⁻⁸. J–L As in (G–I), showing data
from the humanHSC to CMP trajectory and the Atf4-Atf3 interaction. Sample sizes:
Atf4 n = 3514; Atf3 n = 2532; both n = 251; negative controls n = 48,990. Boxplots:
median (center), IQR (box), whiskers = 1.5×IQR; points outside whiskers = outliers.
One-sided Kolmogorov–Smirnov tests compared the (0,20] bp group against each
other spacing group. * p <0.05, *** p <0.001. (0,20] bp vs. others: (20,50]
D =0.0694, p = 1.49× 10⁻¹ [ns]; (50,100] D =0.0869, p = 4.0 × 10⁻²; (100,200]
D =0.1480, p = 5.1 × 10⁻⁵; (200,300]D =0.1625, p = 8.1 × 10⁻⁵; (300,500]D =0.2728,
p = 2.3 × 10⁻⁹. Source data are provided as a Source Data file.
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Fig. 4 | IQ model homogenization over multiple trajectories. A Comparison of
sequence motifs for Hox and Mesp2 transcription factors before and after (bot-
tom row) homogenization across three trajectories in the mouse gastrulation
manifold. B Matrix showing the PSSM (Position-Specific Scoring Matrix) corre-
lation between 63 motif models for individual trajectories (rows) and 25 homo-
genized models (columns). The rightmost columns indicate the trajectory of
each model. C Model performance (R²) before (brown) and after (blue)

homogenization for mouse gastrulation trajectories. The number above the bar
indicates the number of motifs in each model. D CRE dynamics across the full
mouse gastrulation manifold. Top heatmap shows the normalized ATAC signal
for 70 variable CRE clusters (columns) across 369 metacells (rows), colored by
their cell type (right annotation). The bottom heatmap shows the log2 enrich-
ment of 61 full-manifold motifs in the CRE clusters. TF motifs are manually
grouped into families of transcription factors (TFs).
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DNA sequences around hotspots of accessibility (and not from the
entire genomic sequence). The energies are integrated using a gen-
eralized non-linear logistic model employing a basis of response func-
tions f i 2 F that channel the motif energies through either positive or
negative non-linear effects.

An IQ model is thus regressing the differential Access Probability
dAP from the binding energies predicted from sequence by a set of

motif models PBi, and the epigenetic features Ek :
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Where:
• σ is the logistic function
• f j are non-linear transformations of binding energies
• βi, j are the coefficients for each motif model and non-linear
transformation

• I are a set of interaction pairs between motifs
• γk, j are the coefficients for TF-TF interactions
• δk, j are the coefficients for epigenetic features

The complete IQ algorithm typically requires approximately
17min of training time for a single differentiation trajectory on a 32-
core CPU system,withmemoryusage peaking at approximately 30GB.

Physical Binding Models
Amotif model (also denoted as a physical bindingmodel or PBM) in IQ
consists of two components, a Position Weight Matrix (PWM) and a
spatial integration module. PWMk models the pointwise sequence
preference in a window of L bps using position-specific nucleotide
probabilities Pk

j - PWMkðs1::sLk Þ=
P

j log2ðPk
j ½sj �Þ. To consider the con-

tributions of all possible binding sites in a sequence of length len(S),
rather than simply taking the maximum binding site, the model calcu-
lates the weighted average of the PWM in a running window across the
sequence, with weights taken by the inferred spatial factors wk

i . The
absolute binding energy for a sequence PBabsðSÞ is then defined as:

PBabs
k Sð Þ= log2

XlenðSÞ�Lk + 1

i = 1

2 PWMk S i:: i+ Lkð Þ½ �ð Þ�wið Þ
 !

ð2Þ

We normalize absolute binding energies to facilitate homo-
geneous modeling, setting:

PBk Sð Þ= min max 10+PBabs
k Sð Þ �Q0:99

S02NORM PBabs
k S0
� �� �

, 0
� �

, 10
� �

ð3Þ

Where Q0:99 defines the 99th quantile and NORM is a set of sequences
drawn from some background set. Following normalization, PB values
of 10 imply maximum binding affinity, and values of 0 are assumed to
have no affinity, allowing a range spanning three orders of magnitude
but not more.

Normalized energies are then transformed through a set of
logistic functions with chosen parameters reflecting potential levels of
TF concentrations:

f j Bð Þ= μj

1 + exp �αj B� βj

� �� � ð4Þ

Whereαj, βj and μj are logistic functions shape parameters. In this
work, we used k = 4 parametrizations in F .

Estimation of access probabilities (AP)
We use pooled ATAC reads over a metacell or group of metacells to
define a genome-wide raw coverage track ui. We used 20 bp resolution
in current applications. To take into account regional and nucleotide
composition bias, we normalize raw coverage by a (punctured)
regional mean:

uni =ui �mean1k ≤ i0�ij j< 20kui0 ð5Þ

We define peaks as local maxima of uni which are larger than the
98th quantile of the normalized coverage Q0:98ðuniÞ. Peaks that are less
than 500bp apart are merged. The peak raw intensity upi is then
defined by the mean of the normalized coverage in the 500 bp around
the peak center.

To scale the peak raw intensity and take into consideration var-
iation in overall chromosomal promiscuity, we identify a set of con-
stitutive peaks iconst that are empirically highly accessible and show low
variability between conditions. Such loci are, for example, TSSs of
housekeeping genes. We then compute a normalizer for each state
using a high percentile ν of raw coverage for constitutive peaks:

ϕconst =Q
ν
i2iconst ðupiÞ ð6Þ

In applications, we used ν =0:85. We assume that ϕconst coverage
implies a fully accessible element and that all other values are scaling
accordingly:

APi =ϕ
�1
constupi ð7Þ

To calculate the differential Access Probability (dAP) for regres-
sion analysis, IceQream (IQ) uses two manifold states as input, which
may be individual metacells or groups of metacells enhancing cover-
age. The dAP, initially ranging from −1 to 1, is transformed to a 0 to 1
range for logistic regression.

Motif regression using PREGO
We adapted PREGO39 to allow regression of PWMs and spatial para-
meters given either dAP values directly, or model residual values
dAP �modðSÞ at different stages of the IQ algorithm as discussed
below. Briefly, PREGO detects PWM seeds by screening through all
DNA words (k-mers) of a predefined structure (K positions with a
potential gap). Next, a seed k-mer is selected (or several seeds) with
maximal correlation between the number of appearances in a
sequence and the dAP signal. PREGO then maximizes the R2 values of
onemotif model PB by brute force local optimization of PWMweights
and spatial curve parameters. The algorithm terminates when it con-
verges on a local maximum. As a direct extension, we allow PREGO
regression to consider simultaneously several objectivesdAPs defining
differential AP in multiple trajectories s, where the optimizer goal is

Fig. 5 | Benchmarking of IQ and leading deep learning models. A Model per-
formance (R²) for IQ trajectory models using the full set of the gastrulation mani-
fold motifs, without interactions (blue) and with interactions (green), compared to
an expanded 180-motif IQmodelwith interactions (red) trainedonour gastrulation
data.B Scatter plots comparing observed versus predicted differential accessibility
(dAP) scores using IQ (left), Borzoi (middle), and DeepTopic (right) models. Points
are colored by local point density from low (gray) to high (blue to red). C R² values
for three models and mouse (blue) or human (red) trajectories (n = 6 mouse tra-
jectories, n = 3 human trajectories). Gray lines connect trajectories across models.
Box plots show median (center line), first and third quartiles (box bounds), and
whiskers extending to 1.5× the interquartile range. Paired two-sided Wilcoxon
signed-rank tests with Benjamini-Hochberg correction: Borzoi vs IQ V(8) = 19,
p =0.813, r = 0.118, 95% CI = [−0.054, 0.025]; Borzoi vs DeepTopic V(8) = 14,
p =0.813, r = 0.316, 95% CI = [−0.046, 0.033]; IQ vs DeepTopic V(8) = 20, p =0.813,
r = −0.079, 95% CI = [−0.034, 0.031]. No significant differences between models

were observed. D R² values for individual models and ensembles, ranked by mean
performance frombest (left) to worst (right) (n = 6mouse trajectories, n = 3 human
trajectories). Points and colors as in panel (C). Gray lines connect trajectories across
models. Box colors indicate model class. Box plots show median (center line), first
and third quartiles (box bounds), and whiskers extending to 1.5× the interquartile
range. E Kolmogorov-Smirnov test D statistics comparing motif energies in model-
specific errors versus all correct predictions (n = 141, RMS<0.05 in all models). Red
bars: Borzoi errors (n = 680, RMS >0.1 in Borzoi, <0.05 in IQ and ensemble). Green
bars: IQ errors (n = 304, RMS>0.1 in IQ, <0.05 in Borzoi and ensemble). Asterisks
indicate FDR <0.05. Significant FDR-adjusted q-values for Borzoi errors: Eomes/
Tbox (3.5 × 10⁻¹⁰), Tcf (9.8 × 10⁻⁵), Hoxb2_Tbx (4.4 × 10⁻⁵), Nanog/Sox (2.0 × 10⁻⁴),
Dmrta2 (8.1 × 10⁻⁴), Snai (8.1 × 10⁻⁴), Meis (3.6 × 10⁻³), Smad4 (3.6 × 10⁻³), Mesp2
(1.4 × 10⁻²), A__TGAAT (4.3 × 10⁻²); IQ errors: CAAA (1.5 × 10⁻²). Source data are
provided as a Source Data file.
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Fig. 6 | IQ-plots enable detailed architectural analysis of individual cis-
regulatory elements. A, B - IQ-plots (IQP) for the Fgf3 locus in the epiblast to
mesoderm trajectory (A) and the Foxa1 locus in the epiblast to endoderm tra-
jectory (B). Each IQ-plot consists of three main components: Top panels: Nor-
malized ATAC signal for the respective trajectories at 200 kbp (upper) and
500 bp (lower) resolutions. Black dashed lines indicate transcription start sites
(TSS) with gene names above. Colored lines above plots represent exons.
Middle panel: 500 bp DNA sequence, focusing on central gray loci from the top

panel, with letter size indicating binding affinity to any model. Letter colors
represent predicted contributions of each TF motif (rows) to the dAP. Red
letters indicate predicted positive dAP (chromatin opening) while blue letters
indicate negative dAP (chromatin closing). Bottom panel: Conservation score
for each base pair. Green indicates positive scores, and orange indicates
negative scores. Vertical gray and black guide lines connect corresponding
positions between the top panels and the DNA sequence panel. Source data are
provided as a Source Data file.
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defined as the mean R2 over all objectives. This added multiple
objectives approach is used for IQ model homogenization.

IQ step 1 – motif library screen
Given a dAP signal, IQ is initiated using a library of PWMs and a trivial
(uniform) spatial component. We compute PBmðSiÞ for all models and
sequences and retain for further analysis only models with
cor PBm,dAP
� ��� ��>Tc, whereTc is set to a very low value (e.g., 0.05) and

canbe furtherdowngraded if nomotifs are identified. IQ can add to the
filtered library PWMs inferred using de-novo PREGO analysis of the
dAP signal. We, however, use de novo screening carefully as it may
reduce generalization by overfitting the data.

IQ step 2 – Further motif filtering using a simple model with L1
regularization
In IQ step 2, we fit an initial logistic regression with L1 regularization
model, with an elastic-net based logistic regression model using
glmnet40, with the binomial family, a logit link function, with alpha = 1
and lambda = 1e-5. We then filter PWMs with near-zero coefficients
based on a defined threshold.

At this stage, we also add epigenetic features to the model based
onuser input. Thesecan includehistonemarkers of eachpeak, but also
regional averages of accessibility within topologically associated
domains (TAD, see below). Sequence features such as GC content and
di-nucleotide signatures can also be incorporated.

IQ step 3 – PREGO-based motif cluster consolidation
We cluster the BPi vectors of the motifs retained in step 2 into B (user-
defined, default 50) clusters (orblocks) Ib using hierarchical clustering.
We then break down the model predictions in level 2 into B compo-
nents:Modb =

P
i2Ib βi PBi

� �
. For each block, we can now apply PREGO

regression on Modb, with an initial condition using the PWM i 2 Ib
showing maximal model contribution. This derives one PBM, or motif
model (PWM and spatial curve), that approximates the contributions
of jIbj motifs in level 2, leading to a concise (and empirically more
generalizable) model. Each inferred PBb is then transformed using the
response functions in F . Together with the epigenetic features, these
constitute the inputs for the logistic regression model of this stage,
again using the binomial family, a logit link function, with alpha = 1 and
lambda = 1e-5.

IQ step 4 – second round of filtering and consolidation
We optionally apply a second round of consolidation, similarly to step
3, except with the changed definition of Modb =

P
i2Ib
Pl

j = 1βi, j f j PBi

� �
to include the non-linear transformations. We also filter motif models
basedon a residual R² threshold. Residual R² is definedby the loss of R2

in the model inferred in level 3 and a similar model from which one
motif model was eliminated.

IQ step 5 – adding interactions
To add the interaction component

P
ði1 , i2Þ2I

Pl
j = 1γk, j f jðPBi1

PBi2
Þ to the

model, we iterate over pairs of step 4models and consider theutility of
their product in improving regression accuracy.Weonly consider pairs
in which at least one of the motif models has a residual R² above a
defined threshold. These interactions are added to the input features
of step 4 and are used in the final logistic regression model with
alpha = 1 and lambda = 1e-5.

IQ model homogenization
The set of inferred PBMs predictive for a single dAP score for a dif-
ferentiation trajectory in amanifold of interest may overlapwith PBMs
with other trajectories in the same manifold. To ease interpretation
and obtain a full manifold model, given a set of IQ models per trajec-
tory from step 4, we use a homogenization approach to reduce the
number of PBMs. First, we cluster the PBi from all IQ models using

hierarchical clustering with the “complete”method and a user-defined
number of clusters. For each cluster, we then fit a new PBM with
multiple dAPs as the learning objective for PREGO. The objective for a
cluster includes any dAP that a PBM in the cluster was used in its IQ
regression for the single trajectory, using uniform weights.

R² comparisons (Fig. 2E)
In order to assess the contribution of the different components of IQ
and other possible models of regression, we conducted comparisons
with the full IQ and other models trained on randomly chosen 80% of
the peaks filtered to a distance >5 kbp from any TSS. Each model was
used to predict the dAP on the 20% held-out test set of peaks, and the
R² of the models’ predictions versus observed dAP was used as the
accuracy metric. The GLM-IQ model does not incorporate the non-
linear transformations L. The GAM-IQ model uses IQ PBMs, but incor-
porates the default non-linearities as in theGAM41 framework.XGBoost-
IQ uses IQ PBMs but conducts logistic regression using xgboost42. With
the same R² approach, we also compare the accuracy of models with
an increasing number of PWMs from the literature to IQ, where lit-
erature PWMs were chosen based on their Pearson correlation of
columns of Bpeak,PWM to the dAP. In Fig. S3A, we added a comparison of
choosing the PWMs as the most correlated PWM for each SCENIC
cluster. In addition, we tested an approachof fusingmotifs across their
SCENIC clusters instead of the de novo hclust approach. We also con-
ducted experiments of training and testing IQ on distal ( > 5 kbp),
proximal (500–5 kbp), and promoter ( < 500bp) CREs shown in
Fig. S3D.

Low and Medium affinity binding site model contribution
(Fig. 3B,C)
Togenerate thedata in Fig. 3B,we createdamodelwith altering energy
computation to max based integration:

PBabs
k Sð Þ= max

i
PWMk S i:: i+ Lk

� �� �� � �wi ð8Þ

and retraining an alternative logistic regression model using these
energies as the input features across the same train/test splits.

As a more direct test (Fig. 3C), we created for each motif model
two sets of peaks based on the number of sites above a quantile of
binding energy scores (one-hit versusmultiple hits) and a threshold on
the maximum binding energy score across any position across the
peaks. Peaks with a single best motif hit above the threshold were
classified as single-high ðdAPsingle�highÞ, and peaks with multiple hits
but all below the threshold were classified as multiple low-affinity
peaks ðdAPmulti�lowÞ. We then calculated a low-affinity score for each
PBM using:

LASPBM =mean dAPmulti�low

� ��mean dAPsingle�high

� �
ð9Þ

A positive LASPBM indicates that the PBM has a stronger effect
when multiple low-affinity sites are present, while a negative score
suggests a stronger effect for a single high-affinity site.

AP normalization comparison to TF-IDF normalization
To compare AP normalization with the common TF-IDF normalization,
we implemented TF-IDF transformation on the raw metacell ATAC
count matrix. Term frequency (TF) was calculated as the fraction of
peaks in each metacell by dividing each metacell’s counts by its total
count sum. The TF values were then log-transformed using log(1 +
TF × 10⁴). Inverse document frequency (IDF) was calculated as log(1 +
N/df), where N is the total number ofmetacells and df is the number of
metacells containing each peak. The final TF-IDFmatrix was computed
as the element-wise product of TF and IDF values. Due to the dom-
inance of the constitutively accessible peaks, we also tested a
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probability-normalized TF-IDF variant where values were first divided
by the 60th percentile of constitutive peaks, then capped at 1, and
finally normalized to the [0,1] range per metacell to match the AP
range. For comparison, Pearson correlation matrices were computed
between cell type accessibility profiles using each normalization
method (TF-IDF, probability-normalized TF-IDF, and AP). Cell type-
specific accessibility profiles were generated by averaging the nor-
malized values across all metacells belonging to each cell type.

ChIP-Seq validation of selected PBMs
To validate the inferred motif models, we compared motif binding
energies between ChIP-seq peaks and background regions. ChIP-seq
datasets were obtained for key transcription factors: Eomes (embryoid
body differentiation from mESCs43), Mesp1 (embryoid body differ-
entiation from PSCs44), Nanog and Sox2 (embryonic stem cells45), and
Oct4 (embryonic stem cells46).ChIP-seq peaks were defined using a
threshold of -log2(1-signal) ≥ 13. For each transcription factor, we
extracted motif binding energies from 500bp regions centered on
ChIP-seq peaks using the corresponding IceQream motif models.
Background regions were generated by randomly sampling an equal
number of 500 bp genomic intervals. Statistical significance was
assessed using a two-sample Kolmogorov-Smirnov test comparing the
distributions of motif binding energies between ChIP-seq peaks and
background regions, testing the alternative hypothesis that ChIP-seq
peaks have higher binding energies than background.

Nucleosome positioning data analysis
To validate IceQream’s inferred spatial binding preferences, we com-
pared them to experimental nucleosome positioning data using
MNase-seq profiles frommouse embryonic stem cells43TheMNase-seq
data includes nucleosome occupancy profiles under different diges-
tion conditions (1U, 4U, 16U, and 64U enzyme concentrations). For
each transcription factor (Nanog/Sox, Hnf1a, Eomes/Tbox, and Gata),
we identified peaks with motif energy scores above 9 and extracted
MNase-seq signals in 2 kbp windows centered on these peaks. Missing
values were replaced with zero, and signals were averaged across all
peaks for each factor, with each position’s signal divided by a 16-bp
rolling mean.

Optional filtering of candidate pairwise interactions
The number of possible pairwise interactions scales with the square of
the number ofmotif models, specifically n2

2

� �
� n. For scenarios where

n is chosen to be big enough, considering all pairwise interactions
might not be optimal/feasible. We therefore developed strategies to
rank and possibly filter candidate interactions. Before including
interactions,we utilize either themaxmagnitude of the coefficients for
each feature or the residual R² values for ranking the different motif
model features.We then set a threshold or a rank to select whichmotif
models will be considered as significant candidates for pairwise
interactions. Pairwise interactions are then constructed between sig-
nificant motif models, and possibly between pairs of significant and
low-significant motif models.

IQ full manifold models for benchmarking comparisons
To enable a full comparison of the IQ approach to alternative models,
we generatedmanifoldmodels encompassing all the trajectories of the
gastrulation or hematopoiesis manifolds. Specifically, we trained IQ
models with 60 PBMs per trajectory, combined all the PBMs, and
homogenized the full set from all trajectories into 180 full manifold
PBMs.Wedivided theCREs into train, validation, and test sets basedon
chromosomes, with chr8/chr10 for validation and chr9/chr18 for
testing (mouse gastrulation: n = 80046 train, 10286 validation, 8959
test; humanhematopoiesis:n = 45747 train, 5705 validation, 3835 test),
as was done for all the alternativemodels. Due to the larger number of
PBMs in these models, we filtered the number of possible interactions

per model as described above. For the additional features, we also
added predictions of the IQ model for the state ATAC values (trained
only on the training chromosomes). We also incorporated energy
features calculated across multiple lengths from the peak center (100,
300, 500, 1000, 2000bp), resulting in a small performance improve-
ment. For these most expressive variants of IQ, the number of total
parameters is on the order of 105 per trajectory, whereas the alter-
native models we compare to have on the order of 108 total
parameters.

Training and benchmarking the DLmodels for ATAC regression
Weutilized the CREsted framework34 (v1.3.0) to train the deep learning
models using our gastrulation and hematopoiesis ATAC data with the
same normalization scheme as for IQ. Peak values were normalized
using crested.pp.normalize_peaks() with default top_k_percent=0.03.
CREs were divided into train, validation, and test sets based on chro-
mosomes, with chr8/chr10 for validation and chr9/chr18 for testing.

The analysis included sixmouse gastrulation trajectories (Epiblast
toMesoderm, Epiblast to Endoderm, Epiblast to Ectoderm, Mesoderm
to Extraembryonic mesoderm, Mesoderm to Cardiomyocytes, and
Mesoderm to Caudal Mesoderm) and three human hematopoiesis
trajectories (HSC to CLP, HSC to CMP, and HSC to MEP).

We tested multiple model architectures with varying input
sequence lengths: ChromBPNet47 (dilated CNN, 2114 bp), DeepTopic
CNN34 (500bp), Simple Convnet (2114 bp), and Borzoi (2048 bp). CNN
models were trained for 60 epochs with early stopping, batch sizes of
128–256, Adam optimizer (learning rate 1e-3), and CosineMSELogLoss
(max_weight = 100). We tested between training directly on the dif-
ferential ATAC values, versus training on the ATAC states and pre-
dicting differential values by the subtraction of states, and took the
best result for each model. For ChromBPNet, the version using cell
state ATAC values was chosen, and for the other models, training
directly ondifferential ATAC signalswas chosen. For Borzoifinetuning,
we modified pretrained models (Borzoi_mouse_rep0 for mouse, Bor-
zoi_human_rep0 for human) by replacing the head with a flattened
output layer for scalar prediction per region. We employed two-phase
training: initialfinetuning on all regions (learning rate 1e-5) followedby
5 epochs of focused training on high-specificity regions (learning rate
5e-5, Gini threshold = 1.0) filtered using crested.pp.filter_regions_on_-
specificity, as recommended in CREsted. Borzoi used 2048 bp
sequences with target_length = 64 bins to maintain compatibility with
the pretrained model’s binning structure.

For Enformer finetuning, we extracted embeddings from the
pretrained Enformer model and trained a custom ParallelVectorMLP
architecture on top of these frozen features. The ParallelVectorMLP
processes each of the 896 Enformer output vectors (3072-dimen-
sional each) through separate MLPs with hidden dimensions of [256,
128], focusing on the central 14 vectors to reduce computational
complexity while maintaining performance. We used distributed
training across multiple L40 GPUs with batch size 8, Adam optimizer
(learning rate 1e-4), MSE loss, and trained for 4 epochs. The model
aggregates the processed vectors through a final linear layer to
produce scalar predictions for each trajectory’s differential ATAC
signal.

Ensemble methods and evaluation
Ensemble models combined individual predictions using linear
regression trainedon the chromosome-based training splits. For theR²
comparisons in Fig. 5B–D, we chose model variants that provided the
best performance on differential accessibility prediction. Model per-
formance was evaluated using R² between predicted and observed
differential accessibility on held-out test chromosomes. Statistical
comparisons used Wilcoxon tests across trajectory pairs, and model-
specific error distributions for transcription factor binding sites were
analyzed using Kolmogorov-Smirnov tests (Fig. 5E).
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IQ Plots
IQ plots (IQ-Ps) are a visualization tool developed to aid in the inter-
pretation of IceQream models and the exploration of cis-regulatory
elements (CREs) architectures. IQ-Ps combine several layers of
information:
1. ATAC signal: APs at 200 kbp and 500bp resolutions, for the two

cell states that constitute the inputs to calculate a dAP for a tra-
jectory of interest. Gene names of annotated TSSs in the 200 kbp
are also marked.

2. DNA sequence: 500bp DNA sequence with letter size scaled by
binding energy to any PBM model.

3. Motif models’ contributions: Color-coded letters representing
predicted contributions of each PBM to the ATAC difference.

4. Representative logo plots for each motif model.
5. Conservation score: Conservation scores were taken from Sulli-

van et al.29 for each base pair.

The resulting IQP provides a comprehensive view of the sequence
features, binding preferences, and predicted regulatory effects for a
given CRE.

Multiome RNA-seq analysis and metacell manifolds derivation
The gastrulationmetacell48model includes 10XMultiomeexperiments
obtained from published data49, merged with new 10X Multiome data
collected by us from E6.5-E7.5 stage mouse embryos. After low UMI
counts, doublets, and outlier filtering, a total of 55,783 single-cell RNA
profiles were used to generate a metacell model based onmetacell-250

with an equivalent of 25 cells as the target number of cells permetacell.
The resulting metacells EGC matrix was used in a projection51 schema
on our comprehensive mouse gastrulation atlas37. Cell state annota-
tions were taken from the projected atlas metacells, and ordering of
metacells across differentiation trajectories was also conducted using
the projected metacells RNA signatures. The hematopoiesis metacell
model used public BM CD34 + 10X Multiome data52. A total of 12947
single-cell RNAprofileswereused togenerate ametacellmodelwith an
equivalent of 35 cells as the target number of cells per metacell.

Nuclei isolation from mouse embryos for Multiome sequencing
All animal procedures were approved by the Institutional Animal Care
and Use Committee and were performed in strict adherence to Weiz-
mann Institute guidelines.Miceweremonitored for health and activity
and were given ad libitum access to water and standard mouse chow
with 12 h light/dark cycles.

Mouse embryos from timed pregnant immune competent Hsd:
ICR (CD−1) females at E6.5-E7.5 were harvested and dissected in ice-
cold 1×PBS. Nuclei for the Multiome assay were then prepared from
these embryos. In general, 45-70 K cells were used for nuclei isolation
for each Multiome assay. Single nuclei suspension was obtained fol-
lowing the demonstrated low cell input nuclei isolation protocol from
10x Genomics, with minor changes. Briefly, cells were washed once
with 500 µl cold PBS/0.04% BSA and resuspended in 50 µl PBS/0.04%
BSA in a 200 µl DNase/RNase-free tube. Following a centrifuge at 300
rcf for 5min at 4 °C, cell pellets were incubated in 45 µl chilled lysis
buffer (10mMTris-HCl, pH7.4, 10mMNaCl, 3mMMgCl2, 0.1% Tween-
20, 0.1% Nonident P40 substitute, 0.01% digitonin, 1% BSA, 1mMDTT)
with freshly added RNase inhibitor (final concentration 1U/µl, Sigma,
3335399001) for 3min on ice after gentle pipetting for 5 times. After-
wards, 100 µl chilled wash buffer (10mM Tris-HCl, pH7.4, 10mMNaCl,
3mMMgCl2, 1% BSA, 0.1% Tween-20, 1mMDTT, 1U/µl RNase inhibitor)
was added directly to the tube, followed by another 5 times gentle
mixing. The suspension was spun at 500 rcf for 5min at 4 °C. After
removing 145 µl supernatant, 45 µl chilled diluted nuclei buffer (10x
Genomics) was added to the pellet without dislodging the pellet. Fol-
lowed by a centrifuge at 500 rcf for 5min at 4 °C, the final nuclei were
resuspended in 7 µl diluted nuclei buffer. 2 µl nuclei suspension was

taken to quantify the concentrationwith a Countess II (Thermo) and to
check thequality under an invertedmicroscope. >95%of nuclei stained
positive for trypan blue, and the nuclei were found to have the
expected morphology. Nuclei were further diluted to the suggested
concentration range suitable for the preparation of a 4000-nuclei
library if needed.

Multiome library preparation
Single nuclei suspensions were loaded on Chromium Next GEM Chip J
(10xGenomics) to generate single-cell GEMs. Single-cell ATAC libraries
and gene expression libraries were constructed separately following
the manufacturer’s instructions. Library size distribution and abun-
dance were assessed with a D1000 or D5000 ScreenTape (Agilent),
and their concentration was quantified with Qubit 4 Fluorometer
(Thermo). Libraries were sequenced on an Illumina NovaSeq 6000
instrument in paired-endmode. Sequencing settings are: ATAC library:
read1: 50 cycles, index1: 8 cycles, index2: 24 cycles, read2: 49 cycles.
RNA library: read1:28 cycles, index1:10 cycles, index2: 10 cycles, read2:
90 cycles.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data that support the findings of this work have been deposited in the
Gene Expression Omnibus under accession code GSE305339. Pre-
viously published mouse gastrulation Multiome data that were rea-
nalyzed here are available under GSE205117. Previously published
Human BM CD34+ Multiome data is available under GSE200046. All
other materials and data supporting the findings of this study are
available from the corresponding authors upon request. Source data
are provided with this paper.

Code availability
IQ code and workflows used in this work are available in the GitHub
repository at https://github.com/tanaylab/iceqream. All scripts and
auxiliary scripts used to analyze data and generate figures have been
deposited in the GitHub repository at https://github.com/tanaylab/IQ-
Paper53.
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