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The three-dimensional arrangement of plant components, both within and
among individual trees, is fundamental for characterizing forest ecosystems.
This structure not only influences but also responds to environmental chan-
ges, playing a key role in regulating light regimes, forest productivity, as well as
physiological and biophysical processes. Over the past few decades, terrestrial
laser scanning (TLS, or terrestrial LIDAR) has provided a unique perspective of
this 3D structure, offering new insights into ecological processes and forest
disturbances, as well as enhancing structural assessments in forest and carbon
inventories. Here, we examine recent advancements in TLS and its applications
in forest science. We also explore how increasing computational power,
alongside the rise of artificial intelligence, is empowering researchers to tackle
more complex questions, paving the way for breakthroughs in understanding
forest ecosystem dynamics in a changing world.

Remote sensing has revolutionized our understanding of forests
worldwide. Since the first Earth observation missions were launched in
the 1970s, remote sensing has contributed to quantifying and mon-
itoring forest extent'?, as well as forest functioning®. From tropical to
boreal forests, these technologies have enabled us to track habitat
loss*, ecosystem health’, and carbon storage® at unprecedented spatial
coverage and analytical depth, becoming an essential tool in mon-
itoring key planetary boundaries related to land system change and
climate regulation®,

Over the past decades, the field of forest remote sensing has made
fast advancements in both methodological and computational cap-
abilities. The field has shifted from simply mapping landscapes to

actively monitoring dynamic processes at increasingly near real-time’.
The ability to analyze the physiological and structural characteristics
of forests has rapidly become both technically and operationally fea-
sible. Light Detection and Ranging (LiDAR, also known as laser scan-
ning) sensors mounted on aerial platforms have added a new
dimension to these capabilities. By emitting laser pulses to measure
distances, LiDAR technology provides precise and accurate, three-
dimensional measurements of forest canopies. Although the first
applications of airborne laser scanning (ALS) in forest studies began in
the 1980s'", its widespread adoption did not gain momentum until
after the 2000s™. Since then, LiDAR has become the remote sensing
gold standard for quantifying forest structural characteristics such as
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canopy height and cover, and topographical features of the
forest floor.

Among the remote sensing tools available to scientists, none
provides a more accurate and detailed view of forest structure than
terrestrial LiDAR technology, also known as terrestrial laser scanning
(TLS). Unlike airborne systems, TLS instruments are positioned at
ground level, allowing them to capture detailed measurements of both
the forest understory and the upper canopy. Compared to other
ground-based methods, such as mobile laser scanning, terrestrial
photogrammetry, or traditional inventory techniques, TLS offers
superior geometric accuracy and structural completeness, particularly
for detailed modeling of individual trees and stand structure.

The adoption of TLS is much more recent in comparison to other
remote sensing tools, increasing quickly from around 2010 onwards
(Table 1). The first review articles on TLS applications in forests
appeared in 2011, offering foundational insights into using TLS to
assess forest structure, including tree height, stem diameter, and
biomass®. Subsequent reviews highlighted TLS’s ability to improve
plot-scale forest measurements and estimate tree metrics", as well as
its broader applications across forest science disciplines”. More recent
reviews have summarized key developments and future challenges in
TLS, reflecting the growing and diversifying TLS research
community'®”. However, with the fast adoption of TLS for studying
vegetation, substantial progress has been made beyond these latest
assessments.

Although many factors have contributed to the uptake of TLS in
forest studies, three aspects stand out: price, speed, and size. While
high-end TLS instruments—typically characterized by high ranging
accuracy and long effective range—remain prohibitively expensive for
many research groups, the availability of more affordable devices has
substantially increased in recent years, making the technology more
accessible. Recent instruments are not only lighter but also offer sig-
nificantly faster point acquisition rates. In addition, modern scanning
protocols have become more efficient, as many systems no longer
require fixed calibration targets for registration, reducing setup time
and enabling faster fieldwork workflows'. These improvements allow
researchers to cover greater areas more rapidly with multiple scan
positions, which helps reduce occlusion and improve the complete-
ness of forest structural data.

While increased accessibility and hardware improvements to TLS
instruments have reduced or eliminated major data collection bottle-
necks, extracting accurate information from the resulting point clouds
remains a significant challenge. Recent algorithmic advances, includ-
ing co-registration methods'®, deep learning approaches for crown
delineation?’, and automated pipelines for large-scale tree extraction?,
are streamlining TLS data processing and enabling more efficient
analysis of complex point clouds. Together, these developments are
expanding the scope of ecological research and transforming how we
study forest structure and dynamics. This review provides a forward-
looking assessment of the use of TLS technology in forest studies. We

outline advancements made over the past years, explore emerging
questions that TLS has the potential to address, and highlight the key
challenges and bottlenecks that still limit its broader adoption and
application.

TLS and increasing realism in modeling forests

The rapid increase in our ability to use TLS to capture extremely detailed
3D descriptions of tree and forest structure has led to an increasing
interest in so-called “digital twin” or virtual forest approaches'®”. But
what does this mean in practice: do digital twins represent a useful new
conceptual framework, a rebadging of “a model” or somewhere in
between? There is no doubt that the concept of digital twins is being
used to underpin some very large initiatives in linking climate, obser-
vation, and modeling (https://destination-earth.eu/).

According to Batty” the term digital twin was coined in the early
2000s by Michael Grieves** and has subsequently been used in a range
of contexts. In its original sense, a digital twin represents a digital
mirror image of a physical process, designed to match it precisely in
both space and time, with a bidirectional flow of data between the
physical and digital counterparts. A model, on the other hand, is
generally considered as an abstraction of a physical process, keeping
the key elements we are interested in, but simplifying or even ignoring
those we are not. A model is therefore a simplified representation of a
physical system, whereas a digital twin implies a representation with
the maximum detail we can provide®.

A good example of where TLS has facilitated this distinction
between a model and a digital twin is in the process of representing
radiative transfer in vegetation’>?., This is a crucial application for
quantifying and understanding the processes affecting canopy pho-
tosynthesis, modeling the Earth’s radiation budget, and biophysical
feedback between vegetation and climate?. A great deal of work has
gone into developing simplified radiative transfer models of vegeta-
tion for successful global monitoring of vegetation properties’”*,
using a range of approximations to represent, for example, leaf and
soil scattering properties, leaf amount, and physical arrangements in
space. However, an alternative approach has been to represent the 3D
physical canopy as accurately as possible, including every leaf or
needle, branch, and soil element in 3D, and then solving the radiative
transfer problem using, for example, Monte Carlo ray tracing
(MCRT)®",

A limitation in this high-detail MCRT approach, however, is that it
requires the spectral properties of every canopy element, including
leaves, bark, and soil, to be known. In practice, acquiring such detailed
measurements for every forest is not feasible, which prevents the use
of these models for inversion—that is, retrieving canopy properties
from remotely sensed reflectance. Between simplified parametric
models and full 3D reconstructions, intermediate approaches like
voxel-based representations (used in models, e.g., DART?) offer a
balance between structural realism and computational efficiency, and
can be parameterized with TLS data. Thus, rather than serving in large-

Table 1| Technical advancements and milestones in the development of terrestrial LiDAR (TLS) technology

Timeline Milestones

1930s Use of light pulses to measure distances, such as cloud heights, was pioneered by E.H. Synge'™™.

1960s First lidar prototypes and commercial devices developed, driven by Theodore Maiman’s 1960 Ruby Laser invention at Hughes Research Laboratory,
enabling high-precision range measurements and broad applications'®.

1970s Lidar expands into topographic and military applications'™".

1980s Integration of GPS with LiDAR boosts its use in mapping large areas, including airborne LiDAR applications.

1990s Deployment of the first tripod-mounted 3D scanners (e.g., Cyra Technologies, later acquired by Leica), sparking advancements in terrestrial applications,
and paving the way for broader adoption'®.

2000s First TLS applications in forest science emerge, focusing on tree height, stem diameter, and canopy structure'.

2010s Rapid growth of TLS in forest studies, including biomass estimation, structural complexity".

2020s Advanced TLS techniques reveal temporal dynamics, improve canopy models, and enable global 4D monitoring initiatives”'*".
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Fig. 1| Progression of digital forest representation complexity, from simplified
radiative transfer models to highly detailed reconstructions enabled by ter-
restrial laser scanning (TLS). On the left, parametric radiative transfer models
depict forests as simple geometric shapes or approximations. In contrast, TLS-
based reconstructions (right) provide high-resolution models of forest stands,
including individual tree structures, detailed branching systems through quanti-
tative structure models (QSMs), and foliage elements. TLS instruments capture

dense 3D point clouds by scanning forests from multiple ground-based positions.
These point clouds can then be processed to reconstruct tree geometry, crown
shapes, and canopy surface details, supporting realistic structural inputs for
modeling frameworks. The integration of TLS data into advanced modeling fra-
meworks supports full forest reconstructions with applications in radiative transfer
simulations, enhancing the realism of digital twins for forest ecosystems.

scale monitoring applications, radiative transfer models based on TLS
data help create a detailed scientific understanding of how forest
structure influences multi-angular scattering processes of forest
canopies®. TLS data can also broaden the scope for modeling canopy
scattering, such as estimating photon recollision probability within
forest canopies®. The progression of canopy realism in radiative
transfer is illustrated in Fig. 1.

Another area where TLS is enabling this progression from sim-
plified models to digital twins is in functional structural plant mod-
eling (FSPM). The FSPM approach seeks to model the external
structural expression of underlying genetic and phenotypic
behavior®*?**. FSPMs predict the 3D plant structure that arises from
these underlying behaviors. The difficulty is testing and validating
these structural predictions for real trees. There have been various
attempts to couple 3D tree structure with FSPMs via manual mea-
surements and even procedural models**. However, the advance-
ments in TLS have opened the way to a much more effective
parameterization of FSPMs, as well as direct tests of their predictions.
O’Sullivan et al.** suggested that TLS will contribute to FSPM devel-
opment in two key areas: first, by parameterizing static FSPMs to
simulate interactions between structure, environment, and physiol-
ogy; and second, by enabling the testing and calibration of dynamic
FSPM predictions to explore ecological and environmental hypoth-
eses. Potapov et al.>®, for example, developed a stochastic version of
an existing FSPM (LIGNUM) for producing tree structures consistent
with detailed TLS data. Sieviinen et al.”’ used TLS measurements of
pine trees of different ages to construct a pseudo-time series of
growth of a single tree. They used an FSPM to stochastically simulate
crown development to match the TLS-derived crown development
and suggested the resulting best-matching FSPM parameters repre-
sent the underlying crown development mechanisms. This ability to
establish quantitative links between structure and function has
enabled the development of a so-called structural economics spec-
trum, embedding tree size and structural diversity in the wider fra-
mework of plant resource use’.

Advances in capturing tree and forest structure via TLS are
enabling the transition from simplified structural representations to
digital twins, with very high levels of structural detail, using so-called
quantitative structure models (QSMs), the algorithmic enclosure of
point clouds in topologically-connected, closed volumes®“°. This, in
turn, throws up some interesting challenges in terms of how best to
use or interpret this detail. In radiative transfer modeling, for example,
the challenge is no longer one of representing structure, but how to
assign the underlying scattering properties of that structure—the
leaves, branches, soil, etc. that make up the resulting scene model. This
process will look very different across different wavelength domains,
from the shortwave visible to thermal and microwave. In the case of
FSPMs, a challenge will be how to feed back the phenotypic informa-
tion expressed in observed structure to the underlying functional
process representation. Challenges of course open further
opportunities.

Returning to the question of whether digital twins represent
something new and useful for forest monitoring, in the sense used here
at least, digital twins are different from models and serve a different
purpose. In essence, they allow us to move away from assumptions
about tree and forest structure that have been imposed on us simply
because of our inability to make the necessary measurements. TLS
data are breaking this barrier down, which will benefit a wide range of
ecological and environmental applications. The following sections
explore these advancements at various levels. We discuss how TLS
provides detailed insights into individual tree morphology, supports
forest inventories, and aids in quantifying both the structural com-
plexity of forest habitats and the impact of disturbances within these
ecosystems.

Understanding the architecture of trees

Tree architecture, also known as tree structure or morphology, refers
to the 3D size and arrangement of a tree’s fundamental components
(e.g., trunks, twigs, branches, leaves, and needles). The aboveground
arrangements determine the efficiency of light capture for
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photosynthesis, influence competition for resources, and affect eco-
logical processes such as carbon storage, water, and nutrient cycling*’.
As aresult, commonalities exist in the overall structure of different tree
species, particularly in the stem and branching patterns, and in their
functional roles within the ecosystem.

The architecture of a tree results from the interaction between
genetic factors ultimately linked to the plant’s functional strategies
(i.e., reproduction) that dictate morphological characteristics unique
to each species and both long-term and short-term adaptations to the
environment*’. These adaptations are influenced by a variety of fac-
tors, including biotic pressures like competition for space and
increases in liana abundance*’, as well as abiotic elements such as light
and water availability****. Additionally, wind (an abiotic factor) can
influence tree architecture both by causing mechanical damage, par-
ticularly in structurally unstable trees, and by driving acclimation
processes that shape tree form over time*°. These effects can extend to
neighboring trees and alter overall forest canopy structure*®. There-
fore, quantifying tree architecture can provide useful information for
improving forest management strategies, assessing ecosystem pro-
ductivity, and modeling carbon dynamics.

Architectural metrics, such as stem diameter, tree height, and
crown area, can be easily measured from TLS point clouds*’. How-
ever, capturing more complex metrics, such as branching patterns
and woody volumes, requires more advanced modeling approaches
to reconstruct the three-dimensional distribution of tree
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Fig. 2 | Visualizing tree architecture using TLS-derived quantitative structure
models (QSM). The QSM was generated using the TreeQSM algorithm and consists
of cylinders approximating the tree’s woody component. Each branch is displayed
in a different color. Four panels highlight quantitative structural information

computed from the model. A The total branch length per branch order (excluding
the stem), highlighting the distribution of smaller, higher-order branches. B Branch

components’. QSMs of trees can capture the woody branching
structure in detail, including the 3D topological branching pattern, as
well as the diameters, lengths, surface areas, angles, and volumes of
the stems and branches (Fig. 2). Typically, these models consist of a
hierarchical collection of geometric primitives, mostly cylinders,
which locally approximate the diameter and general geometry of the
stem and branches. Collectively, these primitives provide an
approximation of the entire woody structure, including the total
woody volume*.

Several methods exist for generating QSMs from point cloud data,
each with different assumptions and outputs. These include
TreeQSM*’, SimpleForest (formerly known as SimpleTree)*s, which is
part of the broader Computree platform*’, 3D Forest™®, and AQSM®".
More recent developments include TreeGraph®” and L1-Tree™. Most
methods follow a common workflow: segmenting the point cloud into
stems and branches, followed by cylinder fitting to reconstruct geo-
metry. However, some methods, such as Treegraph®”> and TreeQSM*°,
first derive a complete topology before addressing volume. Differ-
ences also arise in implementation: TreeQSM, for example, requires
MATLAB, while some offer standalone or open-source solutions. These
methods were also built for different purposes, such as targeting the
volume or branching structure, and have been validated for different
metrics. It is noteworthy that there is not a lot of validation data for
many of the more complex metrics, such as individual branch dia-
meters and lengths.
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volume distribution across orders, indicating that larger branches are concentrated
in lower orders. C Branch volume to height, showcasing how woody branch volume
is distributed vertically within the tree. D The relationship between branch segment
(excluding the stem) diameter and volume, emphasizing the contribution of
smaller diameters to overall tree volume.
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The processing of TLS point cloud data presents major challenges
that impact the accuracy of QSM methods. The first is the need for a
leaf-wood separation pre-processing step. This step is crucial because
leaves can both obscure woody components and emulate them in the
point cloud, potentially confusing QSM algorithms and leading to the
creation of artificial branching structures. Another challenge is occlu-
sion, where parts of the stem or branches may not be captured due to
limited visibility from the scanner positions. Furthermore, accurate
segmentation of individual trees from dense plot-level point clouds
remains a critical bottleneck, especially in structurally complex forests.
Recent advances in artificial intelligence are helping to overcome these
challenges. Convolutional neural networks and point-based classifiers
have achieved high accuracy in distinguishing foliage from woody
elements in complex canopies®**. To address occlusion, generative
models and deep completion networks are being used to infer missing
structural details and reconstruct plausible tree geometry from
incomplete point clouds®. In the case of individual tree segmentation,
3D deep learning segmentation frameworks are now enabling auto-
mated, high-precision delineation of individual trees across a range of
scanning platforms, reducing the reliance on manual input and
improving scalability®>’.

Additionally, the accuracy of total tree volume estimates using
QSMs is heavily influenced by the visibility of the tree structure in TLS
data, making reliable volume and biomass estimates (assuming wood
density is known) highly dependent on data quality. For many species,
the total tree volume primarily consists of the stem and large branches,
which are the most visible components in TLS data. Due to the
centimeter-scale size of LiDAR laser beams upon contact with trees,
point clouds often overestimate the diameters of small branches,
leading to inflated volume estimates in QSMs*. One approach to
address this overestimation is to apply filtering techniques or to
incorporate actual twig diameter measurements® to adjust the cylin-
der diameters for greater accuracy. More generally, estimates of the
size and shape of small or distant branches, particularly those with
diameters close to the TLS footprint, are likely to be unreliable without
strong validation. These structural uncertainties propagate into bio-
mass estimates, especially when combined with intra-tree and intra-
species variability in wood density.

A new asset in forest inventories

Forest inventories have long been employed to assess and monitor the
condition, composition, and changes in forests over time. These
inventories provide important data for understanding forest resour-
ces, informing policy decisions, and assessing carbon stocks and bio-
diversity. For instance, National Forest Inventories (NFIs) are an
essential tool for countries to report on their forest status to interna-
tional organizations and agreements, such as the Food and Agriculture
Organization or the United Nations Framework Convention on Climate
Change. ALS has been adopted already for decades in operational and
commercial forest inventories, particularly in Nordic countries, to
enhance efficiency.

Research studies and reviews commonly agree on the technolo-
gical readiness of TLS for operational inventories, in particular with
respect to accurate geometric measurements at the centimeter to
millimeter scales® . Recent benchmarking studies have shown that
TLS can estimate tree attributes such as diameter at breast height
(DBH) with errors typically below 2 cm and stem curve profiles with
comparable accuracy in boreal forests®. In tropical agroforestry sys-
tems, TLS has also produced strong correlations with field-based
measurements of canopy openness (r=0.79) and tree height
(r=0.58)". These findings confirm that TLS provides structural esti-
mates comparable in accuracy to conventional methods, while also
capturing three-dimensional complexity beyond what field inventories
typically offer.

TLS therefore delivers not only standard inventory metrics, but
also allows estimation of structurally detailed attributes that are
typically unmeasured in the field, such as crown area and volume,
foliage clumping (relevant for modeling light interception)®?, and the
space around a tree (for assessing growth potential)®® (Fig. 3). Given
that the raw point clouds record rich 3D information, previously col-
lected TLS data can be reprocessed to extract novel metrics as algo-
rithms improve, even years after the original data collection.
Moreover, the possibility of increasing sampling plot size with TLS
compared to traditional inventories has been discussed to improve
the representativity of samples and the link to airborne and satellite
remote sensing data'”*’.

Deriving additional information from inventory data, such as stem
volume and tree biomass, strongly relies on estimates from allometric
models. Ensuring the reliability of these models is therefore critical for
accurate assessments. In some recent NFls, differences in stem volume
estimates have been observed when using models with varying pre-
dictors, such as two (DBH and height) versus three (DBH, height, and
diameter at 6 m) variables. To address such discrepancies, projects
utilizing TLS data have been undertaken to develop improved stem
volume models®**, For example, studies have shown that stem form
can vary over time®* and across regions®“, with changes most pro-
nounced in the lower parts of tree stems. These findings highlight the
importance of regionally calibrated allometric models and the poten-
tial of TLS data to capture variability in stem form across tree species
and geographic areas.

Forest management, which includes activities such as thinning,
clear-cutting, and selective harvesting, can have significant effects on tree
growth, particularly in terms of stem form. For instance, management
practices aimed at reducing competition for light and nutrients can
influence how trees allocate resources to their trunks, resulting in chan-
ges in stem and branch diameters, height, and form. TLS has proven
effective in assessing growth changes in trees after forest management
interventions, capturing structural changes in tree morphology® . It has
also been employed to generate competition indices using crown infor-
mation, which improves upon traditional approaches relying solely on
DBH or height’*”. Furthermore, point clouds derived from TLS enable a
more comprehensive assessment of tree competition by quantifying the
occupied space around trees, providing detailed insights into tree
interactions and their surroundings™”>.

TLS data has been used in characterizing differences in stem form
over both time and space®*’*. For instance, bitemporal TLS data were
used to capture stem growth dynamics, volumetric changes, and loca-
lized deformations, providing useful insights into tree responses to
environmental factors and management interventions’”. Bitemporal
TLS data were also applied to assess changes in stem shape and identify
relationships between stem deformation and drought stress, high-
lighting how environmental factors can influence tree morphology over
time”. Interannual TLS data have further enhanced the understanding
of tree dynamics. Seasonal radial growth has been detected in TLS point
clouds collected before and after the growing season, although the
study also highlighted important challenges in detecting millimeter-
scale changes in stem diameter”’. Furthermore, defoliation was assessed
from TLS scans conducted during a single growing season and linked to
independently measured growth losses®’.

High temporal resolution TLS data of individual trees, e.g., once
every 30-60 min, are also becoming increasingly accessible’®”®. Multi-
temporal approaches enable the monitoring of tree structural
dynamics, such as movement and responses to environmental factors,
at detailed temporal scales, offering deeper insights into plant phy-
siology and interactions with their surroundings. Campos et al.*° pre-
sented a measurement station that collects TLS data with high
temporal resolution, whereas Wang et al.*! developed a tool quantify-
ing plant movements from point cloud time series. These datasets
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Fig. 3 | Overview of metrics derived from terrestrial laser scanning (TLS) for
forest inventories. TLS instruments collect detailed 3D point clouds of forest
plots, enabling accurate measurement of both tree- and stand-level structural
attributes. At the tree level, TLS enables detailed measurements of tree height,
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crown dimensions, branching, and stem form, along with temporal monitoring. At
the stand level, TLS provides metrics like basal area, competition indices, canopy
height, and structural complexity, complementing traditional inventory methods
with higher accuracy and expanded measurement capabilities.

were used by Yrttimaa et al.** in assessing height and diameter growth
of individual trees.

In the context of forest inventories, determining the tree species
is relevant for several applications. Although allometric models based
on tree height and stem diameter are not necessarily species-specific,
TLS-based allometric models could vary across species, caused by
species-specific branching patterns and crown sizes®. Even though
classification algorithms have been proposed®**, their performance
often falls short of inventory needs due to limited training data, sen-
sitivity to scan conditions, and the difficulty of distinguishing species
with similar shapes. Finally, best practices and standardization in field
protocols are required for adoption in NFIs®. As technology advances
rapidly, time series of TLS data face the challenge of comparability:
point clouds acquired with different types of scanners may vary, and
there is a need to ensure the reliability of attributes derived from
possibly very different datasets.

From trees to forests: dynamics, functioning, and
habitat complexity

Moving from trees to forests, stand-level canopy structure represents
the spatial occupation and arrangement of individual trees, along with

their leaves, branches, and stems®, and plays a crucial role in reg-

ulating forest ecosystem functions®*>”°. A fundamental step toward
understanding this structure is quantifying how plant components are
distributed in three-dimensional space.

Voxel-based approaches are particularly effective in this context,
as methods have been developed to account for occlusion and enable
the transformation of raw TLS point clouds into spatially explicit,
biophysically meaningful estimates, such as plant area density”.
Similarly, TLS-derived gap fraction metrics are important for describ-
ing canopy openness, which not only characterizes structural prop-
erties but also influences ecological processes such as light
penetration and microclimate regulation®°*. Building on these foun-
dational measurements, the concept of canopy structural complexity
integrates multiple dimensions of forest organization, offering a more
holistic perspective on how forest structure underpins ecosystem
function”*°,

From the perspective of biodiversity measurement, McElhinny
et al.”® reviewed stand structural complexity and characterized it by
the richness and abundance of structural attributes, where commonly
used attributes include DBH, tree height, and leaf area index. However,
these metrics alone do not fully capture the spatial occupation and
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Fig. 4 | Metrics derived from terrestrial laser scanning (TLS) to quantify forest
canopy structural patterns across different dimensions. A Horizontally-focused
metrics, such as canopy cover, describe the distribution of canopy elements on the
horizontal plane. B Vertically-focused metrics, such as foliage height diversity,
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capture vertical heterogeneity within the canopy. C Unified metrics, such as canopy
entropy, integrate both horizontal and vertical dimensions to provide a compre-
hensive measure of structural complexity. Together, these metrics offer diverse
perspectives for understanding forest ecosystems.

arrangement of canopy elements. TLS provides precise positional data
for canopy elements, allowing to directly describe canopy structural
complexity based on the three-dimensional spatial distribution of
canopy elements®"’,

Recent studies emphasized that a comprehensive quantification
of forest canopy structural complexity should include volumetric
capacity, spatial arrangement, and the identity or functional traits of
canopy elements’®. However, current technology for extracting spe-
cies and functional traits using TLS data remains limited”. Conse-
quently, canopy structural complexity derived from TLS data primarily
focuses on volumetric capacity and spatial arrangement. With
advancements in the conceptualization of canopy structural com-
plexity, this attribute is increasingly valued for its role in elucidating
forest ecosystem functions. For example, Hardiman et al.'°° found that
increasing canopy structural complexity provides a mechanism for the
potential maintenance of productivity in aging forests where the leaf
area index cannot increase.

Forest canopy structural complexity is shaped by the spatial filling
of individual trees, with species-specific modification strategies in
crown architecture serving as key determinants. Species with different
ecological functions can occupy distinct vertical canopy layers based
on their ecological niches. A typical example is that light-demanding
species often dominate in environments with higher light availability in
the upper canopy and canopy gaps, while shade-tolerant species can
grow and survive in the lower canopy layers of late-successional
forests'”'%2, Genotypic variability allows tree crowns to complement
each other, while phenotypic plasticity enables them to adjust their
shape and size in response to local competition, thereby optimizing
the use of canopy space'®*'*, Precise structural information extracted
from TLS data is boosting the study on these phenomena'®'%,

On a larger scale, canopy structural complexity and these related
biotic determinants would be influenced by abiotic factors such as
climate and soil***'%”_ Ehbrecht et al.'*, using TLS data from 279 plots,
demonstrated that annual precipitation and its seasonality largely
explain the variation in forest structural complexity in primary forests
across all major forested biomes, with more humid climates support-
ing greater complexity.

Although canopy structural complexity has become a prominent
attribute in forest ecosystem research, the methods for quantifying
this complexity vary across studies. Metrics derived from TLS data to

assess canopy structural complexity can be categorized into three
types: horizontally, vertically, and unified metrics’'%, Horizontally
metrics (e.g., canopy cover, canopy occlusion, Fig. 4A) primarily
quantify the distribution of canopy elements on the horizontal plane,
which cannot account for their vertical arrangement'®. In contrast,
vertically metrics (e.g., foliage height diversity, effective number of
layers, Fig. 4B) capture the vertical heterogeneity of canopy elements
while potentially overlooking their horizontal distribution®”"°. Unified
metrics aim to quantify forest canopy structural complexity by inte-
grating both horizontal and vertical arrangement and distribution,
addressing the limitations of metrics that consider only one
orientation'®, Currently, commonly used unified metrics include
canopy entropy (Fig. 4C), canopy rugosity, clumping, and stand
structural complexity index®*'“”!", These metrics quantify canopy
structural complexity from different perspectives and may comple-
ment or covary with each other. Further investigation is still needed to
identify the appropriate metrics for specific ecological contexts, which
will require collaboration between experts in TLS technology and
ecological mechanisms.

Building on the role of TLS-derived metrics in assessing canopy
structural complexity, these metrics have been applied as proxies for
habitat characterization, enabling detailed analyses of vegetation
vertical density and openness"* ', These metrics can then be related
to biodiversity, including abundance and diversity of birds™, the
impact of large herbivores on forest structure"®, and animal-
environment interactions"®. The increasing robustness and reliability
of algorithms to characterize point clouds into ecologically mean-
ingful components opens the opportunity to use TLS-derived struc-
tural metrics as proxies for biodiversity patterns and habitat
complexity.

An often-overlooked component influencing forest structural
complexity is dead wood, both standing and downed, which plays a
crucial role in enhancing biodiversity by providing habitat for various
species of fungi, insects, birds, and mammals. Assessing the amount of
dead wood and its dynamics is often difficult with traditional field
methods. Thus, methods have been developed for estimating the
volume of standing dead trees", as well as for identifying downed
dead wood from TLS point clouds'™. Similarly, TLS data has been used
to develop volume allometry for standing dead trees of varying decay
classes'”. The development of accurate dead wood mapping and

Nature Communications | (2025)16:8853


www.nature.com/naturecommunications

Review article

https://doi.org/10.1038/s41467-025-63946-6

Persistent
changes in

4

&'

Post-logging event

patterns

Fig. 5 | Forest disturbances and their impacts on structural features, high-

lighting the application of terrestrial laser scanning (TLS). TLS enables detailed
assessment of vertical structural changes caused by logging (top left), volumetric
changes in ground vegetation following fire events (top right), as well as shifts in
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phenological and structural diversity arising from edge effects in fragmented for-
ests (bottom). These examples illustrate the capability of TLS to quantify changes in
forest ecosystems with high precision, offering deeper insights into the impacts of
disturbances across different spatial and temporal scales.

volume allometry is key for assessing the biomass and carbon storage
in dead trees, as well as understanding their contribution to habitat
complexity. Despite these advances, there remains a significant gap in
our understanding of how TLS can effectively be used to assess dead
wood across different stages of decay. Dead wood undergoes various
changes in structure and composition as it decomposes, and further
research is needed to evaluate the potential of TLS data to capture
these changes based on structural attributes such as volume, shape
irregularities, and surface texture.

Characterizing forest disturbances in the three-
dimensional space

Forest disturbances are characterized by changes in the stand
composition, structure, or function, and may be triggered by nat-
ural factors such as wildfires, insect outbreaks, and storms, or by
human-induced factors such as logging and land conversion.
Although large-scale disturbances are easily observed from satellite
imagery, some are subtle and cannot be detected even by high
spatial resolution imagery or ALS data. Even in cases when these
disturbances can be detected by platforms over the canopy?*'%,
these approaches are limited in their capability to quantify struc-
tural changes characterized by shifts in the plant distribution along
the forest vertical profile.

In recent years, TLS studies have provided unprecedented
insights into forest disturbances® (Fig. 5). The high level of detail in
TLS data has enabled analyses of how edge effects alter individual
tree morphology, revealing the impact of forest fragmentation on
the architecture of Amazonian trees'**. While young trees colonizing
the edges develop thicker branches, resulting in 50% more woody
volume than trees of similar size and height in the interior, large trees
near the edges tend to have disproportionately lower heights, lead-
ing to a 30% reduction in their woody volume. This shift in tree

architecture caused by edge effects contributed to a net loss of
6.0 Mg ha of aboveground biomass in Central Amazonian forests.

TLS has also drawn conclusions into the effects of selective log-
ging on TLS-derived structural traits of tropical forests. Machine
learning models of structural traits accurately quantified the effects of
varying logging intensities on the forest canopy at multiple scales'®.
This approach worked across multiple spatial scales: at finer scales
(1-5m), it detected disturbances from individual tree harvesting and
canopy changes caused by logging trails, while at coarser scales
(>20 m), it provided an overview of the overall structural integrity of
forests under different logging intensities. TLS data revealed structural
changes persisting for decades after logging, highlighting the long-
term impact of these disturbances. For example, in forests on Mount
Kenya, TLS detected logging legacies in canopy structural traits even
40-70 years post-harvest’™. These persistent impacts were evident in
the canopy ratio, which describes the relative distribution of canopy
material across vertical layers of the forest and helps quantify how
logging alters the vertical balance between upper and lower canopy
strata.

Further demonstrating the versatility of TLS in forest disturbance
studies, recent research applied TLS to quantify fire-induced changes
in ground vegetation structure. Bitemporal TLS data detected reduc-
tions in vegetation volume following fire, illustrating how TLS can
capture both large-scale disturbances and subtle changes in unders-
tory structure when pre- and post-disturbance data are available'°. The
study quantified substantial reductions in vegetation volume post-fire,
with partial regrowth, providing detailed insights into fire-induced
structural changes. Variation in these changes was observed between
and within sites, highlighting the complexity of surface fire dynamics
and underscoring the need for multi-site observations.

Advances in quantifying structural features are now enabling
direct links between TLS data and the impacts of disturbances on
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broader ecosystem processes, such as shifts in phenology, micro-
climate regulation, and overall forest functioning. Bimonthly TLS data
over a period of 8 months have demonstrated that forest edge effects
affected the phenology and the synchronized interactions between the
upper and lower canopy strata of Amazonian forests'”. The study
argued that these changes occurred because edge-induced dis-
turbances increased light availability in the understory throughout the
year and also changed the airflow, disrupting the natural vertical gra-
dients of temperature and humidity within the forest. As a result, the
forest’s capacity to regulate microclimate and sustain synchronized
phenological cycles is weakened, further amplifying the impacts of
fragmentation on ecosystem stability.

Despite the progress in understanding forest disturbances
through 3D structural data, challenges remain in fully utilizing TLS
technology to quantify changes in the function of disturbed forests.
These environments, particularly in tropical ecosystems, often have
denser understory vegetation, which exacerbates occlusion and hin-
ders accurate tree segmentation. Future developments in segmenta-
tion algorithms will be critical to overcoming these barriers, enabling
more precise extraction of individual trees and improving our under-
standing of how disturbances influence physiological traits that
underpin changes in tree architecture and demographic processes.
Additionally, advances in taxonomic classification algorithms will
enhance our capacity to assess shifts in species composition arising
from disturbances, particularly within the understory, where tradi-
tional remote sensing methods have struggled to provide reliable data.

Discussion and perspectives

From the simple measurement of tree trunk circumferences to the
construction of realistic digital forest models, characterizing forest
structures is essential to understand these ecosystems®*“®, This infor-
mation is critical for monitoring and predicting the effects of human-
induced disturbances’'®, which will help us better comprehend the
future of the planet’s forests. TLS technology plays a pivotal role in this
effort, and its importance is likely to grow. This contribution will
emerge from two key fronts: first, the high-definition reconstruction of
forest structure and composition, enabled by advanced computational
algorithms, and combined with the ability to monitor these factors
over time (i.e., 4D monitoring), promises an unprecedented under-
standing of forest ecology and its role in the Earth system. Second, the
unique capability of TLS to foster digital forest representations will
enhance large-scale analytical frameworks (e.g., radiative transfer
models), boosting the application of Earth Observation data and eco-
system process simulations.

However, TLS approaches do not come without challenges, nor
should they be viewed as a complete replacement for established
techniques. Traditional methods, such as measuring stem diameters
with a metric tape, will remain far more practical and cost-effective.
While TLS usage has expanded over the past two decades, access to
high-end instruments—typically characterized by millimeter-level
ranging accuracy, long effective range, and fast acquisition rates
(e.g., 100,000 points per second)—remains challenging for many
researchers due to limited availability and high cost. Consequently,
selecting TLS equipment often involves a trade-off between the
required structural detail, the complexity of the target vegetation,
and available resources, though the increasing availability of more
affordable devices has greatly improved accessibility'. For instance,
in dense, multi-layered tropical forests, entry-level instruments may
suffice for measuring basal areas and canopy heights'®, but they may
fall short for producing accurate QSMs and detailed structural
metrics'?®. Conversely, in sparse forests with simpler structures, high-
end instruments may be unnecessary, as more affordable devices can
provide sufficiently accurate data, making the cost-benefit of
advanced equipment less justifiable. This trade-off is likely to shift in

the coming years as technological advancements make better
instruments more accessible and affordable for a wider range of
applications.

As we move forward, achieving the full potential of TLS will
require smoother and more standardized data processing pipelines.
Despite its numerous advantages, implementing TLS in operational
inventories is hindered by factors such as the speed of data collection,
which depends on the protocol and technology used. Earlier protocols
and lower-cost instruments required registering individual scan posi-
tions using retroreflective or spherical targets, whereas recent high-
end systems have enabled targetless scanning. These improvements,
along with faster scanning rates, have drastically shortened the time
needed for individual scans. Furthermore, similar sensor technologies,
such as mobile laser scanning and terrestrial photogrammetry, have
matured for faster point cloud acquisition™'”**, Another bottleneck for
effective analysis of acquired point clouds is a lack of appropriate,
standardized, and possibly commercialized software”. Although
automatic algorithms and pipelines are expected to reduce the time
required for analyzing large point cloud datasets'’, standardized
benchmarks are still lacking®’.

While no universally adopted international standards exist, TLS-
specific guidelines have been proposed to promote consistent data
acquisition protocols'®. Interoperability between TLS datasets is chal-
lenged by differences in scanner resolution, beam properties, and
native data formats. However, most instruments allow export to open
formats such as LAS (LASer File Format) via manufacturer software,
enabling broader use in community-developed processing tools and
libraries*”?>=,

Independent of technology and protocol, environmental condi-
tions, particularly wind and precipitation, often limit the effective field
time of TLS. Wind-induced movement in vegetation can introduce
noise into point clouds, creating “ghost branches” that lead to errorsin
QSMs and volume estimates®. Accessing remote areas remains a
logistical challenge, often requiring airborne platforms. Drones can be
useful in some cases but are limited by operational constraints (often
restricted to line-of-sight flying, for example). Weather conditions such
as wind and rain affect both TLS and other remote sensing approaches,
including drones. Compared to drones, TLS offers greater structural
detail and accuracy for generating QSMs, along with safer deployment,
as it avoids crash risks and typically requires fewer regulatory
approvals—making it a practical tool for detailed field measurements.

Finally, coordinated global TLS initiatives will be essential to
transform TLS into a worldwide asset, complementing and under-
pinning recent and upcoming satellite missions. For such initiatives
to succeed, standardized protocols must be developed to harmonize
data collected with different instruments and sampling strategies,
ensuring consistency and comparability across studies. Open and
harmonized TLS data catalogs remain scarce, although many data-
sets have been published through individual projects, field experi-
ments, or regional monitoring campaigns. Efforts toward global
coordination are advancing. The FOR-species20K initiative°, for
example, provides TLS-derived structural data for over 20,000 trees
across diverse forest biomes, offering a valuable open-access
resource for comparative studies. Methodological efforts such as
StrucNet™ aim to promote cross-biome consistency in TLS acquisi-
tion, but the substantial volume of raw data produced presents
additional challenges. Addressing these requires efficient data dis-
tribution pipelines to enable access to processed and standardized
outputs, such as derived metrics and variables, that can serve as
inputs for models or benchmarks in large-scale studies. With that
said, as scientists and industry work to narrow these gaps, TLS has
already proven to be an essential piece in the intricate puzzle of tools
helping society to better understand and coexist with the world’s
forests.
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Data availability
This review does not include original data. All data discussed are from
previously published and publicly available sources.
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