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Learning the cellular origins across cancers
using single-cell chromatin landscapes

Mohamad D. Bairakdar1,2,3,6, Wooseung Lee 1,2,3,6, Bruno Giotti1,2,3,6,
Akhil Kumar 1,2,3,6, Paula Stancl4,6, Elvin Wagenblast 3,
Dolores Hambardzumyan 3, Paz Polak5, Rosa Karlic 4 &
Alexander M. Tsankov 1,2,3

Deciphering the pre-malignant cell of origin (COO) of different cancers is
critical for understanding tumor development and improving diagnostic and
therapeutic strategies in oncology. Prior work demonstrates that somatic
mutations preferentially accumulate in closed chromatin regions of a cancer’s
COO. Leveraging this information, we combine 3,669 whole genome sequen-
cing patient samples, 559 single-cell chromatin accessibility cellular profiles,
and machine learning to predict the COO of 37 cancer subtypes with high
robustness and accuracy, confirming both the known anatomical and cellular
origins of numerous cancers, often at cell subset resolution. Importantly, our
data-driven approach predicts a basal COO for most small cell lung cancers
and a neuroendocrine COO for rare atypical cases. Our study also highlights
distinct cellular trajectories during cancer development of different histolo-
gical subtypes and uncovers an intermediate metaplastic state during
tumorigenesis for multiple gastrointestinal cancers, which have important
implications for cancer prevention, early detection, and treatment
stratification.

Cancer development is a complex, multi-step process driven by
genetic and epigenetic alterations that accumulate over time. A fun-
damental question in oncology is understanding the cell of origin
(COO), or the cellular progenitor that leads to malignant
transformation1. Identifying the COO is critical not only for under-
standing tumorigenesis but also for improving cancer prevention,
early detection, risk stratification, and targeted treatments1,2. For
example, precursor lesions for esophageal adenocarcinoma arise from
metaplastic changes in esophageal epithelial cells due to chronic acid
reflux; understanding the COO in this context has led to targeted
interventions, such as endoscopic surveillance and radiofrequency
ablation, to prevent malignant progression3,4. Moreover, studies in
prostate cancer have demonstrated that tumors originating frombasal
versus luminal epithelial cells exhibit distinct molecular profiles and

clinical outcomes and respond differently to androgen deprivation
therapy1,5,6.

Vast progress has been made in understanding the COO of dif-
ferent cancers using genetically-engineered mouse models1. However,
it is also critical to directly study neoplastic processes using human
samples that bypass limitations due to interspecies differences7.
Recent advances in transcriptomic, genomic, and epigenomic profiling
have emerged as powerful tools for tracing human cancer origins.
Machine learning (ML) approaches have utilized extensive collections
of normal and tumor bulk sequencing data to classify various cancer
types according to their tissue of origin, withmostmethods relying on
transcriptomic data8–12. While these approaches often achieve high
prediction accuracy, the selected gene features have shown incon-
sistencies across different studies12. More recently, these and other
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methods haveutilized single-cell transcriptomics data to infer theCOO
of several cancer types of interest13–16, but have not been scaled to
predict COOs in a pan-cancer fashion. Additionally, approaches to
detect the COO by modeling the relationship between normal and
cancer transcriptomic data have limitations, as gene expression can be
altered by the tumor microenvironment17, dedifferentiation18, and
oncogenic reprogramming18,19, which can obscure the true cellular
beginnings of a cancer.

Genetic data offers a more reliable means of tracing a human
cancer’s COO, as the mutational landscape of cells is predominantly
composed of passenger somatic mutations that accumulate over the
lifespan of an individual before malignant transformation occurs. In
addition, we and others have demonstrated that the underlying epi-
genome of the normal COO shapes the genomic distribution of
somatic mutations20–22, which tend to accumulate in closed chromatin
regions that are less accessible by DNA repair mechanisms23,24. Our
team first exploited the inherent relationship between epigenomic
features (e.g., histone modifications, chromatin accessibility, DNA
replication timing) of normal cells and the mutational landscape,
detected using whole genome sequencing (WGS), to predict the cor-
responding COOof different cancers using a RandomForest (RF) and a
linear model21,25. Polak et al.21 also demonstrated that chromatin fea-
tures from normal tissues are better predictors of the somatic muta-
tional landscape than gene expression data. More recently, Yang et al.
26 used extreme gradient boosting27 (XGBoost) for COO prediction,
which improved prediction speed and accuracy compared to RF,
especially for tumor types with low mutation density. However, the
aforementioned studies21,25,26 were based on bulk tissue epigenomic
data that lacks the resolution to identify the specific cellular popula-
tions that give rise to different cancers.

Recent advances in high-throughput, single-cell Assay for
Transposase-Accessible Chromatin (scATAC-seq) have been used to
profile millions of human fetal and adult cells and map chromatin
accessibility across hundreds of cell types28–34. We reasoned that
combining this data with the plethora of publicly available WGS35–37

data can greatly enhance the resolution and scale in predicting the
COO of different cancers.

Here, we assemble an extensive scATAC-seq dataset and leverage
our ML framework dubbed SCOOP–Single-cell Cell Of Origin Pre-
dictor–to predict the COO of 37 cancer types. Unlike previous bulk
transcriptomic and epigenomic approaches, single-cell chromatin
accessibility data enables deconvolution of complex tissues and identi-
fication of cancer precursor cells at cell subset granularity. Our model
demonstrates high accuracy and robustness, confirming knownCOOsof
numerous tumor types while also generating unexpected hypotheses
about several cancers. Most notably, SCOOP challenges the long-held
theory that small cell lung cancer (SCLC) arises primarily from neu-
roendocrine cells, showing instead a predominantly basal COO, in
agreement with a concurrent study employing cellular lineage tracing in
SCLC genetically-engineered mouse models38. Interestingly, our data-
driven approach also finds a role for neuroendocrine cells in the genesis
of atypical SCLC and less aggressive carcinoid tumors. Moreover,
SCOOP identifies a metaplastic-like stomach goblet cell as the COO for
five different gastrointestinal cancers, indicating convergent cellular
trajectories toward tumorigenesis, which has important implications for
cancer prevention and early detection screenings. Taken together, our
study establishes a cost-effective and scalable approach to infer a human
cancer’s COO at cellular resolution by integrating normal tissue scATAC-
seq and WGS data from tumor clinical samples.

Results
SCOOP improves cellular resolution and accuracy of COO
predictions
To predict the COO for 37 cancers of interest (Supplementary Data 1),
SCOOP uses as input one megabase pair binned (Supplementary

Data 2) single-nucleotide variant (SNV) count profiles aggregated
across WGS patient samples, and similarly binned scATAC-seq aggre-
gate profiles from a compendium of 559 normal cell subsets spanning
32 adult and 15 fetal tissue types (Fig. 1a; Supplementary Data 3;
Methods). SCOOP leverages the binned scATAC-seq profiles and a ML
model (XGBoost) to predict the mutation density of a given cancer
(e.g., lung adenocarcinoma, LUAD). It then iteratively reduces the set
of scATAC-seq cell features through backward feature selection to
identify the most informative cell subset (e.g., alveolar type II (AT2)
cells), which represents the predicted COO. The model is trained 100
times using different train/test splits and random seeds (100 SCOOP
runs; Methods), resulting in 100 COO predictions.

Using SCOOP, we were able to recapitulate previous tissue-level
COO predictions21 for eight well-established cancer types but often at
higher cellular resolution and accuracy, given our use of single-cell
rather than bulk epigenomic data (Fig. 1b; Supplementary Fig. 1). For
instance, SCOOP predicted bone marrow B cells to give rise to multiple
myeloma (MM) –which is supported by the literature39 – in contrast to a
prior, more general hematopoietic COO prediction21,25. Also, melanoma
was predicted to originate from melanocytes and glioblastoma (GBM)
from fetal-like brain cell subsets, in agreement with previous bulk
predictions21,25 and expected COOs40–42. Interestingly, our model sug-
gested hepatoblasts as the COO for hepatocellular carcinoma (HCC), a
type of hepatic progenitor cells (HPC) capable of differentiating into
mature hepatocytes, with hepatocytes ranking second (Supplementary
Fig. 1). Two competing theories implicatemature hepatocytes and HPCs
as the source of HCC43, and our analysis adds weight to the conjecture
that hepatoblast-like HPCs might be the primary COO of HCC. Finally,
for LUAD and lung squamous cell carcinoma (LUSC), SCOOP pinpointed
the specific cell type implicated in tumorigenesis44 – lung AT2 cells, and
lung basal cells, respectively – again providing higher resolution and
accuracy than previous tissue-level predictions21,25 of breast epithelial
cells for both of these two cancers.

SCOOP uncovers a basal COO for most small cell lung cancers
Wenext conducted an in-depth analysis of lung cancers, including two
subtypes which have not been considered in previous works: pleural
mesothelioma (PM) and small cell lung cancer (SCLC). For this analysis,
we also added a fetal lung scATAC-seq dataset45 and restricted the
feature space to only include lung cell subsets (Methods). To visualize
SCOOP’s reproducibility, we displayed the number of appearances (n)
and the feature importance of the 5most informative cell subsets after
backward feature selection following 100 SCOOP runs (Fig. 1a, c;
Methods). SCOOP accurately and robustly predicted AT2 and basal
cells as the COO of LUAD and LUSC44, respectively, showing sig-
nificantly higher feature importance than the next most predictive
feature (Fig. 1a, c;Mann-Whitney test, p< 10�19). Additionally, SCOOP’s
prediction of mesothelial cells as the COO of epithelioid PM is in line
with current models of mesothelial oncogenesis46.

To our surprise, SCOOP’s prediction for SCLC COO (Fig. 1c; Sup-
plementary Fig. 2a when training with cell features across tissues) –
basal cells – challenged the prevalent theory44 that SCLC arises pri-
marily from pulmonary neuroendocrine cells (PNECs), also present in
our feature set. Our findings are further bolstered by a previous study
showing that inactivation of tumor suppressors Rb1, Pten, and Tp53 in
Rbl1-null murine basal cells can give rise to SCLC47. At the time of
revising our manuscript, a landmark study utilized multiple
genetically-engineered mouse models to show that a tuft-like subtype
of SCLC can originate from basal cells but not PNECs, and provided
additional experimental evidence pointing to a basal COO for other
SCLC subtypes states38. Moreover, we observed that most LUSC and
SCLC patients’ mutational density profiles clustered together and
separately from LUAD and PM patients’ subclusters (Fig. 1d; Methods).
This suggests an intrinsic similarity in the somatic mutational land-
scapes of LUSC and SCLC and further supports a shared basal COO. Of
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note, the LUSC and SCLC WGS datasets35,36 used by SCOOP had dis-
tinctly different genetic drivers, including an expected high frequency
of RB1 and TP53 mutations in SCLC and NFE2L2, CDKN2A, TP53, and
PIK3CAmutations in LUSC cases, respectively (Supplementary Fig. 2b).

While SCOOP uncovered basal cells as the predominant COO of
SCLC, we further investigated if this was the case for different SCLC
subtypes. A recent study identified a rare subset of SCLC tumors that

lacked RB1 and TP53 alterations and instead exhibited extensive
chromothripsis48. These tumors were also associated with never- or
light-smokers, not customary for most SCLCs, and were hence
named “Atypical SCLC” (aSCLC) due to their unique pathogenesis
characteristics48. The binned SNV profiles of aSCLC cases from two
independent studies36,48 clustered separately from all other SCLC
tumors, indicating a distinct WGS mutational density for aSCLC
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(Fig. 1e). Remarkably, SCOOP predicted a pulmonary neuroendocrine
COO in both aSCLC patient cohorts36,48 (Fig. 1f, Supplementary
Fig. 3a). In contrast, SCOOP still predicted a basal COO for the
ASCL1+ neuroendocrine (SCLC-A; Fig. 1g) and three other previously
defined SCLC molecular subtypes49–53–NEUROD1+ neuronal (SCLC-
N), POU2F3+ tuft-like (SCLC-P), and YAP1+ (SCLC-Y)–although the
smaller WGS sample sizes for the latter three subtypes warrants a
lower degree of confidence in their predicted COO (Supplementary
Fig. 3b). These four molecular subtypes did not co-cluster based on
their mutational profile, unlike aSCLC samples (Fig. 1e). Supporting
our neuroendocrine COO prediction for aSCLC, Rekhtman and col-
leagues demonstrated that aSCLC tumors exhibit histogenetic simi-
larity to pulmonary carcinoids48–a class of low-grade neuroendocrine
tumors. The study further noted that aSCLC tumors show higher
overall survival compared to other SCLC subtypes48, which is con-
sistent with the lower proliferation rate of neuroendocrine versus
basal cells that we observed in lung homeostasis (Fig. 1h). Taken
together, our data-driven approach agrees with the accepted COO
for mesothelioma, LUAD, and LUSC and importantly provides strong
genetic evidence for a basal COO in most human SCLCs and a neu-
roendocrine COO for atypical SCLC cases (Fig. 1i).

SCOOP achieves cell subset granularity in COO predictions
Wenext examined SCOOP’s ability to discern theCOOwithin intestinal
and hematopoietic regenerative lineages, focusing on microsatellite
stable (MSS) colorectal cancer (CRC), chronic lymphocytic leukemia
(CLL), and acute myeloid leukemia (AML). CRC tumors are typically
classified into twomajor subtypes based on their microsatellite status:
microsatellite stable (MSS) and microsatellite instable (MSI)54. Corre-
lating aggregatemutational density of 51MSSCRC35 with normal colon
scATAC-seq data meta-cells31 (Fig. 2a; Methods), we observed the
highest association with intestinal epithelial stem cells, the apex of the
gut regenerative hierarchy. In agreement with this analysis and prior
knowledge55, SCOOP also identified colon stem cells as the most
informative feature and COO of MSS CRC when trained using only
normal gut scATAC-seq data28,29,31 (Fig. 2b) as well as normal cell sub-
sets across tissues (Supplementary Fig. 4a).

We next leveraged scATAC-seq data from bone marrow and per-
ipheral blood mononuclear cells (PBMCs)32 to investigate the COO of
CLL andAML.Meta-cell correlation analysis showed that CLLwasmost
anti-correlatedwith bonemarrowB cells, but not PBMCB cells (Fig. 2c;
top right). In agreement, SCOOP predicted bone marrow B cells as the
COO (Fig. 2d; Supplementary Fig. 4a when training with cell features
across tissues), supporting the prevailing hypothesis that B cells give
rise to CLL56. In contrast, AML was highly anti-correlated with multiple
myeloid progenitors, possibly due to the high interpatient hetero-
geneity observed in this leukemia57, most notably with bone marrow
early erythrocyte (Early.Eryth) and granulocyte macrophage progeni-
tors (GMP; Fig. 2c, bottom right). Prior work has shown leukemia stem
cell (LSC) transcriptional activity resembles lymphoid-primed multi-
potent progenitors (LMPPs) andGMPs rather thanhematopoietic stem
cells (HSCs), suggesting that LSC transformation largely occurs at the
progenitor stage, either directly from progenitors with abnormal self-
renewal capabilities or from HSCs upon further differentiation58.
Additionally, studies using murine leukemia models and various
geneticmodifications indicate that bothHSCs and committedmyeloid
progenitor cells can evolve into LSCs, which phenotypically and
molecularly resemble committed myeloid progenitor cells59,60. Cur-
iously, SCOOP supported these studies, where the two most infor-
mative cell features were highly similar bonemarrow cell subsets GMP
and GMP/Neutrophils (GMP.Neut) – both multipotent myeloid pro-
genitors (Fig. 2d). To evaluate the robustness of our AML prediction,
we utilized another bone marrow scATAC-seq data61 (Supplementary
Data 4) to independently train our model, and also found GMP.Neut
myeloid progenitors as the most informative epigenetic feature
(Supplementary Fig. 4b; Methods). Thus, our analyses bolster the
hypothesis that myeloid lineage differentiation is a prerequisite for
AML development62. Worth noting, our meta-cell correlation analysis
highlights SCOOP’s capacity to exploit complex relationships thatmay
not be easily captured by correlation analyses (see correlation-based
predictions in Supplementary Data 1). In sum, SCOOP identified the
COO for MSS CRC (colon stem cells) and CLL (B cells) at cell subset
resolution while also highlighting the role of multipotent myeloid
progenitors in AML development.

Fig. 1 | SCOOP improves cellular resolution and accuracy of COO predictions.
a Left: Illustration of how SCOOP uses single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq) data to predict the cell-of-origin (COO)
(e.g., alveolar type 2, or AT2, cells) associatedwith a given cancer’smutation profile
(e.g., lung adenocarcinoma, or LUAD). SCOOP takes as input a binned whole-
genome sequencing (WGS) profile of cancer single-nucleotide variants (SNVs) and
similarly binned scATAC-seq profiles from various normal cell subsets, where each
cell subset is followedby adataset indicator for that cell subset: D1 for28, D2 for29, D5
for34, D9 for45. The SNV and scATAC-seq profiles (features) are passed into a
machine learning model, XGBoost, which predicts the COO through a process of
backward feature selection (Methods). Right: Box plots of the feature importance
distribution (100 SCOOP runs) of the top 5 COO predictions for LUAD (n = 37;
predicted COO in red) amongst lung cell subsets (Methods). Also displayed is the
number of times a cell subset appeared in the top 5 features across 100 runs (n).
One-sided Mann-Whitney test p-values are displayed. Tumor and cell illustrations
created in BioRender. Tsankov, A. (2025) https://BioRender.com/qu5wvua. b Test
set variance explained (%) by the predicted COOs (red) for 8 cancer types studied
in21 (Melanoma, n = 107; Hepatocellular carcinoma, n = 314; Colorectal adeno-
carcinoma, n = 52; Multiple myeloma, n = 23; Esophageal adenocarcinoma, n = 97;
Glioblastoma,n = 39; Lung adenocarcinoma,n = 37; Lung squamous cell carcinoma,
n = 47). Error bars show the standard error of the mean (SEM) across 100 SCOOP
runs. One-sided Mann-Whitney test p-values are displayed. Each cell subset is fol-
lowed by a dataset indicator for that cell subset: D1 for28, D2 for29, D3 for31, D4 for32,
D5 for34. cBoxplots of the feature importancedistribution (100SCOOP runs) of the
top 5 COOpredictions (predicted COO in red, similar cell subsets in pink) amongst
lung cell subsets for epithelioid pleural mesothelioma (PM, n = 44), lung squamous
cell carcinoma (LUSC, n = 47), and small cell lung carcinoma (SCLC, n = 107). Also
displayed is the number of times a cell subset appeared in the top 5 features across

100 runs (n). One-sided Mann-Whitney test p-values are displayed, where Bonfer-
roni correction for multiple hypothesis testing was used. d UMAP dimensionality
reduction of individual lung cancer WGS samples binned mutation profiles (dots)
colored by cancer type (adenocarcinoma, n = 37; epithelioidmesothelioma, n = 44;
small cell lung cancer, n = 109; squamous cell carcinoma, n = 47). e UMAP dimen-
sionality reduction of individual SCLCWGS sample binnedmutation profiles (dots)
from36,48 (aSCLC from48, n = 11; aSCLC from36, n = 2; SCLC-A, n = 37; SCLC-N, n = 4;
SCLC-P, n = 6; SCLC-Y, n = 1; Undefined, n = 57). f Box plots of the feature impor-
tance distribution (100 SCOOP runs) of the top 5 COO predictions (predicted COO
in red, similar cell subsets in pink) amongst lung cell subsets for atypical small cell
lung cancer (aSCLC from48,n = 11; aSCLC from36,n = 2). Alsodisplayed is the number
of times a cell subset appeared in the top 5 features across 100 runs (n). One-sided
Mann-Whitney test p-values are displayed, where Bonferroni correction for multi-
ple hypothesis testing was used. g Box plots of the feature importance distribution
(100SCOOPruns) of the top 5COOpredictions amongst lung cell subsets for SCLC-
A (n = 37; predicted COO in red, similar cell subsets in pink). Also displayed is the
number of times a cell subset appeared in the top 5 features across 100 runs (n).
One-sided Mann-Whitney test p-values are displayed, where Bonferroni correction
for multiple hypothesis testing was used. h Percentage of cycling cells across lung
epithelial cell types estimated using scRNA-seq data (Methods), where predicted
COOs in our study are shown in red. i SCOOP’s predicted COO for different lung
cancers: AT2, mesothelial, and neuroendocrine cells for LUAD, epithelioid PM, and
aSCLC, respectively, andbasal cells for both LUSCand SCLC. Lungmodel created in
BioRender. Tsankov, A. (2025) https://BioRender.com/2vhmu6l. Cell type abbre-
viations aredefined inSupplementaryData 3. Boxplot vertical lines show25th, 50th
(median), and 75th percentiles, with horizontal whiskers extending to a maximum
distance of 1.5 × interquartile range from the hinge. Data beyond the whisker ends
are plotted individually.
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Distinct COOs for cancers with different histologies
Beyond displaying cell subset granularity, SCOOP also identified his-
tological cancer subtypeswithdifferentCOOs.Wefirst examined three
subtypes of kidney renal cell carcinoma (RCC): clear cell RCC (ccRCC),

papillary RCC (pRCC), and chromophobe RCC (chRCC). Both ccRCC
and pRCC are thought to originate from the proximal tubule in the
kidney, while it is suspected that chRCC originates from the distal
tubule63. SCOOP predicted proximal tubule progenitor-like (PTPL)
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Fig. 2 | SCOOPcanpinpoint cell subsets that likely give rise to different tumors.
a Left: UMAPofnormal colon single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) data31 colored by cell annotations (n = 43,626 cells;
27 samples). Middle: Intestinal epithelial cell regenerative hierarchy. Regenerative
hierarchy created in BioRender. Tsankov, A. (2025) https://BioRender.com/
axbxmm9. Right: Visualization of the Pearson correlation coefficient (r) between
aggregated microsatellite stable (MSS) colorectal cancer (CRC, n = 51) single-
nucleotide variants (SNV) profile and colon scATAC-seq meta-cells (Methods). The
strongest anti-correlations (r ≈ −0.79, red/bottom end of the scale) are con-
centrated in stemcells, while theweakest anti-correlations (r≈−0.675, blue/topend
of the scale) occur in enterocytes. b Box plots of the feature importance distribu-
tion (100 SCOOP runs) of the top 5 cell-of-origin (COO) predictions amongst nor-
mal colon cell subsets28,29,31 for MSS CRC (n = 51; predicted COO in red). Each cell
subset is followed by a dataset indicator for that cell subset: D1 for28, D2 for29, D3
for31. Also displayed is the number of times a cell subset appeared in the top 5
features across 100 runs (n). One-sided Mann-Whitney test p-value is displayed.
c Top Left: UMAP of all peripheral blood mononuclear cells (PBMC) and bone
marrow scATAC-seq cell subsets from32 (n = 33,513 cells; 10 samples). Bottom Left:
Hematopoietic regenerative hierarchy. Regenerative hierarchy created in BioR-
ender. Tsankov, A. (2025) https://BioRender.com/24n2gzz. Right: Visualization of

the Pearson correlation coefficient (r) between aggregated chronic lymphocytic
leukemia (CLL, n = 90) and acute myeloid leukemia (AML, n = 13) SNV profiles and
scATAC-seq meta-cells. For CLL, the strongest anti-correlations (r ≈ −0.63, red/
bottom end of the scale) are observed in B cells, while theweakest anti-correlations
(r ≈ −0.51, blue/top end of the scale) occur in PBMC T cells. For AML, highest anti-
correlations (r ≈ −0.38) are enriched in myeloid (e.g., granulocyte-monocyte pro-
genitors, or GMP, GMP/Neutrophils, or GMP.Neut, common myeloid progenitor
and lymphoid-primed multipotent progenitor, or CMP.LMPP) and erythroid pro-
genitor populations, whereas lymphoid lineages (B, T, and NK cells) tend to have
the lowest anti-correlations (r ≈ −0.30). d Box plots of the feature importance
distribution (100 SCOOP runs) of the top 5 COO predictions amongst blood and
bone marrow cell subsets from dataset D432 for CLL (n = 90) and AML (n = 13)
aggregated SNV profiles (predicted COO in red, similar cell subsets in pink). Also
displayed is the number of times a cell subset appeared in the top 5 features across
100 runs (n). One-sided Mann-Whitney test p-values are displayed, where Bonfer-
roni correction for multiple hypothesis testing was used when more than one
comparison was made. Cell type abbreviations are listed in Supplementary Data 3.
Box plot vertical lines show 25th, 50th (median), and 75th percentiles, with hor-
izontal whiskers extending to amaximumdistance of 1.5 × interquartile range from
the hinge. Data beyond the whisker ends are plotted individually.
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cells as the ccRCC andpRCCCOOand collecting duct, intercalated cell
typeA (ICA) from thedistal tubule as the chRCCCOO, confirmingprior
workwhile againdemonstrating cell subset granularity in its prediction
(Fig. 3a; Supplementary Fig. 5 when training with cell features across
tissues). In agreement, individual patient somatic mutation profiles
demonstrate higher similarity between ccRCC and pRCC in compar-
ison to chRCC (Fig. 3b).

Exploring the cellular origins of pancreatic ductal adenocarci-
noma (PDAC) and pancreatic neuroendocrine tumor (PNET), we also
observed intrinsic differences in tumors’ mutational profiles that
cluster by histological subtypes (Fig. 3c). Lineage-tracing studies have
demonstrated that acinar cells with oncogenicKRASmutation (present
in >90% of PDAC cases), and not ductal cells, can give rise to PDAC
while undergoing a process known as acinar-to-ductal metaplasia
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(ADM)64,65. Meanwhile, PNETs are thought to arise from islet cells,
which are part of the endocrine system of the pancreas66. In agree-
ment, we observed that PDAC and PNET aggregated mutational pro-
files were most anti-correlated with stomach goblet cells and islet
endocrine cells (Fig. 3d), respectively, and SCOOP further reinforced
these results when trained using all pancreas and stomach cell features
(Fig. 3e) and, in the case of PDAC, all cell features (Supplementary
Fig. 5). Stomach goblet cells secrete mucus to protect the stomach
lining, matching previous bulk-level prediction of stomach mucosa
and suggestingmetaplasia transformation inPDAC25, whichwe explore
further in the next section. Our PNET COO prediction of pancreatic
islet endocrine cells was also in agreement with PNET bulk-tissue
prediction25, but came in secondwhen training SCOOP across different
tissues to the highly similar colon endocrine cells (Supplementary
Fig. 5), highlighting the benefit of restricting SCOOP’s feature space to
anatomically relevant cell subsets.

Motivated by previous studies arguing that the MSS CRC subtype
arises from stem cells in the colon crypt, while the MSI subtype arises
from gastric metaplasia67 (Fig. 3f), we leveraged SCOOP to investigate
this hypothesis in more detail. To capture the metaplasia cell state
relevant to MSI tumor COO, we added precancerous polyp scATAC-
seq data31 to our feature space. SCOOP supported the hypothesis that
MSI tumors likely arise from a metaplasia cell state distinct from MSS
CRC tumorigenesis trajectory and further pointed specifically to polyp
colon goblet cells as the COO (Fig. 3g; Supplementary Fig. 5 when
training with cell features across tissues).

Multiple gastrointestinal cancers develop via a metaplastic
intermediate
To further explore the hypothesis that PDAC and MSI CRC originate
from intermediate metaplastic cell populations, we analyzed scRNA-
seq datasets that induce metaplasia (pancreatic or intestinal) in
response to injury or presence of oncogenic drivers. In particular, we
investigated human chronic pancreatitis patient samples68, a pancreas
injurymousemodel69 that triggers ADM, PDACdevelopment following
induction of KrasG12D and p53 genetic alterations70, and precancerous
cells from human colonoscopy samples67. We obtained highly specific
human stomach goblet cell markers71, human pancreas acinar cell
markers68 (the alternative COO for PDAC64,65), mouse pancreas acinar
cell markers69, and mouse stomach goblet cell markers72 from several
relevant scRNA-seq datasets (Methods; Supplementary Data 5; Sup-
plementary Fig. 6a). Comparing acinar and stomach goblet cell

signature scores across both acinar and metaplastic cells obtained
from human chronic pancreatitis samples revealed a higher tran-
scriptional similarity of metaplastic cells with stomach goblet cells
thanwith acinar cells (Fig. 4a), supporting their role as the COOduring
injury-induced metaplasia in human patient samples. As in human
chronic pancreatitis, we also found that metaplastic cells resemble
stomach goblet cells rather than pancreatic acinar cells in scRNA-seq
data from amouse pancreas injurymodel69 that induces inflammation,
pancreatic tissue reprogramming, and ADM69 (Fig. 4b).

To trace the cellular dynamics and role of metaplasia during
tumorigenesis, we leveraged time-course scRNA-seq data collected
from various stages of a state-of-the-art mouse model for PDAC
development70, starting with normal pancreatic cells (stages N1-N2),
during pre-neoplasia (stages K1-K2) and benign neoplasia (stages K3-
K4) following induction of KrasG12D mutation, as well as during primary
tumor formation (K5) and metastasis (K6) following induction of p53
genetic alteration (Fig. 4c). Scoring epithelial cells for acinar and sto-
mach goblet signatures across different stages of PDAC formation, we
observed a loss of acinar cell identity following induction of KrasG12D

mutation (K1-K6) and a simultaneous increase of stomach goblet sig-
nature expression, especially during benign neoplasia (Fig. 4c). We
additionally observed that gastric-like and ADM cell populations
identified in70, primarily present in stages K1-K4 of PDAC development,
had the highest similarity to our stomach goblet cell signature, which
argues that these populations may represent the key transitional cell
states during metaplasia-driven tumorigenesis (Supplementary
Fig. 6b). To investigate tumor development in CRC, we obtained
scRNA-seq data of metaplastic and stem-like precancerous cells from
human colonoscopy samples67. We observed higher transcriptional
similarity between precancerous stem-like cells and normal colon stem
cells as well as betweenmetaplastic cells and normal colon goblet cells
(Fig. 4d). This aligns well with our COO predictions (Fig. 3f-g) and with
the acceptedmodels for CRC progression67, whereMSS CRC is posited
to originate from intestinal epithelial stem cells, whileMSI CRC is likely
derived from metaplastic cells.

Similar to PDACandMSI CRC, three other gastrointestinal cancers
– biliary, esophageal, and stomach adenocarcinoma – were predicted
to arise from stomach goblet cells (Fig. 4e; Supplementary Fig. 6c),
whichmatches previous bulk-level predictions of stomachmucosa and
also suggests metaplasia transformation in these cancers25,73. To
directly link the stomach goblet cell epigenome with metaplasia, we
obtained WGS data from intestinal metaplasia samples collected

Fig. 3 | Histological cancer subtypes are associated with different COOs. a Box
plots of the feature importance distribution (100 SCOOP runs) of the top 5 cell-of-
origin (COO) predictions (predicted COO is shown in red) amongst kidney-related
cell subsets for papillary renal cell carcinoma (pRCC, n = 32), clear cell renal cell
carcinoma (ccRCC,n = 111), and chromophobe renal cell carcinoma (chRCC,n = 43).
Each cell subset is followed by a dataset indicator for that cell subset: D2 for29, D6
for33. Also displayed is the number of times the feature appeared in the top 5
features across the 100 runs (n). One-sided Mann-Whitney test p-values are dis-
played. Kidney model created in BioRender. Tsankov, A. (2025) https://BioRender.
com/ht2q3vc. b UMAP of individual kidney cancer whole-genome sequencing
(WGS) samples binned mutational profiles (dots) colored by cancer subtype
(chRCC, n = 43; ccRCC, n = 111; pRCC, n = 32). c UMAP dimensionality reduction of
individual pancreatic cancer WGS samples binnedmutation profiles (dots) colored
by cancer subtype (adenocarcinoma, n = 232; neuroendocrine, n = 47). d Left:
UMAP of stomach and pancreas scATAC-seq data from29 (n = 58,175 cells; 12 sam-
ples). Thinner dashed line encompasses pancreatic cells, whereas thicker dashed
line demarcates stomach cells. Right: UMAPs displaying the Pearson correlation
coefficient (r) between aggregated pancreas adenocarcinoma (PDAC, n = 232) and
pancreatic neuroendocrine tumor (PNET, n = 47)mutational profiles and single-cell
assay for transposase-accessible chromatin using sequencing (scATAC-seq) data
meta-cells. For PDAC, the strongest anti-correlations (r ≈ −0.60, red/bottom end of

the scale) are observed in stomach goblet and parietal and chief cells, while the
weakest anti-correlations (r ≈ −0.52, blue/top end of the scale) occur in stromal
cells. For PNET, highest anti-correlations (r ≈ −0.52) are enriched in pancreas islet
endocrine cells, whereas stromal and pancreas acinar cells tend to have the lowest
anti-correlations (r≈ −0.47). eBox plots of the feature importancedistribution (100
SCOOP runs) of the top 5 COOpredictions amongst pancreas- and stomach-related
cell subsets28,29 for PDAC (n = 232) and PNET (n = 47; predicted COOs highlighted in
red, similar cell subsets in pink). Each cell subset is followed by a dataset indicator
for that cell subset: D1 for28, D2 for29. One-sided Mann-Whitney test p-values are
displayed, with Bonferroni correction for multiple hypothesis testing. f Accepted
model of colorectal cancer (CRC) COOs agrees with SCOOP’s predictions: colon
goblet cells for microsatellite instable (MSI), and intestinal epithelial stem cells for
MSS. Intestinal model created in BioRender. Tsankov, A. (2025) https://BioRender.
com/001gcxg. g Box plot of the feature importance distribution (100 SCOOP runs)
of the top 5 COO predictions amongst colon-related cell subsets28,29,31 for CRC, MSI
(n = 7; predicted COO in red). Each cell subset is followed by a dataset indicator for
that cell subset: D1 for28, D2 for29, D3 for31. One-sided Mann-Whitney test p-values
are displayed. Cell type abbreviations are defined in Supplementary Data 3. Box
plot vertical lines show 25th, 50th (median), and 75th percentiles, with horizontal
whiskers extending to a maximum distance of 1.5 × interquartile range from the
hinge. Data beyond the whisker ends are plotted individually.
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during gastric cancer progression74. Stomach goblet cells were indeed
the most predictive epigenomic feature for intestinal metaplasia
mutational profiles when running SCOOP (Fig. 4f, Supplementary
Fig. 6d), validating our claim that stomach goblet cell COO prediction
represents an intermediate metaplastic state during tumorigenesis for
multiple gastrointestinal cancers. In agreement with SCOOP’s predic-
tions, esophageal adenocarcinoma formation is thought to undergo a

transitional metaplasia phase, called Barrett’s esophagus75. Moreover,
two biliary cancer studies investigating metaplastic lesions of extra-
hepatic bile ducts found that goblet cells were the predominant cell
type within those lesions76,77. Taken together, our work argues that
multiple gastrointestinal cancers likely undergo an intermediate
metaplasia state resembling stomach goblet cells during
tumorigenesis.
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Gliomas likely arise from fetal-like multipotent progenitor cells
Since SCOOP can accurately link distinct histological subtypes with
their respective COO, we next examined the genesis of different brain
cancers. In light of prior research indicating a significant role of fetal-
like neural stem cells (NSCs) and oligodendrocyte progenitor cells
(OPCs) in brain tumorigenesis41,42,78,79, we leveraged two additional
scATAC-seq datasets that extensively characterized fetal and adult
brain cell subsets’ chromatin accessibility30,80. Interestingly, SCOOP
predicted that medulloblastoma (MB), GBM, pilocytic astrocytoma
(PA), and oligodendroglioma (OG) all originate from fetal-like cell
subsets (Fig. 5a; Supplementary Fig. 7 when training with cell features
across tissues), in agreement with previous bulk epigenomic data
modeling21,25. For MB, SCOOP predicted granule neurons from fetal
cerebellum as the COO, closely matching the known anatomical and
cellular origin (cerebellar granule neuron precursor cells) for one of
the four major subtypes of MB, the Sonic Hedgehog (SHH) subtype79.
The other major subtypes – WNT, Group 3, Group 4 – are thought to
arise from cell types that were not present in our scATAC-seq dataset:
rhombic lip cells forWNT81 and primitive progenitor cells for the latter
two subtypes81,82.

For both pilocytic astrocytoma (PA) and oligodendroglioma (OG),
SCOOP predicted the COO to be OPCs from the fetal cerebral cortex
(Fig. 5a). Despite its namesake, recent studies have suggested that PA
originates from theoligodendrocyte lineage83. Furthermore, PA cancer
cells have been comparedwith various brain cell types using single cell
transcriptomic atlases, and it was found that they exhibited a gene
expression signature most similar to OPCs84. Finally, for GBM, while
SCOOP originally predicted Oligo/Astrocytes from the fetal brain
(Fig. 1b) as the COO, after adding the comprehensive fetal brain
dataset, the COO was more specifically predicted as multipotent glial
progenitor cells (mGPCs) from the fetal cerebral cortex. This is further
supported by our recent fetal brain cell atlas, showing high transcrip-
tional similarity of GBMmalignant cells tomultipotent progenitor fetal
cell populations85. We observed highly similar cell subset specificity
when conducting a meta-cell correlation analysis on scATAC-seq data
from30 (Fig. 5b). One limitation of our glioma findings is that our fea-
ture set does not contain adult NSC epigenomes, which have been
implicated in the genesis of adult GBM and OG42. However, our data-
sets contained fetal multipotent progenitor cells (mGPC, nIPC, radial
glial cells) that can give rise to different glial and neuronal populations
akin to NSCs78.

Pan-cancer COO predictions across 37 cancer types
We next analyzedWGS data fromB-cell lymphoma,myeloproliferative
neoplasm (MPN), breast adenocarcinoma, leiomyosarcoma, thyroid,
and endometrial cancer, and found that SCOOP’s predictionsmatched
one of the putative COOs for each of these cancers86–89 (Fig. 5c; Sup-
plementary Fig. 8a). In the case of leiomyosarcoma, SCOOP predicted
stromal cells as the COO, which show high chromatin accessibility at
established smooth muscle (the conjectured COO87) cell marker loci
(Supplementary Fig. 8b). For endometrial cancer, the predicted COO –

PAEP/MECOM positive cells from the placenta – corresponds to
endometrial epithelial cells29 that are believed to give rise to these
tumors89. MPN most likely arises from HSCs90 but there is evidence
suggesting that it may also originate from committed hematopoietic
progenitors similar to HSCs91. SCOOP’s top three COO predictions for
MPN were bone marrow CD34+ early basophils, GMP, and common
myeloid progenitor (CMP)/LMPP (CMP.LMPP; Supplementary Fig. 8b,
when using tissue-specific and all features), all of which represent
multipotent hematopoietic progenitors with close proximity to HSCs
in their epigenome and regenerative hierarchy (Fig. 2c). Worth noting,
MPN had the second lowest average number of mutations per sample
(µ = 805) among the cancer types we analyzed (Supplementary Data 1),
which may explain the observed variance in its prediction. Finally,
while SCOOP predicted basal epithelial cells from mammary tissue as
the COO for breast adenocarcinoma – as opposed to luminal cells
(present in our dataset) that are considered a more predominant
COO25,92 – basal cells still constitute a possible COO25,92.

We also report COO predictions for other cancer types with
available WGS data (Supplementary Fig. 9), which we categorized as
either 1) matching a proxy cell type, 2) missing all expected COOs
scATAC-seq data, or 3) demonstrating low variance explained (<10%).
Category 1 included cervical as well as head and neck squamous cell
carcinoma COO predictions of esophageal epithelial cells, which was
the closest comparative cell profile in our dataset and in25 to the
expected COO for these tumors (Supplementary Data 1). Osteo-
sarcoma also fell into Category 1, matching stromal cells from the
heart, as it is expected to arise primarily from mesenchymal cells93.
Category 2 included bladder cancer, prostate cancer, and ovarian
cancer (Supplementary Fig. 9; Supplementary Data 1). SCOOP identi-
fied stomach goblet cells as the top feature for bladder transitional cell
carcinoma, in agreement with prior tissue-level stomach mucosa
prediction25. Unlike other metaplasia-associated neoplasms in our

Fig. 4 | Multiple gastrointestinal cancers develop via a metaplastic inter-
mediate. a Left: UMAP of epithelial cells (n = 1161; 2 samples) from human chronic
pancreatitis single-cell RNA sequencing (scRNA-seq data)68, colored by human
stomachgoblet cellmodule score.Warmcolors (red, right endof the scale) indicate
high module scores, whereas cold colors (blue, left end of the scale) indicate low
module scores. Right: Violin plots comparing human pancreatic acinar and sto-
mach goblet cell module scores in acinar (top) and metaplasia (bottom) cell clus-
ters. Two-sided Mann-Whitney test p-values are displayed; *p <0:0001: b Left:
UMAP of epithelial cells (n = 13,362; 4 samples) frommouse pancreas injury model
scRNA-seq data69, colored by mouse stomach goblet cell module score. Warm
colors (red, right endof the scale) indicate highmodule scores, whereas cold colors
(blue, left end of the scale) indicate low module scores. Right: Violin plots com-
paring mouse pancreatic acinar and stomach goblet cell module scores in acinar
(top) andmetaplasia (bottom) cell clusters. Two-sidedMann-Whitney test p-values
are displayed; *p<0:0001: c Violin plots comparing mouse pancreatic acinar and
stomach goblet cell module scores in epithelial cells (21 samples) per experimental
condition: normal (N1), regenerating (N2), pre-malignant (K1-K4), and malignant
(K5, K6). Mouse models and treatment conditions are represented on the x-axis.
Two-sided Mann-Whitney test p-values are displayed; *p <0:0001: Mouse model
illustration created in BioRender. Tsankov, A. (2025) https://BioRender.com/
2uc0u4y. d Violin plots comparing human colon stem and goblet cell module
scores in precancerous stem-like (left) and metaplastic (right) cell clusters
(55 samples). Two-sided Mann-Whitney test p-values are displayed; *p <0:0001:
e Box plots of the feature importance distribution (100 SCOOP runs) of the top 5

cell-of-origin (COO) predictions for biliary (n = 34), esophageal (n = 97), and sto-
mach cancer (n = 68; predicted COOs are highlighted in red, similar cell subsets in
pink). Each cell subset is followedby a dataset indicator for that cell subset: D1 for28,
D2 for29, D3 for31, D4 for32, D5 for34, D6 for33. One-sidedMann-Whitney test p-values
are displayed,with Bonferroni correction formultiplehypothesis testing in the case
of stomach and esophageal adenocarcinoma. f Left: Box plots of the feature
importance distribution (100 SCOOP runs) for the most predictive scATAC-seq
feature (highlighted in red, similar cell subsets in pink) for the binned mutational
profile of intestinal metaplasia whole-genome sequencing (WGS) samples74 (n = 5).
Also displayed is the number of times the feature appeared in the top 5 features
across 100 SCOOP runs (n). Each cell subset is followed by a dataset indicator for
that cell subset: D1 for28, D2 for29, D3 for31, D4 for32, D5 for34, D6 for33. One-sided
Mann-Whitney test p-values are displayed, with Bonferroni correction for multiple
hypothesis testing. Middle: Bar plots of the number of times cell subsets appeared
as the top feature across 100 runs of SCOOP with the most frequently appearing
feature highlighted in red. Exact binomial test p-values are shown, with Bonferroni
correction for multiple hypothesis testing. Right: Box plots displaying the test set
variance explained (test R2) by themodel runs (n) for which goblet cells (title) were
the toppredicted featurewhen 10, 5, 2, and 1 features remained following backward
feature selection. Box plot horizontal (or vertical) lines show 25th, 50th (median),
and 75thpercentiles,with vertical (or horizontal)whiskers extending to amaximum
distance of 1.5 × interquartile range from the hinge. Data beyond the whisker ends
are plotted individually.
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study, our feature set did not contain the expected epithelial COO
(transitional cells94) for bladder cancer, reducing our confidence in this
prediction. Finally, Category 3 consisted of breast lobular carcinoma,
for which the median variance explained of the top feature was lower
than 10% (Supplementary Fig. 9).

To establish a simple baseline for SCOOP’s prediction accuracy,
we compared its predictions across 31 cancer types for which a puta-
tive COO (Supplementary Data 1) was present in our scATAC-seq
database (Supplementary Data 3), with those predicted by correlating
(Spearman and Pearson) cancer mutational profiles with all scATAC-
seq features and picking the most anti-correlated feature as the COO.

Given the inherent difficulty in establishing “ground-truth” COOs for
human cancers, for our benchmarking analysis we considered a given
COO prediction to be correct if it was supported by at least one peer-
reviewed publication (enumerated in Supplementary Data 1). We
found that SCOOP outperformed both correlation approaches,
achieving an accuracy of 30/31, compared to 26/31 and 13/31 for
Spearman and Pearson correlation, respectively (Supplementary
Fig. 10a; Supplementary Data 1). Additionally, we did not find a sig-
nificant association between the heterogeneity in SCOOP’s predictions
and the heterogeneity in WGS profiles (Supplementary Fig. 10b;
Methods). To strengthen our confidence in SCOOP’s predictions, we
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acquired additional WGS data from the Clinical Proteomic Tumor
Analysis Consortium95 (CPTAC; Methods) available for 5 cancer types
withCOOpredictions inour study–LUAD, LUSC,GBM,RCC, andPDAC.
Running SCOOP on WGS data from these independent cohorts
reproduced our original predictions for all 5 cancers (Supplementary
Fig. 10c). As additional validation, we split the original HCC data from
PCAWG (Fig. 1b) by research study origin (France, Japan, United States)
and found that WGS data from all three independent cohorts pre-
dicted hepatoblast as the COO (Supplementary Fig. 10d). Overall,
SCOOP outperforms correlation analysis and achieves highly repro-
ducible COO predictions across independent WGS datasets.

Furthermore, wequantified the relationship betweenWGS sample
size and SCOOP’s prediction accuracy for 6 cancers with low, medium,
and high average tumor mutational burden (TMB; Supplementary
Data 1; Methods). Interestingly, for both medium and high TMB can-
cers examined, as few as 5 WGS samples were enough for SCOOP to
identify a correct COO in at least 68% of runs (≥42.4% variance
explained), while low TMB tumors (e.g., chRCC, MB) required 30
samples to achieve similar levels of performance (correct COO ≥ 69%
of runs; Fig. 5d). Moreover, in order to glean some insights into the
model’s predictions, we quantified SCOOP’s prediction accuracy for
the same 6 cancer types at the bin level, analyzing the bins for which
mutations were well predicted by the model (defined as “most-accu-
rate”), and those for whichmutations were not well predicted (defined
as “under-” or “over-predicted”; Supplementary Fig. 11a; Methods). We
first observed that the “most-accurate” and “under/over-predicted”
bins did not significantly overlap across cancer types (Supplementary
Fig. 11b). The “most-accurate” and “under/over-predicted”bins showed
a higher and lower chromatin accessibility compared to other bins,
respectively, when surveying the predicted COO epigenome for all 6
cancer types (Supplementary Fig. 11c; Methods). Moreover, the
“under/over-predicted” and “most-accurate” regions contained genes
with lower and higher expression, respectively, relative to all other
genes when analyzing normal tissue-of-origin-matched bulk RNA-
sequencing data from the Genotype-Tissue Expression project96

(GTEx; Supplementary Fig. 11d). In agreement, the bin categories also
showed consistent enrichments of activating (Histone 3, Lysine 27
Acetylation, H3K27Ac) and repressive (Histone 3, Lysine 9 trimethyla-
tion; H3K9me3) chromatin marks across all cancers with available
normal tissue-of-origin-matched ChIP-seq data from the Epigenomics
Roadmap project97 (Supplementary Fig. 11e-f; Methods). Taken toge-
ther, lower prediction accuracy bins reside in unique genomic regions

containing inaccessible chromatin, lowly expressed genes, and het-
erochromatic histone marks (H3K9me) in the predicted normal COO.

Discussion
Our work combined machine learning, WGS, and scATAC-seq data to
predict the cell of origin of 37 human cancer subtypes. Our approach
employing single-cell epigenomic data marks a significant advance-
ment, offering greatly improved resolution in the cellular subsets,
developmental, and regenerative hierarchies underlying the genesis of
cancer. For most cancers examined in our study, the predicted COOs
and anatomical location were highly reproducible and aligned closely
with thoseposited by prior research, serving as a validationof both the
existing scientific consensus and the accuracy and reliability of our
methodology.

Beyond validation, the true potential of our approach lies in its
capacity for data-driven hypothesis generation, particularly for can-
cers with ambiguous or unknown cellular and anatomical origins. Our
study’s surprising finding of a basal COO for most SCLCs, which has
historically been thought to arise from neuroendocrine cells based on
histological and transcriptomic similarities44, exemplified the potential
of our ML approach to uncover unexpected cellular origins that will
open future avenues for research. Substantiating our computational
approach, a concurrent study employing cellular lineage tracing in
genetically-engineered mouse models of SCLC supported the predic-
tion that basal cells may constitute the predominant COO in SCLC, as
they can give rise to all the SCLC subtypes upon transformation and in
proportions matching human epidemiological data38. Moreover,
genetic alterations enriched in tuft-like SCLC (i.e., Myc gain, Pten loss)
gave rise to the appropriate subtypes when tumors were initiated from
a basal cell, but not from a neuroendocrine cell38. These findings
combined with our data-driven approach utilizing human tumor
samples have important clinical implications for prevention, early
detection, and treatment of SCLC. For example, early screening pro-
grams and smoking cessation strategies that target individuals with
molecular changes in bronchial basal cells98 can be revised to account
for not only LUSC but also SCLC incidence.

In contrast to most SCLCs, SCOOP predicted a neuroendocrine
COO for rare aSCLC cases lacking TP53 and RB1 genetic alterations. In
accordance, previous work showed that aSCLC shares histogenetic
features with pulmonary carcinoids48, indolent neuroendocrine
tumors that are also not associated with smoking and shown to occur
in younger individuals99,100. Given that aSCLC is posited to arise from

Fig. 5 | Pan-cancer COO predictions across 37 cancer types. a Box plots of the
feature importance distribution (100 SCOOP runs) of the top 5 cell-of-origin (COO)
predictions (COO highlighted in red, similar cell subsets in pink) amongst brain-
related cell subsets28–30,80 for glioblastoma (GBM, n = 39), oligodendroglioma (OG,
n = 18), pilocytic astrocytoma (PA, n= 89), and medulloblastoma (MB, n = 141). Each
cell subset is followed by a dataset indicator for that cell subset: D1 for28, D2 for29, D7
for30, D8 for80. Also displayed is the number of times the feature appeared in the top
5 features across the 100 runs (n). One-sided Mann-Whitney test p-values are dis-
played, with Bonferroni correction formultiple hypothesis testing in the case of PA.
Brain model created in BioRender. Tsankov, A. (2025) https://BioRender.com/
f8uyajw. b Left: UMAP of fetal brain single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq) data cell subsets from30 (n= 31,074 cells;
13 samples). Right: UMAPs displaying the Pearson correlation coefficient (r)
between aggregated PA (n = 89), GBM (n = 39), and OG (n = 18) mutational profiles
and scATAC-seq meta-cells. For PA, the strongest anti-correlations (r ≈ −0.50, red/
bottom end of the scale) are observed in oligodendrocyte progenitor cells (OPCs)
and multipotent glial progenitor cells (mGPCs), while the weakest anti-correlations
(r ≈ −0.33, blue/top end of the scale) occur in a subset of interneurons and gluta-
matergic neurons. For GBM, highest anti-correlations (r ≈ −0.48) are enriched in
mGPCs, whereas lowest anti-correlations (r ≈ −0.32) occur in a subset of inter-
neurons. For OG, the strongest anti-correlations (r ≈ −0.56, red/bottom end of the
scale) are observed in OPCs and mGPCs, while the weakest anti-correlations (r ≈

−0.42, blue/top end of the scale) occur in a subset of glutamatergic neurons. c Test
set variance explained (%) by the predicted COOs across 6 additional cancer types
(B-cell lymphoma, n= 105; Myeloproliferative neoplasm, n = 23; Breast adenocarci-
noma, n = 195; Leiomyosarcoma; n = 34; Thyroid adenocarcinoma, n = 48; Uterus
adenocarcinoma, n = 44). The predicted COO for each cancer type is highlighted in
red (also see Supplementary Fig. 8). Error bars show the standard error of the mean
(SEM), after 100 SCOOP runs. One-sided Mann-Whitney test p-values are displayed.
Each cell subset is followed by a dataset indicator for that cell subset: D1 for28, D2
for29, D4 for32. d Model performance as a function of WGS sample size for tumors
with high (lung squamous cell carcinoma, or LUSC, melanoma), moderate (hepa-
tocellular carcinoma, or HCC, GBM), and low (chromophobe renal cell carcinoma,
or chRCC, Medulloblastoma, or MB) tumor mutation burden (TMB) tumors. Top:
Distribution of variance explained across 100 SCOOP runs for different number of
WGS samples, randomly subsampled. Bottom: Number of appearances of the
expected COO as the top feature across 100 SCOOP runs for different whole-
genome sequencing (WGS) sample sizes. Filled and hollow dots indicate that the
expected COO was and wasn’t the most frequently appearing feature, respectively.
Cell type abbreviations are listed in Supplementary Data 3. Box plot horizontal (or
vertical) lines show 25th, 50th (median), and 75th percentiles, with vertical (or
horizontal) whiskers extending to a maximum distance of 1.5 × interquartile range
from the hinge. Data beyond the whisker ends are plotted individually.

Article https://doi.org/10.1038/s41467-025-63957-3

Nature Communications |         (2025) 16:8301 11

https://BioRender.com/f8uyajw
https://BioRender.com/f8uyajw
www.nature.com/naturecommunications


pulmonary carcinoids via chromotripsis48, our results by extension
argue that pulmonary carcinoids also arise from neuroendocrine cells.
While our work elucidates the different COOs across SCLC subtypes, it
will be fascinating to investigate the cellular beginnings of other neu-
roendocrine tumors across tissues. For example, olfactory
neuroblastomas101 display subtype heterogeneity resembling that of
SCLC and were shown to arise from globose basal cells using
genetically-engineered mouse models101.

Our study also identified goblet cells as the most predictive epi-
genomic feature for the somatic mutational landscape of intestinal
metaplasia74 and several cancer types–PDAC, MSI CRC, biliary, eso-
phageal, and stomach adenocarcinoma. These results are compatible
with an intermediate metaplastic state contributing to tumorigenesis
across diverse tissues and organs, which is further corroborated by
prior studies64,65,67,75,102 and bulk epigenetic predictions25. Thus, our
work highlights the widespread contribution of metaplasia to gastro-
intestinal cancers and underscores that the biological principles and
epigenome of metaplastic transitions may be highly similar across
tissues. These findings can inform the development of future meta-
plasia biomarkers for improving early detection across multiple can-
cers as well as the repurposing of successful prevention103, risk
assessment, and treatment strategies.

Despite the greatly enhanced resolution, accuracy, and scale
of SCOOP’s COO predictions, our ML approach has several lim-
itations that will require future research. A fundamental impedi-
ment arises from previous observations21,25 that robust model
prediction requires aggregation of WGS profiles from different
tumor samples that may have different COOs. This presents
challenges for obtaining personalized predictions, which can be
remedied in the future by acquiring additional WGS data that can
enable grouping of patient tumors with similar COOs. Another
limitation pertains to the comprehensiveness of our single-cell
atlas and data quality across tissues, potentially omitting relevant
cell subsets that could serve as the COO for specific cancers.
Finally, SCOOP identifies the pre-malignant cellular ancestor
whose chromatin accessibility best explains a cancer’s cumulative
somatic mutational landscape. In some cases, this cell type can
differ from the normal cell that acquires the initial oncogenic hit,
as appears to be the case for PDAC, other metaplasia-related
cancers in our study, AML, and as shown previously in gliomas41,42

and other cancers; future modeling and experimental studies
tracing the transition from precancerous to malignant cell states
will be necessary to uncover the exact trajectory of cellular
transitions involved in tumorigenesis.

SCOOP contrasts with previous approaches that necessitated
individual experiments for each sample—for instance, conducting
100 separate experiments to generate 100 ATAC-seq profiles from
bulk tissue. Instead, using publicly available scATAC-seq data, our
approach successfully derived 559 distinct cell subset profiles from 42
tissue experiments. This enhanced efficiency not only facilitates the
identification of a wider variety of cell types, but also paves the way for
a cost-effective framework for COO identification by substantially
decreasing the need for additional sequencing experiments and
streamlining laboratory procedures. Future studies will also benefit
from the increasing number and quality of WGS and scATAC-seq data
being generated, and employ SCOOP to investigate rare cancers, such
as aSCLC, and more refined histological and molecular subtypes not
examined here. Moreover, expanded scATAC-seq sampling across the
human body can further enhance our method’s ability to identify the
anatomical location for a cancer’s COO, as demonstrated for MB
(cerebellum). Our easy-to-use computational platform is accessible to
all cancer biologists, requiring only the availability of WGS data for a
cancer of interest and, if necessary, scATAC-seq data from the corre-
sponding normal tissue to complement our 559 normal cell subsets
already assembled.

Methods
Ethics statement
This research was conducted entirely with previously published data
that has been deidentified by each study and, hence, does not require
human subjects study protocol and complies with all relevant ethical
regulations.

Whole genome sequencing (WGS) data acquisition and
processing
All cancer WGS data besides that for mesothelioma37, SCLC36,48, mul-
tiple myeloma21, MSI-high CRC104, intestinal metaplasia74, and CPTAC95

cancers (Supplementary Fig. 10c) were obtained from the Pan-Cancer
Analysis of Whole Genomes (PCAWG) study35. PCAWG samples were
obtained both from the publicly available, International Cancer Gen-
ome Consortium (ICGC) portion of PCAWG via the ICGC data portal35,
and from the restricted access TCGA portion of PCAWG via
Bionimbus105. Only samples on the tumor whitelist from PCAWG were
processed for analysis. For pleural mesothelioma, the somatic muta-
tion genome locations in37 were provided directly by the authors. We
restricted our analysis to epithelioid pleural mesothelioma, since the
number of samples for the other two histological subtypes (sarcoma-
toid and biphasic) was very low (2 and 3 respectively). We also exclu-
ded samples that were classified as “Not Otherwise Specified.” For
SCLC, the SNVs from36 were provided directly by the authors through
the European Genome-Phenome Archive (EGA). The SCLC molecular
subtypes of different WGS datasets were obtained from49. The aSCLC
somatic WGSmutations from48 were provided directly by the authors.
Multiple myeloma data was obtained and processed as in21. MSI-high
data was obtained from TCGA. Finally, we acquired SNVs fromWGS of
5 intestinal metaplastic samples directly from the authors of74. WGS
VCF files and available clinical information for CPTAC-3 datasets (lung,
brain, pancreas, and kidney cancers) were downloaded from the TCGA
data portal (https://portal.gdc.cancer.gov/). Only variants marked as
PASS were kept and their coordinates were converted to hg19 using
the R package liftOver106 (v1.26.0).

We obtained SNVs fromWGS data for each cancer type examined
in our study and aggregated the variant counts across samples into 1
megabase pair bins, excluding sex chromosomes21. In brief, all somatic
single nucleotide mutation data per cohort were converted to BED
format, and intersected using BEDtools with the 1MBbins. The number
of mutations per bin were then aggregated by cancer type/subtype.
These bins exclude regions that overlap centromeres and telomeres,
and regions where the fraction of mappable base pairs is lower than
0.92. Since one aSCLC WGS sample (“A07”) had an outlier number of
mutations (189,396) compared to the rest of the WGS samples (aver-
age of 13,618 per sample), we corrected for the effect of the outlier by
1) excluding the outlier sample and 2) first scaling themutation counts
for each aSCLC WGS sample across bins to have a zero mean and unit
variance before running SCOOP, and both approaches robustly pre-
dicted a neuroendocrine COO.

Somatic variant calling for MSI CRC WGS samples. For the micro-
satellite instability (MSI) samples, both tumor and matched normal
BAM files containing mapped reads onto the human genome version
hg38 were downloaded. We applied an ensemble consensus variant
calling approach utilizing Mutect2107 (GATK v4.3.0.0), Strelka2108

(v2.9.10), and VarScan109 (v2.4.6), retaining only SNPs identified by at
least two callers. Mutect2 analysis included the use of The Panel of
Normals (PoN) and germline resources following GATK Best Practices.
Subsequently, the coordinates of the filtered SNVs were converted to
hg19 using the R package liftOver106 (v1.26.0).

scATAC-seq data acquisition and processing
scATAC-seq data for all cell subsets used in this study were obtained
frommultiple previously published scATAC-seq datasets. 222 fetal and

Article https://doi.org/10.1038/s41467-025-63957-3

Nature Communications |         (2025) 16:8301 12

https://portal.gdc.cancer.gov/
www.nature.com/naturecommunications


adult cell subsets from30adult and 15 fetal tissueswere obtained from
scATAC-seq atlases in refs. 28,29. More specialized scATAC-seq data
from adult brain80, blood and bone marrow32, colon31, lung34, and
kidney33, as well as fetal lung45 and brain30, were also included in the
final dataset (Supplementary Data 3). We also acquired an additional
bone marrow validation scATAC-seq dataset from61 to validate our
COO prediction for AML (Supplementary Data 4). We note that data
from separate datasets were kept separate and were not merged. For
all datasets except kidney33, fragment files were available and were
migrated to hg19 if they were not already aligned to hg19 using the R
package liftOver106 (v1.26.0). For kidney scATAC-seq data, we aligned
FASTQ files to hg19 and obtained fragment files using Cell Ranger
ATAC pipeline110 (v1.1.0). scATAC-seq data fragment counts were bin-
ned as described above for SNV counts from WGS data; in brief,
scATAC-seq fragment counts across cells were aggregated into bins to
obtain chromatin accessibility profiles for each cell subset. Each cell
subset (feature) is followed by a dataset identifier: D1 for28, D2 for29, D3
for31, D4 for32, D5 for34, D6 for33, D7 for30, D8 for80, and D9 for45.

scATAC-seq data curation and annotation
scATAC-seq cell annotations for each individual dataset were obtained
directly from the corresponding paper’s published materials, except
for the lung dataset34 for which the annotations were not available at
the time of writing, and for which we generated de novo annotations.
After reviewing the publicly available annotations, we further refined
themas follows: for the adult atlas28, brain80, blood andbonemarrow32,
kidney33, all cell types that had a number index at the end indicating
cell-type sub-clusters were collapsed into a single combined cell type.
For example, “Colon Epithelial Cell 1”, “Colon Epithelial Cell 2”, and
“Colon Epithelial Cell 3” from Transverse Colon were annotated as
“Colon Epithelial Cell”. For the blood and bone marrow dataset32, we
additionally removed cell types annotated as unknown, and combined
all T-cell subsets (i.e., all CD8 and CD4 subsets) into T cells. Except for
the five blood cancers (MM, CLL, AML, BNHL, and MPN), where it was
important to distinguish between CD34+ and CD34- bone marrow, we
collapsed the annotation into a single bone marrow category (Sup-
plementary Data 3 contains the uncollapsed numbers). For the lung
dataset34, we used an analogous approach to that used in the original
publication. In particular, the cell type annotation was informed by
labels from scRNA-seq data and was implemented in ArchR111 (v1.0).
These labels were transferred to the scATAC-seq data using the
addGeneIntegrationMatrix function. Marker discovery was conducted
de novo using the getMarkerFeatures function with the GeneScor-
eMatrix assay. The final annotation of scATAC-seq cells was carried out
bymapping the newly discovered clusters to predicted RNA cell types,
or, when no corresponding cell type was found in the RNA data, by
linking them to the chromatin accessibility at the locus of known gene
markers that were most prevalent in each cluster. For the fetal atlas29,
we excluded all cell types that were annotated as unknown. For the
fetal brain dataset30, we used the same annotations as displayed in the
scATAC-seq UMAP of the original paper (see Fig. 1f in the latter paper),
except we removed cell types annotated as unknown. We did not use
cancer tissue scATAC-seq data from31; specifically, our compiled
dataset included only normal and unaffected samples, both of which
were considered as “normal” tissue. For MSI CRC modeling that is
expected to undergo metaplasia, our modeling also included polyp
samples that are expected to contain this stage in tumor development.
For the bone marrow dataset61, we used the function addGeneInte-
grationMatrix from ArchR111 (v1.0) to label transfer the annotations
using the transcriptomics profiles in the multiome data from32, since
the data from61 did not contain annotations for GMP.Neut (our pre-
dicted COO using the data from32). To remove low-quality cells, we
filtered cells with transcription start sites (TSS) score less than 8 and
number of fragments (nFrags) less than 3000. No annotation curation
was done for the fetal lung dataset45.

After finalizing our annotations, we applied a filter of a minimum
100cells per feature to exclude cell subsetswith insufficient number of
fragments to produce an accurate pseudo-bulk epigenetic profile, as
quantified in112. If a given cell type did not meet this threshold, it was
excluded from further analysis, except in the following cases:

• adult pulmonary neuroendocrine cells (PNECs) from34 when
conducting lung-specific analyses (Fig. 1c, f, g; Supplementary
Figs. 2, 3, 10c), since they were conjectured to be the COO of
SCLC. While our scATAC-seq data base contained only 41 adult
cells from34, it also included 356 GHRL+ and 231 fetal PNECs
from45, which is comparable to the number of mesothelial cells
(n = 401 and n = 223 for adult and fetal, respectively).

• GMP from61 when conducting the AML validation analysis (Sup-
plementary Fig. 4), since it was of particular interest and did not
meet the threshold (n = 77; Supplementary Data 4).

SCOOP feature space selection for modeling
We trained SCOOP on a variety of different feature spaces. Except
when indicated otherwise, we trained ourmodels using all tissues from
6 different datasets: blood/bone marrow32, colon31, lung34, kidney33,
and two cross-tissue28,29 scATAC-seq atlases. Other scATAC-seq
datasets30,45,61,80 were included in the analysis only when diving dee-
per into a select cancer type and interrogating the relevant tissue of its
COO more comprehensively. Specifically, a fetal lung dataset45 was
included for lung cancers (Fig. 1a,c; Supplementary Fig. 2-3, 10c), fetal30

and adult80 brain datasets for brain cancers (Fig. 5a; Supplementary
Figs. 7, 10c), and a bone marrow dataset61 for AML validation results
(Supplementary Fig. 4b). Moreover, as indicated in the main text,
certain models were trained on specific tissue scATAC-seq features.

Cancer subtype classification
We used the metadata in cBioPortal113 to obtain MSI high vs MSS
classification for CRC. In particular, if the metadata column “subtype”
had “MSI” as a suffix, we considered the sample to be MSI high.
Otherwise, it was considered to be MSS. We note that all samples for
ColoRect-AdenoCA from PCAWG are MSS samples, except for one,
which is MSI high.We used themetadata in ICGC35 to obtain pRCC and
ccRCC classification for kidney cancers.

XGBoost regression model
We trained XGBoost27 (Extreme Gradient Boosting) regression models
using XGBRegressor from the Python XGBoost package (v1.7.4).
XGBoost is an advanced implementation of the gradient boosting
algorithm, designed for speed and performance. It builds an ensemble
of decision trees in a sequential manner, where each tree corrects the
errors of its predecessor. XGBoost employs a regularized model for-
malization to control over-fitting, making it robust to noisy data. The
algorithm isparallelizable across both cores in aCPUandmachines in a
distributed setting, resulting in significantly faster training times
compared to traditional gradient boosting. This enabled us to perform
robustness analysis by performing 100 runs for each model.

Our choice of XGBoost wasmotivated by recent analyses showing
that XGBoost outperforms RF models in efficiency and accuracy for
bulk tissue COO prediction26. Based on our own experimention, we
observed a five-fold decrease in run time when using XGBoost com-
pared to RF when using all normal cell features.

We frame our task as a machine learning regression problem as
follows: each genomic bin corresponds to a training example (i.e., data
point) where the input features (i.e., “predictors” or “independent
variables”) are the aggregated scATAC counts from the various cell
subsets for that bin, and the label (i.e., “response variable” or “target
variable” or “dependent variable”) is the mutation count for that bin.
Put differently, each genomic bin is characterized by two sets of
numbers; one set (input) is composed of multiple “features” where a
particular “feature” constitutes an aggregated scATAC count for a
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particular cell subset, while the other set (output) is comprised of a
single number: the aggregated number of mutations within that bin.

Robustness analysis. After partitioning the genome into bins, we
grouped contiguous bins into 10 train/test folds. We used each fold as
a test fold 10 times and used the remaining 9 folds for training and
validation using cross-validation with a 90/10% split of training and
validation respectively. For each of the 10 runs of cross validation and
model testing per fold, 10 different seeds were used for seeding the
XGBoost model building process, and, when training models with
more than one feature, the feature importance calculation. Since we
used each of the 10 folds as a test set 10 times (with a different seed
each time), we in effect obtained 100 estimates of model performance
on an unbiased test set.

Feature importance calculation. Feature importance was calculated
using the permutation_importance function from scikit-learn114 (v1.3.0),
setting the “n_repeats” parameter to 10, after picking the best model
according to cross-validation. This function implements a permutation
importance mechanism: for each feature in the feature space, it ran-
domly permutes its values and keeps all other features constant, then
measuring the effect of this permutation on a model’s chosen per-
formance metric by comparing the change in performance to the
baseline performance when no permutation is performed. The larger
the negative effect of this process on the chosen performance metric,
the more important a feature is deemed to be. Since this permutation
is a randomprocess, it is useful to perform this processmultiple times,
and measure the mean effect of permutation on performance. We
chose to repeat the process 100 times. We note that since we used
cross-validation, feature importancewas calculated on each validation
fold and averaged across folds; sinceweused a 90/10% train/validation
split, which implies 10 train/validation folds, and for each fold we
computed 10 permutation scores (n_repeats = 10), this in effect means
that we performed 100 permutations and averaged these for any given
feature.

Feature selection. If the initial feature space had more than 20 fea-
tures, we next selected the top 20 features according to our feature
importance score. Otherwise, the entire unmodified feature space was
used to proceed. Using this reduced (or unmodified) feature space, we
then performed iterative backward feature selection until only a single
feature remained, which inmost cases we would expect to correspond
to the COO for the cancer type under consideration (see Robustness
box plots and COO prediction sections for more details). To be more
specific, after reducing the feature space to 20 features, we trained a
new model using this reduced feature space, picked the best model
according to mean performance across validation folds when per-
forming cross-validation, ranked the 20 features based on the chosen
model, and eliminated the bottom feature. This was then repeated
iteratively.

We note that performing this process may aid in alleviating
the potential bias that can be induced by having correlated fea-
tures. As an example, suppose our dataset contains cell types A,
B, and C, where B and C are highly correlated. When computing
feature importance, cell types B and C may be ranked lower than
they would have been ranked otherwise if the other cell type were
absent. Thus, if the model ranks B above C and we remove cell
type C, cell type B can now more fairly compete against cell type
A for the top spot. There is the further issue that B and C may be
arbitrarily ranked above one another by the model, which moti-
vates training the model multiple times using different
random seeds.

Model evaluation metric. We assessed model performance by com-
puting the R2 score (i.e., variance explained) of our model. This is

computed as

R2 = 1� RSS
TSS

, ð1Þ

where RSS is the residual sum of squares, and TSS is the total sum of
squares. We emphasize here that it is possible to obtain a negative
value for R2, if the model performs worse than a simple mean model.
This situation occurs when the RSS is greater than TSS, which means
that the model’s predictions are on average further from the actual
values than the simple mean of the data.

Hyperparameter optimization. Hyperparameter optimization was
performed using the automated hyperparameter search framework
Optuna115 (v3.3.0). We used the default hyperparameter optimization
strategy, Tree-structured Parzen Estimator (TPE), which is a Bayesian
optimization strategy. Briefly, we note that, in contrast to the naive but
commonly employed strategy of randomly choosing and testing
model hyper-parameters setting (e.g., grid search or random search,
which is an inefficient and suboptimal strategy), Bayesian optimization
strategies like TPE take advantage of the history ofmodel performance
under different hyperparameter settings to cleverly explore the
hyperparameter search space, and exploit settings that performedwell
to narrow down the search space for optimal hyperparameters.

Each training run inOptuna is called a “study.” Each study consists
of multiple “trials,” each corresponding to a specific model hyper-
parameter setting. At the end of a study, the best model hyperpara-
meters are chosen based on the trial that performed best according to
some pre-specified metric. In our case, this is the mean variance
explained across validation folds. In other words, we fix a hyperpara-
meter setting, compute its mean performance across validation folds
during cross validation, report this number as the performance for the
hyperparameter setting in question, and repeat this process for dif-
ferent hyperparameter settings. We note that the number of trials per
study must be specified, and we set it to 50 (i.e., the “n_trials” para-
meter of the study.optimize function is set to 50). In practice, this
means that 50 hyperparameter settings are tested per training run of
the model. We emphasize that during backward feature selection, this
process is repeated from scratch (i.e., for each new feature space, 50
different hyperparameter settings are tested) and the best models
chosen for different feature spaces very likely differ in their hyper-
parameter settings.

Table 1 lists the XGBoost model hyperparameters and the corre-
sponding ranges of valueswe searched over. The full description of each
hyperparameter can be found at https://xgboost.readthedocs.io/en/
release_1.7.0/python/python_api.html, under xgboost.XGBRegressor.

Robustness box plots. For the robustness box plots (e.g., Fig. 1c), we
display, across 100 runs, the feature importance of different features
when the model was trained on x features (i.e., after conducting
backward feature selection and being left with x features). We further
restricted the display to only show the top 5 features, where we define
“top 5 features” as the features that appeared most frequently in the
top 5 across 100 runs of the model. Also displayed is the number of
times the feature appeared in the top x features across the 100 runs (n).
The y-axis is ordered first by n, and ties are broken by the median
feature importance, with the top-ranking feature appearing at the top
of the y-axis. This feature is highlighted in red, and if the second top-
ranking feature represented a highly similar cell subset, it was high-
lighted in pink. We set x = 5 for main figures and trained SCOOP with
cancer tissue specific cell features, while in Supplementary Figures we
displayed box plots with x = 10, 5, and 2 and trained SCOOP with cell
features across tissues.
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COO prediction. For each cancer type, the most frequent cell
subset appearing as the top feature across 100 SCOOP runs was
predicted as the COO. The COO prediction is consistently high-
lighted in red throughout the manuscript. The second most fre-
quently appearing cell subset, if representing a highly similar cell
subset to the COO, was highlighted in pink. Except for MPN
(Supplementary Fig. 8a; see discussion in manuscript), this pre-
diction also corresponded to the most informative feature in the
robustness box plots when 5 features remained for all “high
confidence” COO predictions (all predictions except those in
Supplementary Fig. 9). For the benchmarking analysis (Supple-
mentary Fig. 10a) we considered a COO prediction to be correct
when this prediction was supported by evidence in the research
literature (supporting literature is listed for each prediction in
Supplementary Data 1).

For MPN, when using blood and bone marrow features, CD34+
CLPs – as opposed to CD34+ early basophils – appeared most fre-
quently when only 5 features remain in the backward selection (Sup-
plementary Fig. 8a). While they do not represent the exact same cell
type, they both represent multipotent hematopoietic progenitors and
support the hypothesis that MPN originates from a committed
hematopoietic progenitor similar to HSCs91 (see main text).

Statistical testing for XGBoost model results. For Figs. 1b and 5c, to
assess if the variance explained distribution of the top feature (based
on mean variance explained) across 100 runs of the model had a sig-
nificantly higher median compared to the next most important fea-
ture, we used a one-sided Mann-Whitney test.

Similarly, to assess if the feature importance distribution of the
top robustness box plot feature across 100 runs of the model had a
significantly higher median compared to the next most important
feature, we used a one-sided Mann-Whitney test.

To check if the most frequently appearing top feature showed up
as the top feature across 100 runs of the model, significantly more so
than the secondmost frequently appearing top feature, we used a one-
sided, exact binomial test. Under the null hypothesis, we would expect
each feature to appear½(x+y) times on average, where x and y are the
actual number of times the first and secondmost frequently appearing
top feature actually appeared as the top feature, respectively. In one
case, the first and second top features corresponded to essentially the
same feature and came from the same dataset (e.g., GMP and
GMP.Neut from bone marrow mononuclear cells; Fig. 2d, bottom). In
this case, we compared the combined appearances of the top 2 fea-
tures to the third top feature. In other cases, where the top 2 features
were similar but not coming from the same dataset (e.g., Fig. 1c), we
compared the appearances of the top feature to the third feature. The
exact comparison done is indicated on the bar plots by square
brackets.

WGS sample SNV profile UMAPs
To visualize WGS mutational density profiles across samples we used
Uniform Manifold Approximation and Projection (UMAP) dimension-
ality reduction as implemented in Seurat116 (v4) except we considered
our feature space to be genomic bins rather than genes. Briefly, we
normalized themutational data using theNormalizeData functionwith
the parameter normalization.method set to “LogNormalize.” Since we
have a total of 2,128bins only, we used all bins in the projection anddid
not run FindVariableFeatures. We then ran RunPCA with npcs set to
“30.” Finally, we ran RunUMAP with dims set to “1:15.” In the case of
lung, we set min.dist to “0.2” instead of “0.3”.

scATAC-seq data analysis via ArchR
Cell type UMAPs. To plot the UMAPs of the scATAC-seq data from
various cell types, we used ArchR111 (v1.0). Specifically, we ran addI-
terativeLSI with resolution “0.2”. Then, for Figs. 2a and 5b (data from31

and30, respectively), we further ran addHarmony due to the presence
of batch effects (not present in Fig. 2c). Finally, we ran addUMAP with
nNeighbors set to “30” and minDist set to “0.5.”

Marker gene score computation and visualization. Expression of cell
type marker genes was inferred from chromatin accessibility at a
gene’s locus using ArchR’s gene score method111. Gene scores were
visualized using plotEmbeddingwith colorBy set to “GeneScoreMatrix”
and quantCut set to have a range of “0.01” to “0.95”prior to imputation
using addImputeWeights (Supplementary Figs. 6a, 8b)111.

Meta-cell correlation analysis. We began by first sampling meta-cells
(i.e., groups of similar cells) in scATAC-seq data using a K-nearest-
neighbor (KNN) approach. Meta-cells were generated by randomly
identifying seed cells for which 500 nearest neighbor cells were then
selected based on a KNN graph generated in the latent semantic
indexing (LSI) space.Meta-cellswere allowed tooverlapup to80%.The
function used to conduct this analysis is a customized version of the
ArchR111 (v1.0) function addCoAccessibility.

After obtaining meta-cells, we summed the scATAC-seq fragment
counts across cells for that meta-cell, representing an aggregated
fragment profile. We then correlated all meta-cell profiles with the
cancer mutation profile of interest using Pearson’s correlation coeffi-
cient. Finally, for each individual cell (i.e., notmeta-cell), we assigned it
a correlation score corresponding to themean correlation of themeta-
cells itwas assigned to.We thenplotted the correlationon the scATAC-
seq data UMAP per cell. We note that for Fig. 2a, we filtered out cells
with a fragment count lower than 10,000 before running any of the
previous steps, since we noticed that the meta-cell correlation for that
particular dataset correlated with the number of fragments when the
fragment count was too low.

Metaplasia-related single-cell transcriptomics data acquisition
and analysis
To quantify the transcriptional similarity between goblet cells (our
COO predictions) and metaplastic cells, we analyzed multiple single-
cell transcriptomics datasets related to metaplasia including human
chronic pancreatitis68, ADM in response to pancreatic injury69,KrasG12D-
induced neoplasia70, precancerous colorectal states67, human
stomach71, and human colon polyps31. These datasets included scRNA-
seq data from human andmousemodels with the exception of human
chronic pancreatitis and colon polyps data being single-nucleus RNA
sequencing (snRNA-seq).

Data preprocessing prior to marker discovery and module score
computation.We directly utilized the processed Seurat objects shared
by the authors for all the aforementioned datasets, except for the
pancreas injury model study69. For the latter, we created the Seurat

Table 1 | Table showing the XGBoost hyperparameter search
space that was used for Optuna, including the hyperpara-
meter name, the type of the hyperparameter, the range of
values explored, and the scale of the search (i.e., linear, log)

Hyperparameter Type Range Scale

n_estimators integer 100-500 linear

max_depth integer 3-10 linear

learning_rate float 1e-8-1.0 log

subsample float 0.1-1.0 linear

colsample_bytree float 0.1-1.0 linear

min_child_weight integer 1-6 linear

reg_lambda float 1e-8-1.0 log

reg_alpha float 1e-8-1.0 log
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object using the available count matrices and associated metadata,
which had already been filtered for high quality cells69. All clustering
and cell type annotations were retained from the original publications
or accompanying supplementary files. For the human adult pancreas68

dataset, we pooled all acinar cell subpopulations from the provided
Seurat object to discover generalizable acinar cell markers. For deriv-
ing colongoblet and stemcellmarkers fromthe colonpolyps dataset31,
we only used intestinal epithelial cells. We also converted HUGO Gene
Nomenclature Committee (HGNC) gene symbols to Ensembl gene
identifiers (Ensembl IDs) using biomaRt117 v2.56.1 (useMart, getBM) to
facilitate downstream analyses. Since the precancerous colondataset67

used in Fig. 4d used Ensembl IDs as features, this conversion was
needed to calculate module scores consistently across different
scRNA-seq datasets.

Normalized and scaled gene expression data were already avail-
able in the Seurat objects from67,68. Since normalized data was not
available for70, and normalized and scaled data was not available
for31,69,71, we proceeded as follows. For70, we performed log2-transfor-
mation after adding a pseudocount of 0.1, consistentwith themethods
described in the originalmanuscript. For the other three datasets31,69,71,
we applied Seurat’s standard analysis pipeline using the functions
NormalizeData, FindVariableFeatures, and ScaleData in succession as
done in118.

Marker discovery, dimensionality reduction, and module score
computation. After preprocessing all objects as described above, we
used Seurat’s FindMarkers function to derive human stomach goblet
cell markers71, human pancreas acinar cell markers68, mouse pancreas
acinar cell markers69, human colon goblet and stem cellmarkers31. Due
to unavailability of normal mouse stomach scRNA-seq data with well-
annotated goblet cells, we obtained mouse stomach goblet cell mar-
kers from the Mouse Cell Atlas 3.072. After gathering all aforemen-
tioned sets of markers, we computed their module scores in normal
and metaplastic scRNA-seq and snRNA-seq datasets using Seurat’s
AddModuleScore function. Generation of UMAPs and visualization of
module scores (Fig. 4a, b) was performed using Seurat’s RunPCA and
RunUMAP functions after keeping the top 20 principal components.

Proliferation rate quantification using scRNA-seq data
To identify thepercentageof lung epithelial cells that areproliferating/
cycling at homeostasis, we used scRNA-seq data from healthy lung
donors34. Seurat’s CellCycleScoring function was used to compute the
module score for the expression of genes linked to either G1/S or G2/M
phase of the cell cycle119. Cells with either a G1/S or G2/M phase score
greater than 0.1 were classified as cycling and all other cells were
considered non-cycling as done in120. The percentage of cycling cells
for each lung epithelial cell was displayed in Fig. 1h, where cell types
were ordered from most to least proliferative.

Variance explained as a function of sample size
To classify cancers into low,medium, and high TMB, we computed the
average number of mutations per WGS sample for each cancer type
(Supplementary Data 1). Following this, we segmented the cancer
types into these three classifications by employing quantile division.
We then picked 2 cancers with high confidence COO predictions from
each category. Per cancer, for each specific number ofWGS samples n,
we randomly sampled n patients 100 times, aggregated the sampled
patient data SNV profiles, and ran SCOOP on the sampled aggregated
mutation profile, using a different random seed for each run.

Association between model prediction heterogeneity and can-
cer mutation heterogeneity
We investigated the relationship betweenmodel prediction and cancer
mutation heterogeneity via a linear regression (Supplementary
Fig. 10b). Toquantify SCOOP’s predictionheterogeneity,wecomputed

the Gini impurity for each COO prediction, which is calculated as

1�
Xn

i= 1
p2
i , ð2Þ

where n is the number of cell types predicted as the COO, and pi is the
proportion of predictions (out of the 100 runs of the model) that
corresponded to cell type i. As n increases and the proportion of
predictions becomesmore equally distributed across the n categories,
Gini impurity increases (i.e., higher Gini impurity corresponds to
higher heterogeneity in prediction). To quantify mutational hetero-
geneity, we computed the average pairwise correlation between any
two binned (1 Mbp) WGS samples for each cancer type and defined a
cancer type’s mutational similarity as the mean pairwise WGS sample
correlation. We note that mutational similarity is inversely related to
mutational heterogeneity.

Analysis of bin prediction accuracy
Bin categorization. For each of the 6 cancer types in Fig. 5d, we clas-
sified bins into four categories based on standard residuals. Specifi-
cally, we computed

ri =
ei

σ̂ ei
� � , ð3Þ

where ei = yi � ŷi is the residual – the difference between the observed
number of mutations yi and the average predicted mutation ŷi across
10 seeds – and σ̂ðeiÞ is the estimated standard deviation of the resi-
duals. The standard residual quantifies the model’s accuracy in pre-
dicting mutations. Higher absolute values of the standardized residual
indicate lower prediction accuracy. We defined bins corresponding to
lowest standardized residuals (within the top 5th percentile) as the
“most-accurate” regions. If the standard residual was greater than 2, we
classified the bin as “under-predicted”, indicating that the average
predicted number of mutations is lower than the observed mutations.
When the standard residual was less than −2, indicating that the
average prediction exceeds the number of observed mutations, we
defined the bin to be “over-predicted.” All other bins were classified
as “rest”.

Gene expression and epigenomic data acquisition and processing.
To compare gene expression across different categories of bins, we
downloaded tissue gene expression data from GTEx (RNA-Seq, nor-
malized using TPM)96 thatmatched the normal tissue of origin for each
cancer’s COO prediction. To quantify the histone occupancy across
different bin categories, we downloaded H3K27Ac (activation marker)
and H3K9me3 (repressive marker) ChIP-seq data from the NIH Road-
map Epigenomics Project97 that matched the normal tissue of origin
for each cancer’s COO prediction.

Comparing expression and epigenetic data between bin cate-
gories. ForGTExRNA-seqdata, sincemultiple samples are available for
each tissue, we calculated the average TPMper gene across all samples
within each tissue. For the ChIP-seq data, we quantified the number of
reads in eachbin and converted them toReads PerKilobase perMillion
(RPKM), or

RPKM =
Reads within bin × 109

Library size× Feature length 1MBð Þ : ð4Þ

For tissues with multiple samples, we calculated the average
RPKM across samples per bin. We applied the same normalization
method to our assembled scATAC-seq dataset. We quantified the sta-
tistical significance of differences between bin categories for the var-
ious assays (RNA-seq, ChIP-seq, scATAC-seq) across bin categories
using the Mann-Whitney test.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The publicly available scATAC-seq data used in this study are available
under the following accession codes in GEO (GSE18446228,
GSE14968329, GSE24461880, GSE13936932, GSE20134831, GSE24016834,
GSE16654733, GSE16217030, GSE21646461) and ArrayExpress (E-MTAB-
1126645) databases. The publicly available scRNA-seq data used in this
study are available under the following accession codes or project IDs
in GEO (GSE17238069, GSE20793870), HCA (cfece4d2-f18d-44ad-a46a-
42bbcb5cb3b771), EGA (EGAS0000100465368), HTAN (HTA11_202167,
HTA10_202231), and dbGaP (phs000424.v10.p296) databases. The
publicly available WGS datasets used in this study are available under
the following accession codes or project IDs in dbGaP (phs001287.v21.
p695, phs000178.v11.p8121, phs003676.v1.p148) and EGA
(EGAD0000100844737, EGAS0000100092536, EGAS0000100706774)
databases. All data supporting the findings of this study are available
within the paper and its supplementary information files. Source data
are provided with this paper.

Code availability
All code associatedwith this project can be foundatourGithubpage at
https://doi.org/10.5281/ZENODO.16753796122 and https://github.com/
TsankovLab/SCOOP, which contains instructions on how to reproduce
our results.
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