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Inflammation and mutational burden
differentially associated with nivolumab or
ipilimumab combination efficacy in
colorectal cancer

Ming Lei 1,24 , Michael J. Overman2,24, Jin Yao3, Thierry André 4,
Sara Lonardi 5, Heinz-Josef Lenz 6, Massimo Aglietta7, Fabio Gelsomino 8,
Ray McDermott9, Ka Yeung Mark Wong10, Michael A. Morse11, Eric Van Cutsem12,
Alain Hendlisz13, Dana B. Cardin 14, Bart Neyns15, Andrew Hill16,
Anuradha Krishnamurthy17,23, Franklin Chen18, Samith Kochuparambil19,
Robert R. Jenq 20, Sandzhar Abdullaev21, Beilei He22, Ruslan Novosiadly1 &
Scott Kopetz 2

Nivolumab alone and in combination with ipilimumab demonstrated durable
clinical benefit in patients with previously treated microsatellite instability-
high/mismatch repair-deficient metastatic colorectal cancer in the phase 2
CheckMate 142 study. Here, we report exploratory biomarker analyses from
CheckMate 142 evaluating associations between various tissue biomarkers and
the efficacy of nivolumab monotherapy and nivolumab plus ipilimumab
combination in these patients. Higher expression of inflammation-related
gene expression signatures is associated with improved response per inves-
tigator assessment and survival benefit with nivolumab monotherapy. In
contrast, higher tumormutational burden, tumor indel burden, anddegrees of
microsatellite instability are associated with improved response per investi-
gator assessment and survival benefit with nivolumab plus ipilimumab. While
interpretation is limited by the exploratory nature of these analyses, they
suggest that tumor antigenicity rather than baseline tumor inflammation
might be important for the combinatorial efficacy. Validation of these findings
in larger, randomized studies is necessary.

Colorectal cancer (CRC) is the third most common malignancy
worldwide and the second leading cause of cancer-related death1.
Among patients with CRC, approximately 14% of all cases and 4–7% of
metastatic cases have microsatellite instability-high/mismatch repair-
deficient (MSI-H/dMMR) status2–4. Studies in recent years investigating
the use of immune checkpoint inhibitors (ICIs) for the treatment of
MSI-H/dMMR metastatic CRC (mCRC) have established the clinical
benefit of programmed death-1 (PD-1) inhibitor-based regimens in

these patients5–10. In the multicohort, non-randomized phase 2
CheckMate 142 study (NCT02060188), nivolumab (a PD-1 inhibitor),
both alone and in combination with ipilimumab (a cytotoxic T lym-
phocyte antigen-4 [CTLA-4] inhibitor), demonstrated durable
responses and long-term survival benefit, with manageable safety in
previously treated patients withMSI-H/dMMRmCRC5,9–11. Based on the
results from CheckMate 142, nivolumab received approval as mono-
therapy and/or in combination with ipilimumab for the treatment of
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MSI-H/dMMR mCRC that has progressed following chemotherapy in
many countries, including the United States and European Union12,13.
These findings also led to the inclusion of nivolumab-based regimens
in the National Comprehensive Cancer Network and European Society
for Medical Oncology guidelines (National Comprehensive Cancer
Network. NCCN guidelines: colon cancer version 2.2023, https://www.
nccn.org/professionals/physician_gls/pdf/colon.pdf; National Com-
prehensive Cancer Network. NCCN guidelines: rectal cancer version
2.2023, https://www.nccn.org/professionals/physician_gls/pdf/rectal.
pdf)14. Despite the clinical benefit observed with nivolumab-based
treatment in previously treated patients withMSI-H/dMMRmCRC, not
all patients respond5,8–10, underscoring the need to identify additional
biomarkers associated with efficacy in these patients. Recently pub-
lished biomarker analyses showcase the active research interest in
exploring potential biomarkers that could be predictive of response to
immunotherapy in patients with MSI-H/dMMR mCRC15,16.

MSI-H/dMMRCRC tumors have high levels of immune infiltration
and immune checkpoint protein expression17, which are thought to
result from the immunogenic characteristics of such tumors, including
their elevated levels of mutations and neoantigens17,18. This exploita-
tion of immune checkpoint pathways by the tumors and inflamed
tumor microenvironment provides a plausible rationale for the effi-
cacy of ICIs observed in this population17, but does not fully explain
why some patients benefit more from ICIs than others. Differences in
the level of tumor mutational burden (TMB) might also partially
explain the variability in response among patients19 and multiple stu-
dies suggest thathigher TMB is indeed associatedwith response to ICIs
in MSI-H/dMMR mCRC and other tumor types20–24. Tumor indel bur-
den (TIB) is an indicator of frameshift insertions anddeletions thatmay
be more likely to generate neoantigens and can have strong associa-
tionswith ICI response in some cancer types25. Additionally, the degree
ofMSI inCRCandother tumors has also been associatedwith response
to PD-1 inhibitors19. Other analyses have noted associations between
inflammatory gene expression signatures (GES), which indicate T-cell
tumor infiltration, and clinical benefit with ICIs in various
malignancies22,23,26. The presence of tertiary lymphoid structures (TLS)
in the tumor microenvironment has also been associated with
improved survival in several solid tumor types, and a 12-gene–based
chemokine GES used to infer the presence and abundance of TLS was
also predictive of improved outcomes in patients treated with ICIs27.
These various biomarkers, therefore, hold promise as potential pre-
dictors for response with ICIs in patients with MSI-H/dMMR mCRC.

Here, we present exploratory analyses from CheckMate 142 that
evaluated the associations between thesebiomarkers and efficacywith
nivolumab, either alone or in combinationwith ipilimumab, in patients
with previously treated MSI-H/dMMR mCRC.

Results
Among all treated patients (n = 193), 59 (31%)were evaluable forwhole-
exome sequencing (WES), 57 (30%) for RNA sequencing (RNA-seq), and
59 (31%) for CD3 immunohistochemistry (IHC). At clinical data cutoff
(September 2021), the median duration of follow-up (time from first
dose to data cutoff) was 70.0 months (range, 66.2–88.7 months) for
the nivolumab monotherapy cohort and 64.0 months (range,
60.0–75.8 months) for the nivolumab plus ipilimumab cohort. Aside
from the WES-evaluable and RNA-seq–evaluable subgroups having
smaller percentages of patients with a clinical history of Lynch syn-
drome, baseline characteristics and clinical responses of each
biomarker-evaluable subgroupwere generally consistent with those of
all treated patients (Table 1). Additionally, progression-free survival
(PFS) per investigator assessment (INV) and overall survival (OS) were
similar between all treated patients and the biomarker-evaluable sub-
groups (Supplementary Fig. 1).

In both cohorts, patients were clustered into two major sub-
groups of high and low expression of inflammation-related signatures

(Fig. 1). Responders in the nivolumab monotherapy cohort were enri-
ched in the cluster with high expression of inflammation-related sig-
natures. In the nivolumab plus ipilimumab cohort, patients were
further clustered into subgroups with different levels of TMB, TIB and
degree ofMSI. Responders in this cohort were enriched in the clusters
with high TMB, TIB and degrees ofMSI (Fig. 1). On an individual patient
level, patients with high four-gene inflammatory and TLS GES scores
also tended to have high expression of other inflammatory bio-
markers; those with high TMB generally had high TIB and degrees of
MSI (Fig. 1). An analysis of correlations between biomarkers revealed
that the four-gene inflammatory GES and TLS GES were highly corre-
lated (R =0.89), and both were also correlated with other inflamma-
tory biomarkers (Supplementary Fig. 2). Additionally, TMB, TIB and
degree of MSI were found to be highly correlated with each other
(Supplementary Fig. 2). Inflammatory biomarkers demonstrated no

Table 1 | Patient demographics and clinical characteristics at
baseline and BOR per INV for all treated, WES-evaluable,
RNA-seq–evaluable and CD3 IHC-evaluable patients

All trea-
ted
(n = 193)

WES-
evaluable
(n = 59)

RNA-
seq–evaluable
(n = 57)

CD3 IHC-
evaluable
(n = 59)

Median age
(range),
years

56 (21‒88) 62 (31‒88) 62 (31‒88) 55 (27‒81)

Sex, n (%)

Male 114 (59) 30 (51) 29 (51) 31 (53)

Female 79 (41) 29 (49) 28 (49) 28 (47)

ECOG performance status,an (%)

0 86 (45) 32 (54) 31 (54) 23 (39)

1 106 (55) 27 (46) 26 (46) 36 (61)

Disease stage at diagnosis,bn (%)

Stage I–III 107 (55) 33 (56) 33 (58) 29 (49)

Stage IV 86 (45) 26 (44) 24 (42) 30 (51)

Primary tumor location, n (%)

Colon NOS 3 (2) 2 (3) 2 (4) 0

Left-sided 60 (31) 25 (42) 24 (42) 19 (32)

Right-sided 130 (67) 32 (54) 31 (54) 40 (68)

Mutation status, n (%)

BRAF/KRAS
wild type

60 (31) 15 (25) 15 (26) 17 (29)

BRAF
mutation

42 (22) 11 (19) 11 (19) 9 (15)

KRAS
mutation

71 (37) 27 (46) 25 (44) 24 (41)

Unknown 20 (10) 6 (10) 6 (11) 9 (15)

Clinical history of Lynch syndrome, n (%)

Yes 65 (34) 8 (14) 9 (16) 22 (37)

No 74 (38) 28 (47) 27 (47) 28 (47)

Unknown 54 (28) 23 (39) 21 (37) 9 (15)

BOR per INV, n (%)

CR 32 (17) 8 (14) 8 (14) 9 (15)

PR 74 (38) 26 (44) 24 (42) 19 (32)

SD 47 (24) 11 (19) 12 (21) 14 (24)

PD 33 (17) 11 (19) 11 (19) 13 (22)

NE 7 (4) 3 (5) 2 (4) 4 (7)
aECOG performance status of 3: all treated, n = 1.
bAll patients had stage IV disease at study entry. Source data are provided as a Source Data file.
BOR best overall response, CD3 cluster of differentiation 3, CR complete response, ECOG
EasternCooperativeOncologyGroup, IHC immunohistochemistry, INV investigator assessment,
NE not evaluable, NOS not otherwise specified, ORR objective response rate, PD progressive
disease, PR partial response, SD stable disease, WES whole-exome sequencing.

Article https://doi.org/10.1038/s41467-025-63960-8

Nature Communications |         (2025) 16:8868 2

https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf
www.nature.com/naturecommunications


strong correlation with TMB, TIB or degree of MSI (Supplemen-
tary Fig. 2).

Overall, higher expression of inflammation-related biomarkers
was generally associated with improved objective response per INV
and survival benefit with nivolumab monotherapy, and higher TMB,
TIB and degrees of MSI were associated with improved objective
response and survival benefit with nivolumab plus ipilimumab (Fig. 2).

Inflammatory biomarker analyses
Of the 57 RNA-seq–evaluable patients, 22 received nivolumab mono-
therapy and 35 received nivolumab plus ipilimumab. Objective
responders in the nivolumabmonotherapy cohort were found to have
higher four-gene inflammatory GES scores than non-responders, while
no obvious difference was observed in the nivolumab plus ipilimumab
cohort (Fig. 3A). Using a median cutoff, patients in both cohorts were
categorized as tumor inflammation-high or -low to assess the asso-
ciation of the four-gene inflammatory GES with survival. High expres-
sion was associated with improved PFS (hazard ratio [HR], 0.23; 95%
confidence interval [CI], 0.07–0.75) and OS (HR, 0.13; 95% CI,
0.03–0.65) in the nivolumab monotherapy cohort, but no obvious
associationwas seen in the nivolumabplus ipilimumab cohort (Fig. 3B,
C). Higher TLS GES scores were also observed in responders who
received nivolumab monotherapy compared with non-responders
(Fig. 4A). There was no obvious difference between responders and
non-responders in the nivolumab plus ipilimumab cohort (Fig. 4A). A
median cutoff was used to distinguish TLS-high and -low subgroups
and high TLS GES scores were also associated with improved PFS and

OSwith nivolumabmonotherapy (HR, 0.15; 95%CI, 0.04–0.56; andHR,
0.12, 95% CI, 0.02–0.59, respectively), but not with nivolumab plus
ipilimumab (Fig. 4B, C).

The association between tumor T-cell density (measured by CD3
IHC) and efficacy of nivolumab-based regimens was assessed in 59
CD3 IHC-evaluable patients (nivolumab monotherapy, n = 36; nivo-
lumab plus ipilimumab, n = 23). Patient subgroups were classified
using amedian cutoff. Tumor T-cell density was higher in responders
than non-responders in the nivolumab monotherapy cohort, and no
difference was observed in the nivolumab plus ipilimumab cohort
(Supplementary Fig. 3A). No association was found between tumor
T-cell density and survival in either cohort (Supplementary
Fig. 3B, C).

TMB, TIB and MSI analyses
Fifty-nine WES-evaluable patients (nivolumab monotherapy, n = 22;
nivolumab plus ipilimumab, n = 37) were included for TMB, TIB and
MSI analyses. As patients with MSI-H/dMMR disease in general have
highTMB, a 20mutations permegabase (Mb) cutoffwas used todefine
TMB-high (≥20 mutations/Mb) and TMB-low (<20 mutations/Mb)
tumors based on TMB distribution (Supplementary Fig. 4). ORR was
higher in the TMB-high subgroup versus the TMB-low subgroup in the
nivolumab plus ipilimumab cohort, but no obvious difference in ORR
was observed in patients receiving nivolumab monotherapy (Fig. 5A).
High TMB was also associated with survival benefit with nivolumab
plus ipilimumab (PFS, HR, 0.12; 95% CI, 0.04–0.31; and OS, HR, 0.08;
95% CI, 0.02–0.30; Fig. 5B, C). No difference in survival outcomes was
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Fig. 1 | Unsupervised hierarchical baseline biomarker clustering. For visualiza-
tion purpose, continuous biomarkers with missing values were imputed by the
median and then z-score transformed. BOR best overall response, CD3 cluster of
differentiation 3, CR complete response, DC dendritic cell, GES gene expression
signature, IHC immunohistochemistry, IPI ipilimumab, MSI microsatellite

instability, NE not evaluable, NIVO nivolumab, NK natural killer cell, PD progressive
disease, PR partial response, SD stable disease, TCD8 CD8+T cell, TIB tumor indel
burden, TLS tertiary lymphoid structure, TMB tumor mutational burden, Treg
regulatory T cell. Source Data are available.
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observed between high and low TMB levels in the nivolumab mono-
therapy cohort (Fig. 5B, C).

TIB was higher in responders versus non-responders in the nivo-
lumabplus ipilimumabcohort (Supplementary Fig. 5A). No association
was found between TIB and response in the nivolumab monotherapy
cohort (Supplementary Fig. 5A). TIB-high and TIB-low were defined
using a median cutoff to assess associations between TIB and survival.
High TIB was associated with greater PFS (HR, 0.19; 95%CI, 0.07–0.53)
and OS (HR, 0.11; 95% CI, 0.02–0.49) benefit in patients receiving
nivolumab plus ipilimumab, while no association was found in those
receiving nivolumab monotherapy (Supplementary Fig. 5B, C).

Responders in the nivolumab plus ipilimumab cohort were found
to have higher degrees of MSI as measured by MSIsensor score com-
pared with non-responders, but no association was observed between
the degree of MSI and response with nivolumab monotherapy (Sup-
plementary Fig. 6A). High and low degrees ofMSI were defined using a
median cutoff. High degrees of MSI were associated with improved
PFS (HR, 0.23; 95%CI, 0.09–0.63) andOS (HR, 0.20; 95%CI, 0.05–0.75)
with nivolumab plus ipilimumab, but not with nivolumab mono-
therapy (Supplementary Fig. 6B, C).

TMB and four-gene inflammatory GES composite and multi-
variate analyses
The association between the four-gene inflammatory GES and efficacy
with nivolumab monotherapy and the association between TMB and
efficacy with nivolumab plus ipilimumab prompted a composite ana-
lysis with both biomarkers. In patients with available four-gene
inflammatory GES and TMB results, there was no correlation
between four-gene inflammatory GES scores and TMB (R =0.0052 and
R = −0.16 in the nivolumab monotherapy [n = 21] and nivolumab plus
ipilimumab [n = 33] cohorts, respectively; Supplementary Fig. 7A, B).
Improved response and survival benefit were still associated with high
four-gene inflammatory GES scores in the nivolumab monotherapy
cohort, irrespective of TMB levels (Supplementary Fig. 7A). In patients
who received nivolumab plus ipilimumab, high TMB was associated
with improved response and survival benefit regardless of four-gene
inflammatory GES expression scores (Supplementary Fig. 7B). We
further evaluated the four-gene inflammatory GES and TMB in a mul-
tivariatemodel, including additional covariates of age, sex, and Eastern
Cooperative Oncology Group performance status. After adjustment
for TMB and other covariates, there were associations between the
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Monocyte GES
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B-cell GES
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Fig. 2 | Summary of biomarker associations with efficacy. Biomarker associa-
tions are shownwithAORRper INV,B PFS per INV, andCOS.Data are presented as
odds ratios ± 95%CIs (A) or hazard ratios ± 95%CIs (B,C). Data forGES andCD3 IHC
are from all RNA-seq–evaluable patients (n = 57) and all CD3 IHC-evaluable patients
(n = 59), respectively; data for TMB, degree of MSI, and TIB, are from all WES-

evaluable patients (n = 59). CD3 cluster of differentiation 3, CI confidence interval,
DC dendritic cell, GES gene expression signature, IHC immunohistochemistry, IPI
ipilimumab, MSI microsatellite instability, NIVO nivolumab, NK natural killer cell,
TCD8 CD8+T cell, TIB tumor indel burden, TLS tertiary lymphoid structure, TMB
tumor mutational burden, Treg regulatory T cell. Source Data are available.
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four-gene inflammatory GES and ORR, PFS, and OS in the nivolumab
monotherapy cohort. Similarly, after adjustment for four-gene
inflammatory GES and other covariates, there were associations
between TMB and ORR, PFS and OS in the nivolumab plus ipilimumab
cohort (Supplementary Fig. 8).

Discussion
Nivolumab, alone and in combination with ipilimumab, demonstrated
durable responses and disease control in previously treated patients
with MSI-H/dMMR mCRC in the CheckMate 142 trial5,10,11. The
exploratory biomarker analyses from CheckMate 142 reported here
aimed to identify associations between various biomarkers and effi-
cacy with nivolumab-based regimens. We found associations between
inflammation-related GES and efficacy in patients who received nivo-
lumab monotherapy and associations between TMB, TIB, and degree
of MSI and efficacy in patients who received nivolumab plus
ipilimumab.

Previous studies have identified associations between inflamma-
tory GES and efficacy of PD-1/PD-ligand 1 (PD-L1) blockade across dif-
ferent tumor types22,23,28. The current analysis also supports this
conclusion, with higher four-gene inflammatory and TLS GES scores
associating with greater response and survival benefit with nivolumab
monotherapy. These findings suggest that preexisting tumor immu-
nity, as measured by baseline tumor T-cell inflammation, may be
associated with nivolumab benefit because PD-1 blockade facilitates
reactivation of dysfunctional T cells in the tumor microenvironment.
Interestingly, higher inflammatory signature scores were not asso-
ciated with improved outcomes with nivolumab plus ipilimumab. This
may be due, in part, to ipilimumab enhancing T-cell priming, activa-
tion, and infiltration29,30 such that the requirement for preexisting
immune-cell infiltration is alleviated. On the other hand, in our ana-
lyses, higher TMB, TIB, and degrees of MSI were associated with
nivolumab plus ipilimumab efficacy. Successful antitumor immunity
requires the presence of effector T cells (as measured by baseline
inflammation) and tumor recognition by the immune system through
neoantigen burden (as indirectly measured by TMB)29. Given that the
addition of ipilimumab to nivolumab appears to reduce the need for
preexisting tumor inflammation, tumor antigenicity rather than base-
line tumor inflammation might be important for the combinatorial
efficacy. Our composite and multivariate analyses indicate that the
four-gene inflammatory GES and TMB are independent from each
other and further suggest that inflammatory GES and TMB are bio-
markers associated with the efficacy of nivolumab monotherapy and
nivolumab plus ipilimumab, respectively.

The results of these analyses should be interpreted with caution
due to the limitations of this study, including the exploratory nature
of the analyses and small sample sizes. Given its non-randomized
nature, this study was not designed for a formal comparison of the
nivolumab monotherapy and nivolumab plus ipilimumab cohorts.
Additionally, due to the high response rate and long-term survival
benefit observed in the nivolumab plus ipilimumab cohort, the
numbers of non-responders and survival events were small. Any
biomarker signal identified in this cohort should be interpreted with
caution due to limited statistical power. Therefore, the results pre-
sented here should be considered hypothesis-generating only.
Another important caveat of these analyses was that the study
enrolled patients based on local MMR/MSI testing. A previous study
found that higher TMBwas no longer associated with nivolumab plus
ipilimumab efficacy when excluding false-positive MSI-H/dMMR
diagnoses identified via central assessment16, and thus our reliance
on local testing might have influenced the biomarker associations
observed in our analyses.

In summary, our biomarker analyses indicated that higher scores
of inflammation-related GES were associated with improved response
and survival benefit with nivolumab monotherapy, and higher TMB,

TIB and degrees of MSI were associated with improved response and
survival benefit with nivolumab plus ipilimumab in CheckMate 142;
however, the small number of patients and exploratory nature of these
analysesmay limit interpretation of the results. These findings provide
insights into the mechanisms of action of nivolumab and ipilimumab
and warrant further investigation in larger, carefully controlled stu-
dies. The ongoing randomized phase 3 CheckMate 8HW trial
(NCT04008030) comparing nivolumab plus ipilimumab with nivolu-
mabmonotherapy or chemotherapy in MSI-H/dMMRmCRCmet both
dual primary endpoints of PFS with nivolumab plus ipilimumab versus
chemotherapy in the first-line setting (HR, 0.21; 95% CI, 0.14–0.32;
P <0.0001) and PFSwith nivolumabplus ipilimumabversus nivolumab
across all treatment lines (HR, 0.62; 95% CI, 0.48–0.81; P < 0.0003) in
patients with centrally confirmed MSI-H/dMMR mCRC31–33. Consider-
ing the improvement in PFS observed with nivolumab plus ipilimumab
versus nivolumab, biomarker-driven approaches may help identify
patients who are more likely to benefit from single- or dual-agent
immunotherapy in this tumor indication, and theCheckMate 8HW trial
offers an opportunity to further explore these biomarkers in a larger
randomized trial.

Methods
Study design
The study design of CheckMate 142 (NCT02060188) has been repor-
ted previously9,10. Briefly, adult patients with histologically confirmed
metastatic/recurrent CRC with tumors locally assessed as dMMR and/
or MSI-H and who had progressed on/after or been intolerant of at
least one prior line of treatmentwere enrolled and received nivolumab
monotherapy or nivolumab plus ipilimumab. Patients in the Check-
Mate 142 study who provided appropriate consent for the biomarker
testingwith evaluable baseline tumor tissue andmatchedwhole-blood
samples that passed the quality control criteria were eligible for the
WES analyses, and those with evaluable baseline tumor samples that
passed the quality control criteria were eligible for the RNA-seq ana-
lyses. The study was conducted in accordance with the Declaration of
Helsinki and GoodClinical Practice guidelines. The study protocol and
amendments were approved by the institutional review board or
independent ethics committee at each study site (Supplementary
Table 1), and all patients provided written informed consent before
enrollment.

Efficacy assessments
The primary endpoint of ORR per INV was defined as the number of
patients with a best overall response of complete response or partial
response divided by the number of treated patients per Response
Evaluation Criteria in Solid Tumors version 1.1. Other key efficacy
endpoints were PFS per INV, defined as the time from the first dose to
the first documented progression or death resulting from any cause,
and OS, defined as the time from the first dose to death9,10.

Biomarker sampling
Tumor tissue and whole-blood samples were collected from consent-
ing patients as specified by the protocol. For all biomarker-evaluable
patients, baseline samples were assessed for biomarkers in an
exploratory and retrospective manner using the following methodol-
ogies: WES, RNA-seq and IHC. RNA and DNA from tissue samples were
co-exacted for RNA-seq and WES analysis, respectively, using the All-
Prep DNA/RNA FFPE Kit (Qiagen, Germantown, MD, USA).

Whole-exome sequencing
Baseline tumor tissue and matched whole-blood samples were pro-
cessed using the Agilent SureSelect Human All Exon V5 in-solution
hybrid capture panel (Agilent, Santa Clara, CA) and underwent sub-
sequent next-generation sequencing (NGS) on the Illumina NovaSeq
platform (Illumina, San Diego, CA). Sequence alignment and variant

Article https://doi.org/10.1038/s41467-025-63960-8

Nature Communications |         (2025) 16:8868 8

www.nature.com/naturecommunications


calling were performed using a published WES processing pipeline
based on Human Build 37 (GRCh37)34.

TMB isdefined as the total number of somaticmissensemutations
and expressed as mutations/Mb, converted based on a linear regres-
sion model established in an assay bridging study34. TIB is defined as
the total number of small insertions and deletions (indels) called by
Strelka35. The degree of MSI was quantified using MSIsensor score
(microsatellite instability level) derived from WES data using
MSIsensor36. TheMSIsensor score is a well-established tool to quantify
tumor MSI on a continuous scale from sequencing data37. Median
cutoffs were used for patient subgroup classification (high degree of
MSI: ≥23.45%; low degree of MSI: <23.45%; high TIB, ≥804.00 indels;
low TIB, <804.00 indels); a 20mutations/Mb cutoff was used to define
TMB-high (≥20 mutations/Mb) and TMB-low (<20 mutations/Mb)
tumors given the high TMB inMSI-H patients and the TMBdistribution
observed in these cohorts (Supplementary Fig. 4).

RNA sequencing
Baseline tumor tissue samples were processed using the Illumina
TruSeq RNA Access in-solution hybrid capture panel (Illumina, San
Diego, CA) and underwent subsequent NGS on the Illumina NovaSeq
platform. All gene expression signatures listed in Supplementary
Table 2 were derived fromRNA-seq data. Median cutoffs were used for
patient subgroup classification (low versus high expression).

Raw RNA-seq reads were aligned and filtered using STAR
(v2.6.0c)38. After removal of microbial contaminants, sequences were
aligned to the human reference genomeGRCh38 using the Ensembl 91
gene model, and read counts were quantified using RNA-seq by
expectation-maximization. Sequencing quality was assessed using the
Picard QC tool kit (v1.14) and dupRadar39 to ensure adequate tran-
scriptome coverage and quantify polymerase chain reaction artifacts.
Samples with Picard MarkDuplicates Estimated Library Size <2 million
or DupRadar Deduplicated Dynamic Range <265 were excluded.
Quantified raw counts from the remaining samples were normalized
using edgeR’s40 trimmed mean of M-values method, and normalized
counts per million were log2-transformed for further analysis.

GES scores were calculated from the normalized gene expression
data by first z-score (normalized to a mean of 0 and a standard
deviation of 1) across all patients in the RNA-seq–evaluable samples.
For each patient, the gene signature score was then defined as the
median over the selected genes of these z-scored normalized expres-
sion values.

Immunohistochemistry
A multiplex IHC assay (CD68, PD-L1, CD3) using an anti-CD3 antibody
(mouse clone LN10) was used to interrogate CD3 T-cell infiltration in
formalin-fixed, paraffin-embedded tumor tissue samples. Median cut-
off was used for patient subgroup classification (CD3-high: ≥7.4%; CD3-
low: <7.4%).

Statistical analyses
Baseline patient characteristics were reported using descriptive sta-
tistics. Associations between continuous variables and objective
response were evaluated using two-sided Wilcoxon rank-sum tests (R
function wilcox.test). Associations between categorical variables and
ORR were evaluated using two-sided Fisher’s exact tests (R function
fisher.test). Odds ratios and corresponding 95% CIs for biomarker
associations with ORR were assessed using logistic regression. Kaplan-
Meier curveswere generatedby survminer (v0.4.8). Forestplots ofHRs
and corresponding95%CIs for biomarker associationswith PFS andOS
were assessed using Cox proportional-hazard models from R survival
package (v3.2.7). Composite multivariate analysis was conducted by
fitting multivariable logistic regression models using the following R
formula: ORR ~ TMB + BMS4Gene + sex + age + Eastern Cooperative
Oncology Group performance status. A similar formula was used for

PFS andOS analysis byfittingmultivariable CoxPHmodels. AllP values
calculated were nominal (not adjusted for multiple testing) and
descriptive and were not intended to show statistical significance. All
statistical analyses were performed with R software (v4.0.3). The
unsupervised hierarchical baseline biomarker clustering analysis was
conducted using Spearman’s correlation coefficient for distance and
ward.D2 as the clustering method, and displayed using Complex-
Heatmap (v2.6.2)41. The clustering was separately applied to the nivo-
lumab monotherapy and nivolumab plus ipilimumab cohorts.
Correlation between biomarkers was calculated using Spearman’s
correlation and displayed using corrplot (v0.84). Measurements were
taken from distinct samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
DNA and RNA sequencing data have been deposited in the European
Genome-phenome Archive (EGA) under accession number
EGAS50000000416. Sequencing data is stored under restricted access
to protect patient privacy. Access to this data may be requested
through the EGA website by submitting a form to the Data Access
Committee (DAC) EGAC00001003376. Bristol Myers Squibb will
honor legitimate requests for our clinical trial data from qualified
researchers with a clearly defined scientific objective. Consistent with
expectations of good scientific practice, researchers can request
access to data fromour studies byproviding a researchproposalwith a
commitment to publish their findings. The research proposal is
reviewed by an independent review panel. We share data from Phase
2-4 interventional clinical trials completed on or after 1 January 2008
and evaluate medicines and indications approved in the US, EU and
other designated markets. Data shared may include nonidentifiable
patient-level and study-level clinical trial data, full clinical study reports
and protocols. Sharing is subject to protection of patient privacy and
respect for the patient’s informed consent, and publication of the
primary results in peer-reviewed journals. Bristol Myers Squibb
reserves the right to update and change criteria at any time. Other
criteriamay apply, for details please visit Bristol Myers Squibb atwww.
vivli.org. The remaining data are available within the Article, Supple-
mentary Information, or Source Data file. Source data are provided
with this paper.
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