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Metaproteomics offers a powerful window into the active functions of
microbial communities, but accurately identifying peptides remains challen-

ging due to the size and incompleteness of protein databases derived from
metagenomes. These databases often contain vastly more sequences than

those from single organisms, creating a computational bottleneck in peptide-
spectrum match (PSM) filtering. Here we present WinnowNet, a deep learning-
based method for PSM filtering, available in two versions: one using trans-
formers and the other convolutional neural networks. Both variants are
designed to handle the unordered nature of PSM data and are trained using a
curriculum learning strategy that moves from simple to complex examples.
WinnowNet consistently achieves more true identifications at equivalent false
discovery rates compared to leading tools, including Percolator, MS*Rescore,
and DeepFilter, and outperforms filters integrated into popular analysis
pipelines. It also uncovers more gut microbiome biomarkers related to diet

and health, highlighting its potential to support advances in personalized

medicine.

Metaproteomics measures complex microbial communities in biolo-
gical samples from natural environments, such as soil rhizosphere’,
ocean**, and fecal microbiome*®. Understanding the functional roles
of microorganisms in an ecosystem is crucial for gaining insights into
the interactions and dynamics of the ecosystem’. This can provide a
deeper understanding of how microorganisms participate in pro-
cesses, such as nutrient cycling', disease state, and supporting the
digestive and immune system”™. In shotgun MS-based metapro-
teomics, tandem mass spectrometry (MS/MS) data is generated as
follows: proteins are first hydrolyzed into peptides through an in-
solution digestion method, generating a large number of peptides.
These peptides are then ionized, isolated, fragmented, and detected in
a mass analyzer as they elute from high-performance liquid chroma-
tography (HPLC). A key step in analyzing MS-based metaproteomics
data is database searching, which involves comparing the measured

mass spectra of the peptides to theoretical mass spectra of peptides in
silico digested from protein databases. Each of these comparisons
yields a peptide-spectrum match (PSM) score, which measures the
similarity between the measured and theoretical mass spectra. The
peptide with the highest PSM score is considered the top candidate for
the query MS/MS. After the database searching, a filtering step is
applied to eliminate false positive identifications by setting a score
threshold to obtain a set of confident PSMs at a predefined false dis-
covery rate (FDR).

The PSM scoring function in the database search pipeline serves
two key purposes: ranking peptide candidates for a given spectrum to
identify the most compatible match and ranking PSMs from a pro-
teomics run to eliminate spurious matches. The challenge of con-
structing a well-calibrated scoring function has intensified with rapid
advances in mass spectrometry and metagenomics sequencing
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technologies, which have led to a substantial increase in the number of
mass spectra and the size of protein databases. Ideally, an MS/MS
spectrum should achieve a high score for its match with the correct
peptide, while random matches typically follow a probabilistic dis-
tribution with a small tail of high scores. As peptide databases grow
larger, the likelihood of an incorrect random match scoring higher
than the correct match increases. Consequently, developing efficient
and sophisticated PSM filtering algorithms to re-score PSMs for
improved ranking has become imperative.

In recent years, various PSM filtering algorithms have been pro-
posed. Statistical methods, such as PeptideProphet”, Tailor'®, and
H-Score”, use approaches like Bayesian statistical assumptions,
empirical observations, and confidence-based recalibrations, respec-
tively. Machine learning (ML)-based algorithms, such as Percolator',
CRanker”, QRanker®”, and Gradient Boosting”, identify confident
PSMs to train models that classify remaining matches. Other methods
leverage spectrum comparison features, as seen in MS?Rescore”, or
integrate results from multiple search engines for comprehensive
analysis, exemplified by iProphet” and IDPicker®*. Our previous work,
Sipros-Ensemble”, employed logistic regression to calculate new
scores based on three distinct scoring functions.

While these approaches effectively extract PSM features like
charge states and mass errors, they may not fully exploit the infor-
mation within measured and theoretical spectra. To address this, we
proposed DeepFilter®, a deep learning architecture that automatically
learns matching patterns between measured and theoretical spectra,
complemented by human-engineered features. Although DeepFilter
achieved promising results, it has limitations: it was trained on data
from a single database search engine, restricting its generalizability,
and its input format-a large, sparse matrix constructed from
ascending-order peak masses-slows inference compared to other
widely used filtering tools.

Motivated by the benefits of leveraging MS/MS information and
the need to accelerate peptide identification, we developed Win-
nowNet, a deep-learning-based architecture for re-scoring PSM can-
didates. WinnowNet utilizes experimentally verified PSM datasets
from the ProteomeTools study”** and PSM candidates generated by
multiple search engines to construct large, diverse training datasets.
The training process employs a curriculum learning strategy” to
enhance model performance and accelerate convergence. By lever-
aging the order-invariant properties of CNN and transformer archi-
tectures, WinnowNet reduces the representation matrix size while
effectively capturing complex matching patterns between measured
MS/MS spectra and theoretical peptide spectra. Experimental results
demonstrate that WinnowNet significantly improves identifications
at the PSM, peptide, and protein levels, outperforming other widely
used filters benchmarked in this study. Also, WinnowNet reduces the
need for ad hoc training and can be applied to analyze different
metaproteome samples without fine-tuning and still obtain sub-
stantial improvements over existing tools. WinnowNet is freely
available under the GNU GPL license at https:/github.com/
Biocomputing-Research-Group/WinnowNet*°,

Results

Benchmark datasets and evaluation metrics

To provide a comprehensive performance assessment, WinnowNet
was benchmarked on twelve metaproteome datasets. These datasets
include those derived from a synthetic microbial mixture (Synthetic),
an artificially assembled mock community (P1, P2, and P3), three dis-
tinct microbial communities (Marine 1-3, Soil 1-3, Human Gut, and
Human Gut TimsTOF), each characterized by increasing complexity in
mass spectra and protein databases (see Supplementary Table 1 and
Supplementary Note 1). All metaproteome samples except Human Gut
TimsTOF were analyzed using the Multidimensional Protein Identifi-
cation Technology (MudPIT) approach® on a Thermo Scientific LTQ

Orbitrap Elite mass spectrometer. Human Gut TimsTOF (HGT) dataset
was obtained from fecal samples of human patients, analyzed using a
trapped ion mobility spectrometry (timsTOF) + TOF mass spectro-
metry approach.

To ensure an accurate performance comparison and to mitigate
overfitting during protein identification, we incorporated entrapment
proteins into database search, following approaches proposed in many
previous studies®**, Entrapment proteins were generated by ran-
domly shuffling target protein sequences to create false target
sequences, which were then used alongside the target-decoy
strategy®®. The effective ratio of entrapment proteins to original tar-
get proteins in the database was set to 1:1. Identifications at the PSM,
peptide, and protein levels were evaluated at a 1% false discovery rate
(FDR), as shown in Eq. (1), where n, and n. denote the number of
original target and entrapment identifications, respectively. This esti-
mation follows the “combined” method in ref. 35, which provides a
conservative upper bound on the FDR. In addition, we performed
entrapment analysis using the paired estimation method proposed in
ref. 35 (described in Supplementary Discussion), which is proved to
yield a tighter bound. Only original target matches with FDR controlled
at the predefined level (1% in this study) were reported for all bench-
marked methods. It is worth noting that MS/MS spectrum data were
extracted using MSConvert from the ProteoWizard release 3.0.11841%,
in contrast to our previous study®, which utilized RawConverter Ver-
sion 1.1.0.23%,
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p M

t e

Estimated FDR =

For some experiments, we also used foreign proteins as an
entrapment strategy. In this approach, proteins from foreign species
were incorporated into the original target protein set to create an
extended target database, which was then augmented with decoys
generated by randomly shuffling its entries. For this entrapment setup,
we estimated the FDR using Eq. (2), where n, represents the combined
set of original target proteins and foreign proteins, and n; denotes the
number of decoys. To further assess the reliability of the identifica-
tions, we computed the False Matching Rate (FMR)****, defined as the
proportion of false target identifications at a 1% FDR, following Eq. (3).
In Eq. (3), nrrepresents the number of matches to proteins from for-
eign species.
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Performance comparison to state-of-the-art filtering algorithms
We evaluated WinnowNet against six leading filtering algorithms:
Percolator’, Q-ranker®®, PeptideProphet®, iProphet®, MS’Rescore?,
and DeepFilter®, all of which have been released or updated within the
past six years. Unlike traditional filtering algorithms, WinnowNet
eliminates the ad hoc training and can be applied to analyze different
metaproteome samples without fine-tuning and still obtain substantial
improvements over existing tools. The evaluation was conducted
using PSM candidates derived from three standalone database search
engines: Comet*°, Myrimatch*, and MS-GF+*.. Note that Percolator,
Q-ranker, and PeptideProphet relied directly on the PSM scores from
these search engines, whereas iProphet utilized scores generated by
PeptideProphet. To ensure a fair comparison, iProphet was run with-
out the addition of peptide- and protein-level features. While Perco-
lator, Q-ranker, PeptideProphet, and iProphet employ traditional
machine learning or statistical methods with human-engineered PSM
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features, MS*Rescore enhances rescoring by incorporating predicted
peptide fragmentation patterns and retention time information. In
contrast, both DeepFilter and WinnowNet are deep-learning-based
approaches that automatically learn discriminative features
from PSMs.

For performance assessment, we applied the entrapment method
described in section “Benchmark datasets and evaluation metrics.”
Protein identifications were reported only when supported by at least
one unique peptide. Identification results for the marine, human gut,
soil, and mock datasets at 1% FDR are summarized in Fig. 1 and detailed
in Supplementary Tables 16-17. Both WinnowNet variants-the self-
attention-based and the CNN-based architectures-achieved the high-
est numbers of identifications at the PSM, peptide, and protein levels
across all datasets and three standalone database search engines.
Among the baseline methods, either DeepFilter or MS’Rescore con-
sistently provided the highest identification counts. In the following
analysis, we focus on the self-attention-based WinnowNet, which
demonstrated the best overall performance; the analysis of the CNN-
based variant is provided in Supplementary Methods.

For the marine datasets (see Fig. 1), WinnowNet outperformed
MS?Rescore by, on average, identifying 12.6% more PSMs, 12.4% more
peptides, and 9.3% more proteins. The intersection bar plot in Fig. 2
shows the overlap of the unique identifications at 1% PSM/peptide/
protein FDR levels across the benchmark datasets. Specifically, for the
two marine datasets, WinnowNet uniquely identified an average of
7727 PSMs, 5088 peptides, and 1561 proteins, whereas MS?Rescore
uniquely identified 2562 PSMs, 1793 peptides, and 875 proteins.

In the human gut dataset, which is the most complex metapro-
teome tested with extensive MS/MS spectra and comprehensive pro-
tein databases, WinnowNet yielded an average increase of 8.0% more
PSMs, 6.8% more peptides, and 5.7% more proteins than MS?Rescore.
Specifically, WinnowNet uniquely identified 19,463 PSMs, 10,683
peptides, and 4180 proteins, in contrast to 6892 PSMs, 2137 peptides,
and 1794 proteins found uniquely by MS?Rescore.

For the soil datasets (see Supplementary Table 16), WinnowNet
achieved on average 9.4% more identified PSMs, 11.6% more peptides,
and 7.6% more proteins at 1% FDR compared to MS?Rescore. On
average, WinnowNet uniquely identified 13,531 PSMs, 4841 peptides,
and 1247 proteins, whereas MS?Rescore uniquely identified 5408
PSMs, 1813 peptides, and 836 proteins.

WinnowNet also demonstrated strong performance on the mock
datasets, which consist of artificial microbial complexes containing
30 species with uniform protein content. On these datasets, Win-
nowNet achieved an average increase of 9.1% more identified PSMs,
9.3% more peptides, and 7.5% more proteins at a 1% FDR (see Supple-
mentary Table 17). In addition, WinnowNet uniquely identified up to
14,063 PSMs, 3655 peptides, and 1081 proteins, compared to up to
5905 PSMs, 846 peptides, and 779 proteins uniquely identified by
MS?Rescore on average. A detailed analysis of the gained and lost
identifications between WinnowNet and MS’Rescore is provided
in Supplementary Discussion.

When compared to our previous method, DeepFilter, WinnowNet
demonstrated consistent improvements: in the marine datasets, it
identified 11.9% more PSMs, 10.0% more peptides, and 6.9% more
proteins; in the soil datasets, increases averaged 7.8% for PSMs, 7.7%
for peptides, and 4.8% for proteins; and in the mock community,
improvements were 4.3% for PSMs, 4.8% for peptides, and 2.9% for
proteins. Even in the complex human gut dataset, WinnowNet yielded
average gains of 3.4% in PSMs, 3.8% in peptides, and 4.1% in proteins
relative to DeepFilter. These results underscore WinnowNet's
enhanced ability to leverage spectral information, resulting in
improved identification outcomes.

We also collected the number of identifications reported in the
original publications for comparison (see Supplementary Table 18).
Note that not all publications reported discoveries at the PSM, peptide,

and protein levels, nor at the same FDR thresholds. WinnowNet con-
sistently outperformed the original studies in terms of identification
counts. For example, while the original publication reported 30,062
proteins, WinnowNet identified 36,143 proteins, representing a 20.2%
increase. These findings underscore the potential of applying Win-
nowNet for the secondary analysis of existing datasets to uncover new
biological insights.

Given WinnowNet's improved performance relative to
MS?’Rescore, we further analyzed the score distributions to evaluate
their comparative efficacy. Figure 3 and Supplementary Fig. 14 pre-
sent score distributions for top-ranked PSMs from the marine 2 and
mock P2 datasets as generated by WinnowNet (self-attention-based)
and MS?Rescore, respectively. In contrast to MS?Rescore, WinnowNet
assigns higher scores to a larger proportion of target PSMs at a 1%
PSM-level FDR, with scores predominantly concentrated in the lower-
right quadrant delineated by the solid cutoff lines. Notably, a bimo-
dal score distribution is apparent in Supplementary Fig. 14 for
MS?Rescore, a pattern not observed in Fig. 3. This discrepancy stems
from the differences between the datasets: the Mock dataset
employs a well-annotated protein database, whereas the Marine 2
dataset is based on an incomplete protein database derived from
annotated assembled genomes. In metaproteomics, incomplete
metagenome assemblies and technical biases during sample extrac-
tion frequently result in protein databases that represent only a
subset of the actual proteome. As a consequence, many spectra
correspond to peptides absent from these databases, leading to
high-scoring false PSMs and causing the target PSM distribution to
approximate that of decoy/entrapment PSMs. To control the FDR
and exclude such false positives, metaproteomics analyses often
require higher score thresholds compared to those used in simple
culture-based proteomics, albeit at the expense of some true PSMs.
The results presented in Fig. 3 and Supplementary Fig. 14 clearly
demonstrate that WinnowNet’s incorporation of spectral informa-
tion through auto-learned features yields a more robust filtering
strategy compared to traditional methods, such as the SVM-based
approach employed by MS?Rescore.

Performance evaluation of WinnowNet-integrated protein
identification pipelines

We integrated the self-attention-based WinnowNet into four popular
protein identification pipelines: our Sipros-Ensemble platform?®,
FragPipe*, Peaks Studio 12.5*, and AlphaPept*. The evaluation was
conducted on four benchmark datasets-Marine3, Soil3, P3, and
Human Gut. For each pipeline, we compared the recommended
workflow against an alternative in which the filtering step was replaced
by WinnowNet. Due to the modular architecture of Peaks, directly
substituting its built-in filter was not feasible. As a workaround, the
alternative Peaks workflow involved performing the database search in
Peaks, followed by WinnowNet filtering and protein inference using
Philosopher within FragPipe. Unlike traditional filtering algorithms,
WinnowNet eliminates the ad hoc training and can be applied to ana-
lyze different metaproteome samples without fine-tuning and still
obtain substantial improvements over existing tools. The same
entrapment method and FDR estimation described in section
“Benchmark datasets and evaluation metrics” were applied.

Figure 4 and Supplementary Table 14 present the results. Across
all four datasets and pipelines, integrating WinnowNet led to sub-
stantial improvements in PSM, peptide, and protein identification
levels. For instance, at the PSM level, identifications increased from
61,190 to 66,432 (8.6% improvement) for Sipros-Ensemble, from
47,970 to 53,276 (11.1%) for FragPipe, from 46,727 to 52,789 (13.0%) for
Peaks, and from 43,791 to 49,841 (13.8%) for AlphaPept. At the peptide
level, improvements were observed from 40,519 to 43,071 (6.3%) for
Sipros-Ensemble, from 25,658 to 31,769 (23.8%) for FragPipe, from
24,864 to 30,091 (21.0%) for Peaks, and from 23,895 to 29,857 (25.0%)
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Fig. 1| Identification results on marine and human gut datasets at 1% FDR using
the entrapment method. a Results for the Marine 2 dataset. b Results for the
Marine 3 dataset. ¢ Results for the Human Gut dataset. W/O represents database

search results without any filtering; MS refers to MS?Rescore; P to Percolator; Q to
Q-ranker; PP to PeptideProphet; I to iProphet; DF to DeepFilter; Win to the self-
attention-based WinnowNet.

for AlphaPept. Significant gains were also evident at the protein level;
for example, in Marine3, protein identifications increased from 9500
to 10,416 (9.6%) for Sipros-Ensemble, from 9909 to 10,277 (3.7%) for
FragPipe, from 9001 to 9327 (3.6%) for Peaks, and from 8796 to 8426

(4.4%). Similar trends were observed in the Soil3, P3, and Human Gut
datasets, with percentage gains ranging approximately from 2.5% to
11.1% at the PSM level, 4.4% to 14.5% at the peptide level, and 1.1% to
12.8% at the protein level. These consistent improvements across
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Fig. 2 | Comparison of PSM, peptide, and protein identification results between
WinnowNet and MS?Rescore using MS-GF+ output. a PSM-level results.

b Peptide-level results. ¢ Protein-level results. The term Loss denotes identifications
exclusively derived from either the MS?Rescore or WinnowNet, while Shared indi-
cates identifications obtained by both methods. Protein groups were excluded

from the comparison. Note that the numbers at the center, top, and bottom of each
bar indicate the absolute number of identifications at the PSM, peptide, or protein
level with a 1% FDR. The y-axis represents the relative percentages of identifications
categorized as Shared, Loss, and Gain, with Shared identifications normal-

ized to 100%.

diverse datasets and pipelines highlight the robustness and scalability
of WinnowNet.

To simulate real-world analysis conditions for benchmarking, we
constructed a composite protein database by combining proteins
from mock microbial cultures (30 species) with entrapment proteins
from 27 foreign species present in the human gut microbiome (a
complete list of foreign species is provided in the Supplementary
Table 2). The MS/MS dataset P1, generated from the mock microbial
cultures, was searched against this database, which was further aug-
mented with shuffling target sequences as decoys. PSMs correspond-
ing to the mock microbial proteins were considered true
identifications, whereas those mapping to the entrapment proteins
were treated as false positives. The FDR was estimated using the target-
decoy strategy® as in Eq. (2) and controlled at 1%. Additionally, we
calculated the false matching rate (FMR), defined as the proportion of
false target identifications among all accepted targets at 1% FDR (see
Eq. (3)). For benchmarking, we employed the same protein identifi-
cation pipelines as in previous analyses, namely Sipros Ensemble,
FragPipe, Peaks, and AlphaPept.

The identification results and FMR values are presented in Fig. 5
and Supplementary Table 15. All original and WinnowNet-enhanced
pipelines demonstrated robust performance, consistently maintaining
FMRs below 1% at PSM and peptide levels. Notably, the integration of
WinnowNet led to consistent improvements in identification accuracy
across all pipelines. At the PSM level, WinnowNet increased identifi-
cations from 87,275 to 91,271 (+4.6%) for Sipros Ensemble, from 84,448
to 88,691 (+5.0%) for FragPipe, from 85,033 to 89,013 (+4.7%) for
Peaks, and from 82,891 to 87,381 (+5.4%) for AlphaPept. Similarly, at
the peptide level, the number of identifications increased from 24,633
to 25,827 (+4.8%) for Sipros Ensemble, from 20,235 to 21,138 (+4.5%)
for FragPipe, from 21,155 to 22,849 (+8.0%) for Peaks, and from 19,243
to 20,195 (+4.9%) for AlphaPept. At the protein level, WinnowNet also
led to notable gains: identifications increased from 7126 to 7389

(+3.7%) for Sipros Ensemble, from 7007 to 7272 (+3.8%) for FragPipe,
from 7015 to 7267 (+3.6%) for Peaks, and from 6715 to 6942 (+3.4%) for
AlphaPept. These consistent improvements across all levels-PSM,
peptide, and protein-highlight WinnowNet’s effectiveness in enhan-
cing true identifications while maintaining a stringent FDR threshold.

An additional evaluation was performed using a dataset acquired
with the timsTOF instrument. The corresponding results are provided
in the Supplementary Discussion.

Analysis of the taxonomic profile of human gut metaproteome
To investigate the biological significance of the proteins identified
exclusively by WinnowNet (CNN-based), we searched the human gut
protein database against the NCBI public database using Protein-
Protein BLAST version 2.11.0+*°. Pathway annotations were performed
using eggnog-mapper against the EggNOG database**S, After
excluding the protein groups that shared the same identified peptides,
we found 1015 proteins only identified by WinnowNet. In Fig. 6, we
present the species associated with proteins only identified by Win-
nowNet in the human gut metaproteome sample. The phylogenetic
tree includes 50 taxa at the species level, providing a detailed taxo-
nomic profile of proteins. Circular phylogenetic tree visualizations in
Fig. 6 depict the number of genes and spectra for each species as blue
and red bars, respectively. The percentage of genes for each species is
represented as a decimal value between O and 1, calculated using the
min-max normalization method. The number of spectra was deter-
mined by counting the total PSMs belonging to each species, con-
sidering only the PSMs associated with the unique peptides for each
protein.

In our taxonomic profiling analysis, we observed that WinnowNet
identified numerous gut microorganisms characterized by low gene
counts. The mean normalized number of genes for each species stood
at 24.27%, as annotated in the protein database. Notably, 33 species
exhibited gene abundances lower than this average, with 4 out of these
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33 species having gene abundances of less than 2%. Interestingly, these
four species are recognized as common constituents of the human gut
microbiome. For instance, Dorea longicatena contributes significantly
to short-chain fatty acid (SCFA) production and plays a vital role in
dietary carbohydrate metabolism***’. Hungatella hathewayi is asso-
ciated with various human infections™, while Sutterella sp. AM11-39 is
linked to health conditions such as inflammatory bowel disease and
autism*”. These findings underscore WinnowNet’s proficiency in iden-
tifying proteins from species characterized by low-abundance genes.

Shifting the focus to the pathway level, proteins exclusively
detected by WinnowNet are associated with three distinct pathways
identified in the KEGG database: map05231, map00622,and
map00440. Notebly, the KEGG pathways Xylene degradation
(map00622) and Phosphonate and phosphinate metabolism
(map00440) play pivotal roles in probiotics, influencing infant health
and human diet™.

Computation time

Table 1 summarizes the computation time for CNN-based and self-
attention-based WinnowNet models compared to other filtering
algorithms across various datasets. The lightweight architecture of the
CNN-based WinnowNet is evident from its significantly reduced
number of parameters, containing only 22.2% and 31.5% of those in
DeepFilter and self-attention-based WinnowNet, respectively. This
results in faster training and inference times, making it an efficient
solution for PSM rescoring tasks. The self-attention-based WinnowNet
model, with 2.6 million parameters, incorporates advanced spectrum

representations at the expense of increased computation time.
Benchmarks were performed on a workstation equipped with 8 NVIDIA
GeForce RTX 2080 Ti GPUs (12 GB memory each) for neural network
models. Baseline algorithms were executed on a desktop computer
with a 2.3 GHz Intel Xeon Gold 5118 CPU and 32 GB of memory. Under
GPU acceleration, the CNN-based WinnowNet completed most
rescoring tasks within 10 minutes, while the self-attention-based Win-
nowNet required under 30 minutes for the majority of datasets. These
results demonstrate the adaptability of WinnowNet, providing users
with a trade-off between computational efficiency and advanced fea-
ture representation depending on their specific requirements.

Discussion

Existing re-scoring algorithms rely primarily on human-engineered
features derived from PSM properties and spectrum comparison
attributes. Recently, fragment intensity prediction models using deep
learning have emerged to improve re-scoring accuracy”™™. In this
study, we introduced WinnowNet, a re-scoring framework featuring
two neural network architectures: one optimized for accuracy to
reduce false identifications (self-attention-based WinnowNet) and the
other lightweight for enhanced inference speed (CNN-based Win-
nowNet). While WinnowNet successfully improves PSM identification,
it currently operates as a post-processing tool dependent on pre-
screened candidates generated by traditional database search engines.
A natural question arises: can we improve database search engines to
such an extent that machine learning-based rescoring becomes
redundant? Database search engines remain essential for candidate
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Fig. 5| Comparison of identification results at multiple levels. a-c PSM, peptide,
and protein identification results, along with the false matching rate (FMR), at 1%

FDR on the mock P1dataset mixed with foreign species, using four metaproteomics
pipelines with either default filters or WinnowNet as an alternative filter. The blue

(b) Peptide level

(c) Protein level

line plot shows the FMR using default filters, while the red line plot shows the FMR
when using WinnowNet. SE denotes Sipros-Ensemble, R refers to the default filters
used in the pipelines, and Win represents the self-attention-based WinnowNet
method.

generation, but their shortcomings, particularly in handling complex
spectra from metaproteomes and highly homologous peptides, limit
their effectiveness. WinnowNet bridges these gaps by leveraging deep
learning to optimize the rescoring step, effectively mitigating false
identifications that arise from limitations in the initial database search.

That said, re-scoring tools alone cannot eliminate the need for robust
search engines.

To address these limitations, we envision a future extension of
WinnowNet into a comprehensive database search engine. Moving
beyond its current reliance on pre-processed PSM candidates, we aim
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only identified by WinnowNet*.

Table 1| Computation time for benchmark datasets (precise to
second)

Filters’s P Q PP | DF W* w

#Params® - - - - 37M 0.82M 26
M

Datasets”  Size®
M2 0.91M 134 251 68 314 218 74 155
M3 0.89M 127 242 82 300 210 73 149
S1 2.9M 359 67 159 835 678 286 480
S2 2.5M 277 550 142 691 576 252 410
S3 1.8M 266 528 136 654 502 250 395
P1 1.4M 145 247 96 429 226 80 157
P2 1.4M 157 260 108 319 231 82 159
P3 1.5M 159 266 1o 322 234 82 160
HG 26M 902 1640 473 2217 2148 706 1525

“Filter: P, Percolator; Q, Q-ranker; PP, PeptideProphet; |, IProphet; DF, DeepFilter; W*, CNN-based
WinnowNet; W, self-attention-based WinnowNet.

bSize: the number of PSMs used for inference (precise to million).

°Number of parameters for the models of three deep learning architectures, i.e., DeepFilter,
WinnowNet*, and WinnowNet (precise to million).

9Datasets: M2 and M3 indicate the two marine metaproteomes; S1-3 indicate three soil meta-
proteomes; P1-3 indicate the three mock communities; HG indicates a human gut
metaproteome.

to develop a pre-trained scoring model capable of ranking candidate
peptides directly for a given spectrum and across multiple spectra.
This transition will require innovations in handling the large search
spaces inherent to MS-based proteomics. Computational efficiency,
particularly inference speed, will be a key challenge. For instance, while
the Marine 2 dataset search time using Sipros-Ensemble (a database
search engine) on a 128-core node was 27 minutes, WinnowNet
required 245 minutes for rescoring. Addressing this disparity will
involve optimized CPU/GPU parallel implementations to accelerate
inference.

Another critical consideration is the risk of overfitting caused by
peptide sequence homology. As MS datasets grow larger, homologous
peptide sequences between training and inference datasets may inflate
identification performance. To evaluate this risk, we removed homo-
logous peptides from our inference datasets using BLASTP*. Matches
with E-values below 1le-10 were classified as homologous peptides. The
results of this evaluation are presented in Supplementary Tables 10-12.
Overall, the homology rate across datasets was low (0.426% to 2.464%),
yet removal of homologous peptides led to slight declines in identifi-
cation performance. For soil metaproteomes, WinnowNet exhibited
decreases of 0.04%, 0.04%, and 0.05% at the PSM, peptide, and protein
levels, respectively, comparable to or slightly higher than other filter-
ing tools. For human gut datasets, similar patterns were observed, with
declines ranging from 0.05% to 0.07%. For mock communities, average
decreases increased slightly as the proportion of homologous pep-
tides grew (1.04% to 1.21% for WinnowNet, compared to 0.85% to 1.09%
for other tools). Despite these small decreases, WinnowNet con-
sistently performed better than all other filtering tools, indicating that
peptide homology-induced overfitting does not compromise its per-
formance. Moving forward, careful management of homologous
peptide sequences and larger, diverse datasets will be essential to
further enhance WinnowNet's generalizability.

To gain insight into the features learned by WinnowNet, we
examined the attention map weights generated by the experimental
and theoretical spectrum encoders. These weights were aggregated,
normalized, and projected onto the spectrum representations to
assess the contribution of fragment ions in distinguishing true PSMs
from false ones. For this analysis, three PSMs corresponding to the
same experimental spectrum were selected: a top-ranked true positive,
a second-ranked false negative, and a low-ranked false negative. The
visualized feature maps were shown in Supplementary Fig. 6. True
positive samples (Supplementary Fig. 6(a)) exhibit more matching ions
with higher attention weights compared to the other two. Notably, the
y12(+1) ion exhibited significant attention in both experimental and
theoretical spectra, underscoring its importance in classification. This

Nature Communications | (2025)16:8934


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63977-z

E—

I
| I
| I
| I
| |
| N ! E
| e 2\ . o
| @)
l Search Engine 2 MS-GF+
I g | £
=1
s
| Score : &
: PSM candidates II N |
| FDR \ | L - oo oot
| v controllm‘% |
N P
| = | |
| e () .
| v Euy e
| |8 11 A |
Re-ranked PSM I | E | | || Theoretical b
| candidate | o | 3 7 spectrum E
| Rescore | | 'g = 'g
| SRR oE
| —I' / | <= MSMS | 17
/ N
| Identified PSMs I | | spectrum '
| (@) I ]
| |l B

———
mmmmm oo — 3 |
Curriculum |
H 1
Learning |
1
k=l 5] ' !
5 3 2 oo
g » I 1
= @ z 1 |
< R £ 15} — || T
> o>l = Q2 =] ! 1 g H
S b= 2z 8 [ gl |
-9 w2 ! 1
' = 7 '
1 ~ H |
1
= 1
\ H 1 |
\ 1 ' |
\ [
-------------- \ ey
—_—_— e e e —
- - \‘\ 7 i
T \\ / \
e \ y .. \
- 4 / Training Phases ",
__________________________________ ’______________\,I |
Experimental i
%0 > p ! I
3 Spectrum Encoder o |
on = e
jes] » = !
=] o o = !
s} S v ] S 1 |
s} ] <| Q1|
54 Concat > g8 2] |
2
§ |E T gla |zl |
2 2l [
3 ~ R -
- N Theoretical =10
n Spectrum Encoder ! I
P S N |
——— ]

Fig. 7 | WinnowNet workflow and architecture. a Overview of peptide and protein identification using database search engines. b Construction of the training datasets

and the training process. ¢ Architecture of self-attention-based WinnowNet.

observation highlights WinnowNet’s ability to successfully capture
important patterns required to correlate peaks between experimental
and theoretical spectra. In contrast, negative samples with high (Sup-
plementary Fig. 6(b)) and low (Supplementary Fig. 6(c)) predictive
scores show distinct patterns. Supplementary Fig. 5(b), with a high
predictive score, contains approximately 15 matching ions but with
relatively lower weights, while Supplementary Fig. 6(c), with a low
predictive score, has fewer matching ions and lower weights, demon-
strating a clear correlation between ion matching patterns and model
confidence.

Methods

Our work aims to enhance and accelerate peptide identification by
leveraging an intelligent learning strategy and efficient neural network
architectures with reduced input dimensionality and parameter size.
This section describes how these objectives were achieved by detailing
the components of WinnowNet, including curriculum learning for
peptide identification, the construction of training datasets, the
architecture of WinnowNet, and its training procedures. Figure 7b
provides an overview of the WinnowNet workflow, highlighting the
training dataset construction (Part A) and the curriculum learning
process (Part B). Figure 7c depicts the detailed architecture of
WinnowNet.

In this study, we designed two neural network architectures: a self-
attention-based model, referred to as WinnowNet, and a convolutional
neural network (CNN)-based model, referred to as WinnowNet*. While
the self-attention-based WinnowNet consistently demonstrated better
performance generally, the CNN-based WinnowNet* is described in
the Supplementary Methods for comparison. The trained WinnowNet
model takes MS/MS spectra and PSM identifications reported by
database search engines as input and predicts the probability that a
given PSM is a true match.

Training dataset construction

Twelve datasets were used in this study, including two training data-
sets and nine benchmark datasets. A summary of the MS/MS spectra
and protein databases for each dataset is provided in Supplementary

Table 1. The ProteomeTools dataset originates from a synthetic pep-
tide library of the human proteome provided by the ProteomeTools
project, while the remaining datasets are metaproteomes from five
distinct microbial communities. These include three marine microbial
communities (Marine 1, Marine 2, Marine 3)*, three soil microbial
communities (Soil 1, Soil 2, Soil 3)*°, a mock microbial community (P1,
P2, P3)°°, a human gut microbial community (HG)®, and a synthetic
dataset consisting of a quad-culture of four microorganisms'. The
ProteomeTools and Marine 1 datasets were used to construct training
datasets, while the remaining datasets were used for benchmarking.
The raw files for the benchmarking datasets were sourced from various
data repositories. Specifically, the marine and soil metaproteome
datasets are available in the PRIDE repository under the identifier
PXD007587, the datasets from mock community available at
PXDO0O06118, the human gut dataset can be retrieved from the iProX
repository, available at IPX0001564000.

As illustrated in Fig. 7b, we constructed a high-quality training
dataset by searching mass spectra from the respective datasets against
their corresponding peptide libraries or protein databases (e.g.,
derived either from the original study of the ProteomeTools dataset or
from the metagenome-assembled protein database of the Marine 1
data). This process employed three widely used database search
engines: Comet*°, MyriMatch*, and MS-GF+*. For each spectrum and
search engine, the top five scoring PSM candidates were retained.
Search results were filtered independently using Percolator to gen-
erate three lists of Percolator-scored PSMs. These lists were then
merged, preserving all PSM candidates from the three search engines,
resulting in up to fifteen candidates per MS/MS spectrum. In cases of
duplicate PSMs, only the one with the lowest posterior error prob-
ability (PEP) assigned by Percolator'® was retained. PSMs with PEP > 0.9
were excluded, while the top-ranked target PSMs were annotated as
positive samples, and the remaining PSMs, regardless of target or
decoy status, were annotated as negative samples. The ProteomeTools
training dataset contained 240,000 total PSMs, including 150,785
positive samples and 89,215 negative samples. The Marine 1 training
dataset contained 1,849,686 PSMs, of which 976,979 were positive
samples.
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Curriculum learning in WinnowNet

The data-level curriculum learning (CL) approach trains machine
learning models by progressively increasing data complexity in an
order similar to human curricula. CL can effectively enhance general-
ization ability and accelerate convergence for a wide range of appli-
cations, including image classification, object detection, scene
classification, sentiment analysis, and sequence prediction®****, The
key components of CL are the difficulty measurer and the training
scheduler. The former determines training sample easiness, while the
latter decides the order of datasets during training based on the dif-
ficulty measurer®®. For example, the learning difficulty could be
measured by the noise of the data source®, such as the images col-
lected from Flickr (an image hosting service) were considered noisier,
and thus harder, than those from Google images. The training sche-
duler could be used to fine-tune the model with the Flickr dataset once
the model converged with the Google dataset.

The WinnowNet training was based on the CL strategy. The data
difficulty level was measured by dataset complexity. Specifically, we
distinguished between datasets from single-organism proteome and
complex metaproteome, as well as between synthetic peptide libraries
and real-world data. Two training datasets are listed in Supplementary
Table 1. The easier dataset originates from the synthetic peptide library
designed to cover the complete human proteome, referred as the
ProteomeTools dataset. The harder dataset is from a real-world
metaproteome (Marine 1) and presents noisier and more complex PSM
samples. The ProteomeTools dataset is from the PRIDE Proteomics
Identifications database, which includes Swiss-Prot annotated iso-
forms with post-translational modifications (PTMs) considered?®. All
peptides were individually synthesized with a purpose-built peptide
synthesizer. The PSM quality was controlled by searching the MS/MS
spectra against their synthetic peptide library with a stringent cutoff to
preserve only the high-scored PSMs. Thus, it was believed that the
PSMs in the ProteomeTools dataset are approximate ground-truth
PSMs with relatively low noise. The ProteomeTools dataset was used to
train WinnowNet as easier learning cases. Once WinnowNet converged
with this dataset, we continued training it with the Marine 1 dataset.
The construction of Marine 1 dataset is described in section “Bench-
mark datasets and evaluation metrics.” The raw files are sourced from
the following data repositories: the ProteomeTools dataset was
retrieved from the PRIDE archive, available at PXD010595 and
PXD004732; the Marine 1 dataset was retrieved from PXD007587. The
details of all the datasets were described in Supplementary Note 1. The
models and processed training datasets are available at https://
figshare.com/articles/dataset/Models/25513531 and https://figshare.
com/articles/dataset/Datasets/25511770.

Spectrum embedding

Each PSM candidate consists of a measured spectrum and a theoretical
spectrum, with visualization examples provided in Supplementary
Fig. 5. The theoretical spectrum was generated from the correspond-
ing peptide sequences. To process the PSM data, we normalized the
intensities and isotopic probabilities of both the experimental and
theoretical spectra. These normalized tuples were then input into the
spectrum embedding layer. The spectrum embedding is based on
sinusoidal embedding projection, inspired by research in de novo
peptide sequencing®®, as defined in Eq. (4), where M/Z,..,, is 7000,
M/Z i, is 0.001, and d represents the embedding dimension (set to
256 in this study). The spectrum embedding transforms m/z values
into a 256-dimensional vector, while the corresponding fragment ion
intensity values are transformed through a linear layer. Finally, the
transformed intensity values are concatenated with their respective
m/z embeddings to form the complete representation. This spectrum
encoding provides a unique representation for each peak in a spec-
trum, ensuring that the subsequent model captures the positional
relationships among peaks. Unlike traditional approaches that rely on

structured high-dimensional arrays to encode peak indices, our
method leverages convolutional and self-attention mechanisms, which
inherently operate independently of the input order. Specifically, the
self-attention layers compute relationships between all peaks in two
spectra without being constrained by their sequential arrangement,
thereby achieving an order-invariant property. Here, order-invariance
refers to the model’s ability to identify and compare spectral features
regardless of their original position in the input representation, similar
to how convolutional models exhibit translation-invariance in image
processing. This property is particularly advantageous for handling
mass spectrometry data, where peaks do not have a strict ordering
constraint, allowing for more flexible and computationally efficient
spectrum analysis. This approach eliminates the need for a large matrix
to represent peak indices, as required in many studies, such as
DeepNovo®’ and our previous work®.

. 2i/d
sin (/2 (i gom (5™ ) ),

M/Z) e (M) Z) gy 28/
cos ((m/z)/ <((—M§Z)):d (D ))

fori<d/2
Emb= “)

fori=d/2

Spectrum encoders and loss function

The experimental and theoretical spectrum encoders utilize the self-
attention mechanism to capture relationships between input features
effectively. The process begins by embedding the fragment ions from
both spectra to create spectrum embeddings. These embeddings are
further contextualized using a transformer encoder comprising four
self-attention layers, each with four attention heads. The outputs of the
two encoders are concatenated, allowing the self-attention mechanism
to model the similarity between experimental and theoretical frag-
ment ions for each PSM. This combined representation is passed
through a fully connected layer with 1024 hidden dimensions to pro-
duce the final feature vector.

The model is optimized using a loss function defined in Eq. (5),
where g; denotes the g-value of a PSM sample, and p; represents the
probability of a true PSM. To calculate the g-value of a PSM, the fol-
lowing steps are performed: Let f represent the score of a PSM
reported by a search engine. The number of target and decoy identi-
fications with scores better than f are denoted as ¢ and d, respectively.
The estimated false discovery rate (FDR) at a score threshold f is
computed using Eq. (6), and the g-value for the PSM with score f is
derived using Eq. (7).

Loss= = "[q;log(p;) + q; log(p))] ©)
FDR(f)= % (6)
q(f)= minFDR(f:)) @
WinnowNet training

WinnowNet was implemented using PyTorch version 1.4.0 and was
trained on a workstation with 8 GeForce RTX 2080 Ti GPUs. The
learning rate and weight decay were set to le-5 and the mini-batch size
was set to 32.

For the easy task, we employed a ratio of 8:1:1 for training, vali-
dation, and testing using the ProteomeTools dataset. For the hard task
of training on the Marine dataset, we adjusted the ratio between the
training and validation datasets to 9:1. WinnowNet demonstrated
convergence on the ProteomeTools dataset with training and valida-
tion accuracies of 99.32% and 99.05%, respectively. The training pro-
cess for WinnowNet utilized an early stopping mechanism to prevent
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overfitting and optimize model convergence. Specifically, the valida-
tion loss was monitored after each training epoch. If no improvement
in validation loss was observed for 10 consecutive epochs, the training
process was halted. This approach ensures that the model stops
training once it reaches optimal performance on the validation set,
minimizing unnecessary computation and mitigating overfitting. The
maximum number of epochs was set to 200 as a safeguard, although
early stopping typically occurred much earlier, as indicated by the
convergence trends in Supplementary Fig. 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The filenames for the raw MS data and protein databases are listed in
Supplementary Table 3 and are accessible via the PRIDE repository
under the dataset identifiers PXD007587, PXD006118, PXD013386
[https://www.iprox.cn/page/project.html?id=IPX0001564000],
PXD023217, and PXD035759. The proteomics datasets generated in
this study and the protein databases with entrapment proteins have
been deposited in the PRIDE repository under accession number
[PXD067277] in the PRIDE database. The training datasets and learned
models are available from the figshare repository at Datasets [https://
figshare.com/articles/dataset/Datasets/25511770] and Models [https://
figshare.com/articles/dataset/Models/25513531]. Source data are pro-
vided with this paper.

Code availability

The source code and scripts used to generate the study results are
available on GitHub at https://github.com/Biocomputing-Research-
Group/WinnowNet and Zenodo https://doi.org/10.5281/zenodo.
16747713.
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