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Scale-up of complex molecular reaction
system by hybrid mechanistic modeling and
deep transfer learning

Zhengyu Chen, Yongqing Xie, Chunming Xu & Linzhou Zhang

The scale-up of chemical processes involves substantial changes in reactor
size, operational modes, and data characteristics, leading to significant chal-
lenges in predicting product distribution across scales. This study presents a
unified modeling framework that integrates the mechanistic model with deep
transfer learning to accelerate chemical process scale-up. The framework is
demonstrated through a case study on naphtha fluid catalytic cracking. A
molecular-level kinetic model was developed from laboratory-scale experi-
mental data, and a deep neural network was designed and trained to represent
complex molecular reaction systems. To address the challenge of dis-
crepancies in data types at various scales, a property-informed transfer
learning strategy was developed by incorporating bulk property equations
into the neural network. This approach enabled automated prediction of pilot-
scale product distribution withminimal data. Moreover, process conditions of
the pilot plant were optimized using amulti-objective optimization algorithm.

Process scale-up is a critical step in advancing chemical processes from
laboratory research to industrial production, involving step-by-step
experiments at laboratory, pilot, and industrial scales. This process is
highly complex due to variations in reactor type and mode of opera-
tion (batch to continuous), significantly affecting apparent reaction
rates and transport phenomena. These complexitiesmake the scale-up
process time-intensive and expensive, posing a persistent challenge
for the commercialization of new chemical processes. The traditional
research approach, combining experiments and simulations, has been
effectively applied to simple systems1. However, for complex mole-
cular reaction systems, such as coal, petroleum, and biomass, current
simulation tools struggle to accurately model feedstock compositions
and reaction mechanisms at the molecular level. This limitation hin-
ders the direct scale-up of complex molecular reaction systems from
laboratory to industrial scale.

To accuratelydescribe themolecular conversionbehavior, several
modeling methods were proposed to simulate complex reaction sys-
tems at the molecular level, including the single-event kinetic model2,
the bond-electron matrix (BEM)3,4, the structure-oriented lumping
(SOL)5,6, the molecular type and homologous series (MTHS) matrix7,

and the structural unit and bond-electron matrix (SU-BEM)8. The
single-event kinetic model is extensively used in acid-catalyzed reac-
tion systems, such as fluid catalytic cracking (FCC)9,10 andmethanol-to-
olefins (MTO)11 processes. The BEM is applied in biomass and petro-
leum conversion processes12–14, while SOL, MTHS, and SU-BEM frame-
works are predominantly applied in petroleum refining15–18. These
methodologies tackle core challenges in complex reaction systems,
including molecular compositional modeling19, reaction network
generation20,21, kinetic model development, and model parameter
organization22. The reaction behavior of species at themechanistic and
pathway levels can be modeled with high precision.

High-precision molecular-level kinetic models are essential for
accelerating the process scale-up of complex molecular reaction sys-
tems. The computational accuracy of the model depends primarily on
the kinetic parameters, which are influenced by reactor dimensions.
For example, kinetic parameters derived from a laboratory-scale
reactor cannot directly predict the production distribution in a pilot or
industrial plant. This challenge arises from the combined effects of the
chemical reaction and the transport phenomenon on the product
distribution, as variations in reactor size and structure change the
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transfer rate and apparent kinetic parameters. FCC, a representative
complex molecular reaction system, highlights these challenges.
Changes in reactor types (from fixed fluidized bed to riser) and oper-
ating modes (from batch to continuous operation) require the devel-
opment of corresponding models for each reactor scale. Currently,
there is no universal cross-scale computational method to accom-
modate reactorsof varying sizes23. Tobridge this gap, researchers have
coupled one-dimensional riser reactor models with molecular-level
kinetic models24. These developed models can predict the molecular
concentration, temperature, and pressure distribution along the axial
direction of the riser. However, they fail to account for the radial
gradient distribution within the riser, limiting their generalizability.
Computational fluid dynamics (CFD) was employed to simulate the
velocity, temperature, and yield distributions in the riser, revealing
that the significant influence of reactor scale on flow regimes25,26.
However, the highly nonlinear nature of the flow regime in the riser
poses a challenge related to computational efficiency. Moreover, CFD
relies on lumped kinetic models, which lack molecular-level reaction
information27.

The nonlinearity and computational inefficiency of the transport
phenomena models present significant challenges for cross-scale
computation in complex molecular reaction systems. Artificial intelli-
gence (AI) offers substantial advantages in addressing nonlinear pro-
blems and improving computational efficiency, and AI-mechanism
hybrid models have emerged as a promising approach to address
these challenges28–31. Integrating mechanistic models directly into
neural networks to build hybrid model has attracted broad attention,
such as physics-informed neural network (PINN)32 and neural ordinary
differential equation (Neural ODE)33. These methods have also been
applied in some simple reaction systems34. However, extending them
tomore complex systems remains difficult, since incorporating a large
number of ODEs into neural networks still poses significant challenges
for model training. An alternative hybrid modeling strategy is data-
driven models. This model is trained using data generated from
mechanisticmodels. Hough et al.35 utilized the artificial neural network
(ANN) to build a data-drivenmodel for biomass pyrolysis, facilitating a
rapid solution for large-scale reaction networks. Qiu and
collaborators36 introduced a data-driven model for the naphtha steam
cracking process based on the convolutional neural network (CNN).
Compared to ANN, CNN can recognize features in the reaction net-
work and accelerate computations by approximately 300 times.

Despite some progress made in AI-mechanism hybrid models,
most applications remain limited to single-scale systems, and efficient
cross-scale computational methods for process scale-up are still lack-
ing. Recently, Chen et al.37 proposed a parameter transfer strategy. The
strategy utilized pilot-scale data to fine-tune the kinetic parameter
regressed from a laboratory-scale reactor, achieving cross-scale com-
putation for the FCC process. This work provides new insights for
cross-scale modeling of complex conversion systems, and replacing
the parameter transfer strategy with transfer learning may be a more
efficient and generalizable solution38. Transfer learning aims to trans-
fer knowledge from a well-learned task (source domain) to a related
but distinct task (target domain), enhancing model performance or
reducing data requirements. It has been widely applied in chemical
engineering, such as property prediction39, fault diagnosis40, and
process simulation41. For example, Buterez et al.39 developed a graph
neural network (GNN)-based transfer learning method to predict
expensive molecular properties by inexpensive, widely available
property data. Xiao et al.41 proposed a recurrent neural network (RNN)-
based transfer learning framework to simulate the operations of var-
ious continuous stirred-tank reactors (CSTRs). In chemical process
scale-up, although apparent reaction rates vary due to changes in
transport phenomena, intrinsic reaction mechanisms remain unchan-
ged across scales. This characteristic agrees well with the principles of
transfer learning. If transfer learning can effectively capture flow

regime variations across scales, it is expected to solve the cross-scale
computational challenges in reaction processes.

Therefore, thisworkpresents amethodby the hybridmechanistic
model with deep transfer learning (hybrid model). The proposed
methodology was applied to the naphtha FCC process from the
laboratory to the pilot plant. A molecular-level kinetic model
(mechanistic model) of the naphtha FCC was developed using data
from a laboratory-scale reactor. Subsequently, a neural network
architecture for transfer learning of complex reaction systems was
designed. The neural network was trained by data generated from the
mechanistic model, and a laboratory-scale data-driven model was
obtained. To accurately calculate the pilot-scale product bulk prop-
erties, mechanistic equations for calculating bulk properties were
incorporated into the neural network. Network parameters were fine-
tuned using limited pilot plant data. The developed model provides a
foundational computational tool for the scale-up of complex reaction
processes.

Result
Hybrid mechanistic modeling and deep transfer learning for
process scale-up
The primary reason for changes in product distribution during the
scale-up process is the variation in apparent reaction rates, caused by
changes in transport phenomenon, but the intrinsic reaction
mechanisms remain almost unchanged. According to this character-
istic, we propose describing the reaction mechanism by an easy-to-
model kinetic model. For the hard-to-model transport phenomenon,
we use transfer learning to automatically capture the changing fea-
tures. On this basis, A hybridmodel integratedmechanisticmodelwith
transfer learning is developed, as illustrated in Fig. 1.

The methodology begins with the development of a molecular-
level kinetic model, built using detailed product distribution data
obtained under various laboratory conditions. A series of molecular
conversion datasets with varying compositions and conditions was
generated using the molecular-level kinetic model. Generated data
were used to train the neural network, and the laboratory-scale data-
driven model was built. To adapt the model for pilot- and industrial-
scale applications, transfer learning was employed. The pilot- or
industrial-scale datasets were expanded through data augmentation.
Partially hidden layers in the neural network were fine-tuned with the
augmented pilot or industrial data to accurately calculate the product
distribution, achieving cross-scale computation for complex mole-
cular reaction systems.

The proposed hybrid model offers a significant perspective on
process scale-up. However, applying this method to complex mole-
cular reaction systems still presents several challenges:
(1) Optimizing network architectures for transfer learning: Existing

data-driven models are typically built using a single neural
network. Transfer learning often relies on a trial-and-error
approach to determine which parameters to freeze or fine-tune,
and the process mechanism offers limited guidance for
parameter fine-tuning. It is necessary to develop transfer
learning network architectures suitable for complex molecular
reaction systems.

(2) Data discrepancies at different scales: Laboratory-scale data
(source domain) often includes detailed molecular-level char-
acterization information,while pilot and industrial plants (target
domain) primarily provide product bulk properties. This
mismatch poses challenges for applying transfer learning at
different scales.

To overcome these limitations, this study proposed a deep
transfer learning network architecture suitable for complex molecular
reaction systems. Additionally, we developed a property-informed
transfer learning strategy by integrating the bulk property equations
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into the neural network to bridge the data gapbetween laboratory and
larger-scale operations.

Network architecture of transfer learning for complex mole-
cular reaction systems
To address the challenge that a priori knowledge cannot effectively
guide the parameter fine-tuning process, this work introduces a deep
transfer learning network architecture suitable for complex reaction
processes, as shown in Fig. 2a. The proposed architecture simulates
the computational procedure of the mechanistic model by integrating
three residual multi-layer perceptron (ResMLPs). In a mechanistic
model, process conditions and feedstock composition serve as inputs
to calculate the product distribution, respectively. Similarly, the first
ResMLP (Process-based ResMLP) is used to input process conditions.
The second network (Molecule-based ResMLP) takes molecular com-
position data as input to capture compositional features. The outputs
from these two networks are then combined in an Integrated ResMLP
to predict the product molecular composition. This architecture mir-
rors the logic of the mechanistic model, facilitating more precise
identification of parameter fine-tuning locations during transfer
learning. For example, when the feedstock composition and catalyst
remain unchanged but the reactor structure and process conditions
are adjusted, the Molecule-based ResMLP can be frozen, and only the
Process-based and Integrated ResMLPs require fine-tuning.

Conversely, if one intends to investigate the product distribution of
different feedstocks in the same reactor, the Process-based ResMLP
should remain frozen, while only the Molecule-based and Integrated
ResMLPs need fine-tuning.

Property-informed transfer learning strategy for process
scale-up
In addition to parameter fine-tuning, the mismatch between
laboratory-scale molecular composition data and pilot/industrial bulk
property data also presents a challenge for direct transfer learning.
Although modifying the output layer of the ResMLP to predict bulk
properties is an option, this approach inevitably loses product infor-
mation at the molecular level. To accurately compute the bulk prop-
erties while retaining the molecular composition information, this
work proposed a property-informed transfer learning strategy, as
shown in Fig. 2b. Inspired by the PINN, we also integrated the
mechanistic model (bulk property calculation equations) into the
neural network. However, compared to PINN,which adds anadditional
regularization term to the loss function, this method directly modified
the loss function to compute bulk properties. It is a post-processing
step for the output layer results in the neural network training process.
When the molecular composition is predicted by the output layer, the
corresponding bulk properties (e.g., fraction yield and product com-
position) are simultaneously computed within the loss function. The
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Fig. 1 | A modeling framework for hybrid mechanistic modeling and deep
transfer learning. This figure outlines the process for developing a hybrid model.
Initially, a molecular-level kinetic model for naphtha FCC is developed as the
mechanisticmodel. Themodel is then used to generatemolecular conversion data
under various process conditions and feedstock types, which are employed to train

a residual multi-layer perceptron (ResMLP) suitable for process scale-up of com-
plex reaction systems. On this basis, small-sample pilot or industrial data are used
to fine-tune partial neural network parameters, enabling accurate prediction of
product distribution for a pilot or industrial-scale plant.
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experimental bulk property data are then compared to the calculated
values, and the error is used to update network parameters through
backpropagation. This method addresses the mismatch between data
at different scales, and the model can calculate the product bulk
properties and predict the molecular composition.

Molecular-level kinetic model for naphtha FCC
To validate the proposed hybrid model, we selected the naphtha FCC
as a case study. Naphtha FCC is a typical complex molecular reaction
system involving hundreds of molecules. Naphtha derived from the
FCC unit contains a large number of olefins. The process aims to
convert these olefins into i-paraffins, aromatics, and light olefins
through hydrogen transfer and cracking reactions. The product is a
high-quality gasoline blending component enriched with i-paraffins
and aromatics.

Different reactors are employed for the FCC process at the
laboratory and pilot/industrial plant. In the laboratory, afixed fluidized
bed (FFB) reactor is typically used, as illustrated in Fig. 3a, while pilot
and industrial plants utilize a riser reactor, depicted in Fig. 3b.
Although both FFB and riser are gas-solid catalytic reactions, there are
significant differences in their operationmodes and fluidflow regimes.
The laboratory-scale reactor operates in a batch mode under iso-
thermal conditions. Particle velocities are relatively low, and gaseous

products do not carry catalyst particles out of the reactor. In contrast,
pilot and industrial reactors operate continuously under adiabatic
conditions,with relatively highparticle velocities. Catalystparticles are
carried out of the reactor along with the gaseous products and sepa-
rated in the disengager. Overall, in addition to the reaction mechan-
ism, there are significant differences between the laboratory-scale and
pilot/industrial-scale FCC units, as illustrated in Fig. 3. Directly calcu-
lating the product distribution in pilot or industrial plants using
models based on laboratory-scale conversion laws is a challenging
task. It is necessary to perform cross-scale computation by the hybrid
model developed in this work to predict pilot-scale product
distribution.

In our previous work37, a laboratory-scale molecular-level kinetic
model was developed based on the SU-BEM framework. The devel-
oped model can accurately predict the product molecular distribu-
tion, and the modeling approach is shown in Fig. 4a. Initially, the
detailed molecular composition of naphtha 1 was characterized by
gas chromatography (GC). The obtained molecular-level character-
ization information (Supplementary Table 1 for naphtha 1) was then
transformed into a molecular compositional model42. According to
the carbenium ion reaction mechanism, reactions in the FCC were
categorized and programmed into 21 reaction rules, including
cracking, isomerization, cyclization, dehydrogenation, alkylation,
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transfer learning strategy. This strategy integrates the mechanistic model for cal-
culating bulk properties into the fine-tuning process. After the final layer of the
network generates the molecular composition, bulk properties such as fraction
yield and gasoline composition are estimated by bulk property calculator. Mea-
sured bulk properties are compared with the calculated values to compute the
mean absolute error (MAE). Based on this error, backpropagation is used to fine-
tune the neural network parameters.
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and hydrogen transfer, as listed in Supplementary Table 2. The
feedstock molecules were input into the reaction rules. The reaction
network auto-generated algorithm was invoked, and a complex FCC
reaction network with more than 100 molecules and 750 reactions
was generated, as depicted in Fig. 4a. Furthermore, the cracking
reaction pathway of C8 olefins was extracted from the complete
reaction network. As can be seen from the figure, olefin cyclization
and hydrogen transfer were preferred for generating i-paraffins and
aromatics, while the cracking reaction reduced the gasoline yield.
Therefore, naphtha FCC should be carried out under milder process
conditions to reduce the cracking reaction rate. Detailed information
on species and reactions in the reaction network is provided in
Supplementary Data 1 and 2.

According to themolecular conversion relationships, the reaction
network was transformed into reaction rate equations for each sub-
stance. The reaction rates of each reaction can be calculated using the
Langmuir–Hinshelwood–Hougen–Watson (LHHW) equation, and a
mass balance equation coupled to catalyst deactivation was also
developed. Kinetic parameters were organized via linear free energy
relationship (LFER) and quantitative structure-reactivity correlation
(QSRC)43–45. The parameter organization method and catalyst deacti-
vation model were discussed in Supplementary Notes 3 and 4.
Experimental data under different process conditions were used to
tune model parameters, and optimal kinetic parameters are listed in
Supplementary Table 3. The calculated product carbon number dis-
tribution is presented in Fig. 4a. Comparing the molecular composi-
tion of feedstock and products, it was found that the FCC process
converts olefins into i-paraffins and aromatics, and the calculated
product conversion behavior was in agreement with the published
work46,47.

Hybrid models generally use process conditions and feedstock
composition as inputs for neural network training. In this work, 10,000
sets of different process conditions and naphtha molecular composi-
tions were randomly sampled. The process conditions included reac-
tion temperature, weight hourly space velocity (WHSV), and catalyst-
to-oil ratio (CTO). The data distribution in the dataset is presented in
Fig. 4b. The reaction temperature primarily ranges between 400 °C
and 460 °C, with a median of 430 °C. The WHSV varies from 15 to 30,
and the CTO typically falls between 5 and 10, withmedians of 25 and 7,
respectively. These process conditions exhibit a normal distribution,
encompassing typical operating ranges for naphtha FCC. Figure 4b
also illustrates the naphtha composition calculated from the feedstock
molecular composition. The olefin content in gasoline is the highest,
predominantly distributed between 35wt% and 39wt%, with a median
of 37wt%. i-Paraffins and aromatics also have relatively high content,
with i-paraffins ranging from 27wt% to 30wt%, and aromatics varying
from21wt% to 24wt%. The generated gasoline composition effectively

represents the typical composition of FCC naphtha. Generated data
were fed into the mechanistic model to calculate the product
distribution data.

Laboratory-scale hybrid model for naphtha FCC
The input-output data obtained from the molecular-level kinetic
model were used to train the neural network, and the hyperpara-
meters were optimized using a Bayesian optimization (BO) algo-
rithm. Various evaluation metrics were compared as objective
functions for hyperparameter optimization (Supplementary Table 4).
The optimal hyperparameters were selected when R2 was used as the
objective function, and the ResMLP architecture based on the opti-
mal hyperparameters is depicted in Supplementary Fig. 2. A com-
parison of calculated results between the mechanistic and hybrid
models is presented in Fig. 5. Figure 5a, d illustrate molecular com-
positions predicted by the hybrid model for both the training and
testing sets. The mean absolute error (MAE) of the molecular molar
content was 7.23 × 10−5 and 7.75 × 10−5, respectively. The calculated
FCC product yield and gasoline composition by product molecular
composition are shown in Fig. 5b, c, e, f, exhibiting excellent agree-
ment with the mechanistic model. To validate the accuracy of the
proposed network structure, we further compared the training
results of different network structures, and the network structures
proposed by this work can obtain better training performance
(Supplementary Table 5).

After developing the hybrid model, we evaluated the effect of
process conditions on product distribution, as shown in Fig. 6. The
results were presented across four dimensions: fraction, component,
carbon number, andmolecular distribution. Overall, the hybrid model
effectively captured the trends in product distribution under varying
process conditions. The effect of reaction temperature on fraction
yield and gasoline composition is displayed in Fig. 6a, b. As the reac-
tion temperature increased, the cracking and condensation reaction
rates rose. FCCnaphthawascontinuously converted togasandheavier
fractions, leading to a reduction in gasoline yield. Nevertheless, the
olefin content of gasoline also gradually reduced, and the content of
aromatics and i-paraffins rose. Furthermore, the influence of WHSV
and CTO on product distribution was also explored (Supplemen-
tary Fig. 3).

To investigate themolecular conversion behavior, this study used
the hybrid model to predict the product carbon number distribution
under different reaction temperatures. Simultaneously, the calculated
data from themechanistic and hybridmodels were compared with the
experimental values to validate the predictive performance of
the hybrid model, as shown in Fig. 6c–e. The results indicate that the
predicted carbon number distribution from the hybrid model has a
good agreement with the experimental measurement. i-Paraffins and
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Fig. 3 | Characterization of FCC reactors at different scales. a Laboratory-scale
FCC reactor. The reactor is an isothermal fixed fluidized bed, operating in batch
mode. Gaseous products are collected at the reactor outlet. b Pilot/industrial-scale
FCC process. The process takes place in an adiabatic riser reactor, which operates
continuously. The gaseous products and deactivated catalysts are obtained at the

riser outlet and separated in a disengager. The deactivated catalyst is regenerated
through coke combustion. Both laboratory-scale and pilot/industrial-scale reactors
follow the carbenium ion mechanism, with the reaction mechanism remaining
consistent during scale-up.
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aromatics were the dominant components, with i-paraffins primarily
ranging fromC5 toC7 and aromatics fromC7 toC10. After the naphtha
FCC, olefins with higher carbon numbers were converted, leaving
predominantly C5 and C6 olefins in the product. Moreover, the
molecular distributions calculated by the mechanistic model and the
hybridmodel were also compared to further validate the robustness of
the hybrid model.

Deep transfer learning from laboratory-scale to pilot-scale
The developed laboratory-scale hybrid model successfully captured
the molecular conversion behavior of naphtha FCC. Next, this work
attempted to calculate the product distribution under the pilot plant
by the property-informed transfer learning strategy. Taking naphtha 2
as feedstock, 15 sets of FCC pilot experiments were carried out, and
product yields and gasoline composition under different process
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naphtha molecular composition matrix is input into the reaction rules derived from
the carbenium ionmechanism, enabling the automatic generationof amolecular-level
reaction network for naphtha FCC. This generated reaction network is then converted
into a kinetic model using the Langmuir–Hinshelwood–Hougen–Watson (LHHW)
formalism. The kinetic parameters are organized through the linear free energy
relationship (LFER), and the kinetic model is coupled with the reactor model to

predict the molecular composition of the products. b Violin chart for generated
molecular conversion data. The molecular conversion data consists of 10,000 sam-
ples. The left three figures display the generated process condition data, while the
rightfivefigures show thebulk properties calculated fromthemolecular composition.
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Table 15. Source data are provided as a Source data file.
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conditions were obtained. Although transfer learning is effective for
small-sample learning, the dataset with 15 samples remains insufficient
for model training. Thus, data augmentation was performed through
interpolation to expand the pilot-scale dataset. Moreover, to obtain
the minimal dataset size, this work investigated the effect of dataset
size on model accuracy by generating datasets with varying sample
sizes: 980, 750, 500, 250, 100, 80, 60, 50, and 40 samples.

The datasets described above were used to fine-tune the network
parameters. The training strategy used in this work is shown in
Fig. 7(a). The complete dataset was divided into three subsets: the
training set, validation set, and testing set. The generated data was
divided into the training and validation sets, while experimental data
were the testing set and not utilized to fine-tune the hybrid model.
After completing themodel training, themodel was directly applied to
predict the product distributions under the 15 experimental condi-
tions, validating the robustness of the model. Since the generated
laboratory-scale dataset has covered the composition distribution of
naphtha 2, the hidden layers of the Molecule-based ResMLP were
frozen, while the Process-based ResMLP and Integrated ResMLP were
fine-tuned during the transfer learning process. Similar to the
laboratory-scale hybrid model, the hyperparameters were optimized
using the BO algorithm. The optimal hyperparameters for each dataset
are provided in Supplementary Table 6.

The fine-tuning results for different sizes of datasets are shown in
Fig. 7b, c. Theblue line in thefigure indicates thedataset size.When the
dataset sizewas between 100 and 980, theMAE andmean square error
(MSE) of the training, validation, and testing sets presented minimal
variation. However, when the dataset size dropped below 100, both
MAE and MSE gradually increased with further reductions in dataset
size. This finding reveals a trade-off between dataset size and predic-
tion accuracy. In this work, a dataset comprising 60 samples was
selected as the optimal dataset, and it provides practical guidance for
determining the reasonable dataset size in industrial practice.

The detailed fine-tuning results with the 60-sample dataset are
illustrated in Fig. 8. The computational value of the training and

validation sets agreed well with the generated data, and the experi-
mental product yield and gasoline composition were also accurately
predicted by the fine-tuned model. The average error of bulk proper-
ties was 0.3wt%. To further evaluate the generalization of the model,
we conducted an additional pilot-scale FCC experiment using naphtha
3 as feedstock. The process conditions were as follows: feedstock
temperature of 200 °C, regenerated catalyst temperature of 623 °C,
reaction time of 3.6 s, and CTO of 5.5. Notably, the molecular com-
position of naphtha 3differed significantly from that of naphtha 2,with
a considerably higher olefin content (Supplementary Table 1). How-
ever, the developed hybrid model can still accurately predict product
distribution, as shown in Fig. 8d, h. The results validated the general-
ization ability of the proposed model. In addition to pilot-scale pro-
duct distribution prediction, the effect of the impurities and temporal
product distribution was discussed in Supplementary Notes 4
and Fig. 4.

Multi-objective optimization via NN-NSGA
After the pilot-scale hybrid model was tuned, the effect of catalyst
temperature on the product distribution of naphtha 2 FCC was
investigated, as shown in Fig. 9a, b. With an increase in regenerated
catalyst temperature, the cracking reaction rate accelerated, resulting
in a reduction in gasoline yield. Concurrently, the olefins in the gaso-
line were progressively converted to i-paraffins and aromatics. The
purpose of naphtha FCC is to reduce the olefins in gasoline while
enhancing the i-paraffin yield. However, this increase in i-paraffins was
accompanied by a decrease in gasoline yield. There was a trade-off
between gasoline and i-paraffin yield.

To obtain the optimal process condition, a multi-objective opti-
mization algorithm was developed by integrating the NSGA-II (non-
dominated sorting genetic algorithm II) with the neural network,
named NN-NSGA. Taking naphtha 2 FCC as a case study, gasoline and
i-paraffin yields were defined as the optimization objectives. The Par-
eto frontier obtained by the NN-NSGA algorithm is shown in Fig. 9c.
Among the Pareto-optimal solutions, the process condition with
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Fig. 5 | Parityplot for comparing calculateddatabetweenthehybridmodel and
mechanisticmodel. aMolecular composition in the training set.b Product yield in
the training set. c Gasoline composition in the training set; d Molecular composi-
tion in the testing set. e Product yield in the testing set. f Gasoline composition in

the testing set. The figure also shows the mean absolute error (MAE) and R² values
for the training, validation, and testing sets. Source data are provided as a Source
data file.
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maximized i-paraffin yield was selected and compared with the
experimental conditions, as shown in Table 1. The results indicate that
increasing the feedstock temperatureby 8 °C and reducing the catalyst
temperature by 8 °C can lead to higher yields of gasoline and
i-paraffins. Simultaneously, olefin and coke contents were decreased.
The temperature control structure for practical implementation was
proposed, as shown in Supplementary Fig. 5.

This work further compared the molecular compositions of
feedstock and product under the optimal process conditions, as
shown in Fig. 9d, e. The feedstock (naphtha 2) exhibited a relatively
higholefin content, primarily distributedwithin theC5–C8 range. After
the FCC process, a large number of i-paraffins and aromatics were
generated from olefins via hydrogen transfer reactions. Among the
products, i-paraffinswithC6exhibited thehighest yield. Additionally, a
series of bulk properties for the gasoline fraction was also predicted,
such as distillation profile, octane number, and critical properties, as
shown in Table 1. To further validate the optimized results, a
molecular-level kinetic model for pilot-scale naphtha FCC was devel-
oped. A detailed introduction of thismechanisticmodel is provided in

Supplementary Note 13. The results indicate that the fraction yield and
bulk properties predicted by the hybrid model agreed well with the
rigorousmechanisticmodel, demonstrating the accuracyof the hybrid
model. The hybrid model uncertainty caused by experiments, the
mechanistic model, and the AI model was also discussed (Supple-
mentary Note 14).

Discussion
To address the cross-scale computational challenges in the process
scale-up of complexmolecular reaction systems, this study proposed a
hybridmodel integratingmolecular conversionmechanismswithdeep
transfer learning. Themethodwas applied to the naphtha FCC process
from the laboratory to the pilot plant. A molecular-level kinetic model
was initially developed based on laboratory-scale data, serving as a
data generator to produce a molecular conversion dataset with a size
of ~104. A neural network architecture suitable for transfer learningwas
then designed. It incorporated two ResMLP modules to extract fea-
tures from process conditions and molecular composition. This
architecture achieved highly accurate predictions of molecular
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Fig. 6 | Evaluated results of the laboratory-scale hybrid model under different
reaction temperatures. a Comparison of calculated fraction yields between the
hybrid model and experimental data. Process conditions: Weight hourly space
velocity (WHSV) = 20h−1, Catalyst-to-oil ratio (CTO) = 7.bComparison of calculated
gasoline composition between hybrid model and experimental data. Process con-
ditions: WHSV = 20h−1, CTO= 7. c–e Comparison of experimental and calculated
carbon number distribution and molecular composition at various reaction

temperature: 400 °C, 430 °C, and 460 °C. Process conditions: WHSV = 20h−1,
CTO= 7. The left five figures compare the calculated results for n-paraffins, i-par-
affins, olefins, naphthenes, and aromatics from the mechanistic and hybrid models
with experimental data. The figure on the right compares the molecular compo-
sition calculated by the mechanistic and hybrid models. Source data are provided
as a Source data file.
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conversion behavior within a laboratory-scale reactor, with anMAE for
all molecular contents of less than 10−4. To address data discrepancies
at different scales, this work proposed a property-informed transfer
learning strategy. The strategy can simultaneously predict product
molecular composition and bulk properties using a neural network
architecture, and it is beneficial to reduce time for experimental eva-
luation andmodel development/parameter regression during the FCC
process scale-up. Compared to traditionalmolecular-levelmechanistic
models, the proposed method avoids modeling for each scale sepa-
rately. It also improved computational accuracy over the parameter
transfer strategy proposed by Chen et al.37. Compared to conventional
single neural network surrogate models, the proposed architecture
not only improves prediction accuracy but also allows for flexible
parameter freezing and fine-tuning during transfer learning.

Building on the FCC case study, we propose a generalizable
modeling paradigm for process scale-up. Initially, high-throughput
experiments are performed to generate data for developing the
mechanistic model. The mechanistic model will be used to generate
numerous data for training the hybridmodel. Following this, a limited
number of pilot/industrial-scale data points (as few as 4–5 points per
process condition) is utilized to fine-tune the hybridmodel. After fine-
tuning, the model can be integrated with advanced process control
systems to optimize process conditions in real-time. Notably, applying
this model to other processes requires developing corresponding
mechanistic models based on process characteristics. For processes
dominated by transport limitations, replacing the ResMLP with PINN
or Neural ODE may further enhance model accuracy, since the key
transport equations can be incorporated into the neural network.
Furthermore, incorporating catalyst descriptors into the hybridmodel
will be crucial when scale-up involves catalyst variations. Overall, this
work presents a modeling framework for the scale-up of complex

reaction systems. It offers a promising pathway for complex process
industries that suffer from scale-up challenges.

Methods
Laboratory-scale Experiment for Naphtha FCC
Laboratory-scale experiments of naphtha FCC were performed in an
FFB reactor, which is a batch reaction device. The lower part of the
reactor is conical, while the upper part is cylindrical. The reactor
parameters and experimental scheme are presented in Supplementary
Table 9 and Supplementary Fig. 7, respectively. One hundred and fifty
grams of zeolite catalyst was initially loaded in the reactor and pre-
fluidized with steam, and the catalyst information is listed in Supple-
mentary Table 10. Then, the reactor was preheated to the reaction
temperature, while the naphtha feedstock was pumped into the reac-
tor bottom. Themass of naphtha feedstockwas calculated by theCTO.
At the reactor bottom, the feedstock contacted the catalysts and
underwent the catalytic cracking reaction to generate the gaseous
product. When the reaction was completed, a 20-min steam stripping
process with a constant rate was implemented. The gaseous products
were obtained at the condenser top via the water displacement
method, and the mass can be calculated by volume. Liquid phase
products were directly weighed to determine their mass. The gaseous
products were divided into dry gas (C0–C2) and LPG (C3–C4)
according to the carbon number, while the liquid phase was fractio-
nated via micro-distillation into gasoline (Initial boiling point ~200 °C)
and diesel fractions (200 °C–350 °C). After cooling the reactor to
ambient temperature, the coked catalyst was unloaded to determine
coke yield. According to the above process, we selected naphtha 1 as
feedstock and performed 8 sets of laboratory-scale FCC experiments.
The composition of naphtha 1 and process conditions were presented
in Supplementary Table 1 and Supplementary Table 11, respectively.
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Fig. 7 | Modeling fine-tuning strategy and results for various sized datasets.
a Modeling fine-tuning strategy. The data used for fine-tuning the model was
generated from 15 sets of pilot-scale data using interpolation. The generated data
was randomly divided into training and validation sets with an 8:2 ratio. After fine-
tuning the model, experimental data were used as a testing set to validate the

results. b Mean absolute error (MAE) of training, validation, and testing sets for
various sized datasets. c Mean square error (MSE) of training, validation, and
testing sets for various sized datasets. A dataset size of 60 samples was selected as
the optimal dataset for this work. Source data are provided as a Source data file.
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Pilot-scale experiment for naphtha FCC
Pilot-scale experiments of naphtha FCC were performed in a riser
reactor, using the same catalyst as laboratory-scale experiments. The
main reactor parameters and experimental scheme are illustrated in
Supplementary Table 9 and Supplementary Fig. 8, respectively.

Initially, the feedstock and regenerator were preheated to set the
temperature according to process conditions. 2 kg/h naphtha was
pumped into the bottom of the riser, where it contacted high tem-
perature catalyst from the regenerator. The catalyst circulation rate
was calculated based on the CTO. The FCC reaction occurred in the

Tuned process condition:

Feed temperature: 78 oC

Cat. temperature: 670 oC

CTO: 5.7

Reaction time: 3.6 s
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d e
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f

Fig. 9 | Sensitivity analysis and optimal process condition results for naphtha 2
FCC. a Effect of catalyst temperature on product yield. The line represents the
predicted values, and the dots denote the experimental data. b Effect of catalyst
temperature on gasoline composition. The line represents the predicted values,
and the dots denote the experimental data. c Pareto frontier obtained using the
NSGA-II algorithm, with maximum gasoline and i-paraffin yields as optimization
objectives. The singled-out point represents the process conditions with the lowest
gasoline yield (80.62wt%) and the highest i-paraffin yield (34.24wt%) within the
Pareto solution set. The corresponding process conditions are listed in the inset

table. d Carbon number distribution for naphtha 2. The size and color of the dots
indicate the content of each substance in the feedstock. e Product carbon number
distribution for tunedprocess condition. The size and color of the dots indicate the
content of each substance in the product. Process condition: Feedstock tempera-
ture = 78 °C, Catalyst temperature = 670 °C, Catalyst-to-oil ratio (CTO) = 5.7, and
Reaction time = 3.6 s. f Product molecular composition for tuned process condi-
tion. Process condition: Feedstock temperature = 78 °C, Catalyst temperature =
670 °C, CTO= 5.7, and Reaction time = 3.6 s. Source data are provided as a Source
data file.
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naphtha 2 FCC in the validation set. c Parity plot for product yield of naphtha 2 FCC
in the testing set. d Predicted product yield for naphtha 3 FCC under the following
process conditions: Feedstock temperature = 200 °C, Catalyst temperature = 623
°C, Catalyst-to-oil ratio (CTO) = 5.5, and reaction time = 3.6 s. e Parity plot for

gasoline composition of naphtha 2 FCC in the training set. f Parity plot for gasoline
composition of naphtha 2 FCC in the validation set. g Parity plot for gasoline
composition of naphtha 2 FCC in the testing set. h Predicted gasoline composition
fornaphtha 3FCCunder the sameprocess conditions asd. Themeanabsolute error
(MAE) for training, validation, and testing sets is reported in the figure. Source data
are provided as a Source data file.
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riser. The generated gaseous substances and deactivated catalyst were
delivered into the disengager for gas-solid separation. The gaseous
phase was collected at the disengager top, while the deactivated cat-
alyst was recycled to the regenerator for coke combustion and
regeneration, enabling continuous operation of the unit. The products
from the disengager were condensed into gaseous and liquid phases.
They were collected and separated in the same method as the
laboratory-scale experiments. For the pilot-scale experiments, we
selected naphtha 2 and 3 as the feedstock, and the molecular com-
position of the two naphtha is listed in Supplementary Table 1. Naph-
tha 2 carried out 15 sets of FCC experiments, while naphtha 3
performed only 1 set of experiments to validate the model accuracy.
The process conditions for naphtha 2 and 3 are listed in Supplemen-
tary Table 12.

Feedstock and product analysis
The gaseous products from naphtha FCCwere quantitatively analyzed
using an Agilent 6890 GC. The GC with flame ionization detector (FID)
was employed for analyzing hydrocarbons, while the GC with thermal
conductivity detector (TCD) was used for analyzing hydrogen. The
analytical method used the UOP 539-2012 standard method.

Themolecular composition of the naphtha and gasoline fractions
was analyzed using an Agilent 6890 GC equipped with an FID, fol-
lowing the ASTM D5134-21 standard method.

The solid product mainly consists of coke deposited on the cat-
alyst, which was analyzed using an HIR-944B high-frequency infrared
carbon-sulfur analyzer. The catalyst was subjected to high-
temperature combustion, and the CO2 content in the mixed gas was
measured via infrared analysis to determine the coke content.

Data generation from mechanistic model
This study intends to generate a series of laboratory-scale naphtha FCC
data to train the ResMLP. These data were generated by a mechanistic
model. However, before generating the product data using the

mechanisticmodel, datasets coveringdifferent process conditions and
feedstock compositions were prepared. For the process conditions
(reaction temperature, WHSV, and CTO), 10,000 data points were
randomly sampled according to a normal distribution. These sampled
data were able to comprehensively cover the range of process condi-
tions in naphtha FCC processes. For feedstock composition,
10,000 sets of naphtha feedstock data with different molecular com-
positions were generated by introducing random noise to baseline
molecular composition (experimental composition of naphtha 1).
Subsequently, these generated dataweredelivered into themolecular-
level kinetic model for naphtha FCC to calculate the corresponding
product distributions. Finally, a complete dataset of laboratory-scale
naphtha FCC was obtained.

Laboratory-scale hybrid model structure
The proposed hybrid model consists of three multilayer fully con-
nected neural networks, as shown in Fig. 2a. The first network takes
process conditions as inputs, including feedstock temperature, reac-
tion temperature, reaction time (WHSV), and CTO. The second neural
network takes molecular composition as input, and there are 129
molecules in the naphtha. The outputs of these two networks are then
concatenated and delivered to the third network, which predicts the
distributionof 129productmolecules. Eachhidden layer uses theReLU
activation function, followed by a dropout layer to prevent overfitting.

Naphtha FCC involves a complex molecular reaction network,
requiring a deep neural network to capture the nonlinear relationships
between feedstock and product molecules. However, increasing net-
work depth often leads to gradient vanishing or explosion. To over-
come this limitation, residual connections were introduced between
the two fully connected layers to form a ResMLP. Compared to other
neural networks incorporatingmechanisticmodels, the ResMLPs allow
for efficient forward and backward propagation, and the training time
can be significantly reduced. The ResMLP was built using the PyTorch
framework in Python. It is easily reproducible for researchers in
chemistry and chemical engineering.

Training for laboratory-scale hybrid model
The laboratory-scale hybrid model was trained on 10,000 sets of data
generated by the mechanistic model. The data were randomly divided
into training and testing sets in the ratio of 8:2. All input data (feed-
stockmolecular composition and process condition) were normalized
to the range of −1 to 1. The normalized feedstock molecular compo-
sition and laboratory-scale process conditions were fed intoMolecule-
based ResMLP and Process-based ResMLP, respectively. The outputs
of two ResMLPs were concatenated and delivered into the Integrated
ResMLP to calculate the product molecular composition. The mole-
cular composition calculated by ResMLP and the mechanistic model
were compared in the MSE loss function to compute the error. Then,
backpropagation was performed, and the Adamoptimizer with weight
decaywas used to adjust theResMLPparameters. A learning rate decay
strategy was used, with a decay rate of 0.9 and a decay step of 10
epochs. This work applied three error metrics to evaluate the model
performance, including R2 score, MAE, and MSE, as shown in Eqs.
(1)–(3). The trainingwas stopped after 300 epochs, and the laboratory-
scale hybrid model was obtained.

R2 = 1�

Pn

i= 1
ycal � ytrue
� �2

Pn

i= 1

�ycal � ytrue
� �2

ð1Þ

MAE=
1
n

Xn

i = 1

ycal � ytrue
�
�

�
� ð2Þ

Table 1 | Tuned process conditions and product distribution

Experiment data Tuned data Model
validation

Process conditions

Feedstock tempera-
ture, °C

70 78 78

Catalyst tempera-
ture, °C

678 670 670

CTO 5.6 5.7 5.7

Reaction time, s 3.6 3.6 3.6

Bulk properties

LPG yield, wt% 11.8 12.1 12.2

Gasoline yield, wt% 80.3 80.6 80.5

Coke yield, wt% 2.5 1.8 1.8

i-Paraffin yield, wt% 33.9 34.2 34.2

Olefin yield, wt% 18.2 17.2 17.2

Aromatics yield, wt% 33.9 33.9 33.9

Density at 293 K, °C 0.7428 0.7432

ASTM D86 IBP, °C 26.2 25.8

ASTM D86 50%, °C 84.0 84.8

ASTM D86 FBP, °C 171.7 170.3

Research octane num-
ber (RON)

89.8 91.2

Critical pressure
(Pc), kPa

3,260.2 3,287.3

Critical temperature
(Tc), °C

271.35 269.0
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MSE=
1
n

Xn

i = 1

ycal � ytrue
� �2 ð3Þ

Where ycal and ytrue are calculated values by the hybrid model and
generated data by the mechanistic model, respectively, and n is the
sample number used to train the hybrid model.

Hyperparameter optimization
The proposed network architecture for the hybrid model contains a
large number of hyperparameters, such as residual block number,
neuron number of each residual block, dropout rate, learning rate,
weight decay, and batch size. To efficiently determine optimal hyper-
parameters, the BO algorithm was employed based on the Optuna
package. The model training and hyperparameter optimization were
performed based on NVIDIA’s 4090 GPU. The hyperparameter opti-
mization process for the laboratory-scale hybrid model is as follows:

Before hyperparameter optimization, the full dataset was ran-
domly split into training (80%) and testing (20%) sets. All input data
was normalized to a range of −1 to 1, and the search space for each
hyperparameter was predefined, as shown in Supplementary
Table 13. After that, the BO algorithm was called to tune the hyper-
parameter. Initially, a series of candidate hyperparameters was gen-
erated based on the BO algorithm. The training set, testing set, and
hyperparameters were input to the ResMLPmodel for training. When
the model training was completed, the R2 score of the testing set was
calculated and selected as the objective function for the BO algo-
rithm. According to the R2 score, the BO algorithm was repeatedly
called to tune the hyperparameters. The optimization process was
stopped after 100 iterations. The optimal hyperparameters were
obtained from the above 100 iterations when the R2 score was
maximized. In addition to R2, other evaluation metrics, such as MAE
and root mean square error (RMSE), can also be used as the objective
function in the BO algorithm.

Model structure for transfer learning
Due to the similarity of the reaction mechanisms between the
laboratory and pilot scales, transfer learning was primarily employed
to capture the differences in fluid flow regimes within the reactor and
calculate the pilot-scale product distribution. The source domain was
laboratory-scale molecular composition data, containing 10,000 sam-
pleswith 129 features. The target domain was 15 sets of pilot-scale bulk
property data for naphtha 2 FCC. Due to data discrepancies between
the source domain and target domain, directly calculating the pilot-
scale product distribution using conventional transfer learning posed
a challenge. To address this, this work incorporated some bulk prop-
erty equations into the loss functions, including fraction yield and
gasoline composition. The fraction yieldsweredivided primarily based
on the molecular boiling points as follows:

Dry gas: 0 K <Molecular boiling point <220K
LPG: 220K <Molecular boiling point <280K
Gasoline: 280K<Molecular boiling point <473 K
Diesel: 473 K <Molecular boiling point <623 K
Coke: 623 K <Molecular boiling point, and molecules with more
than 5 aromatic rings and less than 2 carbons in the side chain.

The molecular boiling points were calculated by the group con-
tributionmethod, followed by dividing them according to the scheme
described above. Once the fraction yields were calculated, gasoline
was further classified into n-paraffins, i-paraffins, olefins, naphthenes,
and aromatics based onmolecular structure. The specific classification
scheme is as follows:

n-Paraffins: Molecules without branched chains, double bonds,
and rings

i-Paraffins: Molecules with branched chains and without double
bonds and rings
Olefins: Molecules with double bonds and without rings
Naphthenes: Molecules with naphthenic rings and without
aromatic rings
Aromatics: Molecules with aromatic rings

According to the abovemethod, the gasoline composition can be
calculated. When the property information is incorporated into the
hybrid model, the calculated property data can be directly compared
to experimental data during model training.

Parameter fine-tuning in transfer learning
Although 15 sets of pilot-scale experimental data were obtained,
training a robust model directly with such a limited dataset was a
challenging task. To overcome this limitation, data augmentation was
performed, and pilot-scale product data were generated through
interpolation within the range of available pilot data. The augmented
data were randomly split into training and validation sets with an 8:2
ratio, while the original 15 sets of experimental data were reserved as
the testing set and excluded from training. All input data (feedstock
molecular composition and process condition) were scaled to the
range of −1 to 1. The normalized feedstockmolecular composition and
pilot-scale process conditions were input intoMolecule-based ResMLP
and Process-based ResMLP, respectively. Since the feedstock mole-
cular composition and catalyst remained almost unchangedduring the
scale-up from laboratory to pilot plant, the network parameter of
Molecule-based ResMLP was frozen, while the Process-based and
Integrated ResMLPs were fine-tuned. Then, the calculated molecular
composition was input into the bulk property equations to estimate
the product yield and gasoline composition. The calculated and mea-
sured bulk properties were compared in the MSE loss function to
compute the error. Similar to training the laboratory-scale hybrid
model, backpropagationwas performed, and the Adamoptimizerwith
weight decay was used to fine-tune the ResMLP parameters. The per-
formance of the transfer learning was evaluated using the R2 score,
MAE, andMSE. The fine-tuning was stopped after 300 epochs, and the
pilot-scale hybrid model was obtained.

Moreover, the hyperparameters for transfer learning were also
tuned by the BO algorithm. Since the neural network architecture has
been determined, only four hyperparameters need to be tuned,
including dropout rate, learning rate, weight decay, and batch size.
Their ranges are listed inSupplementary Table 14. Thehyperparameter
optimization process was the same as the laboratory-scale
hybrid model.

Process condition optimization by NSGA-II
This study utilized the NSGA-II to optimize the process conditions of
the pilot-scale unit, including feedstock temperature, regenerated
catalyst temperature, and CTO. Themaximum andminimum values of
these conditions, derived from pilot experiments, were defined as
constraints, as shown in Eqs. (4)–(6).

Tmin
feed ≤T feed ≤T

max
feed ð4Þ

Tmin
cat ≤Tcat ≤T

max
cat ð5Þ

CTOmin ≤CTO≤CTOmax ð6Þ

Where Tcat and T feed are regenerated catalyst temperature and feed-
stock temperature, respectively. Tmin

cat and Tmax
cat are the minimum and

maximum temperature for the regenerated catalyst. Tmin
feed and Tmax

feed is
the minimum and maximum temperature for feedstock, and CTOmin

and CTOmax are Minimum and Maximum CTO, respectively.
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After that, the NSGA-II algorithm was coupled with the hybrid
model to optimize the process condition. NSGA-II initially generated a
range of process conditions within the defined upper and lower
bounds. These conditions were input into the trained pilot-scale
hybridmodel to calculate the product yield and gasoline composition.
The objective functions were to maximize gasoline and i-paraffin
yields, as defined in Eqs. (7) and (8). Then, calculated yields of gasoline
and i-paraffins were fed back into the NSGA-II, and the algorithm
iteratively searched for tuned process conditions. After 50 iterations,
the Pareto-optimal solution was obtained, and the optimal process
conditions were identified from the Pareto front. The calculation
process is shown in Supplementary Fig. 9.

min ygasoline = �
Xn

i = 1

xið280K<Molecular boiling point < 473KÞ ð7Þ

min yi�paraffin = �
Xn

i = 1

xiði� paraffin moleculesÞ ð8Þ

Where xi is the molecule mass fraction for species i. ygasoline and
yi�paraffin are the gasoline fraction yield and i-Paraffin yield in the
gasoline fraction, respectively. n is the number of molecules.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used for model training and prediction in this study are pub-
licly available at: https://github.com/chenzhengyuAI/complex-reaction-
system-scale-up48. Moreover, Source data are provided with this paper.

Code availability
The code of the hybrid model and all scripts used to train and predict
product distribution are publicly available at: https://github.com/
chenzhengyuAI/complex-reaction-system-scale-up48.
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