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Metabolic interplay drives population cycles
in a cross-feeding microbial community

Tyler D. Ross1,2, Hanhyeok Im3, Brennan G. Keogh3,
Christopher A. Klausmeier 4,5,6,7 & Ophelia S. Venturelli 1,2,3,8,9

Population cycles are prevalent in ecosystems and play key roles in deter-
mining their functions. While multiple mechanisms have been theoretically
shown to generate population cycles, there are limited examples of mutual-
isms driving self-sustained oscillations. Using an engineered microbial com-
munity that cross-feeds essential amino acids, we experimentally demonstrate
cycles in strain abundance that are robust across environmental conditions. A
nonlinear dynamical model that incorporates the experimentally observed
cross-inhibition of amino acid production recapitulates the population cycles.
The model shows that the cycles represent internally generated relaxation
oscillations, which emerge when fast resource dynamics with positive feed-
back drive slow changes in strain abundance. The temporal structure of the
resourcedynamics prevents nonproducing cheaters frompersistingwithin the
oscillating community. Our findings highlight the critical role of resource
dynamics and feedback in shapingpopulation cycles inmicrobial communities
and have implications for biotechnology.

Population cycles (regular oscillations in population size) are wide-
spread in ecological systems, with almost 30% of natural populations
showing such dynamics1. Many mechanisms have been proposed to
explain how internally generated oscillations can emerge from non-
linear interactions between populations. Beginning with Lotka and
Volterra’s foundational predator-prey model2,3, consumer-resource
(+/−) interactions have been shown to be a common cause of
population cycles4. Other theoretical mechanisms that can generate
regular oscillations include age- and stage-structure5, intransitive
competition6, and eco-evolutionary dynamics7.

Mutualism (+/+) is increasingly recognized as a pervasive and
influential interaction motif shaping diverse ecosystems8–10. Mutualis-
tic interactions can give rise to nonlinear phenomena such as alter-
native stable states11. However, this interaction motif has not been
widely considered a driver of oscillatory dynamics, though a few cases

have been recently found12,13. Mutualisms were first modeled using the
generalized Lotka-Volterra model14, but this model can generate
unbounded growth and instability15. In more recent models, the
mechanisms driving mutualisms are a central focus, particularly
among interacting macroscopic organisms16. Mutualisms are also
present in microbial communities, whose interactions influence a
broad range of natural phenomena from biogeochemical cycles to
human health and behavior17,18. Cross-feeding, a mechanism of mutual
resource exchange, is frequently observed in microbial
communities19–23. Previous experimental studies have shown that
cross-feeding can stabilize co-cultures, but these studies typically rely
on endpoint measurements and do not capture dynamic behaviors
such as population cycles24. Consistent with the theoretical under-
standing that mutualisms lead to stable equilibria, current models of
cross-feeding mutualisms do not exhibit population cycles25.
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Here, we demonstrate that an engineered microbial commu-
nity shaped by bidirectional cross-feeding of essential amino acids
can exhibit robust population cycles across a range of environ-
mental conditions. Our study builds on and extends previous
work22,24 by capturing the dynamic nature of mutualistic cross-
feeding interactions. Resource profiling demonstrates a pattern of
amino acid cross-inhibition that has not been previously captured
in models of mutualisms. A nonlinear dynamical systems model
that encodes the observed mutual resource inhibition replicates
the observed dynamics and can accurately extrapolate to new
environmental conditions. Our models demonstrate that the cycles
emerge as internally generated relaxation oscillations, where the
fast mutual inhibition of amino acid production (positive feed-
back) leads to alternative stable states, which drive slow popula-
tion dynamics. We further demonstrate that the population cycling
can exclude a nonproducing cheater via temporal patterning of the
resource environment. Our results demonstrate that resource-
mediated interactions in microbial communities can generate rich
dynamical behaviors and have implications for innovations in
biotechnology.

Results
Microbial communities driven by amino acid cross-feeding can
exhibit distinct dynamical behaviors
To investigate how cross-feeding shapes community dynamics, we
engineered individual Escherichia coli (E. coli) amino acid auxotrophs
ΔtyrA and ΔpheA that reciprocally cross-feed phenylalanine and tyr-
osine respectively, while competing for glucose (Fig. 1a). Relative to
other amino acid auxotroph pairs, the ΔtyrA and ΔpheA co-culture
showed a particularly strong benefit due to cross-feeding24, where
monocultures exhibited minimal growth and co-cultures displayed
significant growth after 24 h inmedia lacking amino acids (Fig. 1b). This
shows that cross-feeding plays a critical role in structuring commu-
nities in environments lacking external supply of the required
amino acids.

To investigate thedynamics of the community,weco-cultured the
strains in serial batches subjected to daily dilution with freshmedia for
10 days.We supplemented themedia at eachpassagewith no, low, and
moderate levels of external amino acid to modulate the obligation for
cross-feeding (Fig. 1c). With no or moderate external amino acid sup-
ply, the composition of the communities converged to an equilibrium
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Fig. 1 | An amino acid cross-feeding microbial community displays stable
equilibrium or oscillatory dynamics. a Two E. coli amino acid auxotrophs
exhibit mutually beneficial cross-feeding. Mutant ΔtyrA produces phenylala-
nine that enables the growth of mutant ΔpheA, while mutant ΔpheA reci-
procally produces tyrosine to enable the growth of mutant ΔtyrA. Each
auxotroph harbors an IPTG-inducible fluorescent reporter for strain identi-
fication and abundance quantitation in co-culture. b Relative growth benefit
due to cross-feeding. Auxotrophs ΔtyrA and ΔpheA were grown as mono-
cultures and as a pairwise community in minimal medium lacking any amino
acid supplementation (n= 3, biological replicates). The absolute abundance
after 24 h of growth for each monoculture is shown with hash-filled bars. The
calculated absolute abundance (OD600 multiplied by the relative abundance)
after 24 h of growth for each member in the pairwise community is shown
with solid bars. Error bars indicate one standard deviation from the mean for
each culture. The inoculum density is shown as a dashed line. Individual
datapoints are shown as black dots. Asterisks indicate statistical significance
between the average growth in monoculture versus co-culture (ΔtyrA:

p= 1:5220e� 05, g* = � 16:3237; ΔpheA: p = 7:8113e� 06, g* = � 19:3008). c In
the experimental passaging scheme, we inoculated a pair of cross-feeding
amino acid auxotrophs into a minimal or supplemented media. The culture is
incubated for a period of 24 h prior to being diluted to a constant OD600.
Cycles of growth and dilution are carried forward for a finite number of
passages. d Dynamical behaviors of the ΔtyrA, ΔpheA community when
subjected to the experimental passaging scheme (n= 3, biological replicates).
Separate plots correspond with different concentrations of amino acid sup-
plementation in the passaging media. Gray lines indicate the total biomass of
the community while colored lines indicate the calculated absolute abun-
dance (OD600 multiplied by the relative abundance) of ΔtyrA (cyan) or ΔpheA
(red). Solid lines with circular markers represent experimental data and
dashed lines represent simulations of equation (1) for which τ = 24 h (as in
batch culture). Asterisks indicate statistical significance in a test for period-
two oscillations (0/0: p=0:8522, g* = 0:0443; 10/20: p= 7:4249e� 11,
g* = � 8:3648; 20/40: p =0:0035, g* = � 1:5345) (Methods). Raw data for
panels (b and d) are provided in the Source Data file.
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(Fig. 1d). Notably, the community exhibited sustained large-amplitude
period-two oscillations in the presence of low concentrations of
external amino acids. The oscillations persisted in co-cultures
regardless of the fluorescent protein expressed by each strain (Sup-
plementary Fig. 1). To evaluate the robustness of these dynamics to
variation in environmental parameters, the supplied concentration of
amino acids was varied across a wide range. The community displayed
period-two oscillations across a range of intermediate amino acid
supply concentrations (Supplementary Fig. 2). These results demon-
strate that oscillatory dynamics can emerge in microbial communities
whose dominant interaction is resource cross-feeding, which is
exceedingly rare in systems driven by a mutualism. In the presence of
high and low initial phenylalanine supply and tyrosine supply,
respectively, ΔtyrAwas excluded. This implies that the contribution of
mutualism versus resource competition was context dependent26.

Tyrosine and phenylalanine release primarily occurs during
focal amino acid starvation
Given thatmainstreamecologicalmodelsofmutualismdonot account
for oscillations, the presence of population cycles in the cross-feeding
community implies that additional feedbackmechanisms are required
to produce them. Extant models of cross feeding that do not produce
oscillations assume that nutrients are released at constant rates25,27. In
accordance with previous results that demonstrate a time-dependent
change in the release of certain metabolites28,29, we hypothesized that
there exists unresolved feedback shaping the dynamics of amino acid
release rates. Therefore, we measured the concentrations of extra-
cellular resources (amino acids and glucose) over time for each aux-
otroph in response to varying supplementation of the required amino
acid (Fig. 2a).

In the presence of high amino acid supplementation, a residual
amount remained at the onset of stationary phase as glucose was
depleted (Fig. 2b, e). In these cases of glucose limitation, almost none of
the partner’s amino acid was released at 12 h, and only a small amount
was released at 24h, likely due to cell death and lysis30. Conversely, the
required amino acid was completely depleted in stationary phase when
lower amino acid concentrations were initially supplied. A moderate
amount of remaining glucose indicated that these cultures were amino
acid limited as opposed toglucose limited (with someexception at 24h,
see Supplementary Note 1). Notably, for both ΔtyrA and ΔpheA, the
limitation of required amino acid was associated with a substantial
release of the partner strain’s required amino acid (Fig. 2c, d, f, g). These
results demonstrate significant reciprocal inhibition of amino acid
release, where tyrosine inhibits release of phenylalanine by ΔtyrA and
the reciprocal (Fig. 2h, i). Therefore, the cross-inhibitory interactions
generate a positive feedback loop in the resource dynamics. When a
given auxotroph is limited by its required amino acid, it releases the
partner’s required amino acid (producer). This leads to glucose limita-
tion of the partner strain as opposed to amino acid limitation, pre-
venting the reciprocal release of amino acid (consumer). Amino acid
limitation of the producer is thus reinforced through a net positive
feedback loop due to the cross-inhibition topology.

A dynamic model capturing resource and strain dynamics
recapitulates system behaviors
To determine if the cross-inhibition of amino acid release can explain
the emergence of oscillatory dynamics in our engineered community,
we constructed a nonlinear ordinary differential equationmodel of the
system. Our model considers two auxotrophs (ΔtyrA and ΔpheA,
denoted N1 and N2, Eqs. (1a) and (1b)), two cross-fed resources (phe-
nylalanine and tyrosine , denoted R1 and R2, Eq. (1c) and (1d)) and one
resource that ultimately limits the growth of the community (glucose,
denoted R3, Eq. (1e))

25. Each auxotroph i has two essential resources
(its required amino acid and glucose), with its realized growth rate μi

given by the minimum of its potential growth on the two resources j,

μij Rj

� �
, which takeMichaelis-Menten form (Eqs. (1f) and (1g)) with half

saturation constants kij . The maximum growth rate is denoted as
μi, max. Amino acid uptake is proportional to the realized growth rate of
the auxotrophs, while glucose uptake is proportional to their glucose-
limited growth rate. The stoichiometric coefficients qij describe the
amount of resource needed per unit of cell growth. We assume aux-
otrophs produce amino acid tomatch their glucose uptake and release
any excess to the environment at rate qiiðμi3 � μiÞ. By contrast, when
growth is glucose-limited, μi =μi3, and amino acids are not released
into the environment. This mass-balance constraint leads to amino
acid releaseonlywhen glucose is available and the required amino acid
limits growth, consistent with our experimental results (Fig. 2b–g).

We model the external supply of resources with concentration
Rj, in and dilution of species and resources at rate D. For comparison
with our experimental results, we initially treat the dilution rate as a
series of discrete events using D tð Þ= f Pn= 1 δðt � nτÞ, where f is the
fraction of culture transferred,n is the passage number, τ is the period,
and δð�Þ is the Dirac delta function. For further theoretical exploration,
we treat the dilution rate D as a constant, as in a chemostat. Together,
these assumptions yield the following model:

dN1

dt
=μ1N1 � DN1 ð1aÞ

dN2

dt
=μ2N2 � DN2 ð1bÞ

dR1

dt
=D R1, in � R1

� �
+ q11 μ13 � μ1

� �
N1 � μ2q21N2 ð1cÞ

dR2

dt
=D R2, in � R2

� �
+ q22 μ23 � μ2

� �
N2 � μ1q12N1 ð1dÞ

dR3

dt
=D R3, in � R3

� �� μ13q13N1 � μ23q23N2 ð1eÞ

μ1 = min μ12ðR2Þ,μ13ðR3Þ
� �

,μ2 = min μ21ðR1Þ,μ23ðR3Þ
� � ð1fÞ

μijðRjÞ=μi, max

Rj

Rj + kij
: ð1gÞ

Further details about the model parameters are provided in
Supplementary Table 1.

We inferred the model parameters using measurements of abso-
lute abundance from our initial ten-batch passaging experiment
(Methods) and cross-validation with short term passaging data over a
range of amino acid supply concentrations (Supplementary Fig. 2). Our
model (in discrete batch form) and best parameter estimate accurately
fit the different dynamical behaviors as a function of amino acid supply
concentration (Fig. 1d). Notably, the model accurately predicted the
dynamical behaviors for the single-batch growth dynamics of a cycling
community thatwere not used for fitting of themodel (Supplementary
Fig. 3). Therefore, the model can extrapolate to new environments.
These results suggest that cross-feeding with reciprocal inhibition can
generate the period-two cycles observed experimentally. We also
explored an alternative model that uses predicted regulatory links at
the biomolecular level (Supplementary Fig. 4) to encode a more
explicit mechanism of resource cross inhibition31–34. This alternative
model could recapitulate the period-two cycles and equilibrium
dynamics as a function of the amino acid supply concentrations
(Supplementary Note 2 and Supplementary Fig. 5). This implies that
the resource cross-inhibition topology was critical for generating
oscillations in the system.
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Cycles can result from external forcing or be self-sustained due to
internal mechanisms driving the dynamics35. For example, periodic
forcing through daily passaging was necessary for the development of
cycles in a mutualistic cross-protection microbial community13. To
determine whether cycles can emerge in the absence of external for-
cing, we analyzed our model with constant dilution rate D as in a
chemostat (Fig. 3a). Our results show that periodic limit-cycle solu-
tions occur across a range of low external amino acid supply (Fig. 3b).
This suggests that the experimentally observed cycles are not

dependent on periodic forcing through daily passaging but arise due
to the internal dynamics of the community. Consistent with this result,
the community displayed period-three cycles in a pseudo-continuous
culture experiment in which the batch duration was decreased to 4 h
(Supplementary Fig. 6). This further suggests a complex interplay
between periodic external forcing and the internal dynamics. The
connection between the periodically forced batch culture model
(Fig. 1d) and the continuous chemostat model (Fig. 3) is explored in
Supplementary Note 3.
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Fig. 2 | Extracellular metabolite measurements demonstrate that amino acid
release occurs in response to amino acid limitation. a Experimental design to
analyze the extracellular dynamics of essential auxotroph resources. Each auxo-
trophwas grown as amonoculture (n= 3, biological replicates) inmediawith either
200 µM, 20 µM, or 10 µM tyrosine for ΔtyrA, or 400 µM, 40 µM, or 20 µM phenyla-
lanine for ΔpheA. Cultures were sampled every 2 h over a 12-h period, and again at
24h. Glucose, tyrosine, and phenylalanine concentrations were quantified using
fluorometric and colorimetric assays. b–g Extracellular resource dynamics in aux-
otroph monocultures. Line plots represent growth curves at different concentra-
tions of amino acid supplementation, while heatmaps depict corresponding
extracellular resource concentrations. Panels (b–d) show ΔtyrAmonocultures, and
(e–g) show ΔpheAmonocultures. The initial amino acid supplementation levels
(tyrosine for ΔtyrA and phenylalanine for ΔpheA) are indicated to the left of each
heatmap. Heatmap shading indicates the concentrations of glucose (yellow),

tyrosine (cyan), and phenylalanine (red). Raw data for b–g are included in the
Source data file. h, i Predicted probability of partner amino acid presence as a
function of required amino acid availability. Predictions were made using a gen-
eralized estimating equation (GEE) with a binomial response model. The models
were fit independently for ΔtyrA monoculture (h, n= 3, biological replicates) and
ΔpheAmonoculture (i, n= 3, biological replicates) data. Each bar represents the
predicted probability of detecting released amino acid when the required amino
acid is absent (left) or present (right), based on binary categorization of amino acid
concentrations using the experimental limit of detection (LOD). Error bars indicate
95% confidence intervals derived from each model’s estimated standard errors.
Asterisks indicate a statistically significant change in the predicted presence of
released amino acid as the availability of required amino acid switches from absent
to present (ΔtyrA (h): p= 1:7060e� 111; ΔpheA (i): p=0:0013).

a b

c

0 1 2 3 4 5
0

1

2

3

4

5

q12∙q21

q 11
∙q

22

×1000

×1000 Stable

Unstable

PheTyrGlu

t

(μ
M

)

∆pheA∆tyrA

t

(O
D

60
0)

Su
pp

ly
O

ut
pu

t

Tyrosine Supply Concentration (μM)

Ph
en

yl
al

an
in

e 
Su

pp
ly

 C
on

ce
nt

ra
tio

n 
(μ

M
)

Re
la

tiv
e 

A
bu

nd
an

ce

∆pheA

∆tyrA

Equilibrium
Coexistence

0 2001208040 160

40

0

200

160

120

80

Limit Cycle

∆tyrA
Extinction

∆pheA
Extinction

Fig. 3 | Population cycles exist in the absence of external forcing. a Schematic
representation of the in silico chemostat experiment. The chemostat facil-
itates continuous growth of the ΔtyrA, ΔpheA community through constant
inflow of glucose, tyrosine, and phenylalanine. Perfusion is governed by the
dilution rate D, which acts on the inflow of external resource, and the out-
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diagram of the ΔtyrA, ΔpheA community dynamics in a virtual chemostat. As
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community composition is indicated according to the color bar. A gray
hashed region indicates the amino acid supply concentrations that do not
produce stable equilibria but instead display limit cycle oscillations.

Transcritical bifurcations beyond which the community collapses into a
monoculture are indicated with solid black lines. Two inset plots demon-
strate simulations of stable equilibrium and cycling dynamics. c Steady state
stability for randomly sampled values of qij . Stability analysis by analyzing
the Jacobian matrix was used to determine the steady state stability for a
range of q11q22 and q12q21 from 250 to 4750. Each point in the scatter plot
represents the stability of a steady state for a given parameter sample. Filled
in blue points represent stable steady states, while empty orange circles
represent unstable steady states. A black line separates the region
where q11q22 >q12q21.
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In our model, higher amino acid supply concentrations lead to
stable equilibria, with a substantial range of parameters leading to
stable coexistence of the auxotrophs (Fig. 3b). However, competitive
exclusion occurs at extreme supply concentrations, and the outcome
of this competition is solely sensitive to tyrosine supply as opposed to
the tyrosine-to-phenylalanine supply ratio36. This reflects the ΔtyrA
auxotroph’s superior competitive ability for glucose using the inferred
parameter set, which becomes limiting when sufficient tyrosine is
externally supplied. Notably, this pattern of sensitivity can switch
depending onmoderate variations in the glucose utilization efficiency
parameter values of each strain (Supplementary Fig. 7). This implies
that thepattern of tyrosine supply sensitivity is not robust to variations
in these parameters.

Dissecting the mechanisms that drive cycles
The mathematical analysis of our full model is hindered by the com-
plexity arising from its five variables. To more deeply understand the
mechanism driving the cyclic population dynamics, we reduce it to a
minimal model for the two amino acids (R1 and R2) and the relative
abundance of the two auxotrophs, f =N1=ðN1 +N2Þ (a full derivation is
provided in Supplementary Note 4). This minimal model captures the
essential features of our system, shows similar dynamics to equation
(1) (Supplementary Fig. 8), and is more amenable to analytical meth-
ods. This analysis of the minimal model identifies the cycles as
relaxation oscillations, which show fast-slow dynamics37,38, as have
been identified in some predator-prey models39. Based on the inferred
parameter values, resource dynamics occur on a fast timescale.
Therefore, the resource dynamics track a quasi-steady state deter-
mined by the relative abundance, f , punctuated by brief periods of
rapid change. If the positive feedback due to resource cross-inhibition
is stronger than negative feedback due to self-damping (growth-
imposed resource limitation), the fast resource dynamics can show
two alternative stable metabolic states. In each alternative state, one
consumer auxotroph is glucose-limited, so it does not release amino
acids. The other producer auxotroph is consequently limited by its
required amino acid and therefore releases the amino acid it produces,
which fuels growth of the consumer. This matches the experimentally
observed monoculture resource dynamics (Fig. 2). The asymmetric
cross-feeding relationship between the auxotrophs drives the strain
relative abundance dynamics on a slower timescale. As the relative
abundance of the producer auxotroph decreases, the amino acid
concentrations track the stable resource equilibrium until it vanishes
at a saddle-node bifurcation (Supplementary Fig. 9). This triggers an
abrupt jump to the alternative resource equilibriumwhere the roles of
producer and consumer auxotroph are reversed. Simulation of the full
model (Eq. (1)) shows similar dynamics (Fig. 4) except for a brief period
where both amino acids are being produced that coincides with the
switch between alternative metabolic states (Fig. 4b iii and vi).

The minimal model provides insights into the parameter condi-
tions that produce cycles. Linear stability analysis shows that
q11q22 > q12q21 is a necessary but not sufficient condition for existence
of the alternative stable states in the fast resource-subsystem that are
required for relaxation oscillations (Supplementary Note 4). The
parameters q11 and q22 represent the strength of the positive feedback
loop generated by resource cross-inhibition, while q12 and q21 repre-
sent the strength of the negative feedback due to self-damping. To
evaluate whether this condition can predict the emergence of oscilla-
tions in the full model (eq. (1)), we randomly sampled values for qij and
determined the qualitative behavior of the system for each parameter
set (Fig. 3c). Our results from the full model were consistent with the
condition derived from the minimal model. In addition, increasing the
chemostat dilution rateD contributes to self-damping of the resources
(i.e., negative feedback), which reduces the likelihood of alternative
stable steady states and therefore cycles. In sum, our findings highlight
the critical role that resource feedbacks operating on different

timescales play in shaping the complex dynamical behaviors of
microbial communities.

Cycling between alternative stable states enables resistance to
invasion
The capacity of a microbial community to resist invasion by cheater
strains (i.e., strains that can benefit from public goods but do not
produce them) plays a critical role in the stability and functionality of
natural and engineered microbial communities40,41. Using mathema-
tical models, previous studies have shown that communities of cross-
feeding auxotrophs can be vulnerable to invasion by a cheater that
consumes both exchanged resources without participating in their
production (e.g., dual auxotroph)25. In certain parameter regimes,
when the community reaches a stable equilibrium, the cheater can
successfully invade by depleting the shared resources (public goods).
As the resource is depleted, the producer strains become extinct, and
thus the community collapses. Crucially, a successful cheater invasion
can occur because both resources are available simultaneously,
allowing the cheater to growunimpeded.Notably, spatial separationof
these resources through local interactions (microbe and resource
dispersal) within the community can prevent the cheater from desta-
bilizing the community by limiting access to at least one resource
across different spatial locations42. We hypothesized that the temporal
separation of required resources (Fig. 4a) could similarly block inva-
sion of a dual auxotroph cheater by preventing simultaneous access to
both amino acids.

To test this idea, we simulated an invasion of a dual auxotroph
cheater in our chemostat model where cross-feeding is obligatory (no
external amino acid supply) (Fig. 5a). Consistent with previous
experimental research43, we assume that the loss of both biosynthetic
pathways in the cheater confers a moderate fitness advantage,
enabling it to outcompete either of the single auxotrophs for limiting
glucose in the presence of unlimited amino acids. Our simulations
demonstrate that when the parameters were set to achieve a stable
equilibrium, i.e., q11q22 <q12q21, the cheater could invade the resident
community and cause collapse through depletion of the exchanged
resources (Fig. 5b, d and Supplementary Table 1). This also occurred
when the parameters permitted oscillations (q11q22 >q12q21,) and the
system resides at an unstable steady state (Supplementary Fig. 10a). In
these stable equilibrium cases, both amino acids are produced simul-
taneously and thus can be exploited by the cheater strain. With all
community members limited by amino acids, the moderate fitness
advantage of the cheater strain enables it to outcompete the resident
strains, eventually causing community collapse as the producer strains
become extinct (Fig. 5f).

By contrast, for parameter values that lead to oscillations
(q11q22 >q12q21) the cheater is unable to successfully invade following
its introduction (Fig. 5c and Supplementary Fig. 10b). The exclusion of
the cheater occurs when the production of the exchanged resources
(i.e., amino acids) are temporally separated, such that only one is
available at any given time (Fig. 5e). Since the cheater requires both
amino acids, its growth is always amino acid limited. During one phase
of the oscillation, both the cheater and theΔtyrA auxotroph are limited
by tyrosine, although phenylalanine is abundant. During the sub-
sequent phase of the oscillation, the cheater strain and ΔpheA are
limited by phenylalanine, while tyrosine is abundant. Therefore, amino
acid limitation at each phase of the oscillation results in a persistent
negative net growth rate of the cheater. The specific growth rate of the
cheater strainwill only ever be slightly higher than the slowest growing
member from the resident community (Fig. 5g). Over time, the abun-
dance of the cheater is gradually reduced through dilution in the
chemostat as the resident community continues to cycle between two
metabolic states. Consistent with our simulation results, this invasion
outcome was confirmed experimentally in our oscillating community
(Supplementary Note 5 and Supplementary Fig. 11).
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Discussion
Previous models of mutualisms in general, and cross-feeding in parti-
cular, do not predict self-sustained oscillations in the absence of
external forcing. The salient difference in our system is the feedback
generated by amino acid release in response to amino acid limitation of
the producer auxotroph (Fig. 2b). This represents a strategy of resource
management involving the release of excess produced amino acid

during periods of limitation by the required amino acid. This strategy
could be explained by an endogenous stress response mechanism in E.
coli in which specific amino acids, including the aromatics, accumulate
during starvationbecauseofproteindegradation29,44,45. As analternative
explanation, the observed resource dynamics could be an indirect
consequence of the auxotrophic gene knockouts. Metabolic flux
intended to remedy starvation of the required amino acid could
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potentially leak into an overlapping pathway (Supplementary Note 2).
Indeed, the anabolic pathways for tyrosine andphenylalanine are nearly
identical, with only the final two reactions being distinct, suggesting
that dysregulation of one pathway could impact themetabolic fluxes of
the other pathway. Beyond the specificmechanism, the resulting cross-
inhibition (Fig. 2h, i) captured in our models is essential to the oscilla-
tions in our system. Further, similar features of our system may occur
more broadly in ecological systems shaped by resource exchange
beyond microbial communities. For instance, a plant growth model
with separate root and shoot compartments that share excess resources

(nitrogen and carbon) shows similar dynamics, alternating between two
metabolically distinct states46,47.

Although the interaction between strains ismutualistic (+/+)when
averaged over an entire cycle, at most instants one auxotroph benefits
without concurrently returning the favor, representing a transient
commensalism. Due to the oscillations, species take turns as they
alternate out of phase between disjoint periods of growth and amino
acid resource production (Fig. 4a). Such dynamics mirror reciprocal
altruism, where each strain temporarily sacrifices its growth to benefit
the other, ensuring long-term mutual benefit48.
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The daily dilution in our experiments imposes a large perturbation
on the system. Our chemostat model shows that the cycles observed
experimentally do not require periodic external forcing, but the inter-
action between internal cyclic dynamics and external forcing has been
shown to lead to complex dynamics in other systems13,35,38. We explore
this interaction by varying the dilution frequency while targeting a
constant biomass through control of the dilution factor (Supplemen-
tary Note 3). For frequent and small dilutions, the dynamics resemble
slight variation around theunforced limit cycle in our chemostatmodel.
By contrast, larger, less-frequent dilutions generate integer-periodic
dynamics mirroring our experiment (Supplementary Figs. 12 and 13).
This connects our idealized continuous model with our experiments
and suggests avenues for future exploration. For instance, future work
could explore how specific patterns of environmental forcing, e.g.,
fluctuating resource supply, transient perturbations, or shifts in dilution
frequency, could be used to control community dynamics.

Our focus on a single two-member cross-feeding community
allowed us to dissect the feedback mechanisms driving population
cycles. This detailed characterization may be more challenging in
complex communities due tomorecomplexpairwise andhigher-order
interaction mechanisms. As such, future work could examine whether
similar dynamical behaviors emerge in other cross-feeding pairs, or in
communities with three or more interacting members. In addition,
future work could adopt a more systematic approach to screening
strains by estimating resource production and consumption para-
meters in monoculture and identifying pairs of strains likely to exhibit
oscillations based on the criterion qiiqjj >qijqji. Our model could then
be used to guide the selection of amino acid supplementation con-
centrations tested experimentally in search of population cycles.
Similar models could also be constructed to represent various inter-
acting topologies in three-member communities, which could be
computationally explored for oscillatory dynamics.

Our findings offer insights into how microbial communities could
be engineered to achieve stable yet dynamic coexistence through
reciprocal feedback-mediated resource exchange. The feedback loops
in this system establish cooperation via nutrient limitation. This
mechanism could inspire novel strategies for engineering the dynamics
of synthetic microbial communities. For example, the efficiency and
robustness of applications such as biomanufacturing and waste reme-
diation could benefit from division-of-labor strategies that emerge
naturally from self-organized oscillations49. Further, the temporal pat-
terning of public goods associated with population cycling could block
cheater mutants from establishing, whether arising internally through
evolution or introduced externally via dispersal. Consistent with this
notion, ΔpheA displayed an abrupt increase in growth in certain repli-
cates, potentially due to mutations (Fig. 1d, left). These dynamics were
only observed in stable equilibrium conditions and destabilized the
community. By contrast, all oscillating communities followed the same
predictable trajectory (Fig. 1d, middle), suggesting oscillations might
confer enhanced robustness and stability. Looking ahead, the ability to
tune population cycles by adjusting environmental parameters such as
external resource concentrations suggests that this mechanism could
be exploited for sense-and-respond functionalities in living cellular
therapeutics50. More broadly, our work highlights how intrinsic
feedback-mediated resource exchange can lead to rich and complex
dynamical behaviors with potential applications in microbial engineer-
ing, synthetic ecology, and even programmable therapeutic consortia.

Methods
Strains
Strains used for all experiments were E. coli K-12 BW25113 single amino
acid auxotrophs derived from theKeioKnockout Collection51. Deletion
of the tyrA and pheA genes established the tyrosine and phenylalanine
auxotrophies, respectively. Each auxotroph was transformed with a
pBbA6c plasmid52 harboring a chloramphenicol resistance gene for

plasmid maintenance, and an isopropyl β-D-1-thiogalactopyranoside
(IPTG) inducible fluorescence marker. The auxotrophs were trans-
formed such that ΔtyrA expressed CFP and ΔpheA expressed RFP.

Construction of cheater strain
To construct a cheater strain, ΔtyrA and ΔpheA double knockout
mutant, we employed the same recombineering strategy used in the
construction of the Keio collection51. First, to enable selection via
kanamycin resistance, the existing antibiotic resistance cassette in the
ΔpheA background was removed using the FLP recombinase-mediated
excision system53. Briefly, cells were transformed with the FLP
recombinase-expressing plasmid pFLP2 (NovoPro V006225), and the
expression of FLP was induced to excise the cassette flanked by FRT
sites. The pFLP2 plasmid was subsequently cured by growth at 37 °C. A
PCR product containing a kanamycin resistance cassette flanked by FRT
sites and 50-bp homology arms targeting tyrA was generated from the
pKD4 (Addgene plasmid #45605) plasmid using primers: Forward, 5′-
GATGATGTGAATCATCCGGCACTGGATTATTACTGGCGATTGTCATTC
GCTGTAGGCTGGAGCTGCTTCG-3′; Reverse, 5′-GGATCTGAACGGGCAG
CTGACGGCTCGCGTGGCTTAAGAGGTTTATTATG-3′. This PCR frag-
ment was introduced into ΔpheA lacking a kanamycin cassette and
harboring the λ-Red recombinase expression plasmid pMP11 (Addgene
plasmid #215559). Cells were grown in LB media containing 1mM
L-arabinose at 30 °C to induce λ-Red expression and prepared as
electroporation-competent cells. Electroporation was performed with
400ng of PCR product in a 0.2 cm cuvette using a Bio-Rad electro-
porator (2.5 kV, 25 µF, 200 Ω). After electroporation, cells were imme-
diately recovered in 1ml of SOC media (2% Bacto Tryptone, 0.5% yeast
extract, 10mMNaCl, 2.5mM KCl, 10mMMgCl2, 10mMMgSO4, 20mM
glucose) and incubated for 1 h at 30 °C. Transformants were selected by
plating one-tenth of the culture on kanamycin and ampicillin containing
LB agar and incubating overnight at 30 °C. The pMP11 plasmid was
cured by subsequent overnight growth at 37 °C. Finally, the cheater
strainwas transformedwith apBbA6cplasmidharboring IPTG inducible
GFP fluorescence marker.

Preculture conditions
For each experiment involving the ΔtyrA or ΔpheA auxotrophs, pre-
cultures were prepared by inoculating EZ Rich Defined Media
(Teknova, #M2105) (Supplementary Table 3) containing 25 µg/mL
chloramphenicol with approximately 2 µL of the appropriate glycerol
stock. Cultures were then incubated for 16 h at 37 °C with 250 RPM
orbital shaking. Cultures were then centrifuged for 5min at 3000 × g,
and the cell pellet was washed once with MOPS Minimal Media
(Teknova, #M2106) prior to resuspension.

Microscopy and cell counting
Absolute abundance measurements of the auxotrophs in co-culture
were determined by combining OD600 reading of the co-culture with
relative abundance measurements. Relative abundance was measured
using epifluorescence microscopy and a cell counting script that
categorizes and counts cells based on their fluorescent label. For each
culture, a 2 µL sample was spotted onto a glass slide treated with poly-
L-lysine (Sigma, #P8920) and covered with a glass coverslip. Micro-
scopy was performed on a Nikon Eclipse Ti where two regions of
interest were imaged for each sample using a 20X objective. Each
imagewas composed of a phase contrast channel, an ECFP channel for
ΔtyrA identification (Nikon, #96361, 436 × 20 nm excitation/
480 × 40 nm emission), and an mCherry channel for ΔpheA identifi-
cation (Nikon, #96365, 560 × 40nmexcitation/630 × 70nmemission),
and a FITC channel for cheater identification (Nikon, #96242,
470 × 40nm excitation/534 × 55nm emission).

The total number of cells in each fluorescence channel was
counted using ImageJ and Nikon imaging software (NIS-Elements
AR, version 4.51). In ImageJ, an automated script applied a Gaussian
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blur filter (σ = 1) before using the Find Maxima function for indivi-
dual cell identification. A peak prominence value of 300 was set for
the Find Maxima function, and cells located at the image edges were
excluded from the final count. For the cheater invasion experiment
(Supplementary Note 5 and Supplementary Fig. 11), cell numbers
were measured automatically in the Nikon imaging software using
the “Binary” tool with a size threshold (<4 μm) to exclude debris and
non-cellular artifacts. CFP-, RFP-, and GFP-expressing cells were
quantitatively counted using the “Automated Measurement” tool,
applying fluorescence intensity thresholds of 250, 2000, and 2000
(arbitrary units), respectively. Quantitative data were further ana-
lyzed and visualized using Python’s Matplotlib and Seaborn packa-
ges. All measurements were performed in triplicate. Ourmicroscopy
based relative abundance measurements were validated with the
same measurements made via colony forming unit (CFU) measure-
ments (ρ=0:9928, p= 1:4619e� 10) (Supplementary Fig. 14).

Obligate exchange experiment
Precultures of ΔtyrA and ΔpheA were diluted into 1mL of fresh MOPS
Minimal Media (Teknova #M2106) (Supplementary Table 3) containing
25 µg/mL chloramphenicol and 1mM IPTG as monocultures and a
pairwise coculture. Each culturewas inoculated toachieve a total optical
density at 600nm (OD600) of 0.1. For the coculture, the inoculum ratio
of the two auxotrophs was 1:1. All cultures were then incubated for 24 h
at 37 °C with 250 RPM orbital shaking. Following incubation, the OD600

of each culturewasmeasured. Relative abundancewas alsomeasured in
the community culture using epifluorescence microscopy (Nikon
Eclipse Ti) and an automated cell counting script (ImageJ). Absolute
abundance of each strain was calculated by multiplying the relative
abundance measurements with the OD600 of the community.

Batch passaging experiments
Stock solutions of L-tyrosine (Sigma-Aldrich, #T3754) and
L-phenylalanine (Dot Scientific, #DSP20260) were prepared in Milli-Q
water, and subsequently used to prepare supplemented MOPS Mini-
mal Media. The tyrosine stock solution was prepared at a 1mM con-
centration inwarmwaterwith 1 h of sonication to facilitate dissolution.
The phenylalanine stock solution was prepared at a 40mM con-
centration with stirring. For the initial batch passaging experiment
(Fig. 1d), the amino acid supply concentrations were either 0 µM,
10 µM, or 20 µM for tyrosine, and 0 µM, 10 µM, or 20 µM for phenyla-
lanine. For the expanded batch passaging experiment (Extended Data
Fig. 1), the supply concentrations of tyrosine were 0 µM, 5 µM, 10 µM,
20 µM, 40 µM, or 80 µM, while the concentrations of phenylalanine
were 0 µM, 10 µM, 20 µM, 40 µM, 80 µM, or 160 µM.

For all batch passaging experiments, precultures of ΔtyrA and
ΔpheA were diluted into 1mL of fresh media (n= 3) containing 25 µg/
mL chloramphenicol and 1mM IPTG as pairwise communities. The
total OD600 of the inoculum was equal to 0.1 for all conditions. Com-
munities were established at a ratio of 9:1 (ΔtyrA to ΔpheA). This
inoculum bias was introduced to synchronize the oscillation phase
across replicates and was not necessary for the development of
oscillations (Supplementary Fig. 15). Cultures were then incubated at
37 °C with 250 RPM orbital shaking and passaged every 24 h to an
OD600 of 0.1 in freshmedia. At eachpassage, the relative abundance of
each auxotroph was measured using epifluorescence microscopy
(Nikon Eclipse Ti) and an automated cell counting script (ImageJ).

Cheater strain invasion analysis during batch passaging
The cheater strain was introduced during the batch passaging
experiments between Day 3 and Day 4. Specifically, the fourth passage
was inoculated in fresh media with OD600 of 0.15, composed of 0.1
OD600 of the previous passage and 0.05 OD600 of the cheater strain.
Subsequent passages were performed by transferring a total OD600 of
0.1, consistent with the batch passaging experiment. At each passage,

the relative abundances of the ΔtyrA, ΔpheA, and cheater strains were
quantified using Nikon imaging software.

Amino acid and glucose profiling experiment
Precultures of ΔtyrA and ΔpheA were diluted as monocultures (n=3)
into 4mLof freshMOPSMinimalMedia (Teknova, #M2106) containing
25 µg/mL of chloramphenicol. Monocultures of ΔtyrA were supple-
mented with either 10 µM, 20 µM, or 200 µM of tyrosine, and ΔpheA
was supplemented with either 20 µM, 40 µM, or 400 µM of phenylala-
nine. Following inoculation, the cultures were incubated with shaking
for 24 h (37 °C/250 RPM). Every 2 h during the first 12 h of incubation,
the OD600 of each culture was measured using a NanoDrop spectro-
photometer (Thermo, #ND-ONEC-W), and 300 µL samples were
extracted for further processing.

Purified conditioned media were obtained from each sample
through centrifugation and aspiration of the supernatant, followed by
filtration using a 0.2 µMhydrophilic polyethersulfonemembrane (Pall,
#8019). A final set of samples was obtained at 24 h of incubation.

Quantitation of tyrosine, phenylalanine, and glucose in the pur-
ified conditioned media samples was achieved with separate enzy-
matic assay kits and a multimode microplate reader (Tecan Spark).
Tyrosine was quantified with a colorimetric kit (Cell Biolabs,
#MET5073), phenylalanine was quantified with a fluorometric kit
(bioAssay Systems, #EPHE100), and glucose was quantified with a
fluorometric kit (Invitrogen, #A22189).

Intrabatch dynamics experiment
Precultures of ΔtyrA and ΔpheA were used to inoculate 1mL of fresh
MOPS Minimal Media (Teknova, #M2106) supplemented with 10 µM
tyrosine, 20 µM phenylalanine, 1mM IPTG, and 25 µg/mL chlor-
amphenicol with three replicates for each condition. The inoculum
ratio of ΔtyrA to ΔpheA was 1:9, and the total community OD600 was
equal to 0.1. Cultures were then incubated at 37 °C with 250 RPM
orbital shaking and passaged every 24 h by diluting the culture to an
OD600 of 0.1 at the beginning of each passage. At each passage, the
community composition was analyzed using epifluorescence micro-
scopy (Nikon Eclipse Ti) and an automated cell counting script (Ima-
geJ). Daily passages into fresh media and measurements of auxotroph
abundance proceeded for a total of 6 days.

During the fifth and sixth batches, samples of each culture were
taken every 2 h for the initial 8 h, then once more at 24 h. Sampling
within the batch was performed without passaging, and steps were
taken to minimize the duration that cultures were outside of the
incubator. Each sample consisted of 10 µL, of which 2 µL was used for
relative abundance quantification with epifluorescence microscopy,
and another 2 µLwasdiluted to 20 µL for quantification ofOD600with a
NanoDrop spectrophotometer (Thermo, #ND-ONEC-W).

Parameter inference
The differential equation model (Eq. (1)) was fit to the experimental
data shown in Fig. 1d using thefmincon function inMATLAB (R2022a),
which minimizes a constrained nonlinear multivariable objective
function. We constructed an objective function that simulates the
passaging experiment usingode89 andpredicts auxotroph abundance
values corresponding with the data presented in Fig. 1d. The L2-norm
of the residuals, defined as the difference between the predicted and
measured abundance values,was added to a regularization error as the
net output from the objective function. The regularization error was
computed from the L1-norm of the parameter set. A best estimate
weighting scheme was applied to the parameter values during reg-
ularization to account for the differences in parameter value magni-
tudes. This scheme normalizes each parameter according to its weight
prior to computing the L1-norm. Parameter weights were derived from
the average parameter value taken over a series of manually selected
parameter sets that producedqualitatively accurate results. Finally, the

Article https://doi.org/10.1038/s41467-025-63986-y

Nature Communications |         (2025) 16:8919 10

www.nature.com/naturecommunications


L1-norm was multiplied by a regularization parameter (λ) to scale the
regularization error.

Due to the sensitivity of the optimization to the initial conditions,
we independently varied the regularization parameter and the initial
parameter guess. The initial parameter sets were constructed from a
Latin hypercube sampling design where the bounds were determined
from a manually selected set of parameter sets. All parameters were
assigned a non-negative constraint, while μ1, max and μ2, max were also
assigned an upper bound constraint.

Once the parameter optimizations were complete for all regular-
ization parameters and all initial parameter sets, the optimized para-
meter sets were evaluated against a validation dataset (Supplementary
Fig. 2), and the final parameter set was selected based on the lowest
overall mean squared error across the training and validation datasets.

Bifurcation analysis
Bifurcation analysis was performed using the inferred parameter sets
(Supplementary Tables 1 and 2). Direct model simulations were per-
formed to obtain the steady-state community compositions for each
set of amino acid supplementation concentrations. Hopf, fold, and
transcritical bifurcations were identified and followed using numerical
continuation in MatCont53 using the default integration parameters.

Statistical analysis
Statistical analyses were performed where appropriate to highlight sig-
nificant differences between experimental conditions. Statistical com-
parisons are indicated in all relevant figures, using standard significance
markers (*p<0:05; **p<0:01; ***p<0:001; n.s., not significant). Exact p
values are reported in the corresponding figure legends. Where applic-
able, a corrected Hedges’ effect size (g*) is provided for each p-value.

Unpaired two-tailed t-tests were performed to compare measure-
ments across different amino acid supplementation regimes and other
experimental treatments (Fig. 1b). For Fig. 1d, a t-test was used to assess
the presence of period-two oscillations in the absolute abundance
dynamics of the two-member co-culture. To do this, we compared the
average community composition ratio (ΔtyrA/ΔpheA) between even
and odd days, beginning on day 3 to allow transient dynamics to settle.
A significant difference between these groups supports the presence of
alternating populations observed in period-two oscillations.

For binary classification of amino acid presence/absence based on
the analytical limit of detection (LOD), generalizedestimating equations
(GEE) with a binomial distribution and exchangeable correlation struc-
ture were used to model the probability of released amino acid pre-
sence as a function of required amino acid availability (Fig. 2h, i). This
approach accounts for potential correlations between measurements
madeona single culture over time. Themodel includes an intercept and
a binary predictor indicating the presence/absence of required amino
acid. Coefficients were estimated using quasi-likelihood methods, and
significance was determined using Wald tests. Confidence intervals
(95%) were computed by transforming the linear predictor and its
standard error into the probability scale using the logistic function.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for Figs. 1b, d, and 2b–g, and Supplementary Figs. 1, 2, 3, 5,
6, 11,14, 15, and 16, can be found in the Source Data file. Source data for
Fig. 1d can also be found in the publicly available GitHub repository
https://github.com/VenturelliLab/Ross_et_al_202554 along with the
associated scripts for model fitting and data plotting. The GitHub
repository also contains the key parameter sets used for model
simulations in producing Figs. 1d, 3b, c, 5b–g, and Supplementary
Figs. 2, 3, 5, 10, 11, 12, and 13. All data used in this work are original and

were generated internally; no previously published datasets were
reused. Source data are provided with this paper.

Code availability
Code for fitting the dynamical models, producing model predictions,
and simulating cheater invasion experiments is publicly available at the
following GitHub repository https://github.com/VenturelliLab/Ross_
et_al_202554. The repository includes all scripts and associated doc-
umentation necessary to reproduce key results.
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