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% Check for updates The computational analysis of large proteomics datasets from gradient profil-

ing or spatially resolved proteomics is often as crucial as experimental design.
We present RAPDOR, a tool for intuitive analyzing and visualizing such data-
sets, based on the Jensen-Shannon distance and analysis of similarities between
replicates, applied to the identification of RNA-binding proteins (RBPs) and
spatial proteomics. First, we examine the in-gradient distribution profiles of
protein complexes with or without RNase treatment (GradR) to identify RBPs in
the cyanobacterium Synechocystis 6803. RBPs play pivotal regulatory and
structural roles. Although numerous RBPs are well characterized, the complete
set of RBPs remains unknown for any species. RAPDOR identifies 165 potential
RBPs, including ribosomal proteins, RNA-modifying enzymes, and proteins not
previously associated with RNA binding. High-ranking putative RBPs, such as
ribosome hibernation factor LrtA/RaiA, phosphoglucomutase SII0726, anti-
toxin Ssl2245, and preQ(1) synthase QueF predicted by RAPDOR but not the
TriPepSVM algorithm, are experimentally validated, indicating the existence of
uncharacterized RBP domains. These data are available online, providing a
resource for RNase-sensitive protein complexes in cyanobacteria. We then
show by reanalyzing existing datasets that RAPDOR effectively examines the
intracellular redistribution of proteins upon growth factor stimulation. RAP-
DOR is a generic, non-parametric tool for analyzing highly complex datasets.

RNA-binding proteins (RBPs) are crucial components of ribonucleo-
protein complexes, including ribosomes, the signal recognition parti-
cle, and CRISPR-Cas complexes and play vital roles in all domains of
life. The eukaryotic RBP database lists more than 6300 ortholog
groups with more than 315,000 individual RBPs across 162 eukaryotic
species'. Several thousand RBPs have more recently been identified in
mammals, including many metabolic enzymes that are also binding to

RNA**, RBPs play crucial roles in various regulatory pathways and are
involved in the regulation of alternative splicing®, in neural cell
maturation in mammal cells’, cancer and epigenetic mechanisms®, and
development in plants’.

In prokaryotes, RBPs play significant roles in the post-
transcriptional regulation of gene expression. Previously described
regulatory RBPs in gram-negative bacteria include Hfg*’, ProQ’™,
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CsrA®” and KhpA/B'. Many RBPs have been discovered in recent years
also in other groups of bacteria, such as in gram-positive Streptococcus
pneumoniae®. Several RBPs were described also for different
Archaea®. However, the complete set of RBPs has not yet been iden-
tified for any organism.

Consequently, experimental and computational methods have
been developed to identify putative RBPs. In silico methods mostly rely
on amino acid strings (k-mers) as features to classify the RNA-binding
nature of a protein. Prominent examples for such prediction tools
based on machine learning are RBPPred”, its successor Deep-
RBPPred, and TriPepSVM™. TriPepSVM was trained on k-mer fre-
quencies of known RBPs from different organisms. However, it can
also identify RBPs in cross-species predictions.

High-throughput experimental methods for identifying candidate
RBPs include fractionation approaches, which are based on separating
the cell lysate by density gradient ultracentrifugation or size exclusion
chromatography and extracting fractions based on differences in
molecular mass or buoyant density. In the Grad-Seq ultracentrifuga-
tion approach, the proteome and transcriptome composition of each
fraction is determined. Overlapping protein/transcript occurrences
indicate potential RBP-RNA interactions. The first application of this
method identified the major RNA chaperone ProQ in Salmonella®.
Grad-Seq has been used since to identify RBP candidates in different
types of bacteria, including Clostridioides difficile, Enterococcus spe-
cies, Fusobacterium nucleatum, and the cyanobacterium Synechocystis
sp. PCC 6803 (Synechocystis 6803)"*>*7%,

To obtain a higher resolution of the captured complexome, the
glycerol or sucrose ultracentrifugation gradient can be replaced with
size exclusion chromatography®. However, the co-occurrence of a
particular RNA and a particular protein is not necessarily indicating
their interaction. To address this issue, two further protocols were
established. R-DeeP was developed using the HeLa S3 cell line”, while
GradR was developed in Salmonella enterica®®. Both methods are based
on gradient fractionation of whole cell lysates, similar to Grad-Seq. But
in contrast to Grad-Seq, two gradients are prepared in parallel. One
gradient is loaded with cell lysate that was treated with RNase
beforehand, while the other gradient serves as a control and is loaded
with untreated cell lysate. After ultracentrifugation and fractionation,
the protein contents of all fractions are measured using mass spec-
trometry. Proteins that shift in the fractions of the RNase-treated
gradient were binding RNA directly (RBPs) or were part of an RNA-
containing complex (RNA-dependent proteins, RDPs), as the mass of
the RNA was removed and the RNP-complex disintegrated into smaller
complexes upon digestion. The R-DeeP study identified 1784 RNA-
dependent proteins in HeLa S3 cells. Of these, 537 proteins lacked a
previous link to RNA?. In Salmonella, the RBP FopA was identified
using this method?.

Since these types of experiments produce large and complex
datasets, their computational analysis is just as important as the
experimental design. While analysis pipelines have been published
along with these experiments, their flexibility regarding the number of
fractions and replicates is often limited. For example, R-DeeP fits
Gaussian models to the curve representing the mean mass spec profile
from the three replicates for each condition. To ensure as many peaks
as maxima are found in the profile, the location, value and standard
deviation estimate for each maximum found was provided for the
Gaussian model. In a second step, Gaussian models were fitted to each
replicate. A Student’s ¢ test was then used to assess the p-value (FDR-
corrected) for the difference between the Gaussian fits of control and
treatment, indicating shifts that are associated with RNA
dependencies”. However, the protein abundances throughout the
different fractions do not necessarily follow Gaussian distributions and
the R script used to analyze the experiment was fixed to 25 fractions
and three replicates per group. Adjusting this script for a different
number of fractions requires considerable manual effort.

In another approach, hierarchical clustering was employed to
analyze GradR data and discover RBPs clustering with known ones®,
Although in this way the FopA protein was discovered as a previously
unknown member of the family of FinO/ProQ-like RBPs*, this metho-
dology lacks a straightforward way to account for experimental and
biological variance by using replicates.

To overcome existing limitations, we developed a tool based on
the Jensen-Shannon Distance (JSD) and the analysis of similarities
(ANOSIM), called Rapid ANOSIM using Probability Distance for esti-
matiOn of Redistribution (RAPDOR). RAPDOR can be used to analyze
any distribution of proteins over a fractionation analysis with two
conditions (e.g., RNase treated vs. control). Since RAPDOR is inde-
pendent of the fractionation approach, it can handle data resulting
from ultracentrifugation as well as size exclusion chromatography.

As a direct application, we used RAPDOR for the analysis of pro-
tein complexes after gradient profiling with or without RNase treat-
ment (GradR) in the model cyanobacterium Synechocystis 6803.
Cyanobacteria differ from most non-photosynthetic bacteria by the
presence of extensive intracellular photosynthetic membrane systems,
the thylakoids. But it is the presence of these membrane systems that
likely triggered a particular set of RRM domain-containing RBPs to get
involved in the intracellular transport and localization of certain
mRNAs*?°, Moreover, there is extensive evidence for the presence of
post-transcriptional regulation in cyanobacteria® >, However, infor-
mation on regulatory RBPs and RNA chaperones in cyanobacteria is
limited. Homologs of enterobacterial RNA chaperones, such as CsrA,
ProQ, FinO, or Hfq, are missing in cyanobacteria or do not bind RNAY.
For Synechocystis 6803, previous Grad-Seq analysis yielded a small
number of potential RBPs*. One of these proteins, the YIXR homolog
Ssr1238, was recently verified as involved in tRNA maturation®,

Here, we provide a list of potential RBPs in Synechocystis 6803
identified by RAPDOR using the generated GradR data and computa-
tionally predicted by a custom version of the TriPepSVM algorithm. In
addition, we apply RAPDOR to existing spatial proteomics datasets
from HelLa cells* to showcase its broader suitability. In that dataset,
the redistribution of proteins among cellular compartments under
various stress conditions was investigated. While the original pub-
lication employed a tailored approach using parametric tests to iden-
tify the distribution shifts, our findings demonstrate that the generic
and non-parametric RAPDOR workflow produces similar results with
fewer statistical assumptions, thus being more robust and less prone
to outliers in different application scenarios. RAPDOR, as a flexible-to-
use tool, is available as a PyPl package with its source code and its
documentation on https://domonik.github.io/RAPDOR/. The code
used to analyze the data is available as a Snakemake workflow on
GitHub (https://github.com/domonik/synRDPMSpec). The GradR data
is available online in a static version of RADPOR at https://synecho-
rapdor.biologie.uni-freiburg.de, providing a comprehensive resource
for the identification of RNase-sensitive protein complexes in Syne-
chocystis 6803.

Results

GradR analysis of an unicellular cyanobacterium

Triplicates of Synechocystis 6803 cultures were grown under moderate
light conditions (50 umol m™2s™) in BG11 medium, and cell lysates were
prepared when an OD-so of 0.9 was reached. The cleared cell lysates
were split into two parts of identical volumes. One part of each lysate
was RNase-treated, while the second was mock-treated for control
(Fig. 1A). Then, all lysates were subjected to GradR ultracentrifugation,
but using B-D-maltoside (DDM) as a soft membrane solubilizer and
sucrose gradients instead of glycerol. Proteins that exhibited a shift in
fractions were either bound to RNA directly (RBPs) or lost their asso-
ciation to an RNA-containing complex (RNA-dependent proteins).
Gradients showed a distinct color profile after centrifugation, relating
to the specific pigment-containing complexes of Synechocystis (Fig. 1).
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Fig. 1| Experimental approach and fractionation of gradients. A Experimental
setup to identify RNA-dependent proteins. Shifts in the in-gradient position of
proteins following RNase digestion can result from the loss of the mass of RNA
(brown wavy line) that was bound to an RBP, or the disruption of RNA-bridged
protein complexes, meaning that shifting proteins had been associated with an
RNA-containing complex (yellow protein). B Separation of the extracted RNA of the
untreated control sample replicate 3 on a 10% denaturing gel stained with ethidium
bromide verifies RNA quality from the different fractions. C RNA from the different
fractions in the treated replicate 3 (after RNase treatment). D Protein distribution

for the RNase-treated fractions. E Protein distribution for the fractions without
RNase. In panels (D and E), a 12% SDS-PAGE was loaded with 20 pL per fraction of
replicate 3 and stained with InstantBlue Coomassie Protein Stain (Abcam).

F Overview on GradR fraction complexity and distribution. For each fraction, the
number of different proteins with the highest abundance in that fraction is given.
Data are shown for the three biological replicates BR1-BR3, with or without (con-
trol) RNase. The shading gradient goes from dark gray (many peaking proteins) to
white (few or no proteins peaking in this fraction). Source data are provided as a
Source Data file.

In the untreated sample, the RNA was distributed along the gradient
with concentration peaks in fractions 3-6 for short RNAs and frac-
tions 16-20 for longer RNAs. Most RNA was in pellet fraction 20
(Fig. 1B). As a proof of concept, the distribution of some known RNA
within the fractions is shown in Supplementary Fig. 1. The RNase P
RNA RnpB*® was detected in fractions 6-13, with a peak in fractions 9
and 10. A similar distribution plus presence in fraction 20 was
obtained for the transfer-messenger RNA (tmRNA) SsrA*, while the
SRNA PmgR1** was detected in fractions 5-12, with a peak in fractions
8 and 9 (Supplementary Fig. 1). After the addition of RNase, all RNA
was digested in fractions 1-10, as well as the high molecular weight
RNA in fractions 11-20. In the last fractions, some RNA remained,
mainly <400 nt in length. In fraction 20 more remaining RNA was
observed, indicating a protective effect of the co-fractionating
ribosomal proteins (Fig. 1C).

The protein composition of each fraction was determined by mass
spectrometry analysis, measuring 100 uL aliquots of each fraction. In
total, 1134 proteins were detected, 6 were found in only one replicate,
62 in two replicates, and the rest had unique peptides in all three
replicates (Supplementary Data 2). Hence, ~ 31% of the annotated 3.681
proteins in Synechocystis 6803 were identified, which relates to the fact
that only material from a single growth condition was analyzed.
Nevertheless, all samples showed good correlation (Spearman corre-
lation coefficients of Intensity-Based Absolute Quantification (IBAQ)
values > 0.89 between replicates from the same treatments, and > 0.85
between replicates from different treatments), and the principal com-
ponent analysis revealed a clear separation of RNase-treated and con-
trol samples already in the first principle component (24.32% variance
explained; Supplementary Fig. 2). Besides the mass spectrometric
analysis, the distribution of proteins was visualized by SDS-PAGE with
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Fig. 2| RAPDOR workflow. The RAPDOR tool converts analyzed mass spectrometry
data with x fractions from n replicates and two conditions into probability dis-
tributions. It continues with the calculation of the relative entropy (relEntr) and the
Shannon entropy. It uses the Jensen-Shannon distance (/SD) between all pairwise
samples to carry out an ANOSIM and evaluates the effect size via the /SD between

the mean distributions of the conditions. Lastly, distribution changes are visualized
in an interactive web server displaying several parameters such as the relative
position shift (RSD) and the relative distribution change (RDC). Depending on the
number of replicates, the individual proteins can be either tested for redistribution
using ANOSIM or ranked according to their assigned ANOSIM R values.

subsequent Coomassie blue staining (Fig. 1D, E). In the gel, no differ-
ence between the treated and untreated samples was observed. Most
proteins were present in fractions 3-8 and in the pellet fraction 20. An
overview of fraction complexity and distribution is given in Fig. 1F.
Plotting the sedimentation of selected protein complexes to the
respective fractions in comparison to the calculated molecular masses
indicated a resolution limit of ~50kDa (Supplementary Fig. 3). A
regression analysis showed a linear relationship between the calculated
molecular masses and their fraction distribution.

A tool for the analysis of protein compartment/fraction dis-
tribution profiles

For the analysis of in-gradient distribution profiles, we developed a
tool based on the /SD**, called RAPDOR. The analysis workflow of such
profiles consists of basically three steps: 1) preprocessing, 2) detection
of significantly differential profiles between the treated and untreated
samples, and 3) prediction of the profile shift between conditions
(Fig. 2). Concerning preprocessing, the input for the RAPDOR work-
flow is a csv file containing a row for each protein and a column for
each fraction, and sample, respectively. Our tool further allows the use
of an averaging kernel of adjustable size to smooth the distributions
along the fraction dimension. This can reduce the variance among
replicates since experimental fractionation is usually not 100% repro-
ducible. The smoothed intensities are then normalized to add up to 1.
This results in a probability distribution function Pj’ where x € X is the
fraction number, i marks the corresponding protein andj the sample.
In preparation for the second step (detection iof significantly different
profiles), it calculates the mean distribution P,(x) = %ZjetPj’.(x) for the
treated (¢t = +) and untreated (¢ = —) n replicates for each protein.

Concerning the second and third steps, the RAPDOR workflow
uses a non-parametric approach for the detection of significantly dif-
ferent profiles. To the best of our knowledge, the only other approach
to determine profile differences and shift directions is R-DeeP”. R-
DeeP, however, uses a parametric approach by assuming a Gaussian
model fit to the curve representing the distribution profile from the
three replicates for each condition. In addition, it uses the parametric
Student’s ¢ test to evaluate the significance of peak shifts, which are
found by the Gaussian fitting process. Especially, the assumption of a
Gaussian mixture model for the distribution profile is critical, as there
is only a small number of fractions, which leads to boundary effects
that are poorly modeled by a Gaussian mixture model. Consequently,
we find that R-DeeP has problems in analyzing proteins of large com-
plexes, such as the ribosomal RNA-binding protein RpsQ, where the
untreated condition usually has a large value in the last fraction, which
is then distributed to nearby lower fractions in the treated condition
(Supplementary Fig. 4).

For our non-parametric approach, we compare the profiles
between treated and untreated samples by interpreting them as
probability distributions Pﬁ(x) (i being the protein, ¢ being the condi-
tion). A natural selection to determine the effect size is then a metric
between probability distributions. TAi}us, we use the JSD as default to
evaluate the effect size via the /SD(P . (x)||P_(x)) (Eq. 1)) of the mean
distributions. Internally, the /SD uses the KL divergence (Eq. 2) of two
distributions to their mixture distribution, resulting in a divergence
measurement that is a metric and thus symmetric. Under the null
hypothesis that the treated and untreated distributions are equal, the
two distributions will be the same or at least very close, resulting in a
small average KL-Divergence to the mean distribution. On the other
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hand, an increasing KL-Divergence to the mixture distribution gathers
information against this null hypothesis. In addition, the /SD is con-
strained within the range of O to 1 when using a logarithmic base of 2. A
value of 0 shows that the two distributions do not overlap at all, while a
value of 1 indicates that they are identical, thus enhancing the inter-
pretability of the default effect size measure. Also, it is not negatively
influenced by the high number of zero values measured for most
proteins along the gradient in GradR. Thus, the /SD (i.e., our definition
of effect size) between mean profiles per condition is part of the
ranking provided by RAPDOR.

While the effect size, as defined by the /SD is valuable information
for step 2 (detection of significantly differential profiles), it does not
provide a rating of significance. For statistical significance, RAPDOR
makes use of the replicate structure of the GradR experiments or other
fractionation protocols, which typically have three replicates. Using
JSD on all pairs to measure the effect size for a specific pair of repli-
cates for the same protein, we generate a matrix of differences (or
dissimilarity) for each protein. A popular non-parametric test on a
matrix of dissimilarity was introduced with the ANOSIM R statistics
(Analysis of similarities*’). Here, the matrix of dissimilarity corre-
sponds to a set of samples, each belonging to a single site. The idea of
the ANOSIM R statistics is simply to evaluate the rank similarities
within the same condition/site and between conditions/sites. The null
hypothesis H, is that the similarities between conditions are greater or
equal to the similarities within a condition. The corresponding test
statistics R is the difference between the average rank similarities of
pairs of samples from the two different conditions () and the average
rank similarities of pairs of samples from the same condition (7}, see
Eq. 7) and “Methods”).

As mentioned previously*, the R statistic itself is a useful com-
parative measure of the degree of separation of sites (in our case,
conditions). This implies that we can use the calculated R, for each
protein to rank proteins according to their likelihood of binding RNA,
providing a more sensitive ranking than the effect size on mean pro-
files. That allows, for example, a user of the RAPDOR workflow (Fig. 2)
to look at the R statistics of some known RNA-binding proteins, and to
investigate all proteins with an R higher than the known RNA-binding
proteins.

Depending on the number of replicates, it is even possible to
calculate a p-value. For this purpose, we implement the permutation
test for H, as introduced in the original ANOSIM paper (see also
“Method” for details). The basic idea is to generate all possible per-
mutations of test/untreated labels for the replicates of a specific pro-
tein, and then calculate the R value, which provides an experimental
distribution for the R values for this protein. However, for the typical
number of n=3 replicates and k=2 conditions, there are only
(2*3)!1/((3)**2!) =10 (ref. 43, Eq. 8) possible distinct permutations, one
being the original matrix. Thus, we cannot generate significant results
with three replicates using the permutations for each protein indivi-
dually. For that reason, RAPDOR allows to generate permutations for
all proteins and conditions to determine a sampling distribution. For i
proteins, this results in (n*2)!*i many R values from distinct permuta-
tions for a dataset (Supplementary Fig. 5). Using the distribution of
these value, RAPDOR enables the calculation of a p-value for each
protein. However, when using a small number of replicates as typically
used in these fields (e.g., three to four replicates), the statistical power
will still be low after a correction for multiple testing and control of the
false discovery rate. However, users can counteract this via either
adjusting their significance level or using the R value ranking instead of
p-values.

In the third step, we need an automatic way to evaluate the
direction and the length of the shift. Here, RAPDOR computes, for each
protein, the contribution of eaAcih position to the KL-divergence
between the mean distributions P, ,_ to the corresponding mixture
distribution (Eq.)). Peaks can then be defined as the positions with

maximal KL divergence contribution. However, plateau-like peak
profiles would result in noisy peak detection. For that reason, we apply
a temperature-scaled soft-argmax function to determine the peak
locations. This procedure highlights the expected position of the
strongest shift S, in the treated and untreated replicates. Via sub-
tracting the two positions, the shift length is determined as a value
called the relative fraction shift. A shift is called left if the subtraction
results in a negative value and right if it is greater than zero. Note-
worthy, this calculates a shift direction also for very similar distribu-
tions. Therefore, it is crucial to differentiate shifts based on the mean
distance of their peaks and ANOSIM, consequently interpreting the
direction of the shift only when it is clearly discernible.

Thus, one interesting information is whether, for a given
protein, the mean distribution does have a similar Shannon
entropy in both conditions or not. A similar entropy would e.g.,
occur when we have a clear peak that is only shifted in its location
in the two conditions. The entropy would be different, though, if
there is a clear peak in one condition, which is flattened in the
other condition. Thus, the developed tool further evaluates
whether a shift led to a broader or sharper distribution. Sub-
tracting those two entropies yields a single number, which we call
the relative distribution change. Hereby, positive values mean
that the protein had a much broader distribution after treatment.
In contrast, a low negative value indicates that the protein accu-
mulated in a single fraction and was before uniformly distributed
along the gradient. In combination, the bubble plot displays the
entropy difference (y-axis), the fraction shift and direction of the
two calculated peaks (x-axis) together with the effect size (size of
the bubble), yielding an excellent tool for a fast selection of
candidate proteins. The overall workflow is described in Fig. 2.

RAPDOR is well-suited to analyze bacterial GradR data

For the Synechocystis 6803 GradR data, the ribosomal protein RplA was
used as a control for the shifted position in gradient fractions after
RNase digestion. RplA is a member of the uL1 ribosomal protein family
and directly interacts with the 23S rRNA***°, making it a suitable
example for RNase-induced shifts. In the mass spectrometry data as
well as in the experimental verification by Western blot analysis, RplA
showed a very clear left shift from fraction 20 to fraction ~ 4 (Fig. 3A).
This shift was picked up and visualized well in the RAPDOR analysis
(Fig. 3A). RAPDOR indicated for the small ribosomal subunit proteins a
general shift to lower molecular weight fractions, whereas the large
ribosomal unit proteins did not completely disintegrate upon RNase
digestion, with a few proteins, such as RplA, showing strong shifts and
others remaining in high molecular weight complexes (Fig. 3B). This
behavior was also visible in the histograms. Most of the proteins
belonging to the small subunit showed a low effect size shift that was
reproducible among the replicates, as indicated by the distribution of
the mean /SDs and the high ANOSIM R values. In contrast, the dis-
tribution of R values for proteins from the large subunit resembled the
incomplete disintegration, as only some proteins showed larger
values, but most were centered around 0. A similar observation was
also made in another study*®. We assume that partial ribosomal sub-
unit complexes remain because they are also stabilized by protein-
protein interactions, or because some rRNA fragments were inacces-
sible for the RNase treatment, consistent with some remaining RNA
fragments in fraction 20 (Fig. 1C). When sorting the dataset according
to a decreasing ANOSIM R and a decreasing /SD, the median rank of
proteins from the small ribosomal subunit was much smaller than the
median rank of proteins from the large ribosomal subunit (Fig. 3C). No
shift was observed for the purely protein-based photosystem I and Il
complexes indicating that their in-gradient distributions were not
influenced by RNA-binding (Fig. 3B). We conclude that the experiment
as well as the RAPDOR algorithm worked well for identifying known
RNA interaction partners.
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Fig. 3 | The shift of ribosomal proteins in the RNase-treated fractions shows
proof of principle. A Shift of large subunit protein RplA was detected by western
blot of replicate 1 samples and mass spectrometry data analyzed by RAPDOR (all
replicates). B Almost all proteins of the ribosomal small subunit show a leftward
shift, supported by a high ANOSIM R and a /SD > 0.2. The large ribosomal subunit
disassembles with few proteins, showing a strong shift to lower molecular weight
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fractions, such as RplA. Proteins of the photosystems do not shift. C Plot of ranked
RAPDOR median values for the three protein groups from panel B (triangles). The
median for small subunit ribosomal proteins is at 23, while the medians of the other
two groups were at much larger ranks (smaller values indicate higher probability of
RNA binding). Source data are provided as a Source Data file.

Comparison of experimentally and SVM-predicted RBP
candidates

To determine the ANOSIM cutoff, we used the 95 percentile of the
distribution of ANOSIM R’s from all proteins generated using every
possible permutation of the treatment labels (Supplementary Fig. 5).
Although the number of proteins within these thresholds (ANOSIM
R value > 0.481, p-value < 0.05) was limited and their selection might
result in a relatively high false discovery rate, we opted for this pro-
cedure as it is still sensitive enough to identify promising candidates
for further investigation. In addition, we considered the TripPepSVM-
generated list of 306 candidate RBPs with a score >0.25 (Supple-
mentary Data 2). For further benchmarking, we checked the number of
ribosomal proteins that were detected by the different approaches.

TripPepSVM classified 45 of the 52 ribosomal proteins as RBPs (Sup-
plementary Fig. 6). By mass spectrometry, 52 ribosomal proteins were
identified. Based on the experimental evidence, RAPDOR detected 29
ribosomal proteins as RBP, while 23 were below our ANOSIM R
threshold of 0.481. In contrast, R-DeeP identified shifts for 4 ribosomal
proteins. In the RAPDOR analysis, 11 of the 29 ribosomal proteins
detected as RNA-dependent exhibited the highest achievable
ANOSIM R value of 1 and aJSD exceeding 0.2 (Supplementary Data 2).

Besides the ribosomal proteins, 28 other proteins detected by
mass spectrometry harbor the GO term for RNA binding in the Syne-
chocystis 6803 Uniprot annotation (from a total of 108 annotated RBPs
including ribosomal proteins). These 28 proteins were part of the SVM
training data and thus classified by TriPepSVM as RBPs. RAPDOR found
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shaded area shows the interquartile range, and the lighter shaded area shows the full
range (min-max). While identification of a shift via R-DeeP highly depends on the
noise at the selected peaks, with EF2 being identified as RBP and NHP2 not, RAPDOR
struggles with profiles containing noise spread over the distribution, such as in EF2.
R-DeeP also fails to pick fractions for testing that are not at a Gaussian peak, as in the
profiles of TIM50. Ideally, the control peak test would be carried out around fraction
20. TIM50 is missing a highlighted RNase test due to a different handling of the
averaging kernel between RAPDOR and R-DeeP. The position of the RNase test was,
however, significant and at fraction 25. Source data are provided as a Source Data file.

six of these annotated RBPs, including the RRM-domain containing
protein RbpA on rank 67, and none was detected by R-DeeP.

Enhanced RBP classification performance with RAPDOR

Since RAPDOR is a non-parametric approach for analyzing gradient
fractionation data, we further compared the performance of RAPDOR
and the parametric R-DeeP pipeline using the original R-DeeP dataset”.
In their experiment, the authors performed an experiment very similar
to GradR in human Hela cells. Normalized intensity values for each
protein were used as input for either of the tools. R-DeeP assumes a
Gaussian distribution for the protein profiles as the underlying model.
Using the parameters of the fitted multi-Gaussians for control and
treated samples, two FDR-corrected p-value for the significance of the
differences between the groups were calculated using a Student’s

t test, for the maximal peak (or shoulder region) in each sample group.
RBPs are defined using a p-value cut-off 0.05 for both p-values (resp.
the maximum of both p-values). In contrast, RAPDOR generated a
ranking of proteins using a decreasing R value and mean distance
(Supplementary Fig. 7). To assess the capability to identify RBPs from
this kind of data, we calculated the area under the receiver operator
curve (AUROC) and the area under the precision recall curve (AUPRC)
of both tools, considering proteins with the GO-term for RNA binding
as positives and others as negatives. To determine positive predictions
for the AUC calculations, we use as a threshold parameter the maximal
rank to be classified as positive in case of RAPDOR, and a varying cut-
off for both p-values (equivalent to a p-value cut-off for the maximum
of both p-values) for R-Deep. RAPDOR outperformed R-DeeP with a
higher AUROC of 0.728 compared to 0.69 (Fig. 4). Especially the steep
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incline at the beginning of both curves highlights that either of the
tool’s positions known RNA binders among its first ranks. However,
RAPDOR achieved a better AUPRC, scoring 0.54, while R-DeeP scored
0.52 (Supplementary Fig. 7C). We further compared the absolute
number of detected RBPs. Therefore, we took proteins with a max-
imum p-value of 0.05, corresponding to the default setting of R-DeeP,
and the top candidates with an R value of 1 into consideration. The R
value cutoff was determined using the 95 percentile of R values cal-
culated from all treatment label permutations. Both tools showed a
large overlap of 1115 such proteins, from which 556 were known RNA
binders (Fig. 4B). While 502 proteins (including 161 known RBPs)
reached the maximum R-value of 1in RAPDOR but were not identified
by R-DeeP, the latter detected a significant shift for 177 proteins (42
known RBPs) that did not meet the R-value cutoff.

To investigate the differential discovery potential of the tools, we
compared profiles of known RBPs that were only detected by one of
the tools (Fig. 4). Both tools are susceptible to false negatives when
distribution profiles are very noisy. RAPDOR, e.g., assigned an R value
of 0.407 to the RBP EF2. In contrast, R-DeeP’s performance highly
depends on the fractions selected for the t-tests. To pick these frac-
tions, R-DeeP employs an algorithm that fits a multi-Gaussian model to
the mean of the data. For each treatment, control and RNase, it then
selects either a peak or a shoulder region (see Caudron-Herger et al. ¥
for algorithmic details), whichever shows the greatest difference
compared to the other group. A ¢ test is then performed on the
selected region using Gaussian fits of the individual replicates. For EF2,
this algorithm selected two fractions without much noise, thus
resulting in two p-values below 0.05. However, the peak selection
procedure only uses the mean and does not account for the variance in
the data. Thus, it selected the very noisy peak at fraction 23 for NHP2,
which led to a non-significant test. Since other fractions were less
noisy, this shift was, however, picked up by RAPDOR with an ANOSIMR
of 1. Due to the parametric nature of the model, R-DeeP fails to detect
changes in the distribution if they do not happen at Gaussian peaks or
shoulder regions. This was, for example, the case for the RBP TIM50.
The largest gain in the control samples was in a valley between two
peak regions around fraction 20. R-DeeP did not capture this change,
and the t-test was instead carried out at fraction 15. RAPDOR, in con-
trast, identified this shift, as the profiles showed nearly no noise, and
the overall distribution clearly changed between conditions.

Noteworthy, the experimental setup of R-DeeP also aims to
identify proteins that interact with RNA indirectly, e.g., via a protein-
protein interaction (PPI) with an RBP. To ensure that RAPDOR’s
superior performance is not simply due to missing information about
these proteins, we repeated the experiments with an additional
adjustment. This time, we included proteins with high-confidence PPIs
(score >0.7) involving an RBP in the STRING database as part of our
positive examples. Using this updated dataset showed that out of the
1617 proteins that exhibited a shift with an R value of 1, 1178 (72.9%)
were either directly associated with RNA or indirectly linked through a
high-confidence PPI. R-DeeP also achieved a notable true positive rate
of 73.1%. However, RAPDOR outperformed it in terms of AUROC and
AUPRC, scoring 0.66 and 0.76, respectively, compared to R-DeeP’s
0.63 and 0.74 (Supplementary Fig. 7A, C).

Runtime comparison between RAPDOR and R-DeeP

Both tools used for analyzing experimental data demonstrated low
memory consumption, with approximately 150 MB for the Synecho-
cystis GradR dataset and around 300 MB for the HeLa dataset from the
R-DeeP publication” (Supplementary Fig. 8). However, RAPDOR out-
performed the R-DeeP pipeline in terms of runtime. RAPDOR pro-
cessed the Synechocystis dataset in 2s, whereas R-DeeP required
~2min. Notably, R-DeeP struggled to scale efficiently with the
increasing number of detected proteins. This issue became evident
when analyzing the HelLa dataset, which contains roughly twice as

many detected proteins (3042). RAPDOR completed the analysisin 6 s,
compared to around 30min for R-DeeP. Furthermore, RAPDOR
demonstrated superior performance even in more complex scenarios.
It remained faster when calculating p-values for a simulated dataset
with nine replicates per group, outperforming R-DeeP even when the
latter was run with only three replicates.

Candidates for Synechocystis proteins interacting with RNA
from GradR data

Proteins with a high ANOSIM R value, an SVM prediction as RBP, or
both, represent promising candidates for further research. Therefore,
following the RAPDOR analysis, the results were filtered for an ANOSIM
R >0.481, yielding 165 proteins, including 29 ribosomal and 136 non-
ribosomal proteins (Supplementary Data 2). From the latter, we
selected 20 proteins for more detailed analysis based on additional
criteria (Table 1). These criteria were the behavior of homologs in
GradR experiments in another cyanobacterium, Nostoc sp. PCC 7120
(Nostoc 7120)*¢, homologies to other known RBPs or a promising SVM
score. Two proteins in this list are known RBPs, namely Ffh, the apo-
protein of the signal recognition particle*” and the cold-induced RRM
domain protein RbpA/Rbp1***°, These two proteins were highly ranked
also by their SVM score (on ranks 19 and 16, Table 1), which is likely a
direct effect of training the TriPepSVM algorithm with known RBPs.
With SslI3335/SecE we found one more component of the protein
translocation machinery in our short list (RAPDOR rank 72). Another
protein in Table 1 supported by TriPepSVM was SIl1967, placed by
RAPDOR on rank 2 and by TriPepSVM on rank 282, a putative homolog
of the 23S rRNA (uracil(1939)-C(5))-methyltransferase RImD*°. Inter-
estingly, we also found enzyme subunits of the chlorophyll biosynth-
esis pathway ChID, ChiIM and Chll among the candidates for RNA-
dependent enzymes. We included the Mg?" chelatase subunit Chll
(SIr1030) in Table 1 because of its TriPepSVM classification, although
its ANOSIM R value was slightly below the threshold. Magnesium
chelatase is a heterotrimeric enzyme (subunits ChID, Chll and ChIH)
that generates Mg-protoporphyrin IX in the first committed step in the
pathway to chlorophyll’'. Our data suggest the subunits Chll and ChID
(RAPDOR rank 34) as RNA-dependent (while ChlH was not detectable),
possibly via the catalytic subunit ChIH*, which also functions as an
anti-sigma factor®®>. With ChIM (SIr0525, Mg**-protoporphyrin O-
methyltransferase), also the enzyme following in the chlorophyll bio-
synthesis pathway was classified as RNA-dependent (RAPDOR rank 74,
Supplementary Data 2).

Another six proteins in Table 1 have a connection to known
ribonucleoprotein complexes or into RNA metabolism. SIr1265 is the
RNA polymerase subunit RpoC1**, SII7087 is the type IlI-Bv CRISPR-Cas
protein Cmr4>, RaiA/Lrt appears as a homolog of the ribosome-
associated translation inhibitor A>® (Supplementary Fig. 9), Ssl2245 is a
putative antitoxin to the PemK/ribonuclease-type toxin SIl1130”’, QueF
is a homolog the enzyme 7-cyano-7-deazaguanine reductase involved
in biosynthesis of the modified nucleoside queuosine, a process
recently characterized as relevant for bacterial lifestyle regulation®®.
Another interesting protein is Ssr3189, a small protein of unknown
function conserved in cyanobacteria, its homolog AsI3888 in Nostoc
7120, was in a polynucleotide kinase (PNK) assay validated as RBP*. In
addition to Ffh and Ssr3189, with SIr2130, a third protein from our
short list showed an RNase-dependent shift, also for the homolog in
Nostoc 7120*. SIr2130 is the enzyme 3-dehydroquinate synthase AroB,
involved in the biosynthesis of aromatic amino acids. Three more
enzymes qualified as RNA-dependent proteins, the vinyl reductase
domain containing SIr0147, the L-amino acid dehydrogease SIr0782,
and the phosphoglucomutase SIl0726. Finally, two transcription fac-
tors were included in Table 1, Sll1371, the cAMP receptor protein
SyCrp1*’ and the GntR-type transcription factor SIl1961°°.

All proteins from Table 1 are marked in Fig. 5 and their distribution
profiles are given in Fig. 6. Proteins that shifted to lower molecular
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Table 1| Selected RNA-dependent candidates based on RAPDOR analysis and manual filtering

Protein ANO JSD Shift Rank SVM Comments and annotation

Sl1967 1 0.85 -4 2 282 RNA methyltransferase RImD, Co-enriched with the RNase P-interacting protein
YIrR/Ssr1238°¢

*Slr1531 1 0.74 +12 6 19 Signal recognition particle protein Ffh

Slr0355 1 0.7 +6 8 n/a (S)-8-amino-7-oxononanoate synthase BioU

Sl371 1 0.7 -3.16 9 n/a SyCrp1 transcription factor

Ssl2245 1 0.34 -3 23 n/a Putative antitoxin®’

Slro71 0.96 0.16 -4.58 33 n/a 7-cyano-7-deazaguanine reductase QueF

Sl1315 0.93 0.63 -12 35 n/a WD40 repeat protein

Sll7087 0.93 0.39 -9.99 38 n/a CRISPR-Cas protein Cmr4

Slr0670 0.93 0.33 -3.97 39 n/a Universal stress protein

*Ssr3189 0.89 0.39 -9.26 44 n/a Homolog Asl3888 in Nostoc 7120 was validated as RBP in PNK assay*®

Slr0147 0.85 0.37 -3.94 53 n/a 4-vinyl reductase

Slr0782 0.85 0.28 -3 55 n/a L-amino acid dehydrogenase

Slo947 0.81 0.35 -13 59 n/a Ribosome hibernation factor (Hpf/RaiA/LrtA)

Sllo517 0.78 0.26 -5.3 67 16 Cold-induced RRM protein RbpA/Rbp1*®

Ssl3335 0.78 0.2 -12.48 72 n/a preprotein translocase subunit Seck

Sll0726 0.78 0.16 -3 73 n/a Phosphoglucomutase, Pgm

*Slr2130 0.74 0.3 -3 76 n/a AroB, 3-dehydroquinate synthase

Sl11961 0.7 0.38 -12 85 n/a GntR-type transcriptional regulator®

Slr1265 0.56 0.13 -4.81 129 n/a RNAP subunit gamma RpoC1

Slr1030 0.44 0.28 =18 174 228 Mg? chelatase subunit Chll

After removing ribosomal proteins, 20 proteins with a promising rank in the RAPDOR analysis are given together with their SVM prediction of RNA binding (Supplementary Data 2). The gene name or

locus tag is given, followed by the ANOSIM R value (ANO), the mean JSD, the relative shift in the num
indicates an SVM score below the threshold.

ber of fractions, the absolute rank assigned by RAPDOR and SVM, comments and annotation. n/a

Asterisks indicate that the homologs in Nostoc 7120 also showed RNA-dependent shifts*®. See also Figs. 5 and 6 and Supplementary Data 2. Boldface letters indicate RBPs validated in PNK

assays (Fig. 7).
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Fig. 5 | Visualization of shift types from Synechocystis Grad-R data. Each bubble
represents a single protein identified by mass spectrometry, the bubble size cor-
responds to the mean JSD. The x-axis shows the relative fractional shift, while the y-
axis shows the entropy gain (positive) or loss (negative) upon RNase treatment.
This reflects whether the treatment led to a sharper or broader distribution of the
protein (see “Methods”). Proteins that are promising candidates for RNA binding
are circled in orange. Ffh is the signal recognition particle protein, SI11967 is the 23S
rRNA (uracil(1939)-C(5))-methyltransferase RImD, SI17087 is the type IlI-Bv CRISPR-

0
relative fraction shift

Cas protein Cmr4>, RaiA/Lrt is the ribosome-associated translation inhibitor A®,
RbpA is a cold-induced RRM domain RBP*’, Ssl2245 is a putative antitoxin®’, QueF is
a homolog the enzyme 7-cyano-7-deazaguanine reductase involved in biosynthesis
of the modified nucleoside queuosine, Ssr3189 is a protein of unknown function
conserved in cyanobacteria, its homolog AsI3888 in Nostoc 7120 was validated as
RBP in PNK assay*®, see Table 1 for further details. Source data are provided as a
Source Data file.

weight fractions upon RNase digestion are on the left side of the plotin
Fig. 5, while proteins that shifted to higher molecular weight fractions
are on the right side. The majority of the selected candidates were
located in the upper left quarter, including RbpA. Upon RNase diges-
tion, these proteins shifted to lower molecular weight fractions and

narrowed in distribution. Nine of the selected proteins (RaiA/LrtA, Chll,
SI11961, SI17087, Ssr3189, SyCrpl, RpoCl, SIr0782, Sl11967) were loca-
ted in the lower left quarter, meaning that the distribution along the
gradient broadened and the respective proteins shifted to lower
molecular weight fractions upon RNase treatment. Two of the selected
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Fig. 6 | Distribution profiles of proteins shifting in the gradients. Left panel:
global view, right panel: zoom to the strongest shift upon RNase treatment iden-
tified via the soft argmax of the position-wise relative entropy to the mixture

distribution. Mean (solid line) and median (dotted line) are shown, with the inter-
quartile range shaded and the minimum-maximum range in lighter shading.
Source data are provided as a Source Data file.

candidates showed a rightward shift, Ffh located in the upper right
quadrant, indicating a sharpened distribution, and BioU (SIr0355)
in the lower right quadrant, indicating a broadened distribution.
Ffh is a proven RBP*. Therefore, its right shift, from fractions 6-8
to the pellet fraction (Fig. 6), likely indicates lowered solubility
when the RNA component was lost. BioU is a suicide enzyme
involved in biotin synthesis®. Its shift from fraction 6 to fraction
12 (Figs. 5, 6) indicates association with a larger molecular com-
plex, but not a drastically lowered solubility as found for Ffh.

The distribution profiles of the selected candidates showed a
variety of larger protein shifts, as well as smaller quantities of a
respective protein shifting detected by RAPDOR (Fig. 6). For instance,
RbpA showed only a small shift, but RAPDOR annotated it with a high
ANOSIM R value, placing it on rank 67, showing its good accuracy in
detecting small shifts. This kind of small shift was also be seen in the
distribution of QueF. Most of the protein was present in fractions 6-8,
upon RNase digestion only a very small amount of the protein shifted
to lower molecular weight fractions. However, the ANOSIM R value was
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Fig. 7 | Validation of the GradR screen. PNK assays of the following candidate
proteins are shown: SI[1967 (23S rRNA (uracil(1939)-C(5))-methyltransferase RImD),
SII1315 (WD40 repeat protein), SIr0670 (universal stress protein), SII0726 (phos-
phoglucomutase), Ssl2245 (a putative antitoxin), SIr0711 (preQ(1) synthase homo-
log QueF), SII0947 (ribosome-associated translation inhibitor RaiA/LrtA) and
Sll1371 (SyCrpl transcriptional regulator). For each protein, the left panel (protein)
shows the respective Western blot membrane, the right panel the autoradiography

(RNA) after UV-crosslinking (+), RNase treatment and labeling using PNK and
32p-ATP or the control without UV-crosslinking (-). The position of size markers is
indicated on the left side, the calculated molecular masses of the respective pro-
teins is given underneath. All Western blots were carried out using mouse mono-
clonal anti-FLAG antiserum conjugated to horseradish peroxidase at a titer of
1:5000. One representative set of results out of two is shown. Source data are
provided as a Source Data file.

0.96, meaning that even though the amount of shifting protein was
small, it was detectable in most replicate comparisons of the protein.

Validation of RNA binding in vivo

We used isotope labeling by PNK* as an assay to test the RNA-binding
capacity of eight selected proteins in vivo. These proteins were ranked
by RAPDOR with ANOSIM R values between 1and 0.78 on positions 2 to
73. One of these eight proteins was predicted with a score > 0.25 as an
RBP by TripPepSVM, three were classified as showing a significant shift
by R-DeeP (Supplementary Data 2). We generated Synechocystis 6803
reporter strains that expressed each candidate protein fused to a
3xFLAG epitope tag under control of the copper-inducible Py pro-
moter from a plasmid vector. Cells were UV-treated to covalently
crosslink the RBP candidates to their associated RNA(s), followed by
purification of the complexes using magnetic beads binding to the
FLAG epitope tag under stringent conditions to disrupt protein-
protein interactions. RNA was partially degraded by benzonase to
select for nuclease-protected RNA covalently bound to the protein.
The remaining RNA fragments then were *?P-labeled using PNK, and
the resulting RNA-protein complexes fractionated by SDS-PAA gel
electrophoresis and transferred to a nitrocellulose membrane. The
protein-RNA interaction in vivo was confirmed if the protein was
detected by anti-FLAG Western blotting and a corresponding radio-
active signal was observed in the cross-linked sample. In this assay, five
of the eight selected proteins showed clear positive signals (Fig. 7).
One of the validated proteins was SIl1967, a putative homolog of the

23S rRNA (uracil(1939)-C(5))-methyltransferase RImD*° (Supplemen-
tary Fig. 9) that was also shifting significantly in the gradients, classified
by RAPDOR on rank 2, supported by a high SVM score and detected
also by R-DeeP. The other validated proteins were Ssl2245, a putative
antitoxin”, the preQ synthase QueF homolog, the ribosome-associated
translation inhibitor homolog RaiA (S110947), and the phosphogluco-
mutase Pgm (SI10726). The assay was negative for the SyCrpl tran-
scriptional regulator Sll1371, the WD40 repeat protein SIl1315 and the
universal stress protein Slr0670.

Application of RAPDOR to spatial proteomics

To showcase its potential for further applications, we used RAPDOR to
re-analyze existing spatial proteomics data. Spatial proteomics is a
rapidly evolving field in which the subcellular localization of proteins is
addressed. This is especially relevant in the context of many signaling
proteins shuttling between the cytoplasm and nucleus, such as Smad
complexes crucial for transduction of transforming growth factor 3
(TGF-B)-superfamily signals from transmembrane receptors into the
nucleus®, or the plant photoreceptor phytochrome for the relay of
light signaling®, the endocytosis of activated receptor proteins in
healthy and cancer cells®, or the movement of moonlighting proteins
which perform different functions at different sites®>. Martinez-Val
et. al.” investigated proteome dynamics upon Epidermal growth factor
(EGF) stimulation in HeLa cells and compared it to unstimulated cells.
The entire proteome was assessed across distinct cellular compart-
ments at different time points after stimulation. Each compartment
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comprised two fractions: cytosolic, membrane-bound organelles, and
the nucleus/nucleolus. Such a setup results in six categories instead of
numerical fractions, which is also supported by RAPDOR, but results in
slightly different plots. The dataset is suitable for analysis by RAPDOR
as it only identifies shifts in probability distributions, independently of
whether they stem from a continuous (GradR) or a discrete (spatial
proteomics) probability distribution. Only the averaging kernel is dis-
abled when working with discrete distributions, as this assumes that
fractions are sequentially connected.

The original analysis pipeline calculated a mobility score per
protein®. This score reflects the total percentage of shifting protein. In
addition, it performs two moderated t-tests at the fractions with the
highest loss/gain in protein amount, respectively. The resulting two p-
values are then combined using Fisher’s method in order to identify
proteins with a significantly different distribution after EGF treatment.
Here we show that an analysis using RAPDOR yields similar results
when calculating the /SD instead of a mobility score, as both measures
show a strong correlation (Supplementary Fig. 10). We further used the
pre-analyzed data from Martinez-Val et al. ** as input for RAPDOR. This
data was already filtered and imputed. Since the dataset included four
replicates per condition, it was possible to calculate p-values using
RAPDOR’s global ANOSIM mode (see Methods). However, since the
power of the test is still weak for four replicates, we decided for a less
strict cutoff and used an adjusted p-value of 0.1, thus accepting a
higher false discovery rate. Our results show that the majority of the
proteins identified in the original publication also showed a high /SD of
at least 0.2 and a significant shift when analyzed via RAPDOR at every
treatment time point except at 90 min (Fig. 8A). Especially, the shifts of
GRB2, CBL, and SHC1 at two and eight minutes after EGF treatment
were captured by RAPDOR. Those shifts indicate the recruitment of
receptor tyrosine kinase (RTK) adapter proteins, as already
highlighted™®. Interestingly, the analysis pipeline used in the original
publication did not detect some clearly shifting proteins, including
FOXJ3. This showed a shift at all time points, which was most likely
missed because the original publication based the statistical test on
selecting the fractions with the highest loss or gain. In contrast, our
approach does take all fractions into account by comparing distribu-
tions. Here, FOXJ3 accumulated in membrane-bound fractions and
reduced its presence in the others (Fig. 8B). This leads to a low loss in
the fraction with the largest loss and can result in a false negative
observation when using t-tests to identify a substantial reduction over
all replicates at this fraction. Although nothing is currently known
about FOXJ3’s involvement in EGF signaling, RAPDOR identified two
proteins that have been linked to this pathway. The endocytic scaf-
folding protein intersectin (ITSN1) and microphthalmia-associated
transcription factor (MITF) both showed shifts from the nucleus to
cytosolic fractions at 2, 8, and 20 min that were not captured by the
original analysis pipeline. While MITF is proposed to negatively reg-
ulate epidermal growth factor receptor (EGFR) expression®, ITSNI is
known to mediate EGFR signaling through modulating its ubiquityla-
tion via the RTK adapter CBL®.

Another problem might arise from the fact that combining two p-
values using Fisher’s method, as done in the original publication,
assumes their independence and is known to produce too low p-values
for dependent tests. However, since the tests here are based on the
same protein distribution, they are highly dependent. On the other
hand, using the mobility score cutoff most likely counteracted this
problem. In contrast, RAPDOR’s global ANOSIM only assumes that the
R values of different proteins follow the same distribution. This seems
to be valid for all four time point comparisons when observing the
histograms of R values (Supplementary Fig. 5).

These findings indicate the applicability of RAPDOR for experi-
ments different than in-gradient profiles, and the analyzed dataset is a
promising starting point for other researchers to detect further pro-
tein redistributions. For visualization, all the supplementary JSON files

can be plugged into local versions of RAPDOR and are provided here as
Supplementary Data 1.

Discussion

Non-parametric peak-independent GradR shift detection
Gradient fractionation of RNase-treated samples to identify RBPs was
previously performed with extracts from mammalian cells”” and sub-
sequently analyzed using the R-DeeP pipeline. This pipeline uses a
parametric approach by relying on fitting a multi-Gaussian distribution
for each sample and protein. However, its authors are aware of the fact
that this might not model all protein distributions equally well, and
thus some proteins get tagged as problematic in the final output. In
addition, the selection of peaks is essential for this pipeline since the
parametric t-test is only performed at two positions in the gradient.
This approach can lead to issues, as illustrated by the distribution
patterns of RpsQ in the Synechocystis dataset and TIM50 in the human
Hela dataset (Supplementary Fig. 4 and Fig. 4).

To address these issues, we developed RAPDOR, which can rank
such protein profiles well because it does not rely on a parametric
approach by fitting peaks or their positions, but rather uses a non-
parametric approach of quantifying changes in the distributions. In
contrast to R-Deep, it does not use a ¢ test, which assumes that the
normalized amount of protein follows a Gaussian distribution. While a
t test is robust against violations of this assumption for large sample
sizes, three replicates per group might produce misleading results
when assumptions are not met. In contrast, RAPDOR’s non-parametric
ANOSIM does not rely on assumptions about the underlying data
distribution and is therefore more resistant to these problems. How-
ever, as is typical for non-parametric tests, this comes at the cost of
reduced statistical power. This is, however, compensated by using
rankings, as shown below.

The RAPDOR ranking and selection of R-value cutoffs

A p-value cutoff of 0.05 is commonly used because it represents a 5%
probability of observing a false positive (Type I error), which is
generally considered an acceptable level of risk in many scientific
studies. On the other hand, less powerful tests may fail to detect true
effects, increasing the risk of false negatives (Type Il error), especially
when sample sizes are small. As highlighted, the ANOSIM test applied
by RAPDOR is likely to suffer from the latter problem for the com-
monly used sample size of three. This is even the case when using our
global p-value calculation. However, Clarke et al. already pointed out
that the R value itself can be used as a comparative measure®.
Consequently, we implemented a ranking approach based on the R
value and showed that this ranking tends to place RNA-binding
proteins and thus shifting proteins to the top ranks. This is usually
sufficient, since evidence gained via high-throughput proteomics is
mostly validated using independent follow-up experiments. A user of
RAPDOR can therefore pick proteins from the top ranks for such
validation.

Defining a universal cutoff for the R value, on the other hand, is
challenging, as the appropriate threshold may vary across experi-
mental conditions. This is because the distribution of shuffled and
original R values differs between experiments (Supplementary Fig. 5),
largely due to differences in measured noise. Therefore, we decided to
determine a cutoff by selecting the 95 percentile of all R-values gen-
erated via shuffling treatment labels. Users can adapt this procedure,
as we demonstrated its ability to identify previously unknown RBPs in
Synechocystis, and it captured the majority of known human RBPs.
However, it is important to note that this does not allow a user to draw
conclusions about Type I or Type Il error rates, and we recommend
increasing the number of replicates if p-value calculation is essential.
While we recognize that increasing the number of replicates can be
both time-consuming and costly, ongoing advances in proteomics,
such as multiplexing techniques like TMT labeling, are steadily
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Fig. 8 | Analysis of spatial protein redistribution upon EGF treatment. A Left
column shows the effect size (Jensen-Shannon distance) vs the -logl0 of the
adjusted global ANOSIM p-value at 2, 8, 20, and 90 min of EGF treatment (n=4).
Black dotted lines indicate a typical p-value cutoff for such an experiment. Orange
dots represent proteins that were identified with a distribution significantly dif-
ferent using the original analysis®. The right column shows Venn diagrams com-
paring proteins with a significant redistribution (p < 0.1) called by RAPDOR vs. those

identified in the original publication. B Redistribution of FOXJ3 (p = 0.051), ITSN1
(p=0.069) and MITF (p = 0.058) at 2 min of EGF treatment (n =4). Dots and bars
show the mean, while error bars indicate the interquantile range. After treatment,
FOXJ3 showed a significant (Benjamini/Hochberg adjusted ANOSIM p < 0.1) accu-
mulation in membrane-bound organelles (FR4). In contrast, ITSN1 and MITF shifted
towards cytosolic fractions. These shifts were not captured by the original analysis
pipeline”. Source data are provided as a Source Data file.

reducing these barriers, making high-replicate experimental designs
more feasible.

Bioinformatic prediction of RBPs in cyanobacteria

The main strategies used for the bioinformatics prediction of RBPs
have been based on the identification of RNA-binding domains
through comparing structural properties (SPOT-tru®®), evolutionarily
conserved residues and structural properties (SPOT-seq®’), or
sequence similarities and general biochemical properties (RBPpred”’
or Deep-RBPpred™®). However, recent findings about RBPs have shown

that many of them lack canonical RNA-binding domains and instead
bind RNA through intrinsically disordered regions. Therefore,
approaches that rely on the composition of specific amino acid pat-
terns (such as tripeptides) have emerged as an alternative. The Tri-
PepSVM algorithm" uses a string kernel support vector machine (SVM)
and the composition of specific tripeptides from known RBPs or non-
RBPs to make predictions. Unlike other bioinformatics tools, which use
eukaryotic and prokaryotic RBPs as a training dataset, the original
TriPepSVM workflow enables users to select a specific strain’s pro-
teome and the proteomes of evolutionarily related organisms to create
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a training set. This is crucial because RBPs in eukaryotes and prokar-
yotes may not rely on exactly the same features. The ability to use a
custom bacterial training dataset, coupled with TriPepSVM’s superior
performance” let us select it for our analyses. In this paper, we used a
modified version of TriPepSVM, described in more detail in Brenes-
Alvarez et al.*® that was trained on a custom dataset. In short, we
selected proteomes of cyanobacteria with diverse morphologies and
lifestyles. In addition to these proteomes, we also included those of
two extensively studied Gram-negative bacteria, E. coli K12 and Sal-
monella typhimurium LT2. Furthermore, we optimized the specific
parameters used by TriPepSVM for this training dataset using a 10-fold
cross-validation setting*®.

RNase sensitive gradient fractionation of Synechocystis
Gradient fractionation of RNase-treated samples to identify RBPs
was previously performed with extracts from mammalian cells?,
from Salmonella®, as well as from Pseudomonas aeruginosa and
its bacteriophage ®KZ?. Here we show that the method could
successfully be applied to Synechocystis, a membrane-rich pho-
tosynthetic cyanobacterium.

Popular alternative methods for the identification of RBPs
without gradient centrifugation and fractionation, such as the
orthogonal organic phase separation’’ and complex capture”’?
protocols, rely on UV-induced crosslinking of RBPs to RNA in live
cells. However, photosynthetic bacteria are rich in pigments that
absorb light of various wavelengths, including UV, necessitating
high and partially damaging irradiation doses. Moreover, the
GradR approach provides information about co-fractionating
proteins that could be involved in the same ribonucleoprotein
complex. This is exemplified here for ribosomal proteins and our
finding of SII0947 as the cyanobacterial homolog of the ribosome
hibernation factor (Hpf/RaiA/LrtA), which was co-fractionating
with ribosomal proteins in fraction 19. We verified the RNase-
induced shifts that are crucial for this method by analyzing
ribosomal proteins of the small and large subunit (Fig. 3). The
analysis of the entire dataset benefitted from the here developed
RAPDOR workflow that allowed peak-less shift identification.

We are aware of the fact that the RAPDOR workflow may also
miss potential RNA-dependent proteins as false negatives, espe-
cially when using strict cutoff values for the ANOSIM R. This is
illustrated here by RpslA and RpslB encoded by sir1356 and
slr1984, respectively. Rpsl is thought to participate in recruiting
mRNA to the 30S subunit’®?, but homologs exist only in some
bacteria. RpslA and RpslB in Synechocystis 6803 are involved in
the Shine-Dalgarno-independent initiation of translation’*”> and
therefore are known RNA-dependent proteins. Rpslb was cap-
tured by RAPDOR, on rank 105, while Rpsla was placed on rank
186, with an ANOSIM R value of 0.44, below our cutoff.

Despite some exciting examples of RBPs detected by RAP-
DOR, the total number of RBPs remains likely gravely under-
estimated. For example, the majority of proteins annotated with
the RNA-binding GO term were not experimentally verified here.
The reasons certainly include a lack of resolution. We estimate
that the molecular mass difference required for a protein to shift
by one fraction is at least 50 kDa (Supplementary Fig. 3). Thus,
only proteins binding to RNA at least 150 nt in length can shift by
one fraction if this RNA is entirely degraded. Another important
aspect may be that only a fraction of an RBP was actually bound
to RNA, while a larger fraction was not. Finally, some proteins
sharing the GO annotation simply had an insufficient number of
replicates with a signal in the mass spec data. In contrast, the fact
that TriPepSVM detected all the annotated RBPs likely indicated
bias from training. GO-annotations in Synechocystis mainly stem
from homology inference, which is also the kind of data the SVM
model was trained on.

Identifying RBPs in cyanobacteria

Since it has become increasingly clear in recent years that especially
enzymes involved in large metabolic pathways may possess moon-
lighting abilities to function as RBPs in addition to their enzymatic
function’®”%, we included eight enzymes with a promising ANOSIM R
value in the list of candidates. These proteins are putative RNA mod-
ifying enzymes, such as the RNA methyltransferase RImD and the
queuosine synthesis protein QueF; an enzyme involved in amino acid
metabolism (the L-amino acid dehydrogenase SIr0782), and one
involved in glycolysis (Pgm), which were placed by RAPDOR on ranks 2,
33, 55 and 73. The other four enzymes are BioU, involved in biotin
synthesis, a vinyl domain-containing enzyme of unknown function-
ality, AroB, an enzyme involved in amino acid biosynthesis, and the
Mg?" chelatase subunit Chll on ranks 8, 53, 76 and 174 (Table 1).

One of the most promising candidates with a distinctive shift
(Fig. 6) was SIl1967, a homolog of RImD or RImCD, which are involved
in the methylation of 23S rRNA in E. coli, Streptococcus pneumoniae
and Bacillus subtilis®®, as is indicated by the conservation of all 5
cysteine residues which bind a 4Fe-4S center, form the catalytic site
and residues binding the SAM methyl group donor (Supplementary
Fig. 9A, B). However, experimental validation in cyanobacteria was
lacking. We now demonstrate its pronounced RNA-binding activity
(Fig. 7), which points at a role as an RNA chaperone in addition to its
RNA methyltransferase activity. Even more intriguing was the valida-
tion of SIr0711/QueF as an RBP because this 7-cyano-7-deazaguanine
reductase catalyzes the conversion of preQO to preQl, i.e., it performs
a step in the cofactor biosynthesis, but is not supposed to interact with
RNA as a substrate®. Some RNA modifiying enzymes, such as the tRNA
methyltransferase TrmA and the tRNA pseudouridine synthase TruB
have previously been demonstrated to act also as RNA chaperones®**,
Thus, SIl1967 and SIr0711 discovered here as strong RNA binders are
candidates for further research. Moreover, queuosine biosynthesis has
recently been characterized as relevant for the regulation of lifestyle
decisions in Gram-positive and Gram-negative bacteria®®.

Another interesting RBP identified here is SIl0947, initially
described in Synechococcus sp. PCC 7002 as Lrt, expressed from a
rapidly induced gene when the cells were transferred from light to
darkness®. Later, this observation was extended to include Synecho-
cystis 6803%°, where the association of SIl0947 with ribosomes was
demonstrated, as was its relevance in survival after stress exposure®®.
Structural modeling predicts this protein to be a homolog of the
ribosome-associated translation inhibitor RaiA (Supplementary
Fig. 9C, D). Work in enterobacteria suggested RaiA (39/59% identical
and similar residues with SIl0947; Supplementary Fig. 9C) as inacti-
vating 70S ribosomes and storing them as so-called sleeping
ribosomes®’, consistent with its observed expression profile in
cyanobacteria®*®. Here, we showed that SIl0947 is indeed RNA bind-
ing (Fig. 7).

Of great interest are also the two remaining RBPs identified in this
work. Synechocystis 6803 encodes with sll0726 and slr1334 two
potential phosphoglucomutases. The sll0726 product (Pgm) is highly
homologous to other bacterial phosphoglucomutases and was sug-
gested to represent a target of thioredoxin regulation®®, while the
enzyme encoded by slr1334 was predicted to encode a phosphogluco/
phosphomannomutase bifunctional enzyme®. Recently, Pgm has
gained attention as a key regulatory point in the metabolism of carbon
storage compounds, especially regarding the carbon flux between
glycogen and the central carbon metabolism®®, as it was shown to
provide -99% of the phosphoglucomutase activity’’. Our data here
show that Pgm/SIl0726 is an RBP and therefore likely a moonlighting
enzyme.

Ssl2245, here characterized as an RBP, is a putative antitoxin.
While it is associated with the PemK-type toxin SII1130, it could not be
assigned to any known antitoxin family”’. However, PemK toxins fre-
quently function as endoribonucleases®*?, therefore, future work may
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address the SsIr2245 function as binding RNA, e.g., a possible substrate
for the toxin SII1130.

The RAPDOR workflow is broadly applicable

One focus of our research was to develop a tool that is easily applicable
for similar experiments. As a result, the tool is broadly applicable and
can detect shifts in proteome distribution between two conditions in
experiments involving multiple fractions. As the tool compares the
same protein under different conditions, it expects raw mass spec-
trometry intensity sums as input. However, common proteomics
practices, such as data imputation, can enhance the performance of
RAPDOR. Importantly, RAPDOR employs a non-parametric statistical
approach that does not rely on assumptions about the underlying
distribution of the profiles. To the best of our knowledge, the non-
parametric ANOSIM has not been applied in this context before. In
both GradR data and in the spatial proteomics example, the previous
analysis was either based on a parametric modeling of the distribution
itself or involved parametric tests like the Student’s ¢ test on derived
values. In addition, implementational aspects are important for a
broad applicability. Hence, the RAPDOR pipeline is optimized for low
runtime and memory consumption, making it suitable for average
consumer laptops. Further, the tool is supported by comprehensive
online documentation for the Python API and the Dash graphical user
interface (GUI), featuring tutorials on setting up the tool with custom
datasets. Such datasets can be analyzed either locally via Python or in
the GUI directly (Fig. 9). It is then possible to set up a server to host
such pre-analyzed data via a configuration and aJSON file. This disables
the computationally more expensive analysis and provides a direct
way to visualize data along with a publication. It also allows for more in-
depth and visual analysis of individual distribution changes between
different conditions. Consequently, we set up a web server to display
the Synechocystis GradR data under the following link: https://synecho-
rapdor.biologie.uni-freiburg.de.

To demonstrate the potential to distribute pre-analyzed data, we
analyzed publicly available datasets, which focus on the redistribution
of proteins across cellular compartments of human Hela cells. We
offer these datasets in JSON format, compatible with the RAPDOR

visualization tool, facilitating their utilization by other researchers for
hypothesis generation (Supplementary Data 1).

Methods

Culture conditions

Triplicate cultures of Synechocystis 6803 PCC-M’* were maintained in
100 mL BGI1*® supplemented with 20 mM 2-{[1,3-Dihydroxy-2-(hydro-
xymethyl)propan-2-yllamino}ethane-1-sulfonic acid (TES), pH 7.5,
under continuous white light of 50 umol photons m2s™ at 30 °C.

Cell lysis and RNA removal

Cells were harvested after reaching an OD;sq of 0.9 by centrifugation
(4000 x g, 4°C, 20 min). The cell pellet was resuspended in 800 uL
lysis buffer+1mM DTT (20mM Tris/HCI (pH 7.5), 150 mM KClI,
10 mM MgCl,) containing protease inhibitor (complete EDTA-free
protease inhibitor, Roche). Cell lysis was performed by mechanical
disruption using a pre-chilled Precellys homogenizer (Bertin Tech-
nologies). To remove unlysed cells and glass beads, samples were
centrifuged (500 x g, 2 min, 4 °C), and the supernatants collected for
further processing. To solubilize membrane proteins, cell lysates
were incubated in the presence of 2% n-dodecyl 3-D-maltoside for 1h
in the dark at 4 °C. Cell debris was then removed by centrifugation
(21,000 x g, 4°C, 1h). The cleared lysate was divided into two frac-
tions of equal volume. One of the fractions was incubated with 100 uL
RNase A/T1 mix (Thermo Fisher Scientific) for 20 min at 22 °C. The
control fraction was treated with 100 uyL mock buffer (50 mM Tris-
HCI (pH 7.4), 50% (v/v) glycerol) + 0.4 U of RNase inhibitor (Ribo-
Lock, Thermo Fisher Scientific) for 20 min at 22 °C. Samples were
then kept on ice until loading.

Gradient preparation and fractionation

Gradients were prepared using the Gradientmaster 108 (Biocomp) to
obtain a linear gradient of solution 1 (10% (w/v) sucrose in lysis buffer)
and solution 2 (40% (w/v) sucrose in lysis buffer). Open-Top
Polyclear™ Centrifuge Tubes 9/16 x 3-1/2 in. (Seton Scientific) were
used as centrifugation tubes. Gradients were overlayed with 400 pL of
solution 1 before loading 500 uL lysate. Separation of the lysate was
achieved by ultracentrifugation using a swinging-bucket rotor (Beck-
man SW40 Ti) for 16 h at 285,000 x g. 20 fractions of equal volume
(-600 L) were collected using the PGF ip Piston Gradient Fractionator
(Biocomp), except for the pellet fraction (fraction 20), which was
collected manually.

Sample preparation and details of mass spectrometry
measurements
One hundred uL of each fraction was used for mass spectrometric
analysis of gradient samples (3 biological controls each; 120 samples in
total). Samples were mixed with 4 x sample volume of 50 mM trie-
thylammonium bicarbonate (TEAB) and reduced by addition of 0.5 uM
Tris(2-carboxyethyl)phosphine (TCEP) followed by incubation at 37 °C
for 45 min under constant shaking at 900 rpm. The samples were then
alkylated with 0.5 yumol iodoacetamide (15 min, room temperature,
dark). Proteolytic digest was achieved by adding 1pg trypsin (Pro-
mega) and incubating the samples for 16 h at 37 °C, 900 rpm. The
digestion was stopped by adding 1/26 volume of 50% (v/v) tri-
fluoroacetic acid. Peptides were purified after digestion using Pierce
C18 Tips (Thermo Fisher Scientific) according to the manufacturer’s
protocol. For fractions with the highest protein content (1-10 and 20),
the purifying procedure was repeated twice, and the eluates were
pooled. Recovered peptides were dried and resuspended in 20 uL of
0.1% acetic acid using an ultrasonic bath. To monitor reproducibility of
LC-MS runs, retention time calibration peptides (iRT, Biognosys) were
spiked in a 1:100 ratio.

LC-MS/MS analyses were performed on an LTQ Orbitrap Velos Pro
(ThermoFisher Scientific, Waltham, MA, USA) using an EASY-nLC II
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liquid chromatography system. Tryptic peptides were subjected to
liquid chromatography (LC) separation by loading them on a self-
packed analytical column (OD 360 pm, ID 100 um, length 20 cm) filled
with 3 um diameter C18 particles (Dr. Maisch, Ammerbuch-Entringen,
Germany). Peptides were eluted by a binary nonlinear gradient of
2-99% acetonitrile in 0.1% acetic acid over 88 min with a flow rate of
300 nL/min and subsequently subjected to mass spectrometry (MS).
For MS analysis, a full scan in the Orbitrap with a resolution of 30,000
was followed by collision-induced dissociation (CID) of the twenty
most abundant precursor ions. MS2 experiments were acquired in the
linear ion trap.

Database searches were performed against all proteins predicted
to be encoded in the Synechocystis 6803 chromosome (NC_000911.1)
and the four plasmids pSYSA, pSYSG, pSYSM, and pSYSX
(NC_005230.1, NC_005231.1, NC_005229.1, and NC_005232.1, respec-
tively). The database was supplemented with sequences of known
SORFs and RNase A/T, resulting in a total of 3743 entries. Database
search as well as label-free protein quantification was performed using
MaxQuant (version 2.0.3.0)°°. Common laboratory contaminants and
reversed sequences were included by MaxQuant. Search parameters
were set as follows: trypsin/P specific digestion with up to two missed
cleavages, methionine oxidation and N-terminal acetylation as variable
modifications, carbamidomethylation at cysteines as fixed modifica-
tions, match between runs with default parameters enabled. The mass
tolerance for matching of precursor ion was 4.5 ppm and was set to
0.5 Da for fragment ions. The minimum peptide length was specified
with 7 amino acids. The FDRs (false discovery rates) of protein and PSM
(peptide spectrum match) levels were set to 0.01. Two identified
unique peptides were required for protein identification. LFQ”” and
iBAQ”® were exported as quantitative values of protein abundance. The
DAPAR R package was used to impute missing values in fractions
where a protein showed a signal in two out of three replicates. To not
produce a signal for very different profiles, we only used data impu-
tation for the proteins with the 95 percent lowest mean JSD within the
same treatment. The generated MS data have been deposited to the
ProteomeXchange Consortium® via the PRIDE partner repository'®
with the dataset identifier PXD045848.

Polyacrylamide gel electrophoresis and Western blotting

20 uL of each fraction was boiled with 1x protein loading buffer
(Tris/HCI 0.5M (pH 6.8) 50 mM, SDS 2%, glycerol (v/v) 6%, DTT 2 mM,
bromophenol blue (w/v) 0.01%) at 95 °C for 10 min and then separated
by 15% SDS-polyacrylamide gel electrophoresis (SDS-PAGE)'”.. For
membrane transfer of smaller proteins (< 25 kDa), 1 mA/cm? was used.
Larger proteins (>28kDa) were separated on 12% SDS-PAGE and
blotted at 1.5mA/cm® Mouse monoclonal anti-FLAG antiserum con-
jugated to horseradish peroxidase (ANTI-FLAG® M2-Peroxidase,#
A8592 Sigma-Aldrich) at a titer of 1:5000 was used in Western blots.

RNA isolation and Northern blotting

RNA extraction and northern blotting were performed as described
previously”. Primer and oligonucleotide sequences are listed in Sup-
plementary Table 1. Signals were visualized using Typhoon FLA 9500
(GE Healthcare) and Quantity One software (Bio-Rad).

Construction of recombinant Synechocystis 6803 strains

To express tagged RBP candidate proteins in Synechocystis 6803,
the universal plasmid for subcloning X-54 was constructed. To
generate the backbone, a segment of pUC19 was amplified using
primers P1 and P2 (Supplementary Table 1). As insert, the Ppee
promoter, sll7087, 3 xXxFLAG tag and oop terminator were PCR-
amplified from plasmid V-37 using primers P3 and P4. Both frag-
ments were treated with Dpnl (Thermo Fisher Scientific), assem-
bled using AQUA cloning'®*> and transformed into E. coli TOP10F’
cells (Thermo Fisher Scientific).

Plasmid X-54 then was used as a PCR template with primers P5 and
P6 to reverse amplify Pper, pUCL9, 3XFLAG and oop, leaving out the
gene sl[7087. All other genes of interest (goi) were then inserted into
this backbone. The genes were amplified from Synechocystis 6803
gDNA using primers P7/P8 (sll1967), P9/P10 (sll1371), P11/P12 (ss[2245),
P13/P14 (slrO711), P15/P16 (sll1315), P17/P18 (slr0670), P19/P20 (sll0947)
or P21/P22 (sll0726). The fragments were assembled using AQUA
cloning and transformed into TOP1OF'. The PpeGOI-3xFLAG-00p
fragment of all isolated plasmids was amplified with primers P23/P24.
Plasmid pVZ322s'* was digested with Xmnl (NEB) and treated with
FAST AP (Thermo Fisher Scientific). The linear plasmid and the insert
fragments PueGOI-3XFLAG-00p were assembled using AQUA
cloning'®’. They were subcloned into TOP10F. All PCR reactions were
performed with PCRBIO HiFi Polymerase (PCR Biosystems). Sanger
Sequencing Economy Run (Microsynth) was used to verify the correct
sequence of all plasmids. Synechocystis 6803 was transformed with
isolated plasmids by electroporation according to Kraus et al.'** with
the following modifications: ice-cold ultrapure water was used to
wash the cells, and only 200 ng of each plasmid were used. Gentamicin
(5 ug/mL) was used for selection.

Test of RNA-binding capacity

To verify direct RNA-protein interactions in vivo, the PNK assay'*> was
performed as developed by Brenes-Alvarez et al.*® with the following
modifications. Ppe-controlled protein expression was induced in
250 mL Synechocystis 6803 cultures at an ODs5o of 0.7-0.8 by the
addition of 0.31uM Cu,SO,. After 24 h, cultures were transferred to a
21x14.5 x 5.5 cm? plastic tray on ice and cross-linked three times with
UV of 254 nm at 0.75J/cm™ in a UV Stratalinker 2400 (Stratagene) with
gentle shaking. Negative controls were not cross-linked and were also
stored on ice. The samples were prepared and separated by SDS-PAGE.
After western blotting, radioactive ink (highly diluted [y-*P]-ATP) was
used to label the membrane contours.
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Jensen-Shannon Distance

The Jensen-Shannon Distance (/SD, see Eq. 3) is the default effect size
measure for an individual replicate of the RAPDOR tool. For two
probability distributions P and Q, the /SD is defined as follows:

M) = 3 X (P + Q) W
- P
D(PIIQ)= 2; P(x)log (Q(X)> @)

JSD(P||Q) = /w 3)

Here, M refers to the mixture distribution of P,Q and D is known as the
Kullback-Leibler (KL) divergence (see Eqs. 1 and 2)), which is a
commonly used measurement on probability distribution. In contrast
to the more prominent KL divergence, which is not symmetric, the /SD
is a metric function. This makes the /SD suitable for the downstream
analysis for a non-parametric test of similarities between conditions
(see the section on the ANOSIM R value below).

Expected position of the strongest shift

For each treatment ¢ the position of the strongest shift S, is determined
using the position-wise relative entropy, which has its origin in convex
programming (Eq. 4). We used it since its sum is equal to the KL
divergence, given that both P and M are probability functions'®. In
more detail, it is based on likelihood ratios of either treatment and the
mixture distribution at position x, weighted by the probability P(x) of
observing fraction x. To determine the position of the strongest shift,
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we use a localization operator (Eq. 5) that corresponds to the
temperature-scaled soft-argmax function, which is often used in
machine learning. It counteracts uncertainty in our data and per-
formed better than the argmax function for distributions with broader
peaks. Basically, the soft-argmax function returns the expected posi-
tion of the strongest shift. B is the hyperparameter for temperature
scaling and must be carefully chosen for a given dataset.

The relative fraction shift (Eq. 6) is then obtained via a subtraction
of the expected position of the strongest shift of the control samples
(t=—) from the RNase-treated one (¢ = +).

P(x)log,(P(x) / M(x)) P(x)>0,M(x)>0

w.(x)= 0 M(x)=0,P(x)=0 4)
00 otherwise
eﬂwt(x)
Se=3 )

[E—
& erxeﬂwz(x)

RPS=S, - §_ (6)

Non-parametric test analysis of similarities (ANOSIM)

The non-parametric test analysis of similarities (ANOSIM) calculates a
test statistic called ANOSIM R via a ranked distance matrix*. This is
achieved via labeling fields in this matrix with two distinct labels,
depending on whether the distance originated from two samples of
the same treatment W or a different treatment B. The R value for n
samples is then calculated via the following equation:

_ Tg-Ty
k= (n(n—1)/2)/2 )

Hereby 7 is the average rank of the different treated fields (e.g., in
GradR control vs RNase), and 7, refers to the average rank of fields
from the same treatment (e.g., in Grad RNase vs. RNase or control vs
control). Via shuffling of the labels (B, W), it is possible to estimate a
distribution over the R-values and thus calculate a p-value.

While ANOSIM is a well-known statistical test for community
ecologists, the procedure can in principle be adapted to any kind of
multivariate data analysis, as long as there is a sufficient number of
replicates per condition. However, three replicates are not sufficient to
achieve a p-value below a significance level a <0.05. This is because
the number of permutations given a balanced sample layout with two
conditions follows Eq. 8, thus resulting in only 10 distinct permutations
for n=3.

(2n)!
2(n!)?

®)

Depending on the number of replicates and instances (here,
proteins), it is possible to calculate p-values using the R value dis-
tribution of all instances as background. This method, further termed
the global mode, assumes that R values of different instances follow
the same distribution. While this may not always be the case, such
assumptions are generally robust and are employed by other tools. For
example, the differential expression tool limma utilizes information
from all genes for its underlying moderated ¢ test'”. Further, the
ANOSIM test statistic is bound between [—1, 1]. This makes it compar-
able between proteins with the same number of samples, while it is not
influenced by the effect size due to its non-parametric nature. Values
close to 1 show that the distances between the same treatment are
lower than the distances between different treatments. In contrast,

-1 shows the opposite, and values around zero indicate evenly dis-
tributed distances. This offers the possibility to rank proteins
according to a decreasing R value to identify those with reproducible
shifts.

Reanalysis of R-DeeP dataset

Raw mass spectrometry files from the R-DeeP experiment in HeLa cells
were downloaded from ProteomeExchange (PXDO010119). Proteins
were identified using MaxQuants database search running on default
parameters with the human proteome downloaded from Uniprot
(UP000005640). Resulting Intensities were subsequently used as an
input for the original R-DeeP script. To focus solely on comparing the
statistical methods and minimize any effects caused by R-DeeP’s nor-
malization, the R-DeeP normalized intensities were used as input for
RAPDOR.

Runtime & memory consumption benchmarking

The runtime and memory consumption analysis was performed on a
single Intel i5-10210U CPU core. In addition, a dataset with more
replicates was simulated by duplicating the existing measurements
from the Synechocystis 6803 GradR experiment, resulting in a dataset
with nine replicates each. This was used exclusively for runtime and
memory consumption benchmarking.

Support vector machine classification of candidate RBPs
In addition to the experiment-based approaches, we used
TriPepSVMY, to predict candidate RBPs. TriPepSVM relies on the idea
that a support vector machine (SVM) can make a prediction on whe-
ther a protein is an RBP solely based on amino acid sequence. The basic
principle is creating positive and negative datasets, which will then
train the SVM, leading it to predict RBPs based on sequence alone. A
protein sequence is cut up into overlapping k-mers, which form a
vector. This vector is analyzed by the learning algorithm, and tripep-
tides are scrutinized by occurrence within the protein. This leads the
SVM to make a prediction based on the likelihood of said protein
belonging to the RBP or non-RBP category. We have trained Tri-
PepSVM for cyanobacterial genomes and applied it to two use cases,
on Nostoc 7120*¢ and on Synechocystis 6803 (this work). To train the
algorithm for cyanobacterial RBP candidates, the predicted set of
proteins encoded in 10 cyanobacteria, E. coli K12, and Salmonella
typhimurium LT2 was downloaded from the UNIPROT database'®®. To
avoid duplicate annotations or paralogs, CD-Hit'”’ was utilized to
create a unique dataset and remove redundant proteins with a simi-
larity > 90%'”. This was done for the 12 considered organisms, yielding
1151 unique RBP candidates that were merged into a positive dataset.
From the pool of remaining proteins, all proteins with an RNA-
binding domain in the Pfam database or with annotation keywords
related to nucleic acid binding in UNIPROT, or GO terms in QuickGO,
were discarded. After filtering by CD-Hit, a negative dataset of 33,860
unique non-RBP was obtained. The kmerPrediction.r script of
TriPepSVM"” was modified for the implementation of the SVM by
changing the package used in conjunction with “KeBABs™® from
“el071” to “LiblineaR”. For the selection of the best combination of
parameters, each dataset was randomly split into training (90%) and
testing (10%) samples and used in a 10-fold cross-validation by ran-
domly sampling the subsets. The parameter combination resulting in
the largest average balanced accuracy (BACC) was selected. We used a
positive class weight of 2.7, a negative class weight of 0.05, cost =1 and
k-mer = 3. For further details, see ref. 46. The proteins encoded by all
3.681 annotated protein-coding genes in Synechocystis 6803 were
scored, and a conservative threshold of 0.25 was selected as the SVM
score for the classification as potential RBP. This prediction yielded a
list of 306 candidate RBPs in Synechocystis 6803 (Supplemen-
tary Data 2).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The mass spectrometry datasets generated in this study have been
deposited at the ProteomeXchange® Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE partner
repository'® under the identifier PXD045848 (Analysis of RNA-
dependent proteins in the cyanobacterium Synechocystis). Previously
generated mass spectrometry data are available under the identifier
PXDO010119 (The concept of “RNA dependence” - Proteome-wide and
quantitative identification of protein interactions dependent on RNA”)
and PXD023690 (Spatial-proteomics reveals phospho-signaling
dynamics at subcellular resolution®’). The processed data for Syne-
chocystis 6803 accessibility and visualization are available at: https://
synecho-rapdor.biologie.uni-freiburg.de. Source data are provided in
this paper.

Code availability

-« The RAPDOR tool is available as a pypi package and its
documentation™ is hosted on https:;//domonik.github.io/RAPDOR/ »
The code used to analyze the data, including the modified R-DeeP
script' is available as a Snakemake workflow on GitHub: (https://
github.com/domonik/synRDPMSpec).
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