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LINS: A general medical Q&A framework for
enhancing the quality and credibility of LLM-
generated responses

Sheng Wang 1,2,15, Fangyuan Zhao 1,2,15, Dechao Bu1,2,15, Yunwei Lu3,15,
MingGong4,15, Hongjie Liu1,5, Zhaohui Yang1,2, Xiaoxi Zeng 6,7, Zhiyuan Yuan 8,
Baoping Wan1, Jingbo Sun1,2, Yang Wu 1, Lianhe Zhao 1, Xirun Wan9,
Wei Huang10, Tao Wang10, Mengtong Xu11, Jianjun Luo 11, Jingjia Liu5,
Jianjun Zheng5, Wei Zhang6,12, Kang Zhang 13, Hongjia Zhang 4 ,
Shu Wang 3 , RunSheng Chen2,14 & Yi Zhao 1,2

Large languagemodels can lighten the workload of clinicians and patients, yet
their responses often include fabricated evidence, outdated knowledge, and
insufficient medical specificity. We introduce a general retrieval-augmented
question-answering framework that continuously gathers up-to-date, high-
quality medical knowledge and generates evidence-traceable responses. Here
we show that this approach significantly improves the evidence validity,
medical expertise, and timeliness of large language model outputs, thereby
enhancing their overall quality and credibility. Evaluation against 15,530
objective questions, together with two physician-curated clinical test sets
covering evidence-based medical practice and medical order explanation,
confirms the improvements. In blinded trials, resident physicians indicate
meaningful assistance in 87.00% of evidence-based medical scenarios, and lay
users find it helpful in 90.09% of medical order explanations. These findings
demonstrate a practical route to trustworthy, general-purpose language
assistants for clinical applications.

Large language models (LLMs) hold significant promise for enhancing
healthcare by assisting clinical decision-making, streamlining medical
research, and improving patient care efficiency1–5. However, their
integration into clinical practice remains hindered by several crucial

limitations. First, LLMs frequently fabricate medical evidence content
or sources6,7, which can lead to erroneous clinical decisions. Secondly,
their responses frequently lack sufficient medical expertise and
accuracy8, often failing to meet the needs of complex clinical
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scenarios. Third, LLMs rely on static training data; they fail to incor-
porate the latest medical guidelines and evidence9. These issues col-
lectively undermine the quality and credibility of LLM-generated
medical responses, particularly limiting their applicability in clinical
scenarios that demand rigorous accuracy and verifiable evidence
sources, such as evidence-based medicine10 (EBM) and medical order
explanation (MOE).

Specifically, for EBM practice, while LLMs can rapidly generate
evidence summaries through natural language interaction, studies
show that over 60% of the evidence summaries generated by LLMs
contain fabricated or erroneous associations11. Similarly, for the MOE
task, the lack of reliable evidence in LLM-generated explanations,
coupled with patients’ limited ability to discern medical information,
ultimately leading them to seek clarification from their physicians,
exacerbating clinical burdens. Therefore, enhancing the quality and
credibility of existing LLM-generated medical responses, particularly
ensuring the reliability of evidence content and sources, is crucial to
overcoming these challenges and fully realizing their potential value in
clinical settings.

Currently, several studies have attempted to mitigate these chal-
lenges. For instance, Med-PaLM4 enhances medical expertise through
fine-tuning, while MEDAgents12 and MDAgents13 improve reasoning
capabilities viamulti-agent collaboration.However, thesemethods still
face issues such as evidence fabrication and insufficient timeliness.
Retrieval-augmented generation14 methods, including MedRAG15,
Almanac16, and Clinfo.ai17, mitigate information timeliness by retriev-
ing real-time data14,18. Still, traditional RAG approaches frequently
retrieve ineffective information, struggle with complex clinical quer-
ies, andhavenot adequately resolved credibility issues due to evidence
fabrication. Although several studies19–21 have increasingly recognized
the importance of LLMs’ credibility in the medical field, existing
research remains at the descriptive level, lacking actionable solutions.
Overall, there is currently an absence of effective methods to enhance
the quality and credibility of LLMs in clinical applications, which
severely limits their clinical value.

To fill this gap, we propose a general medical Q&A framework
named LINS, which effectively enhances the quality and credibility of
existing LLMs’ medical responses. This advancement is driven by our
newly introduced Multi-Agent Iterative Retrieval Augmented Genera-
tion (MAIRAG) and Keyword ExtractionDegradation (KED) algorithms,
which enable multi-agent collaboration to perform more granular
problem decomposition and effective information filtering. By
retrieving and integrating the latest effective medical information into
its generative pipeline, coupled with an evidence-traceable output
format, LINS significantly improves the evidence validity, medical
expertise, and timeliness of LLM-generated responses. Consequently,
LINS completes a comprehensive query-response-validation inter-
active loop, significantly enhancing the quality, credibility, and clinical
applicability of responses from LLMs. To further validate the perfor-
mance of LINS, we conducted a series of large-scale experiments,
including general medical capability assessments and real-world clin-
ical scenario testing.

The general medical capability evaluation of LINS consists of two
components: a large-scale objective multiple-choice assessment and
human evaluations. In the objective assessment, we not only covered
six publicly available datasets but also developed Multi-MedCQA, a
novel dataset curated by 50 attending physicians based on real-world
clinical experience and rigorously cross-validated. This dataset
addresses a significant challenge in medical evaluation—data leakage
risks from publicly shared datasets, which can lead to overfitting in
LLMs and inflated performance results. In the human evaluation
component, we engaged both physicians and lay users to assess the
responses generated by LINS and LLM to commonly searched con-
sumer questions in medicine, evaluating quality across nine dimen-
sions. The results demonstrate that LINS not only excels in the

multiple-choice assessment, achieving SOTA performance, but also
shows superior medical expertise and alignment with scientific con-
sensus in human evaluations, significantly enhancing the quality of
medical responses from LLMs.

Furthermore, the application of LINS in real-world clinical sce-
narios encompasses two major cases: assisting physicians in EBM
practice and helping patients with MOE. In collaboration with four top
hospitals in China, we engaged physicians to create the AEBMP and
MOEQA datasets, which are based on medical records and clinical
experiences. A randomized blind-controlled experiment was con-
ducted, involving 113 physicians and 1207 complex clinical questions
with medical records, totaling around 32,300 evaluations (each eva-
luation of a specific dimension of a question by an assessor counted as
one evaluation). The experimental results demonstrated that LINS not
only significantly improved the response quality of LLMs but also
achieved a greater than 40% increase in credibility across various tasks
(P < 0.001). This achievement is primarily attributed to LINS’s ability to
provide fully authentic and traceable evidence, in contrast to the often
fictitious evidence generated by LLMs.

Results
Overview of LINS
The LINS framework constructed in this study is primarily composed
of a database module, a retrieval module, a multi-agent module, and a
generator module (Fig. 1a and Methods). Upon receiving a user query,
the retrievalmodule employs the KED algorithm (Fig. 1a andMethods)
to search for relevant information within the database module. Sub-
sequently, the multi-agent module utilizes the MAIRAG algorithm
(Fig. 1b and Methods) to filter out effective information (information
directly helpful for answering the question). Finally, the generator
module produces a response in an evidence-traceable format, as
indicated by the red box in Fig. 1a.

Specifically, the databasemodule of LINS encompasses both local
and online databases, offering a rich and continuously updated source
of information. The retrieval module, comprising a retriever, a key-
word extraction agent, and the KED algorithm (Fig. 1a, b, and Meth-
ods), is tasked with sifting through the vast and intricate database to
pinpoint information relevant to the query at hand. The multi-agent
module, equipped with four core agents and the MAIRAG algorithm
(Fig. 1a, b, and Methods), serves two pivotal functions: (1) it filters out
the truly effective information from the retrieved information, and (2)
it breaks down complex questions that are challenging to retrieve
directly into a series of easier sub-questions, enabling iterative retrieval
and response. Finally, the generator module is responsible for syn-
thesizing the gathered effective information, integrating it with the
LLM’s inherent knowledge to produce a response in an evidence-
traceable format, thereby further elevating the credibility of the
responses. The construction and configuration of each module are
detailed in the Methods section.

Notably, every module within the LINS framework is optional,
allowing users to select models and configurations that best suit their
specific requirements. Furthermore, wehave developed an easy-to-use
end-to-end python package (https://github.com/WangSheng21s/LINS)
to streamline implementation and facilitate user accessibility.

Overall, LINS, as a general medical Q&A framework, demonstrates
significant potential for diverse applications in the medical domain. In
the subsequent sections, we will showcase its application in the med-
ical field through examples such as LINS assisting physicians in
evidence-based medical practice and helping patients with medical
order explanation (Fig. 1c).

Novel expert-curated clinical datasets for evaluation
Currently, many publicly available multiple-choice evaluation datasets
already exist (Fig. 1d), offering valuable resources for researchers.
While these public datasets provide a consistent benchmark for
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comparing different methods, they also carry the risk of data leakage
during model training. This issue can lead to inflated performance
metrics, ultimately undermining the clinical validity and reliability of
the results. To address this, we invited 50 physicians from four top
hospitals in China to develop the Multi-MedCQA dataset. It consists of
nine specialty-specific sub-datasets with 4685 multiple-choice ques-
tions, allmanually created and reviewedby attending physicians based
on real clinical experience. These sub-datasets cover areas including
thoracic surgery, cardiology, hematology, respiratory medicine, urol-
ogy, general surgery, nephrology, ophthalmology, and gastro-
enterology. Each question underwent multiple rounds of physician
review and refinement, guaranteeing clinical relevance and accuracy.
By addressing data leakage issues prevalent in public datasets, it
establishes a robust benchmark for evaluating medical LLMs. The
Multi-MedCQA dataset will be released without answers, with a testing
interface to prevent data leakage, playing a crucial role in future
medical LLM assessments. We describe the detailed construction
process of Multi-MedCQA in the Methods section.

In real-world clinical settings, questions from physicians or
patients are typically open-ended rather than multiple-choice. While
publicly available medical Q&A datasets exist, there is a notable gap in
datasets that assess LLMs’ abilities in two critical clinical scenarios:
evidence-basedmedical (EBM)practice andmedical order explanation
(MOE). To address this, we developed two novel datasets—the AEBMP
dataset and the MOEQA dataset—designed to evaluate LINS’s cap-
abilities in assisting physicians in EBM practice and helping patients
with MOE, respectively. These datasets feature open-ended Q&A
questions paired with medical records, providing a more authentic
assessment of LINS’s performance in real-world scenarios from both
physician and patient perspectives. The AEBMP dataset includes clin-
ical questions crafted by attending physicians based on real clinical
experiences, while the MOEQA dataset consists of questions posed by
lay users from a patient’s perspective. Together, these datasets effec-
tively evaluate the real-world clinical applicability of LINS and LLMs,
offering significant testing value. We provide a detailed description of
the construction process for the AEBMP and MOEQA datasets in the
Methods section.

Objective evaluations for General Medical Competency
To comprehensively evaluate the effectiveness of LINS in general
medical capability, we first compared the performance of LINS-LLMs
and LLMs across objective evaluation datasets using eight different
LLMs as base models (Supplementary Fig. 1 and Methods). The eight
LLMs included GPT-4o-mini, GPT-4o, o1-mini, o1-preview22, Llama3.1-
70b23, Qwen2.5-72b24, Gemini-1.5-flash, and Gemini-1.5-pro25. The
objective evaluation datasets comprised 9 human-created novel sub-
datasets from Multi-MedCQA and 6 publicly available datasets
(MedMCQA26, PubMedQA*27, MedQA-M, MedQA-U, MedQA-T28, and
Geneturing-disease29).

First, we evaluated the performance of eight LLMs across 15
objective datasets. The results showed that o1-preview achieved the
best performance on 11 out of the 15 objective datasets (Supplemen-
tary Fig. 1 and Supplementary Table 1), with an average rank score
(calculated as the average ranking across all test datasets) of 1.33,
securing the top position (Supplementary Table 2). These findings
highlight the broader applicability and effectiveness of the o1-preview
model in understanding and reasoning across various medical
domains.

Next, we integrated the eight LLMs into the LINS framework to
assesswhether LINS could enhance their generalmedical competency.
We observed that the performance of almost each LLM improved
across the 15 objective datasets, with 114 out of 120 results showed
improvement (Supplementary Fig. 1 and Supplementary Table 1).
Notably, LINS-o1-preview achieved an average rank score of 1.4 (Sup-
plementary Table 2), maintaining the top position. It consistently

improved the performance of o1-preview across all datasets (Fig. 2a, b,
Supplementary Table 1). On the six publicly available datasets, LINS-o1-
preview achieved accuracies of 83.17%, 77.00%, 92.31%, 94.58%,
90.14%, and 86.54%, respectively, compared to the original o1-preview
scores of 81.52%, 57.20%, 88.36%, 94.49%, 89.53%, and 65.45% (Fig. 2a).
Similarly, LINS-o1-preview outperformed o1-preview on all nine novel
human-created datasets (Fig. 2b). Comparative results for other LINS-
LLMs are presented in Supplementary Table 1. Overall, these findings
demonstrate that LINS consistently enhances the general medical
competency of diverse LLMs, irrespective of their baseline capabilities.

Additionally, we compared LINS with two publicly available
medical RAG frameworks, MedRAG15 and Clinfo17, across the afore-
mentioned 15 datasets (Fig. 2c). To control variables, we selected GPT-
4o-mini as the base model due to its high cost efficiency and the
consistency observed across LLMs (consistency see Supplementary
Fig. 2 and Supplementary Note). The results reveal that (Fig. 2c) Clinfo-
GPT-4o-mini achieved better results than GPT-4o-mini on 6 datasets
but underperformed on the remaining 9 datasets. MedRAG-GPT-4o-
mini showed better overall performance compared to Clinfo. How-
ever, LINS-GPT-4o-mini performed the best, not only improving GPT-
4o-mini across all datasets but also surpassing both Clinfo-GPT-4o-
mini and MedRAG-GPT-4o-mini on 15 datasets, demonstrating its
remarkable superiority.

Furthermore, we compared LINS with previously reported scores
on 6 publicly available objective evaluation datasets. The results
demonstrate that LINS outperformed the previously reported scores
on all 6 datasets, achieving accuracies of 83.17%, 82.20%, 92.31%,
94.58%, 90.14%, and 86.66%, respectively (Fig. 2d). Details of the
sources of previously reported scores, the LLMs, and the databases
used for each dataset are provided in Supplementary Table 3.

We further evaluated the capability of the retrieval module in
LINS. ThePubMedQA*dataset is derived from the PubMedQA27 dataset
by removing its contexts (seeMethods),making the contexts included
in the PubMedQA dataset the gold standard for retrieval in Pub-
MedQA*. So we evaluated the effectiveness of the LINS retrieval
module by comparing the performance of LLMs with contexts and
LINS (Fig. 2e). First, we compared the performance of LLMs and LLMs
with contexts on the PubMedQA* dataset. As expected, the perfor-
mance of LLMswith contexts was consistently better than that of LLMs
(Fig. 2e). Next, we assessed the performance of LINS compared to
LLMs with contexts. Remarkably, LINS not only significantly improved
the performance of all eight LLMs on the PubMedQA* dataset but also
outperformed LLMs with contexts for six of the LLMs (Fig. 2e). This
further demonstrates that the information retrieved by LINS is of
higher quality than the gold-standard contexts, underscoring the
superior capability of the LINS retrieval module.

In summary, LINS has demonstrated its effectiveness across both
publicly available and novel human-created objective evaluation
datasets, using eight different LLMs as base models, thereby show-
casing its general medical capability. Additionally, considering the
superior performance of LINS-o1-preview and the consistency
observed across LLMs (Supplementary Table 2, Supplementary Fig. 2,
and Supplementary Note), we selected o1-preview as the base model
for subsequent human evaluations and application scenarios.

Human evaluations for general medical competency
To evaluate the generalmedical capability of LINS in commonmedical
Q&A, we randomly selected 300 commonly searched consumer
questions from the HealthSearchQA4 dataset for human evaluation.
Subsequently, we conducted a randomized blind-controlled assess-
ment of the responses generated by LINS-o1-preview and o1-preview
(seeMethods). The evaluation dimensions were categorized into three
main aspects: utility, accuracy, and comprehensiveness. The utility
aspect included helpfulness and harmfulness; the accuracy aspect
includes scientific consensus, medical expertise, content relevance,
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and content completeness; and the comprehensiveness aspect
includes answer diversity, empirical support, and bias (Supplementary
Fig. 3). To ensure professional rigor, physicians conducted evaluations
across nine dimensions, whereas patients focused solely on the utility
aspect.

The evaluation results from 5 physicians (Figs. 2f and 5) lay users
(Fig. 2g and Supplementary Table 4) reveal that LINS-o1-preview was
deemed helpful in answering 94.40% and 99.00% of questions by

physicians and patients, respectively, compared to 85.67% and 95.53%
for o1-preview. These findings highlight the challenges in addressing
complex clinical questions, while LINS-o1-preview demonstrates sub-
stantial potential in providing relevant assistance in most cases. Fur-
thermore, physicians and lay users reported that LINS-o1-preview
provided potentially misleading answers in only 1.27% and 0.20% of
cases, respectively, outperforming o1-preview, which exhibited mis-
leading responses in 2.27% and 1.13% of cases (Fig. 2f, g). In terms of
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accuracy, physicians noted that 99.40% of LINS-o1-preview’s answers
adhered to scientific consensus, 99.47% demonstrated medical
expertise, 99.67% aligned with the posed questions, and 94.87% were
considered comprehensive (Fig. 2f). By comparison, o1-preview
achieved scores of 97.80%, 90.27%, 96.80%, and 55.07% across these
same metrics (Fig. 2f). Finally, we evaluated the responses based on
their comprehensiveness, specifically whether they addressed ques-
tions frommultiple perspectives, incorporated evidence support, and
avoided bias. The two dimensions pose greater challenges for the
model. The results showed that LINS-o1-preview scored 90.87%,
57.33%, and 0.40% in these aspects, respectively, while o1-preview
achieved scores of 55.07%, 40.07%, and 1.73% (Fig. 2f).

Comparing the results of o1-preview and LINS-o1-preview, we
found that LINS-o1-preview not only improved scientific consensus
and medical expertise in the answers, enhanced the accuracy of
objective question assessments, but also significantly enhanced
answer diversity and comprehensiveness, providing more empirical
support and effective assistance to users. Harmfulness and bias in the
answers were also effectively suppressed, although content relevance
slightly declined. A potential explanation for this observation is that
the KED and MAIRAG algorithm retrieved numerous specialized and
effective pieces of knowledge, providing LINS with valuable refer-
ences, thusmaking its answersmore professional, comprehensive, and
reliable. Naturally, handling a vast array of complex and specialized
medical knowledge may present significant challenges to the intrinsic
capabilities of the LLM.

Overall, LINS demonstrates exceptional performance in the
accuracy and professionalismof its responses tomedical questions. Its
answers align with scientific consensus, exhibit medical expertise,
contain minimal bias, and include very few instances of misleading
information, resulting in superior response quality. This provides
strong support for its potential application in real-world medical
scenarios.

LINS can assist physicians in evidence-based medicine practice
With the exponential growth of scientific literature and emerging
evidence sources, evidence-based medicine (EBM)10 has become
increasingly complex30. While LLMs can generate responses with evi-
dence through prompt engineering, they suffer from limitations such
as outdated knowledge and evidence hallucinations, often leading to
inaccurate or irrelevant citations. In contrast, LINS retrieves high-
quality evidence from authoritative databases with proper sourcing,
making it a more reliable tool for EBM. We next evaluate the potential
of LINS and LLMs in supporting physicians in EBM practice.

Overall, our evaluation was conducted in two phases. In the first
phase, we invited 100 resident physicians to assess whether LINS-o1-
preview could effectively assist their EBM practice. In the second
phase, five attending physicians conducted a more granular evalua-
tion, examining LINS’s ability to enhance the quality and credibility of
o1-preview’s medical responses in EBM scenarios. The assessment was
based on the AEBMP dataset, which we developed in collaboration

with physicians to reflect real-world EBM practice. This dataset con-
sists of two subdatasets: AEBMP_stage1 includes 1000medical records
and 1000 clinical questions for phase one, while AEBMP_stage2 con-
tains 75 medical records and 100 clinical questions for phase two
(Supplementary Fig.4 andMethods). Additionally, wedevelopedHERD
(Hierarchical Evidence Retrieval Database) for LINS, integrating an
evidence-based local retrieval database, the PubMed online retrieval
database, and the Bing online retrieval database to provide access to
high-quality and comprehensive evidence (see Methods and Fig. 3b).
To facilitate evaluation, we also built a dedicated website for assessing
LINS’s utility in evidence-based medical practice (Supplementary
Fig. 5). The detailed workflow of LINS in assisting physicians is com-
prehensively described in the Methods section and visually repre-
sented in Fig. 3a.

In the first phase, evaluations from 100 resident physicians
showed that LINS-o1-preview effectively supported EBM practice in
87.00% of questions (Fig. 3c). Moreover, it significantly reduced
workload, improved efficiency, and reduced stress in 85.03%, 85.10%,
and 80.47% of cases, respectively (Fig. 3e). These findings underscore
the potential of LINS in evidence-based clinical settings. Compared
with o1-preview, LINS-o1-preview exhibited a 53.97% improvement in
assisting EBM practice (Fig. 3c), and physicians considered its
evidence-based recommendations superior in 78.40% cases (Fig. 3d).
Further analysis indicated that, across 3000 cases (with 1000 ques-
tions repeated thrice), o1-preview provided invalid evidence in 1478
responses and partially irrelevant information in 233 responses,
whereas the corresponding numbers for LINS-o1-preview were 61 and
69, respectively (Fig. 3c). Detailed evaluation procedures andmethods
are described in Methods.

In the second phase of the experiment, we invited five attending
physicians to conduct an in-depth evaluation of the quality of the final
answers generated by LINS-o1-preview and o1-preview in assisting
resident physicians. The assessmentwas performed across six detailed
dimensions (Supplementary Fig. 6): scientific consensus, content
relevance, harmlessness, no bias, evidence validity, and credibility. The
results showed that the overall quality of answers generatedwith LINS-
o1-preview assistance was superior to that generated with o1-preview
assistance. Scores for scientific consensus, content consistency,
harmlessness, andno biaswere 97.44%, 97.18%, 97.44%, and 95.64% for
LINS-o1-preview, compared to 93.59%, 96.41%, 95.13%, and 89.23% for
o1-preview (Fig. 3f). Notably, evidence validity in final answers gener-
ated with LINS-o1-preview assistance reached 86.41%, representing a
39.49% improvement over o1-preview (Fig. 3f).Moreover, in credibility
(more credible: no change: less credible), LINS-o1-preview (329: 59: 2)
significantly outperformed o1-preview (171: 207: 12) (Fig. 3g). Analysis
of the evaluation results revealed a strong correlation between the
credibility of the responses and the validity of the evidence within
them, with a Pearson correlation coefficient of 0.75.

To provide a clearer illustration of the differences inworkflow and
quality between LINS and LLMs for assisting physicians in EBM prac-
tice, we visually showcased a comparative case based on a medical

Fig. 2 | Evaluation of general medical competency and medical Q&A perfor-
mance. To control for variables, all tests are conducted without using prompting
techniques (e.g., few-shot, chain-of-thought reasoning). a Comparison between
LINS-o1-preview and o1-preview on six public objective evaluation datasets.
b Comparison between LINS-o1-preview and o1-preview on nine manually created
objective evaluation datasets. c Performance comparison between LINS and other
RAG frameworks across 15 objective evaluation datasets, with each dataset color-
coded by performance ranking. d Comparison between LINS and previously
reported scores on six public datasets. The previously reported scores is up to
December 1, 2024. LINS reports the best score achieved using eight different base
LLMs on each dataset. e Performance of LINS using eight base LLMs compared to
the LLMs alone and LLMs with contextual information. The LLM score represents
the direct score of the LLM on the PubMedQA* dataset, while the LINS score

represents the performance of each LLM integrated with LINS on PubMedQA*. The
LLMwith contexts score indicates the performanceof the LLMusing contexts from
the PubMedQA dataset as a reference when answering questions in PubMedQA*.
The shaded areas in the bar chart indicate performance drops. fHuman evaluation
results by five clinicians comparing LINS-o1-preview and o1-preview on 300 real
clinical questions randomly selected from the HealthSearchQA dataset. Statistical
significancewas assessed using the Kruskal-Wallis test (two-sided). No adjustments
weremade formultiple comparisons (p = 1.92e-130).gHuman evaluation results by
five lay users comparing LINS-o1-preview and o1-preview on 300 real clinical
questions randomly selected from the HealthSearchQA dataset. Statistical sig-
nificance was assessed using the Kruskal-Wallis test (two-sided). No adjustments
were made for multiple comparisons (p = 2.07e-25). Source data are provided as a
Source Data file.
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record and a PICO question (Transform clinical questions into
searchable and answerable questions based on the PICO principle) in
Supplementary Fig. 7. This example highlights the quality differences
between LINS and LLMs in aiding physicians’ EBM. Notably, LINS-o1-
preview retrieved a 2024 study recentlypublished inNatureMedicine31

and provided a scientifically grounded responsewith valid evidence. In
contrast, the o1-preview LLM (trained on data up to October 2023)

generated a response citing three pieces of evidence, one of whichwas
fabricated, and another irrelevant. Such issues can potentially under-
mine users’ expectations regarding the quality and credibility of
evidence-based recommendations.

Overall, resident physicians exhibited significant enthusiasm
when utilizing LINS-o1-preview to support EBM practice. Compared to
o1-preview, LINS-o1-preview demonstrated greater effectiveness in
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assisting physicians in generating higher-quality evidence-based
answers. While o1-preview performed well in terms of scientific con-
sensus and content relevance, its overall performance fell short of
LINS-o1-preview, particularly in the critical areas of evidence validity
and credibility.

LINS can help patients with medical order explanation
Medical orders are essential for guidingpatient care, but patients often
struggle to understand them and cannot always consult doctors for
clarification.While LLMs can generate explanations, they typically lack
credible evidence or sources, making it hard for patients to trust or
verify the information. In contrast, LINS offers reliable, evidence-
backed explanations that are accessible at any time, helping patients
better understand and follow medical orders. We next evaluate the
potential of LINS and LLMs in helping patients with medical order
explanations (MOE).

For the MOE, the workflow of LINS comprised three key pro-
cesses, including medical terminology extraction, medical terminol-
ogy explanation, and clinical Q&A. (Fig. 4a, with details provided in the
Methods section). First, LINS assists in extracting medical terms from
medical records that may require explanation. For each term, LINS
retrieves relevant evidence and provides explanations in a traceable
evidence format. Patients can continue to ask questions freely, and
LINS will retrieve related evidence, offering reasonable and traceable
responses tailored to the patient’s medical records. To comprehen-
sively validate the effectiveness of LINS in MOE scenarios, 5 lay users
and 5 physicians were invited to conduct a randomized, blind-
controlled evaluation with MOEQA Datasets (see Methods). Details
of the evaluation process are provided in Supplementary Fig. 8 and
Methods, while the evaluation dimensions are outlined in Supple-
mentary Fig. 9.

From the patient evaluation results, an average of 87.72% of the
116 medical terms extracted by the Medical Terminology Extraction
Agent (MTEA) from medical orders aligned with patient expectations
(Fig. 4b), demonstrating that the majority of terms extracted were
accurate andmet patient needs. Formedical terminology explanation,
allfive lay users reported that 99.14%of LINS-o1-preview’s explanations
were helpful, while o1-preview achieved a helpfulness score of 87.93%
(Fig. 4c). Moreover, 94.66% of the evidence provided by LINS-o1-
preview was valid, in stark contrast to 25.00% for o1-preview (Fig. 4c).
In the credibility scoring (more reliable: no change: less reliable),
patients rated LINS-o1-preview at 471: 105: 4, significantly out-
performing o1-preview, which received a score of 94: 478: 8 (Fig. 4e
left). Similarly, for the clinical Q&A task, LINS-o1-preview achieved
scores of 90.09% for helpfulness, 71.21% for evidence validity, and a
credibility rating of 313: 220: 2. In contrast, o1-preview scored 87.86%
for helpfulness, 14.02% for evidence validity, and a credibility rating of
62: 459: 14 (Fig. 4d, e right). These findings suggest that clinical Q&A
for medical order aremore challenging than terminology explanation.
Nonetheless, LINS-o1-preview outperformed o1-preview in both tasks,
with a particularly significant advantage in credibility. By analyzing the
correlation coefficients between evidence validity and credibility in
both the termexplanation taskand the clinicalQ&A task, we found that
the Pearson correlation coefficients were 0.78 and 0.83, respectively.

This result further supports our finding that evidence validity plays a
critical role in the credibility of LLM-generated medical responses.

We also invited five attending physicians to provide a more
granular evaluation of LINS. According to their assessments, LINS-o1-
preview achieved an accuracy rate of 98.45% in explaining the 116
medical terms, compared to 85.00% for o1-preview (Fig. 4f). In the
clinical Q&A task, LINS-o1-preview scored 97.57% for scientific con-
sensus, 99.25% for content relevance, 0.75% for harmfulness, and 5.23%
for bias. In comparison, o1-preview achieved scores of 97.57%, 99.44%,
1.31%, and 6.17%, respectively (Fig. 4g). The observed bias in both LINS-
o1-preview and o1-preview may partly result from their attempts to
provide personalized answers tailored to the patient’s specific cir-
cumstances during the clinical Q&A process.

To provide a clearer illustration of the entireworkflow,wepresent
an example showcasing the processes of LINS and the LLM in MOE
evaluation (Supplementary Fig. 10). Due to space limitations, we dis-
play results for two terminology explanations and one clinical Q&A.
From this example, it can be observed that LINS-o1-preview delivers
high-quality answers and valid evidence for each term and clinical
question, whereas o1-preview includes some fabricated or irrelevant
evidence, diminishing the overall quality of its responses.

In summary, compared to LLMs, LINS exhibits superior perfor-
mance inmedical terminology explanation and clinical Q&A, providing
more accurate and expert responses backed by reliable medical evi-
dence. This not only effectively addresses the issue of evidence hal-
lucination in LLMs but also significantly enhances the credibility of its
answers. This advantage helps overcome the trust barriers patients
often encounter with LLMs, markedly increasing the clinical utility of
LINS and underscoring its potential and practicality in assisting
patients with complex medical information.

Evaluation system for evidence-traceable text
Evidence-traceable text, as shown in Fig. 5a, helps users locate sources
of evidence and reduces hallucinations generated by the LLMs32.
However, the quality assessment of evidence-traceable formatted text
currently relies heavily on human evaluation, and there is a lack of a
comprehensive and robust automated evaluation system for assessing
such evidence-traceable formatted text. Human evaluation, as a scarce
resource, is not always readily available, which hinders the widespread
adoption of evidence-traceable formatted text. To address this, we
propose Link-Eval. As illustrated in Fig. 5b, Link-Eval primarily evalu-
ates two aspects: citations and statements. For citations, we introduce
three evaluation metrics: citation set precision, citation precision, and
citation recall, to assess the correctness and comprehensiveness of the
citations. For statements, we propose statement correctness and
statement fluency as evaluation metrics to assess the correctness and
fluency of the statements. The specific calculation methods for these
metrics are detailed in Fig. 5c–e and Methods.

Link-Eval integrates an NLI model, a fluency scorer, and a corre-
lation scorer to assess quality across the aforementioned dimensions.
The fluency scorer is adapted from the previously published UNIEVAL
model33. The correlation scorer has undergone rigorous statistical
validation (Supplementary Fig. 22). As a key component of the auto-
mated evaluation system, the NLI model is utilized to assess semantic

Fig. 3 | LINS can assist physicians in evidence-based medical practice.
a Illustration of LINS assisting physicians in evidence-based medical practice. The
PICO question represents a clinical question reformulated according to the PICO
principle to make it searchable and answerable. b The Hierarchical Retrieval
Database is specifically designed to support LINS in assisting evidence-based
medical practice. cOne hundred resident physicians were invited to conduct 3000
EBP practice evaluations. Firstly, they assessed whether LINS-o1-preview and o1-
preview could assist them in evidence-based medical practice and listed the rea-
sons if they could not. d Secondly, they evaluated which of LINS-o1-preview and o1-
preview generated better evidence-based recommendations. The integers in the

figure represent the number of questions. e Evaluation of resident physicians’
perceptions regarding the assistance of LINS-o1-preview in evidence-basedmedical
practice. f Multidimensional evaluation results by five attending physicians asses-
sing the quality of final answers obtained by resident physicians with assistance
from LINS-o1-preview and o1-preview. g Assessment by five clinical physicians on
whether the evidence citations in the final answers, facilitated by LINS-o1-preview
ando1-preview, enhance the credibility of the responses. Statistical significancewas
assessed using the Kruskal-Wallis test (two-sided). No adjustments were made for
multiple comparisons (p = 7.57e-7). Source data are provided as a Source Data file.
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Fig. 5 | Construction and demonstration of the Link-Eval, an automated eva-
luation system for evidence-traceable text. a Example of the citation-based
generated text formatusedby LINS.b Evaluationdimensions of Link-Eval. c Process
for calculating the correct citation set, correct citations, and valid citations.
d Example calculation of citation precision and citation recall scores. e Process for

calculating statement correctness and statement fluency. f Test accuracy of the NLI
models, clinical physician, and lay user on the MedNLI-mini dataset. g Cramér’s V
correlation scores between the NLI models, physician, lay user, and gold label on
the MedNLI-mini dataset. h Evaluation results of LINS using Link-Eval on Pub-
MedQA* and HealthSearchQA. Source data are provided as a Source Data file.
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relationships between sentence pairs, categorizing them as entail-
ment, contradiction, or neutrality. To ensure the reliability of both the
NLI model and Link-Eval, we first evaluated the performance and cor-
relation of various NLI models with human assessments. We selected
five NLI models (GPT-4o-mini, GPT-4o22, Qwen-2.5-72b24, T5-11b, and
T5-3b34), and tested their performance on the Med-NLI-mini dataset, a
subset of 415 randomly sampled questions from the publicly available
Med-NLI medical inference dataset35. Additionally, one physicians and
one lay users were invited for human evaluation. The results revealed
that GPT-4o achieved the highest accuracy at 88.92% (Fig. 5f), followed
by Qwen-2.5-72b (86.02%), GPT-4o-mini (80.48%), T5-11b (75.18%), and
T5-3b (73.73%). In comparison, the accuracy rates for the physician and
the lay users were 81.69% and 73.98%, respectively (Fig. 5f). These
findings demonstrate that the Med-NLI-mini dataset presents a chal-
lenging task, as even experienced physicians are susceptible to errors.
Notably, GPT-4o and Qwen-2.5-72b outperformed the physician,
showcasing exceptional natural language reasoning capabilities. To
further analyze the correlation between different methods, we intro-
duced Cramer’s V coefficient36. The results (Fig. 5g) showed that GPT-
4o exhibited the highest correlation with the standard answers (0.83)
and a correlation of 0.7 with the physician, while the correlation
between the physician and the standard answers was 0.74. This indi-
cates that GPT-4o not only excels at capturing semantic relationships
in complexmedical contexts but also closely aligns with the reasoning
patterns of professional physicians. In conclusion, GPT-4o demon-
strated strong performance in complex medical NLI tasks, surpassing
even human physicians. Consequently, GPT-4o has been selected as
the preferred NLI engine in the Link-Eval automated evaluation system
for subsequent experiments and tests.

To test the effectiveness of Link-Eval on evidence-traceable text,
we conducted Q&A using LINS on the PubMedQA* and 100 randomly
sampled questions from the HealthSearchQA dataset and evaluated
the results using Link-Eval. The evaluation results are shown in Fig. 5h.
LINS performed exceptionally well in evidence-traceable text, achiev-
ing citation set precision scores of 96.44% and 92.49% on the Pub-
MedQA* and HealthSearchQA datasets, respectively (Fig. 5h). Citation
precision, compared to citation set precision, is a more challenging
metric thatmore finely assesses the correctness of each citationwithin
the citation set, judging the LLMs’ ability to analyze and organize
retrieved passages from a more granular perspective. LINS achieved
citation precision scores of 76.61% and 74.77% on the two datasets,
respectively (Fig. 5h). Additionally, the citation recall score evaluates
the comprehensiveness of the citations, with LINS achieving scores of
72.80% and 65.34% on the respective datasets, indicating that most
effective retrieval passages were correctly cited (Fig. 5h). It is impor-
tant to note that citation precision and citation recall scores are
interdependent; striving for higher citation precision can lead to lower
citation recall and vice versa. This demonstrates that Link-Eval effec-
tively balances the accuracy and comprehensiveness of citations,
avoiding an excessive focus on high-quality references that could
result in the omission of valuable information.

In evaluating the statements, statement fluency assesses the flu-
ency of the text, checking if the statements follows grammatical rules,
has natural sentence structures, and uses appropriate words. Fluent
text should read smoothly without causing stiffness or confusion for
the reader. LINS achieved scores of 83.27% and 88.43% on the two
datasets (Fig. 5h), respectively, indicating that its generated state-
ments is fluent, logically coherent, and easy to read. Statement cor-
rectness evaluates the accuracy of the model, mainly to determine if
there are any contradictory descriptions between statements. LINS
achieved statement correctness scores of 98.07% and 98.76% on the
two datasets, respectively, demonstrating its reliability in generating
accurate statements (Fig. 5h).

In summary, Link-Eval serves as a complementary solution when
professional human evaluation resources are limited, enabling

efficient and objective automated assessment of evidence-traceable
text quality while ensuring reproducible evaluation outcomes. Addi-
tionally, Link-Eval provides a standardized evaluation framework that
fosters the advancement of evidence-traceable text research and
applications.

Discussion
LLMs hold significant promise in enhancing clinical practice, medical
research, and patient care. However, their integration into real-world
clinical settings remains challenging due to issues such as fabricated
evidence, lack of timeliness, and insufficient medical specificity. These
limitations compromise the quality and credibility of LLM-generated
medical responses, posing significant barriers to their widespread
adoption and effective deployment in clinical setting.

To address the above limitations of LLMs in medical applications,
we propose the LINS framework with the novel MAIRAG and KED
algorithms.Bydynamically retrieving and integrating effectivemedical
information directly into the generative workflow, coupled with an
evidence-traceable output format, LINS substantially improves the
evidence validity, medical expertise, and timeliness of LLM-generated
responses. Consequently, LINS completes a comprehensive query-
response-validation interactive loop, significantly enhancing the
quality, credibility, and clinical applicability of LLM-generated
responses.

In our study, we conducted large-scale objective benchmarks and
human evaluations to demonstrate LINS’ general medical capabilities.
Additionally, we validated its clinical value in two real-world applica-
tion scenarios: evidence-based medical practice and medical order
interpretation. The results of our experiments demonstrate that LINS
significantly improves the quality and credibility of medical responses
generated by LLMs. For physicians, LINS offers a powerful tool for
rapidly retrieving and summarizing evidence, thereby reducing the
timeandeffort required for traditional evidence retrievalmethods. For
patients, LINS provides clear, personalized explanations of medical
orders, which can improve their understanding and adherence to
treatment plans. These advancements have the potential to alleviate
clinical burdens and improve patient outcomes, making LINS a valu-
able asset in modern healthcare. Moreover, the creation of novel
datasets such as Multi-MedCQA, AEBMP, and MOEQA addresses a
critical need for high-quality, physician-curated data in the evaluation
of LLMs. These datasets not onlymitigate the risks of data leakage and
overfitting but also provide a more accurate reflection of real-world
clinical scenarios. Bymaking these datasets publicly available, we hope
to contribute to the ongoing development and evaluation of LLMs in
the medical field, fostering further innovation and collaboration.

As we have mentioned, LLMs frequently fabricate medical evi-
dence content or sources6,7. We define this phenomenon as “evidence
hallucination”, a specific subset ofAI hallucinations37. The root causeof
these hallucinations lies in the generative nature of LLMs: the models
predict the next word based on statistical correlations rather than
aiming for factual accuracy38. This issue is particularly concerning in
the medical field. If clinicians were to trust evidence fabricated by
LLMs, they might unknowingly be led to incorrect diagnoses or
treatment pathways, potentially causing severe consequences for
patient health38. Over time, this could erode trust in LLMs within
medical settings, leading to diminished confidence among both doc-
tors and patients. To address these challenges, LINS innovatively
integrates a retrieval strategy with an evidence-traceable mechanism,
combining LLMs with external knowledge sources and verification
mechanisms to ensure the traceability and reliability of generated
answers. Specifically, LINS employs a dual-mechanism approach: First,
LINS utilizes the MAIRAG and KED algorithms to retrieve relevant and
reliable evidence, providing LLMs with real-time access to author-
itative external information. This RAG14 strategy overcomes the lim-
itations of traditional LLMs that rely solely on training, enabling the
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model to generate responses based on the latest and most credible
sources. Second, LINS implements an evidence traceabilitymechanism
that establishes a verifiable mapping between generated answers and
their original sources. The mechanism not only annotates the sources
of information in its responses but alsomaintains an internal evidence
chain, ensuring that all cited literature, data, and other evidence are
authentic and verifiable. All in all, throughour framework, LINS teaches
LLMs to consult sources and cite evidence rather than making
assumptions, effectively mitigating evidence hallucination and
enhancing the quality and credibility of LLM-generated medical
responses.However, evenwith these technological safeguards, the use
of medical AI requires caution: professionals must always verify AI-
generated recommendations. Looking ahead, as such frameworks are
refined and more widely deployed, we can expect to fully realize the
potential of LLMs in healthcare while ensuring patient safety. This will
allow us to benefit from the efficiency gains offered by LLMs without
compromising scientific rigor or best practices.

In the medical field, information timeliness is of paramount
importance, as medical knowledge and treatment protocols are con-
stantly evolving. New research findings, clinical trial results, and
treatment guidelines are published at a rapid pace39. However, LLMs
are typically trained on static datasets40, which means they cannot
reflect the latest medical advancements or real-time clinical informa-
tion. Frameworks like LINS, which are based on retrieval-augmented
generation14, address this limitation by enabling real-time retrieval of
online information to supplement the knowledge referenced during
LLM responses. Specifically, LINS, as a medical framework combining
information retrieval and text generation, operates on the core prin-
ciple of retrieving relevant information fragments from external
knowledge bases as contextual input before the LLM generates its
response. This framework ensures that LLMs are no longer confined to
outdated knowledge from their training data but can instead leverage
the latest research, clinical guidelines, anddrug information toprovide
accurate and up-to-date answers.

In the medical domain, the importance of privacy protection
cannot be overstated41–43. The LINS demonstrates strong capabilities in
mitigating potential privacy risks. While some commercial APIs, such
as the OpenAI API, are compliant with HIPAA (Health Insurance Port-
ability and Accountability Act) standards, users with higher privacy
requirements often demand that no sensitive data be uploaded or
exposed to the internet under any circumstances. To address this, LINS
offers flexible configuration options, enabling users to choose solu-
tions tailored to their specific needs. For datasets without sensitive
information, users can leverage commercial LLMsor online retrieval to
enhance system functionality. However, for highly confidential data,
LINS supports localized processing, recommending local deployment
of LLMs and a retrieval database. This ensures that all sensitive data
remains under the user’s control during processing and analysis,
minimizing the risk of data leakage while maintaining robust
functionality.

However, this study has several limitations. Firstly, although the
human evaluation was conducted by a large and highly professional
teamofphysicians, the current participantsmaynot fully represent the
diverse standards of medical practice across different regions and
countries. Future work should aim to expand the size and diversity of
the evaluation team to obtainmore comprehensive and representative
evaluation feedback. Secondly, althoughLINS’s local database retrieval
enhancement function has advantages such as no need for training,
low usage threshold, strong scalability, and good privacy protection,
the current method of constructing local databases is commonly used
in formats like TXT, JSON, and PDF. In future work, we plan to develop
specialized retrievalmechanisms andprocessingworkflows for diverse
data formats, including tables and knowledge graphs, making LINS a
powerful AI system capable of handling various retrieval enhancement
formats. Thirdly, while the MAIRAG algorithm delivers excellent

performance, it incurs additional token costs. Using MedQA-U and
MedQA-M datasets as examples (MedQA-U contains many logic-
reasoning questions, and MedQA-M focuses on questions requiring
medical knowledge), we evaluated the performance and token usage
(prompt_tokens + completion_tokens) of four methods: Chat (pure
model), original RAG18, MAIRAG, and CoT44 (Supplementary Table 5)
with GPT-4o-mini. For knowledge required questions in the MedQA-M
dataset, the CoT method demonstrated the lowest token usage but
achieved only moderate performance. In contrast, MAIRAG provided
the best results with token costs comparable to those of the RAG
algorithm. For reasoning required questions in the MedQA-U dataset,
the original RAG performed poorly, while MAIRAG excelled by
decomposing and reasoning through questions, albeit at a higher
token cost (1.565 times that of the original RAG). Despite the increased
expenditure, MAIRAG’s superior response quality makes it acceptable
for users prioritizing accuracy. It is important to note that CoT and
RAG methods are not mutually exclusive and can be combined to
further enhance model performance. MAIRAG and RAG improve
response accuracy by integrating external knowledge retrieval,
enriching the generativemodel’s background information.Meanwhile,
CoT aids in step-by-step reasoning, enabling more sophisticated logi-
cal responses. By combining these approaches, systems can balance
rich contextual knowledge with effective multi-step reasoning,
achieving higher-quality answers in knowledge-intensive scenarios
while optimizing performance and cost. This synergistic approach
holds great promise for delivering superior solutions in future
applications.

The development of LINS marks a significant advancement in the
integration of LLMs into clinical practice. By seamlessly integrating
with any LLM, LINS enhances its versatility, offering healthcare provi-
ders and researchers a powerful tool for improving clinical decision-
making and patient care. With its robust real-time evidence retrieval,
integration, and extension capabilities, LINS aims to deliver accurate,
professional, and credible support for medical researchers, clinicians,
and patients alike. Moreover, its flexible design and adaptability to
evolving medical dynamics are poised to elevate global healthcare
quality, fostering progress in research and clinical practices across
diverse medical fields. Furthermore, LINS’s open-source strategy and
the release of its datasets are expected to catalyze deeper AI integra-
tion and innovation in medicine, paving the way for transformative
breakthroughs in the field.

Methods
This study complies with all relevant ethical regulations. The research
protocol was reviewed and approved by the Ethics Committee of
Beijing Anzhen Hospital, Capital Medical University (Approval ID:
KS2024118). All data were processed in accordance with applicable
privacy and data protection standards, and no identifiable personal
information was collected or used. All participants provided informed
consent and received a small monetary compensation for their parti-
cipation. Participants were randomly assigned to experimental con-
ditions and were blinded to the study design. No deception was used.
As the studies were conducted online, there was no direct interaction
between researchers and participants.

In all studies, gender was determined based on participants’ self-
identification. We did not consider or pre-register any analyses dis-
aggregated by sex or gender, as these variables were not theoretically
relevant to our research questions.

The construction and configuration of each module in LINS
As we show in Fig. 1a, the LINS framework constructed is primarily
composed of a database module, a retrieval module, a multi-agent
module, and a generatormodule. Eachmodule communicates through
natural language interfaces, achieving a synergistic and cooperative
effect. Specifically:
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Database module. The input to the database module is a natural
language question, and the output is the information from the data-
base that is relevant to the query. LINS supports both connecting to
online databases for real-time data retrieval and allowing users to
connect to local, private databases tomeet personalized search needs.
In this study,weprovided twoonline databases, PubMed andBing, and
also constructed four local databases—OMIM, OncoKB, Textbooks,
and Guidelines—as examples. The PubMed and Bing online databases
rely on calling their respective online API interfaces, while the four
local databases save data by encoding natural language text into vec-
tor database formats.

Retrieval module. The retrieval module takes as input the user’s
question alongwith the relevant information provided by the database
module, and produces as output the top-k most pertinent pieces of
information corresponding to the query. Since the relevant informa-
tion output by the database module may consist of hundreds or
thousands of entries, the retrieval module is responsible for filtering
out the top-kmost relevant pieces of information using a finer-grained
semantic vector similarity encoding method and passing them to the
multi-agent module in natural language format. Here, top-k is a con-
figurable hyperparameter. The retrieval module includes a retriever
and a keyword extraction agent45. The KEA, implemented using a LLM
based on specific prompts (Supplementary Fig. 12), is tasked with
extracting a specified number of keywords from the query in order of
importance, thereby facilitating the keyword extraction degradation
algorithm (The Keyword Extraction Degradation Algorithm is descri-
bed below).

Multi-agent module. The multi-agent module employs a distributed
agent architecture, where each agent is built upon LLM and specializes
in task processing through pre-defined prompts (Supplementary
Fig. 11). The multi-agent module consists of four agents—PRA, SKA,
QDA, and PCA. They are all constructed based on LLM through the use
of prompts. The PRA aids in filtering effective knowledge, preventing
interfering knowledge from disrupting the generation of answers. The
SKA assesses the model’s internal knowledge reserves, thoroughly
mining its internal knowledge in the absence of effective external
knowledge. The QDA is responsible for breaking down complex
questions intomore manageable subproblems, iteratively delving into
the coreof the issue. The PCA ensures that the generated answers align
with retrieved authoritative knowledge, avoiding contradictions with
known information.

Generator module. The generator module is constructed based on a
base LLM with pre-defined prompts (Supplementary Fig. 18). It is pri-
marily responsible for generating responses in specific formats and
content based on the user’s query, the retrieved information, and the
model’s internal knowledge. LINS allows users to integrate existing
open-source or commercial API LLMs as generators according to their
needs. In this study, we comprehensively evaluated eight LLMs (GPT-
4o-mini, GPT-4o, o1-mini, o1-preview, Gemini-1.5-flash, Gemini-1.5-pro,
Qwen2.5-72b, and Llama3.1-70b) and provided detailed evaluation
results and model selection guidelines in the Supplementary Note.

Multi-agent iterative retrieval augmented generation algorithm
To overcome the limitations of the original RAG algorithm, which
suffers from insufficient retrieval quality and depth, we propose the
MAIRAG algorithm. This algorithm enhances the quality of retrieved
information anddecomposes complexproblems into subproblems for
iterative processing. It primarily involves four main agents: PRA, SKA,
QDA, and PCA. Specifically, when relevant information is retrieved, the
PRAfirstfilters for effective information—information that directly aids
in answering the question. If effective information is identified, it is
passed to the generator to produce a response. If PRA determines no

effective information is available, the SKA evaluates whether the gen-
erator’s intrinsic knowledge is sufficient to answer the question. If not,
theQDAbreaks the query into sub-questions, retrieves information for
each, and synthesizes the results into a reference passage for gen-
erating the final answer. When effective information is available, the
PCA ensures the generated response aligns with this information. If
inconsistencies arise, we prioritize the effective information and
regenerate the response to align with it. Importantly, the activation of
agents in the LINS framework is configurable. If none are enabled, the
MAIRAG algorithm defaults to the original RAG algorithm.

Keyword extraction degradation algorithm
To overcome the issue of traditional retrieval methods potentially
failing to retrieve results when handling complex and lengthy sen-
tences,we propose theKED algorithm.TheKEDalgorithm, as shown in
Fig. 1b, effectively distills key information while maintaining a suffi-
cient retrieval scope to ensure important results are not missed. We
have developed a keyword extraction agent and a corresponding
degradation strategy. The keyword extraction agent first extracts
keywords from the retrieval passage in order of importance, fromhigh
to low, and users can control the maximum number of keywords
extracted. During retrieval, each keyword essentially acts as a restric-
tion. In the context of long-text retrieval, when the number of key-
words is too few, the resultsmay lack precision. By gradually removing
the least important keywords and re-initiating the retrieval, effective
results are obtained. This approach not only optimizes the query
process but also ensures the relevance and comprehensiveness of the
retrieval results. It is particularly suited for the complex retrieval
demands of biomedical literature databases within the LINS system.

Database
In this study, we utilized an extensive set of online databases, including
Bing, and PubMed27, tailored specifically for molecular biomedical
research. Additionally, customizable local databases were constructed
to meet specific user needs. For this study, we developed four repre-
sentative local databases—OncoKB46, OMIM47, Textbooks28, and
Guidelines—encompassing knowledge across diseases, cells, mole-
cules, and drugs within specialized molecular biomedical domains.
Notably, LINS uses the PubMed online database by default for infor-
mation retrieval. However, users have the flexibility to specify alter-
native databases, such as Bing or local sources like OncoKB, through
simple parameter settings. If userswish to performcombined searches
across multiple databases, they can utilize the Hierarchical Retrieval
Database (HRD) structure described below. By enumerating the
desired database names, LINS will sequentially search each specified
database in the defined priority order until relevant information is
retrieved. Furthermore, users can conveniently add, delete, or modify
knowledge within their local databases in natural language form and
subsequently update these databases with a single command through
our provided code. To ensure ease of use, we have included detailed,
user-friendly tutorials within our codebase.

Online database
The online databases primarily leverage search engine APIs, offering
advantages such as real-time updates, rapid iteration, and high inte-
gration. LINS integrates Bing and PubMed as part of its database eco-
system, allowing users to select based on their specific needs. This
decision reflects the unique strengths and coverage of each source.
Bing, as a general-purpose search engine, provides diverse and
extensive information resources suitable for cross-disciplinary or
general queries. In contrast, PubMed, a specialized database for bio-
medical literature, offers precise and in-depth resources tailored to
medical researchers and professionals. Thismulti-interface integration
enables LINS to address medical queries comprehensively, balancing
broad general knowledge with authoritative, specialized insights. By
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incorporating diverse databases, the system enhances robustness,
ensuring reliable, enriched, and comprehensive answers to a wide
range of user inquiries.

Local database
In this study, we developed four local databases—OMIM, OncoKB,
Textbooks, and Guidelines—while also demonstrating how users can
construct personalized local databases within the LINS system. The
specific implementation details are as follows.

Local OMIM database construction. The OMIM47 dataset is an
authoritative online database of human genetic diseases. It includes
detailed information about genetic disorders, such as descriptions of
the diseases, inheritance patterns, related genes, genetic variations,
and references to relevant literature. OMIM is widely used in medical
genetic research and clinical diagnosis, serving as a valuable resource
for understanding human genetic diseases and conducting related
gene research. The data format in the OMIM database is shown in
Supplementary Fig. 15b. For each human genetic disease, OMIM con-
tains information described in natural language, such as TEXT,
Description, Clinical Features, Diagnosis, Clinical Management,
Pathogenesis,Molecular Genetics, PopulationGenetics, AnimalModel,
and History. We collected these pieces of information and segmented
them based on line breaks, then removed invalid information with
character lengths less than 100. Finally, we obtained a total of
68,626 segments as knowledge stored in jsonl format to form the local
OMIM database.

Local OncoKB database construction. OncoKB46 is a knowledge-
driven database specifically designed for precision oncology. It inte-
grates information about tumor molecular profiles, clinical evidence,
drug sensitivity, resistance mechanisms, and patient treatment out-
comes. OncoKB aims to provide in-depth insights into cancer geno-
mics, molecular targeted therapy, and immunotherapy for doctors,
researchers, and patients, supporting clinical decision-making and the
development of personalized treatment plans. The database synthe-
sizes a vast amount of scientific literature, clinical trial data, and cancer
genomic data to provide evidence for cancer treatment and is con-
tinuously updated to reflect the latest scientific advancements and
clinical practices. The data format in the OncoKB database is shown in
Supplementary Fig. 15c. For each gene mutation and corresponding
cancer, it integrates relevant descriptions, drugs, and drug sensitivity.
However, OncoKB does not describe this information in natural lan-
guage but rather in tabular form. Therefore, we need to set a fixed
template to convert this information into natural language. Specifi-
cally, if the level for drug Dwithmutation A in gene G causing cancer C
is R1 or R2 (resistant), we will convert it into the following knowledge:
“A patient with C, if A occurs at G, can become resistant to D, which is
detrimental to treatment.” If the level is 1, 2, 3, or 4, we will convert it
into: “A patient with C, if A occurs at G, the recommended drug is D.”
Along with other natural language descriptions on OncoKB, our con-
structed local OncoKB database contains a total of 8150 pieces of
knowledge, covering 858 genes, 7729 alterations, 137 cancer types, and
138 drugs.

Local Textbooks database construction. The Textbooks local data-
base comprises textual material from 18 widely used English medical
textbooks curated from the MedQA28 collection. These textbooks
encompass a broad range of medical knowledge and have been
meticulously organized to enable the model to extract relevant evi-
dence for reasoning and clinical decision-making. As shown in Sup-
plementary Fig. 15d, the content from these 18 textbooks was
segmented by line breaks, resulting in 231,581 paragraphs containing a
total of 12,727,711 words. The data was stored in JSON format as the
foundation of the Textbooks local database. To integrate it into the

LINS system, we encoded the content into a vector database using the
text embedding model Text-embedding-3-large, facilitating efficient
retrieval and use within the system.

Local guidelines database construction. As illustrated in Supple-
mentary Fig. 15e, we collected 414 evidence-based medical guidelines
from the internet, encompassing four specialties: nephrology, cardi-
othoracic surgery, orthopedics, and psychiatry. The dataset includes
both Chinese and English guidelines. Using the E2M48 tool, we con-
verted PDF documents into text (TXT) files. Given the strong con-
textual coherence inherent to medical guidelines, we structured the
local library at the document level rather than passage-based seg-
mentation, as was done for textbooks. However, the length of indivi-
dual guidelines often exceeds the maximum input limits of retrieval
models, and excessively long content can compromise retrieval pre-
cision. To address this, we employed the following strategy: For each
of the 414 guidelines, we used the GPT-4o model to generate concise
summaries and constructed a guideline map that links each summary
to its corresponding txt file. The local guidelines library thus consists
of these txt files alongside the guideline map. To integrate this library
into LINS, we encoded the summaries into a vector database using the
Text-embedding-3-large model. When LINS matches a guideline sum-
mary based on semantic similarity within the local guidelines library,
the guideline map enables precise retrieval of the full guideline con-
tent for downstream applications.

Hierarchical retrieval database
The Hierarchical Retrieval Database (HRD) is a tiered retrieval data
structure within LINS that enables users to seamlessly combine local
and online databases for evidence search. It supports both user-
defined local database and online database, allowing flexible selection
of which libraries to use and their priority order. By default, the
retrieval prioritizes local database over online databases. If relevant
evidence is found in a higher-priority library, it is returned directly;
otherwise, the search proceeds to the next library in the hierarchy.
Users can customize local libraries by adding TXT or PDF files as
retrieval content.

Hierarchical evidence retrieval database
As shown in Fig. 3b, theHERD is a specializedHRDdesigned to support
evidence-basedmedical practice with LINS. It integrates three retrieval
databases: a locally constructed Guidelines database, the PubMed
onlinedatabase, and theBingdatabase. Thepriority of these libraries is
ranked from highest to lowest as follows: Guidelines, PubMed,
and Bing.

Construction of novel expert-curated datasets
In this study, we invited 50 attending physicians from four top-tier
hospitals in China to participate in the manual construction, inspec-
tion, and review of the Multi-MedCQA, AEBMP, and MOEQA datasets.
Among them, Multi-MedCQA is used to assess the general medical
capabilities of LLMs, while AEBMP and MOEQA are used to evaluate
LINS and LLM performance in two real clinical scenarios: evidence-
based medical practice and medical order explanation, respectively.

Multi-MedCQA. TheMulti-MedCQA dataset consists of nine specialty-
specific sub-datasets: thoracic surgery, cardiology, hematology,
respiratory medicine, urology, general surgery, nephrology, ophthal-
mology, and gastroenterology. These sub-datasets collectively com-
prise 4685 multiple-choice questions, with 198–956 questions per
specialty. Each question includes four options, with only one correct
answer. The detailed construction process of the Multi-MedCQA
dataset is illustrated in Supplementary Fig. 14. We invited attending
physicians from nine medical specialties to manually create multiple-
choice questions reflecting general medical knowledge within their
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respective fields. The nine specialties included thoracic surgery, car-
diology, hematology, respiratory medicine, urology, general surgery,
nephrology, ophthalmology, gastroenterology,with each contributing
a minimum of 500 questions. This effort resulted in an initial set of
nine sub-datasets containing 500, 523, 500, 550, 500, 1000, 200, 500,
and 500 questions, respectively. To ensure the dataset’s quality and
relevance, senior specialists reviewed each sub-dataset. Questionswith
issues such as missing answers, incorrect answers, identical content
found online, unclear phrasing, redundancy, or inconsistent format-
ting were excluded. After this rigorous curation process, the finalized
sub-datasets contained 500, 510, 499, 535, 498, 956, 198, 489, and 500
questions, respectively. To broaden the dataset’s applicability, a
medical English specialist translated all questions and options into
English, ensuring accuracy and consistency. The Multi-MedCQA data-
set is thus available inbothChinese andEnglish,making it accessible to
a wider audience. To prevent the dataset from being used for training
LLMs, we will release only the questions and answer options in both
languages while withholding the answer keys. Instead, an open-access
platform for accuracy evaluation will be provided, allowing research-
ers to assess LLM performance on Multi-MedCQA without compro-
mising its integrity as an independent benchmark.

AEBMP. The AEBMP dataset consists of two subsets: AEBMP_stage1
and AEBMP_stage2, designed to evaluate the performance of LINS and
LLM in EBM practice. AEBMP_stage1 contains 1000 medical records
and 1000 corresponding clinical questions. First, we extracted 1600
real medical records from the Chinese Medical Record Repository, a
collection of high-quality real-worldmedical cases. Then, we usedGPT-
4o to extract the patient information from each record and submitted
them to 9 physicians for review. Based on their clinical experience, the
physicians formulated a relevant clinical question for each medical
record. In total, we obtained 1273 cases and corresponding clinical
questions, from which 1000 were randomly selected to form the
AEBMP_stage1 dataset. The AEBMP_stage2 dataset includes 75 medical
records and 100 clinical questions. We used GPT-4o to categorize 411
medical records into nephrology (230 cases) and cardiac surgery (181
cases) from MedQA (USMLE)28. These records were then reviewed by
nine physicians, who selected cases suitable for evidence-based med-
ical practice and formulated related clinical questions. After this pro-
cess, 178 medical records and 213 clinical questions were obtained,
fromwhich 75medical records and 100 related clinical questions were
randomly selected to form the final AEBMP_stage2 dataset.

MOEQA. The MOEQA dataset evaluates LINS’s ability to help patients
withmedical order explanation. It includes 24medical records and 107
clinical questions. LINS analyzes user-provided medical records to
extract relevant medical terminology, offering detailed explanations
before addressing user-specific clinical questions based on the context
of the records.

The construction process of the MOEQA dataset is outlined in
Supplementary Fig. 9. Unlike AEBMP, this dataset required records
containing comprehensive patient information, including diagnoses
and treatments. We sourced cases from the Chinese Medical Case
Repository, a collection of high-quality real-worldmedical cases. Three
physicians selected and reformatted 48 cases into a standardized
structure of ‘Patient Information’ plus ‘Examination’ plus ‘Diagnosis’
plus ‘Treatment’. From these, 24 cases were randomly selected. To
generate clinical questions, five lay users simulated patient scenarios,
formulating one or two questions for each case. After consolidation
and deduplication, the final MOEQA dataset included 24 medical
records and 107 clinical questions.

Setting of objective multiple-choice question evaluation
In this study, we built a large-scale objective multiple-choice question
evaluation to assess the general medical capabilities of LINS. To more

intuitively evaluate the performance of LINS, we employed a zero-shot
setting across all datasets used in this experiment. We tested eight
LLMs—GPT-4o-mini, GPT-4o, o1-mini, o1-preview22, Llama3.1-70b23,
Qwen2.5-72b24, Gemini-1.5-flash, and Gemini-1.5-pro25—and their per-
formance after integration with LINS on the nine subsets of our con-
structed Multi-MedCQA dataset and six publicly available datasets:
MedMCQA26, PubMedQA*27, MedQA-M, MedQA-U, MedQA-T28, and
Geneturing-disease29. Among them, LINS retrieves from the Pub-
MedQA database for the PubMedQA* dataset, from the Textbooks
database for the MedQA-U dataset, and from the Bing database for all
other datasets. A brief description of the six publicly available datasets
used in this study is provided below.

MedMCQA. MedMCQA26 is a large-scale, multidisciplinary multiple-
choice question dataset designed specifically for question-answering
tasks in the medical domain. It comprises over 194,000 high-quality
multiple-choice questions sourced from AIIMS and NEET PG entrance
exams, spanning 2400 medical topics across 21 medical disciplines.
Each sample includes a question, the correct answer, and alternative
options, aiming to assess various reasoning abilities of models across
diverse medical topics and disciplines. For our evaluation, we utilized
the validation subset, MedMCQA-dev, consisting of 4183 multiple-
choice questions.

PubMedQA. The PubMedQA27 dataset is extracted from authentic
literature, ensuring the data’s accuracy and reliability. It encompasses
various fields such as clinical medicine, biomedical science, and
pharmacology. The data format is shown in Supplementary Fig. 13a.
Each entry includes PMID, Question, Contexts, Long Answer, and Final
Decision. The Contexts section typically comprises Objective, Meth-
ods, and Results. Each PMID uniquely corresponds to a document in
the PubMedQA30 database. TheQuestion is either the title of the PMID-
associated article or a question derived from the title, with an average
length of 13.1 words. TheObjective, Method, Results, and Long Answer
sections correspond to parts of the article abstract, averaging 54.94
words in length. The Final Decision is an answer represented by Yes,
No, or Maybe. The entire PubMedQA test dataset consists of 500 test
questions that require inferential conclusions.

PubMedQA*. To simulate real-world biomedical application scenarios,
we constructed PubMedQA* by following themethodology outlined in
MedRAG15. This involved removing the provided contextual informa-
tion (Contexts) from 500 expert-annotated test samples in the original
PubMedQA dataset, leaving only the Questions and Final Decisions
(Yes/No/Maybe). In real-world applications, user queries often lack
accompanying contextual references, making PubMedQA* a more
realistic benchmark for evaluating the performance of large models in
practical settings compared to the original PubMedQA dataset.

MedQA-M. The MedQA-M28 test set consists of 3426 multiple-choice
questions, each with four options and a single correct answer. These
questions are sourced from the Medical Licensing Examination in
mainland China (MCMLE). The test set includes both simple
knowledge-based questions and complex case-based scenarios, cov-
ering a wide range of medical disciplines. Answering these questions
requires a comprehensive understanding of various diseases and their
treatments.

MedQA-U. The MedQA-U28 test set comprises 1273 multiple-choice
questions, each with four options and a single correct answer. These
questions are derived from the United States Medical Licensing
Examination (USMLE). The test set focuses on clinical scenarios,
emphasizing the need for deep understanding of medical concepts
and multi-step logical reasoning. Most questions describe patient
symptoms and require identification of the most likely diagnosis,
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appropriate treatment, or underlying diseasemechanism, testing both
reasoning ability and medical knowledge.

MedQA-T. The MedQA-T28 test set includes 1413 multiple-choice
questions, each with four options and a single correct answer. These
questions originate from medical licensing examinations in Taiwan
(TWMLE) and are based on the same corpus as the MedQA-U subset.
The questions typically present real-world clinical scenarios with
detailed patient histories, requiring the model to make precise judg-
ments among numerous medical options.

Geneturing-disease. TheGeneturing-Diseasedataset is a subset of the
Geneturing dataset29, focusing on disease-related data. It contains 50
questions with standard answers, specifically designed to evaluate the
ability of LLMs to identify genes associated with specific diseases.
Model performance is assessed based on the proportion of correctly
identified standard genes, providing a benchmark for evaluating cap-
abilities in this critical genomics task.

Setting of Human Evaluation of Commonly Searched Consumer
Medical Q&A
Evaluation dataset. In this study, we used HealthSearchQA4 for com-
monly searched consumer medical Q&A evaluation. HealthSearchQA
consists of 3173 commonly searched consumer questions. This dataset
contains only questions without providing answers or reference
information, aiming to advance research in medical question-
answering systems, particularly in open-domain and real-world appli-
cations. To evaluate LINS’s question-answering capabilities in clinical
scenarios, we randomly selected 300 questions from the Health-
SearchQA dataset.

Evaluation dimensions. We have established nine evaluation dimen-
sions across three primary aspects (Supplementary Fig. 3), including
utility (Helpfulness and Harmfulness), accuracy (Scientific Consensus,
Medical Expertise, Content Relevance, and Content Completeness),
and comprehensiveness (Answer Diversity, Empirical Support, and
Bias). Each dimension corresponds to a question and two options,with
-1 indicating a negative aspect and 1 indicating a positive aspect.

Evaluation methodology. We employed a randomized, blind-
controlled experimental design for evaluation. The process involved
a survey distributed to each evaluator, containing 300 questions. Each
question corresponded to answers generated by LINS-o1-preview and
o1-preview. For every answer, evaluators assessed nine dimensions,
resulting in a total of 5400 individual evaluations per participant. To
ensure impartiality, we removed citation formatting from LINS-o1-
preview responses, making it impossible to distinguish between the
two models based on answer formatting alone. The survey presented
questions sequentially, with the two answers to each question ran-
domly shuffled and displayed consecutively. This approachminimized
user bias and preconceived impressions, ensuring fairness and accu-
racy in the evaluation process. The continuous arrangement of
responses allowed evaluators to compare the answers directly without
interruption, facilitating a clearer identification of each model’s
strengths and weaknesses when addressing the same question. Ran-
domizing the order of responses further mitigated potential biases
stemming from consistent answer positioning and exposed subtle
differences between themodels. This rigorousmethodology enhanced
the precision and reliability of the evaluation, ensuring a more com-
prehensive and nuanced assessment of the models’ performance.

Settings of LINS Assists Physicians In Evidence-Based Medicine
Practice
Workflow of LINS assisting in evidence-based medicine practice.
LINS demonstrates robust capabilities in evidence collection and

synthesis, enabling the generation of application-ready, evidence-
traceable text to support clinicians in evidence-basedmedicalpractice.
As illustrated in Fig. 3a, after a physician formulates a specific clinical
question based on patient information, LINS leverages the PICO Agent
(promptdetails in Supplementary Fig. 18) to transform the query into a
PICO question (Transform clinical questions into searchable and
answerable questions based on the PICO principle). Alternatively,
physiciansmaydirectly input awell-structuredPICOquestion, inwhich
case the PICO Agent is bypassed. Using the PICO question, LINS sear-
ches the HERD database for relevant, high-quality evidence and inte-
grates the retrieved information with patient-specific data to generate
traceable, evidence-based recommendations. These outputs serve to
assist clinicians in making informed decisions.

Workflow of human evaluation. To comprehensively validate the
efficacy of LINS in assisting physicians with evidence-based medical
practice, we constructed the AEBMP dataset for systematic evaluation
(Supplementary Fig. 14). The experiment was divided into two parts:
first, we used the AEBMP_stage1 subset to evaluate whether LINS can
assist resident physicians in evidence-based medical practice; second,
we used AEBMP_stage2 to assess the specific quality of the final
answers generated by LINS and LLMs in assisting resident physicians.

For AEBMP_stage1, we first used LINS-o1-preview and o1-preview
to generate evidence-based recommendations for 1000 clinical ques-
tions in the dataset (prompt details in Supplementary Fig. 18). We then
developed a web-based interface (Supplementary Fig. 6) and invited
100 resident physicians to conduct the experiment using the platform.
To enhance the quality of the experiment, we set up three repetitions
for each question, with each resident physician evaluating 30 random,
non-repeating clinical questions and their corresponding 60 answers.
LINS-o1-preview and o1-preview’s responseswerepaired anddisplayed
for each question. To prevent format-based bias, all answers were
anonymized and presented in a randomized order. To ensure the
quality of the test, we also set a quality control question for each tester,
and users who answered the quality control question incorrectly
would have their test results reset. For each answer, the resident
physicians were required to assess whether the response could assist
in evidence-based medical practice, save time, reduce stress, and
improve efficiency. If they selected “cannot assist in evidence-based
medical practice”, testers were asked to choose one reason from five
options (“lack of correctness, lack of evidence validity, harmfulness,
bias, or other” with a space for further elaboration) for subsequent
analysis.

For AEBMP_stage2, we first used LINS-o1-preview and o1-preview
to generate evidence-based recommendations for 75 clinical cases and
100 clinical questions in the dataset (prompt details in Supplementary
Fig. 18) and invited three resident physicians to choose either the LINS-
o1-preview or o1-preview-generated evidence-based recommenda-
tions (presented in the same format, anonymized, and randomized in
order) as assistance for each question and modify the answers to
generate the final evidence-based answers. For 78 questions, resident
physicians used both LINS-o1-preview and o1-preview recommenda-
tions to assist in generating the final answers. We then invited five
attendingphysicians to evaluate the 156answers for these 78questions
acrossmultiple dimensions (Supplementary Fig. 7). The evaluationwas
conducted as a randomized, blind-controlled study. Expert evaluators
received a questionnaire with paired responses from LINS-o1-preview
and o1-preview for each question. To prevent format-based bias, all
answers were anonymized and randomized. Each question’s paired
answers were presented sequentially to minimize preconceived
notions and ensure impartiality and accuracy in the evaluation.

Settings of LINS Helps Patients With Medical Order Explanation
Workflow of LINS helping with medical order explanation. As illu-
strated in Fig. 4a, LINS helps patients with medical order explanation
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through three key processes: medical terminology extraction, medical
terminology explanation, and clinical question answering. When a
patient or their family member (hereafter referred to as “the patient”)
inputs their medical records (comprising Patient Information and
Medical Order sections) into LINS, the system initiates the process by
leveraging the Medical Terminology Extraction Agent (MTEA, prompt
details provided in Supplementary Fig. 19) to extract medical terms
from theMedicalOrder section. For each extractedmedical term, LINS
retrieves valid evidence from Bing online database. Bing was selected
due to its alignment with patients’ typical search behaviors and its
extensive database, which can address a wide array of patient queries
effectively. LINS integrates the retrieved evidence with patient infor-
mation to generate evidence-backed, traceable explanations for
medical terms, helping patients comprehend complex medical
concepts.

Additionally, patients can pose follow-up clinical questions to
LINS (e.g., Will this disease be inherited bymy child?). LINS utilizes the
Retrieval Question Agent (QEA, prompt details provided in Supple-
mentary Fig. 20) to convert these clinical questions into precise,
retrieval-optimized queries (e.g., Will rheumatic heart disease be
inherited by my child?). Subsequently, LINS retrieves evidence from
the Bing database, synthesizes this evidence with patient information,
and generates citation-based, informative responses. This approach
not only addresses patients’ concerns but also enhances their trust and
engagement in the treatment process.

Workflow of human evaluation. To comprehensively evaluate the
effectiveness of LINS in assisting patients with understanding medical
instructions, we developed the MOEQA dataset for validation. The
experimental design involved two groups, o1-preview and LINS-o1-
preview, and included assessments by five attending physicians and
five lay users acting as patient proxies (Supplementary Fig. 9).

Initially, we utilized the medical terminology extraction agent to
extractmedical terms from themedical order sections of eachmedical
record. Since both groups employed identical methods for this step,
they produced the same results, yielding a total of 116 medical terms.
Subsequently, both groups generated explanations for these 116
medical terms and answered 107 clinical questions from the MOEQA
dataset. Importantly, both groups’ outputs were required to include
traceable evidence, enabling users to verify the sources and fostering
greater trust in the responses. To achieve this, we designed prompts
specifically tailored to ensure evidence traceability for both groups
(details in Supplementary Fig. 21).

The evaluation was conducted using a randomized, blinded,
controlled design. Survey questionnaires were distributed to all eva-
luators, pairing explanations or answers from LINS-o1-preview and o1-
preview for each term or question. To prevent format-based bias,
responses were anonymized and randomized in order. For each term
or question, the paired responses were presented sequentially but in a
randomized order, minimizing evaluators’ preconceptions and
ensuring fairness and accuracy in the assessments.

The five attending physicians evaluated the quality of the
responses based on the accuracy of term explanations and the scien-
tific consistency, comprehensiveness, potential harm, and bias in the
clinical question answers. The five lay users acting as patients assessed
whether the term extractions met expectations, the helpfulness of the
term explanations and clinical answers, and the effectiveness of the
evidence provided. Additionally, they evaluated whether the inclusion
of evidence citations enhanced their credibility in the explanations or
answers. Detailed evaluation dimensions are outlined in Supplemen-
tary Fig. 10.

Construction of Link-Eval
Evaluate dimensions. As shown in Fig. 5b, Link-Eval primarily evalu-
ates the content based on two main components: citations and

statements. For citations, it proposes three evaluationmetrics: citation
set precision, citation precision, and citation recall, to assess the
accuracy and completeness of the citations. For statements, it intro-
duces two evaluation metrics: statement correctness and statement
fluency, to evaluate the correctness and fluency of the statements. In
the citation-based generative text data format shown in Fig. 5a, there
are topkðtopk = 5Þ Refs (retrieved passages). The generator uses these
Refs to create statements and annotates each statement with a set of
citations, which can contain 0 to topk citations. To calculate citation
set precision, citation precision, and citation recall, the total number of
citations, correct citations, valid Refs, correct and valid citations, and
correct citation sets must first be determined.

Natural language inference system. A natural language inference
system is essential to determine the entailment relationship between
two natural language texts. In this study, we utilized GPT-4o as the
inference system. Alternative models, such as the more resource-
efficient GPT-4o-mini or the open-source Qwen2.5-72b, could also be
employed depending on computational constraints. GPT-4o demon-
strated strong performance on the MedNLI35 benchmark, surpassing
human physicians in accuracy (see Fig. 5f, g). By using the instruction
“nli premise: {premise} hypothesis: {hypothesis}”, GPT-4o can deter-
mine the entailment relationship between the premise and the
hypothesis. In the process of determining the correct citation set in
Link-Eval, S serves as the hypothesis, and the concatenated text of C
serves as the premise, with the output labels {0, 1, 2} representing
{entailment, contradiction, neutral} respectively.

Link-Eval scores calculation process. The methods for calculating
correct citation sets and valid Refs are illustrated in Fig. 5c. We define a
citation set C for a statement S as a correct citation set if the con-
catenated text of all citations inC contains themeaningof S. Therefore,
the formula for calculating citation set precision is as follows:

Citation Set Precision=
RC
NC

ð1Þ

where RC represents the total number of correct citation sets, and NC
represents the total number of citation sets.

After obtaining the correct citation set, we need to further cal-
culate the correct citations (Fig. 5d). Correct citations are those that
play an irreplaceable role within the correct citation set. Suppose C is
the correct citation set for statement S. We enumerate all citations c in
C, and by removing c from C to get C', if the concatenated text corre-
sponding to C' can’t entails S, then c is deemed irreplaceable in C, and
thus considered a correct citation. IfC is not the correct citation set for
S, we directly determine that all citations in C are not correct citations.

Valid Ref refers to a Ref that is helpful in answering the question.
To determine a valid Ref, we need a Ref evaluator to judge whether a
retrieved Ref is indeed valid. Currently, there is no technology that can
100% accurately determine whether a retrieved Ref R is valid for a
question Q. However, we have found a positive correlation between
the ranking score of Q and R in the retriever and the validity of R.
Through statistical analysis, we established a threshold value p = 0.60.
When the ranking score > p, R has a 99.9% probability of being a valid
Ref. The probability distribution graph is shown in Supplemen-
tary Fig. 22.

The total number of citations refers to the sum of citations across
all citation sets in the response M =

Pe
i= 1jCij. The total number of

correct citations refers to the sumof correct citations across all correct
citation sets in the response N =

Pe
i = 1jC*

i j. The number of valid Refs
refers to the number of valid Refs among the topk Refs V = jRij. The
number of correct and valid citations refers to the number of valid Refs
that are correctly cited W = jRi\ð∪ e

i = 1ðC*
i ÞÞj. Here, e denotes the num-

ber of citation sets in the response, jCij denotes the number of
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citations in the ith citation set, and jC*
i j denotes the number of correct

citations in the ith citation set. Therefore, citation precision and cita-
tion recall are calculated as follows:

Citation Precision=
N
M

ð2Þ

Citation recall =
W
V

ð3Þ

Citation precision and citation recall are mainly used to evaluate
the accuracy and comprehensiveness of citation generation in citation-
based generative text. In addition, we define statement fluency and
statement correctness to assess the fluency and correctness of the
generated text. As natural language generation technology advances,
traditional evaluation methods—such as calculating the text or
semantic overlap of human-written reference summaries in the test
set49 or BERTScore50)—are no longer sufficient to accurately distin-
guish the performance of differentmodels14,33,51,52. Therefore, we adopt
a more detailed evaluation metric, statement fluency, to measure the
output quality of natural knowledge generation systems. Thismetric is
directly related to the readability and naturalness of the generated
text, focusing on the coherence of grammar, syntax, and overall
expression. It ensures that the text reads as naturally and smoothly as
human writing, rather than appearing stiff or unnatural as machine-
generated text might. Highly fluent text is more easily accepted and
understood by human readers, effectively enhancing the efficiency
and effectiveness of information transmission. Specifically, we choose
to use UNIEVAL33 as the tool for calculating statement fluency because
it not only has a high correlation with human evaluation but also
demonstrates strong zero-shot learning capabilities. UNIEVAL
restructures the evaluation task as a Boolean QA problem, allowing a
single model to assess the generated text from multiple dimensions,
including but not limited to coherence, consistency, and relevance.

Statement correctness is used to evaluate the correctness of the
model (Fig. 5f), particularly for questions with standard answers (such
as multiple-choice questions). The presence of a standard answer in
the response does not necessarily mean the answer is entirely correct;
theremay be contradictions within the answer. Thismeans that the set
of statements {S} may contain contradictory viewpoints. Therefore, for
any pair of statements Si and Sj (i ≠ j) in {S}, we use an NLI model to
determine if a conflict relationship exists. If a conflict is detected, then
statement correctness =0. When there is no conflict between any two
statements, we check if {S} satisfies the correct answer. If it does,
statement correctness = 1; otherwise, it is 0.

Statistics and reproducibility
This study presents a general retrieval-augmented framework, LINS,
designed to effectively enhance the quality and credibility of medical
responses generated by large languagemodels. No statisticalmethods
were used to predetermine sample sizes, and no data were excluded
from the analysis. In the human evaluation experiments, randomiza-
tion was applied, and the researchers were blinded to group allocation
and outcome assessment to reduce potential bias. Statistical analyses
included human raters’ quality assessments of the outputs, followed
by two-sided paired significance tests. Reproducibility was confirmed
through independent validation by licensed medical professionals in
China. All code and data supporting the findings are publicly available
in our GitHub repository: https://github.com/WangSheng21s/LINS
[https://github.com/WangSheng21s/LINS].

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in LINS are publicly accessible. The MedMCQA dataset is
available at https://medmcqa.github.io/ [https://medmcqa.github.io/]
and the PubMedQA dataset can be obtained from https://pubmedqa.
github.io [https://pubmedqa.github.io]. The MedQA dataset is available
at https://drive.google.com/file/d/1ImYUSLk9JbgHXOemfvyiDiirluZHPe
Qw/view [https://drive.google.com/file/d/1ImYUSLk9JbgHXOemfvyiDiir
luZHPeQw/view] and the HealthSearchQA data can be accessed from
https://www.nature.com/articles/s41586-023-06291-2 #Sec59 [https://
www.nature.com/articles/s41586-023-06291-2#Sec59]. Additionally,
datasets such as PubMedQA*, GeneMedQA andMulti-MedCQA datasets
is available at http://lins.drai.cn/ [http://lins.drai.cn/] with a testing
interface. Source data are provided with this paper.

Code availability
LINS supports users in flexibly selecting modules such as generators,
retrievers, databases, andmore, allowing them to build an appropriate
local database based on their specific needs. The Qwen models can be
found at https://huggingface.co/Qwen [https://huggingface.co/Qwen],
the llama models can be found at https://huggingface.co/meta-llama
[https://huggingface.co/meta-llama], and the GPTmodels are available
at https://openai.com/api/ [https://openai.com/api/]. The Gemini
models can be accessed at https://ai.google.dev/gemini-api [https://ai.
google.dev/gemini-api]. The recall model for the retriever is available
at https://huggingface.co/BAAI/bge-m3 [https://huggingface.co/BAAI/
bge-m3], and the rankingmodel is athttps://huggingface.co/BAAI/bge-
reranker-v2-m3 [https://huggingface.co/BAAI/bge-reranker-v2-m3].
Source data are provided with this paper.

To facilitate user usage, we have provided detailed, end-to-end,
easy-to-use code and tutorials at https://github.com/WangSheng21s/
LINS. https://doi.org/10.5281/zenodo.16215408.
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