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Bacteriophages, viruses infecting bacteria, are estimated to outnumber their

cellular hosts by 10-fold, acting as key players in all microbial ecosystems.
Under evolutionary pressure by their host, they evolve rapidly and encode a
large diversity of protein sequences. Consequently, the majority of functions
carried by phage proteins remain elusive. Current tools to comprehensively
identify phage protein functions from their sequence either lack sensitivity
(those relying on homology for instance) or specificity (assigning a single
coarse grain function to a protein). Here, we introduce Empathi, a protein-
embedding-based classifier that assigns functions in a hierarchical manner.
New categories were specifically elaborated for phage protein functions and
organized such that molecular-level functions are respected in each category,
making them well suited for training machine learning classifiers based on
protein embeddings. Empathi outperforms homology-based methods on a
dataset of cultured phage genomes, tripling the number of annotated homo-
logous groups. On the EnVhogDB database, the most recent and extensive
database of metagenomically-sourced phage proteins, Empathi doubled the
annotated fraction of protein families from 16% to 33%. Having a more global
view of the repertoire of functions a phage possesses will assuredly help to
understand them and their interactions with bacteria better.

M Check for updates

Bacteriophages or phages—viruses that infect bacteria—are some of
the most abundant biological entities on earth, being present every-
where from the ocean and the soil to our very own bodies'. Despite
this, until recent years, phages have been overlooked in studies of the
microbiome that have mainly focused on the bacterial component.
Furthermore, wet-lab studies on phages are slow and labor intensive,
traditionally requiring phages to be cultured in the presence of a
known bacterial host. The development of next-generation whole-
metagenome shotgun sequencing methods, has substantially accel-
erated the study of phages, allowing to sequence them directly in their
natural habitats, thereby circumventing phage culturing. However,

being able to assemble new phage genomes from massive metage-
nomics sequencing data comes with the challenge of characterizing
these highly diverse phages and the proteins they are composed of, as
well as determining their host.

Phage protein function prediction is a major challenge. Using
EnVhogDB*, the most recent and extensive database of phage proteins
collected from metagenomic sources, it was shown by Pérez-Bucio
et al. that only 16% of the diversity of phage protein families has been
assigned a function. This issue has been the focus of numerous
studies® >, most of them limiting their efforts to predicting one type of
protein at a time. The most studied of these are phage virion proteins
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(PVPs), the structural proteins of phages®***?’, In particular, receptor
binding proteins (RBPs) that allow binding and recognition of the
bacterial host'®”, and lysins that degrade the peptidoglycan or exo-
polysaccharide layers surrounding and protecting bacteria®* > have
received significant research attention.

Currently, the most widely used method for assigning general
functional annotations to phage proteins is an approach based on
profile hidden Markov models (pHMMs) which relies on sequence
homology®. Yet, as pointed out by Flamholz et al.”’, in viral
metagenomics, these methods are constrained by the limited
number of annotated proteins that can be used to construct prob-
abilistic sequence models and by the large diversity of protein
sequences.

Recently, alignment-free methods based on protein embeddings,
fixed-size real-valued vectors (Fig. 1b) obtained from protein language
models (PLMs) such as ProtTrans* and ESM2*, were developed. These
models have been trained on an enormous corpus of protein
sequences and have been demonstrated to capture the structural and
functional information from protein sequences®-*.

Different tools based on protein embeddings were recently
developed for phage protein function annotation®*****?°  with all
but one being specific to particular protein families. For example,
Yang et al.”’ trained a classifier to identify tail-spike proteins with a
distinctive beta-helix domain, and Concha-Eloko et al. proposed
DepoScope?, a tool trained for depolymerase detection and func-
tional domain identification. The only classifier able to predict gen-
eral phage protein functions, VPF-PLM?, is a multilabel classifier that
uses embeddings obtained using ESM2 and trained to predict the
basic PHROG™ categories (“tail”, “head and packaging”, “connector”,
“lysis”, “transcription regulation”, “integration and excision”, “DNA,
RNA and nucleotide metabolism”, “moron, auxiliary metabolic gene
and host takeover” and “other”). However, these categories possess
overlapping molecular-level functions (for example, between the
“DNA, RNA and nucleotide metabolism” and “transcription regula-
tion” categories), creating noise in the training data that hinders the
accuracy (global model performance) and sensitivity (i.e., how well
the model predicts positive instances) that can be achieved by
models trained on them.
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Fig. 1| Definition of Empathi categories and dataset preparation. a Definition of
the hierarchical functional categories used in Empathi. PHROG annotation terms
are placed in all categories they fit in (e.g. “tail protein with lytic activity” is placed in
tail, pvp and cell wall depolymerase). The unknown label is given to proteins not
assigned to any category by the Empathi models. The colors defined here for each
category were used in all following figures. b Dataset preparation for machine
learning. Phage genomes were downloaded from public databases using
INPHARED. Protein sequences were predicted using Prodigal and annotated by

sequence-pHMM comparison with proteins of known function in the PHROG
database. Proteins were clustered using MMseqs2 and embedded using ProtTrans
to obtain embeddings 1024 values long. To train models, all proteins with known
functions from one cluster were either placed in the training set or in the testing set.
The positive and negative labels were defined independently for each binary model
that was trained; in this example, the positive set is composed of phage virion
(structural) proteins.
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In this paper, we present Empathi, an Embedding-based Phage
Protein Annotation Tool that Hierarchically assigns protein functions.
To this end, a hierarchical scheme for functional categories that
respects molecular-level functions was defined from the PHROG
classification® to be better adapted for machine learning (ML) classi-
fication. Empathi is composed of multiple binary models trained on
proteins from completely sequenced phages. These models are then
used to assign functions to new proteins, starting from general anno-
tations such as structural or DNA-associated to more precise functions
when possible. Empathi significantly outperforms homology-based
methods, tripling the number of annotated homologous groups in our
original dataset of cultured phage genomes. We demonstrate that our
approach can be used on new phage genomes (from recently pub-
lished viromes), showing consistency of predictions through genomic
maps that illustrate the colocalization of protein functions and that
demonstrate our tool’s pertinence in comparison to state-of-the-art
approaches such as PHROG pHMMs (homology identification), VPF-
PLM (protein embeddings) and PHOLD** (protein structures). Finally,
Empathi was employed to increase the proportion of annotated clus-
ters in EnVhogDB from 16% to 33% and in EFAM* from 34% to 58%.

Results

New hierarchical scheme for functional groups

PHROG categories are not adapted for machine learning classification.
Indeed, many PHROG categories encompass various molecular-level
functions. For example, the head and packaging category is composed
of structural proteins, internal proteins with lytic domains and termi-
nase proteins that can bind DNA. Furthermore, the same molecular-
level function is found in various PHROG categories. For example,
DNA-associated proteins can be found in 7 out of the 9 PHROG
categories.

Here, from a biological perspective and with machine learning
purposes in mind, similar PHROG annotation terms were grouped
together into new functional categories that respect molecular func-
tions (see Fig. 1a). The complete list of PHROG annotation terms
constituting each newly defined functional category can be found in
Empathi’s code repository in data/functional_groups.json. These newly
defined functional categories include groups such as baseplate pro-
teins, nucleases and adsorption-related proteins, that are, when pos-
sible, classified into more general ones (PVP, DNA-associated, lysis-
associated). Proteins can be associated with multiple categories. For
example, tail proteins with lytic activity are included in the PVP cate-
gory and in the cell wall depolymerase category.

Building and testing models

As visualized in Fig. 1b, 904k dereplicated proteins were obtained from
18.5k phage genomes downloaded from GenBank using INPHARED*,
Almost half, 417k proteins (46%), were placed in at least one of the 44
newly defined functional categories based on their sequence similarity
to PHROG pHMMs. This annotation pipeline makes it possible to
readily update our models with data from new genomes in GenBank or
from other sources, but is limited, for now, to proteins from cultured
genomes to ensure the good quality of annotations. All 904k proteins
were clustered at 30% sequence identity and 80% coverage into 198k
clusters using MMseqs2”. A quarter of these, i.e., 49k clusters, con-
tained annotated proteins. These clusters were used to create the
training and testing sets in order to reduce data leakage due to
homology.

A binary model was trained for each of the 44 functional cate-
gories using 80% of clusters and tested on the remaining 20% of
clusters (Supplementary Table 1). For example, one model was trained
to identify PVPs from non-PVPs (i.e., from all other proteins). Training a
binary model for each category separately, using specifically designed
training sets, ensures that as little noise is present as possible to
influence models (see the “Methods” section for details). The precision

(proportion of correct positive predictions; higher precision indicates
lower false positive rate), sensitivity (how well the model predicts all
positive instances; higher sensitivity indicates lower false negative
rate) and Fl-score (harmonic mean between precision and sensitivity)
were analyzed to assess the performance of the models. The Fl-score
for all binary models except one was greater than or equal to 88% with
three quarters of models reaching scores of at least 95% (Supple-
mentary Table 1). Only the model trained to predict collar proteins was
less performant, achieving a score of 60% (Supplementary Fig. 1 and
Supplementary Table 1). This is most likely due to the very limited
number of collar proteins in the dataset (233 proteins corresponding
to 39 clusters in the training set). In consequence, the collar protein
model was removed from the final version of Empathi. The precision
and sensitivity curves demonstrate that models are confident in their
predictions, being able to achieve an excellent sensitivity (83-100% at
50% confidence) whilst conserving an excellent precision (80-100% at
50% confidence) (Fig. 2a, Supplementary Fig. 1 and Supplementary
Table 1).

Many of the errors made by the models stem from biologically
similar functions. The baseplate model classified tail appendage pro-
teins as baseplate proteins and vice versa reflecting the biological
similarity of these proteins. Similarly, the primase model incorrectly
classified some helicases. In addition, some proteins annotated only as
tail proteins are predicted by our model as being adsorption-related
proteins. These are likely not errors, but the protein annotations are
too general to validate our predictions.

Evaluation of robustness

Even though proteins detected as similar by sequence-sequence
comparisons were separated into either the training or the testing
set, remote homologs whose similarity is not detected by MMseqs2
might be present in both sets. As pHMM-pHMM comparisons of the
PHROGs detect more distant homologous relationships between
proteins, new training sets were built by removing one PHROG as well
as any PHROG similar to it. In this manner, retrained models were
tested on proteins that had no resemblance, even remote, to any
protein in the training dataset.

Overall, models predicted the function of interest accurately for
these holdout PHROGs (Fig. 2b), having an F1 score greater than or
equal to 75% in 51 of the 60 replicates (85%). Importantly, a drop in
sensitivity but not in precision is usually observed. Lower model per-
formances on some holdout groups correspond to cases where the
holdout group was very large and where all examples of a specific type
of protein (e.g., MotB-like transcriptional regulator) have been
removed from training by the holdout procedure.

This test serves to push the boundaries of our classifiers. It
demonstrates that for the most part, even if we remove all similar
proteins—even those remotely related (as far as pHMM-pHMM com-
parisons can detect)—from the training data, our models remain con-
sistent and able to generalize. It highlights their ability to identify a
functional signal within the protein embeddings more sensitively than
by using HMM profiles.

Expanding the proportion of annotated proteins

As many as 483k proteins (54%) in the INPHARED dataset, corre-
sponding to 150k clusters (76%), were not similar to any PHROG pHMM
with a known function (considering all PHROG hits with an e-value <
0.001). Additionally, 2.4k proteins had a hit to an unknown PHROG
that itself had strong pHMM-pHMM similarity to another annotated
PHROG (e-value < 0.001 and coverage >80% between similar PHROGs).
Moreover, 13.9k unannotated proteins (2.4k clusters) were found in
clusters containing other annotated proteins, resulting in 467.5k pro-
teins (52%) and 148k clusters (75%) that are fully unannotated. Among
these proteins that even sensitive similarity search methods have failed
to functionally annotate, 61% (285k proteins) were assigned a function
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Fig. 2 | Empathi performance and predictions for previously unannotated
proteins. a Precision and sensitivity curves as a function of confidence (prediction
probability) for Empathi binary models trained on the general functional groups.
PVP phage virion protein. b Robustness analysis: F1 scores, precision and sensitivity
of models on holdout PHROGs using a confidence threshold of 50%. Bars represent
the average performance over 10 iterations. As no transcriptional regulators were

predicted in two iterations, the precision for these iterations could not be com-
puted (zero division) and was thus not included in the average score. ¢ Predicted
protein counts for each functional group in the fraction of the original dataset
(INPHARED) that did not align to proteins with known functions in the PHROG
database.

with Empathi. In total, almost four phage proteins out of five now have
a predicted function (718k proteins, 79% of the dataset), bringing the
total ratio of annotated clusters from 25% to 73%. On average, the
confidence of the highest-level prediction for previously unannotated
proteins (in completely unannotated clusters) is 80.6%.

A high diversity of protein functions is observed in this previously
unannotated fraction of the dataset (Fig. 2c). “DNA-associated” (35%)
and “phage virion proteins” (21%) are the functions that were assigned
to the most proteins. Among the predicted PVPs, about two-thirds are
tail proteins. In addition, 23.5k transcriptional regulators, 21.6k inte-
gration-related, 21.2k nucleases, 18k packaging/assembly related, 16.2k
RNA-associated and 18.1k anti-restriction proteins were also identified,
highlighting the unexplored diversity of these proteins.

Protein annotation of complete genomes
Complete phage genomes were obtained from three recent
viromes®*™*° sampled from various environments (human gut, sulfuric
soil and marine water) and, for the purpose of this analysis, two
complete genomes were randomly picked from each study (see
https://doi.org/10.5281/zenodo.14036011 for their genomic sequen-
ces). As they each possess multiple predicted tail-associated proteins
(Fig. 3), these phages likely correspond to the Caudoviricetes class.
Functions were assigned to the proteins from these genomes
using Empathi, VPF-PLM* (based on protein embeddings), PHROG*
pHMMs (based on sequence homology) and PHOLD** (based on pre-
dicted structures). A greater number of proteins were assigned a
function using Empathi than the three other approaches. Out of a total
of 574 proteins for the six genomes presented in Fig. 3, 414 proteins
were assigned a function using Empathi, compared to 263 using
PHOLD, 232 using PHROG pHMMs and 202 using VPF-PLM. For the
most part, the annotations obtained from all four methods are
coherent. For example, most transcriptional regulators, integration
proteins, RNA-associated and nucleotide metabolism proteins from
Empathi categories are consistent with the ‘DNA, RNA and nucleotide
metabolism’ PHROG category, thus colored in yellow-orange in both

cases. The same is true for phage virion proteins (PVPs), packaging
proteins and internal proteins from Empathi categories being con-
sistent with the “tail”, “head and packaging” and “connector” PHROG
categories depicted in varying shades of blue. About 150 proteins
received annotations from Empathi, but not from the other tools.
Evaluating the false positive rate of these proteins is harder to do, asno
annotation is available. However, a lower confidence is observed for
126/150 of these proteins, demonstrating that Empathi internally
recognizes that these sequences are more distinct than those present
in its training set.

A more in-depth analysis of the predictions made for one genome
(PP079085.1) from Ni et al.’s study (Fig. 3) helps elucidate some of the
observed differences (Supplementary Table 2). First, two proteins
predicted as being lysis-associated proteins (see red arrows) by
Empathi are classified under the head and packaging category by
PHROG pHMMs (phrog_2860) and by PHOLD. The PHROG annotation
terms, instead of categories, reveal these proteins are indeed endoly-
sins. Furthermore, VPF-PLM also predicted them as being “head and
packaging“ proteins which is expected from a model trained on the
PHROG categories, yet the most important annotation—the one rela-
ted to the actual function of the protein—is lost. Second, there are
three proteins predicted by Empathi as being internal/ejection pro-
teins (in cyan) and these are indeed internal proteins placed under the
‘head and packaging’ category using PHROG pHMMs (phrog 308,
phrog 418, phrog_6651). Third, two proteins predicted as DNA-
associated and packaging-related (in yellow) by Empathi are a termi-
nase small and large subunit which is also consistent (also in the ‘head
and packaging’ PHROG category; phrog 2, phrog_11494). Finally, two
glycosyltransferases (see brown arrows) are predicted as being trans-
ferases by Empathi, but placed in the ‘moron, auxiliary metabolic gene
and host takeover’ PHROG category (phrog 14945, phrog 34859).
Once again for these last three examples, VPF-PLM usually predicted
the large category like with PHROG pHMMs and PHOLD, but loses
critical information about the actual molecular function of those
proteins.
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Fig. 3 | Genomic maps of predicted functional annotations. Functional maps of
six genomes assembled from three viromes®*° colored according to the annota-
tions obtained using Empathi, PHROG-pHMMs, VPF-PLM and PHOLD. Note that
similar colors were chosen for corresponding functional categories between
Empathi and PHROGs, and that each protein is represented with a uniform width in
the genomic maps. Arrows indicate proteins for which the Empathi prediction

corresponds to the more precise annotation term rather than category obtained
using PHROG pHMMs or PHOLD. The number of proteins found in each genome is
indicated in parentheses. pvp phage virion protein. PP079085.1 and PP079056.1
come from Ni et al., LN_4A01 and LN_7A03 come from Garmaeva et al. and M4 k141
and M8 k141 come from Bi et al.

Of note, similar functions assigned by Empathi seem to be highly
colocalized. Phage virion proteins, DNA-associated proteins and lysis-
associated proteins are usually grouped together. This is consistent
with the fact that proteins having similar functions are usually colo-
calized in phage genomes in order to be expressed at the same time.

Annotation of the EnVhogDB database

The EnVhogDB database being composed of proteins obtained from
metagenomic datasets including EFAM, RefSeqVirus, IMG/VR and GL-
UVARB, it is representative of a much greater diversity than the proteins
used to train Empathi. Since proteins that have a more distant
homology to proteins in the training set are more likely to lead to
erroneous predictions, a more stringent confidence threshold of 95%
was used to assign predictions using Empathi, resulting in an increase
from 16% to 33% (17% increase) of annotated protein clusters in the
whole dataset compared to previous annotations based on sequence
homology. These can be visualized in Fig. 4. Once again, a great
diversity of protein functions can be observed in the dataset, with
phage virion proteins (mostly tail proteins) and DNA-associated pro-
teins being the most abundant. Using Empathi’s default confidence
threshold of 50%, the proportion of annotated orthologous groups
increased to 67.5%, therefore resulting in many more predictions but
likely at the expense of a higher rate of false positives.

Finally, a random sample of 1000 proteins was taken from the
previously unannotated fraction of the EnVhogDB database with the
objective of comparing Empathi’'s and VPF-PLM’s ability to assign
predictions to new proteins. Empathi annotates 25.8% of proteins at a
confidence of 95%, while VPF-PLM can only annotate 17.3% using its
calibrated confidence thresholds (see calibrated thresholds in Flam-
holz et al.?). It is important to note that the confidence thresholds
used by VPF-PLM to assign predictions are always much lower than the
95% used by Empathi for this analysis. In fact, large categories such as
“DNA, RNA and nucleotide metabolism” and “head and packaging” use
thresholds of 25% and 41% respectively.

Annotation of the EFAM database

The EFAM* database is composed of 240,311 viral protein families
collected from marine ecosystems. It was originally annotated with
DRAM*, a large-scale, multi-database, homology-based method that
was shown by Zayed et al.* to “[double] the number of annotations

obtainable by standard, single database annotation approaches” on
the EFAM database, resulting in 80,431 annotated clusters (33.5%).
Using Empathi, still with a confidence threshold of 95%, 138,785 clus-
ters (57.7%) received an annotation, corresponding to a 24% increase
compared to DRAM.

Complementary to DRAM annotations, 29,355 proteins (2529
clusters) in EFAM, for which standard homology-based methods failed
to assign annotations, were previously annotated using virion-
associated metaproteomic data. Empathi was used on these proteins
specifically to evaluate its sensitivity on PVPs from an external dataset.
Always using a confidence threshold of 95%, a total of 29,036 of these
proteins (99%), corresponding to 2400 clusters, were predicted cor-
rectly as being virion-associated, while only 319 proteins (1%), corre-
sponding to 129 clusters, were wrongly predicted.

Next, Empathi’s consistency was tested by looking at the predic-
tions made within each cluster of homologous proteins. Because these
proteins are very similar, the predictions they receive from our model
should also be similar. When looking at the 66,056 clusters previously
annotated by DRAM that also received predictions from Empathi,
51,856 clusters (79%) indeed received identical predictions for every
protein. A total of 1600 clusters (2%) received identical predictions
with some proteins receiving no function. The proteins in 12,201
clusters (18%) were predicted as sharing at least one general function
but were assigned either differing specific functions or a differing
second general function. Finally, only 399 clusters (<1%) received dif-
fering predictions. When looking at the 72,729 clusters only annotated
by Empathi, 44,669 clusters (61%) indeed received identical predic-
tions for every protein. A total of 9995 clusters (14%) received identical
predictions with some proteins receiving no function. The proteins in
17,138 clusters (24%) were predicted as sharing at least one general
function but were assigned either differing specific functions or a
differing second general function. Finally, only 927 clusters (1%)
received differing predictions. There is thus a tendency in the pre-
viously unannotated portion of the dataset for clusters to possess
more unknown predictions from Empathi as well. Most importantly,
very few clusters possess proteins with differing annotations.

Discussion
In this work, we developed Empathi, a tool that leverages the highly
informative representations generated by protein language models to
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Fig. 4 | Empathi predictions for the EnVhogDB database. Predicted protein counts for each functional group at a confidence >0.95.

annotate beyond standard and remote homology. It constitutes a
significant improvement from the most recent model proposed by
Flamholz et al. for this task. By using binary models and reorganizing
annotations to make them more consistent with the molecular func-
tions of proteins, we are able to improve the accuracy and sensitivity of
models trained to predict protein functions. Beyond experimental
validation using the testing dataset, the high colocalization of pre-
dicted functions in complete genomes further demonstrates Empathi’s
consistency. Finally, Empathi was applied to the EnVhogDB database,
doubling the proportion of annotated protein clusters from 16% to
33%, and to EFAM, increasing the proportion of annotated clusters
from 34% to 58%.

Being constituted of independent binary models, Empathi can
assign multiple functions to proteins, such as a specific and a general
function like “nuclease” and “DNA-associated”, or even multiple gen-
eral functions. For example, some packaging proteins can also bind to
DNA*, and some structural proteins can also have lytic domains®.
Tools only assigning a single annotation strongly limit subsequent
analyses. Out of the 15.4k predicted cell wall depolymerases—including
lysins and exopolysaccharide (EPS) depolymerases—in the EnVhogDB
database, 3k are also predicted as being structural proteins. This is
important as it hints to the biological role of these proteins. EPS
depolymerases and virion associated (structural) lysins intervene at
the beginning of the infection process to enable the phage to insert its
DNA into the host bacterium?*+*** (cell wall depolymerase category in
Fig. 1a). Endolysins have a completely different function, serving to
degrade the bacterial cell wall rapidly at the end of the infection pro-
cess to liberate the newly produced phage virions (in lysis category
in Fig. 1a).

From a machine learning perspective, it is imperative that the
functional groups we want to predict are consistent with the under-
lying biology. The PHROG categories were not originally intended as
labels for ML; they contain significant overlap that certainly adds noise
and likely impacts the performance of models trained on them. For
example, DNA-associated proteins are included in 7 of the 9 PHROG
categories: (1) “DNA, RNA and nucleotide metabolism”, (2) “integration
and excision”, (3) “transcription regulation”, (4) “moron, auxiliary
metabolic gene and host takeover”, (5) “head and packaging”, (6) “tail”
and (7) “other”. This means that there are proteins with very similar
functions (in the DNA-associated category) that are present in the
positive and in the negative sets for all of these classes when using the
PHROG categories as training labels.

In addition, very few biological insights are gained by predicting
that a protein belongs to the other category as is done in VPF-PLM
because (1) the specific annotation that is present in the PHROG

database is lost and (2) this category is simply an agglomeration of
proteins with differing molecular functions. To name only a few, it is
composed of methyltransferases, proteases, recombinases, kinases,
lipoproteins, etc. The same can be said about the “moron, AMG and
host takeover category” being composed of oxygenases, exclusion
proteins, toxins, glucosyltransferases, ABC transporters, ribonucleo-
tide reductases, etc.

Here, a reorganization of the PHROG categories into groups that
share a common molecular function was realized in order to increase
the accuracy, confidence and sensitivity of models. In many cases, this
required creating a hierarchy that can be used to differentiate proteins
that share a common high-level function but that perform different
tasks (lower-level functions). This is the case for structural proteins
(capsid, tail, collar, etc.), for proteins associated with lysis at the end of
the infection cycle (lysin, holin, spanin, lysis inhibition), and for DNA-
associated  proteins  (nuclease, integrase, transcriptional
regulation, etc.).

Even though it is difficult to evaluate the generalization cap-
abilities of such a model, we evaluated how our tool would behave on
non-homologous proteins by testing it on proteins with no detectable
similarities to proteins in the training set (see holdout procedure in the
Methods section under ‘Evaluation of robustness’). Empathi still per-
formed well showing that even without any detectable similarities at
the sequence level, protein embeddings still encode a signal that can
be used to make predictions. Of course, as more proteins are dis-
covered and added to databases, our model will likely need to be
retrained to consider this new diversity.

Furthermore, the dataset used to train Empathi was annotated
using PHROG pHMMs. This is currently the most well-adapted method
as it can provide the specific (low-level) annotations required to train
our models, but they still remain secondary annotations not verified
experimentally that could potentially introduce biases in our models.
Having a large diversity of protein sequences in each group helps to
mitigate these biases. Removing clusters containing proteins with
differing annotations from the training set also reduces potential
noise. Still, a feature of our tool is to provide the confidence of each
prediction. With this information, a user can choose the desired trade-
off between high specificity (confidence threshold of 95-99%) and high
sensitivity (default threshold of 50%). In this latter case, more predic-
tions would be obtained at the expense of a higher false positive rate,
which is acceptable if the alternative is not having any annotation at all.
See Supplementary Note 1 for further analyses on potential false
positives stemming from out-of-distribution proteins.

The PLM underlying all Empathi classification models, being
trained on data from UniRef 45 and BFD* (Big Fantastic Database),
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may not have an optimal representation of the entire viral universe.
Consequently, in future works, fine-tuning the PLM on a database of
metagenomically-sourced viral proteins may help it to better depict
the large diversity of phage proteins and in turn to improve the
functional classification task.

In conclusion, we believe this tool, relying on newly defined
functional categories, constitutes an important step forward and will
provide a more comprehensive view of the functions possessed by
phages helping to better characterize and understand them.

Methods

Collecting and annotating phage proteins

Using INPHARED?, 18,477 phage genomes were collected from
GenBank*’ (Fig. 1b) along with their predicted protein sequences on
January 2nd 2024. A significant proportion (82%) of these genomes
correspond to dsDNA phages (Baltimore Group 1), but ssDNA phages
(Baltimore Group ) are also present (15%). The remaining 3% are either
uncharacterized or RNA viruses. A total of 1.85M phage proteins pre-
dicted by Prokka*® (which employs Prodigal*’) were deduplicated
(identity of 100%) into 904k unique proteins. To annotate them
functionally, these proteins were compared with the pHMMs of the
PHROG?* database using HH-suite®, the best hit being considered for
each protein (e-value less than 0.001). Using ProtTrans®, a protein
language model learned on billions of tokens (amino acids), embed-
dings in the form of fixed-size 1024-dimensional vectors were com-
puted for every protein in the dataset. Finally, proteins were clustered
using MMseqs2* using a 30% sequence identity threshold, 80% cov-
erage and an e-value less than 0.001 to create training and testing sets
for machine learning.

Training and testing models

Support vector machines (SVM) with an RBF (Radial Basis Function)
kernel were used as the base classifier in all models. Logistic
regression models and random forests were also evaluated during
preliminary tests but drops in performance were observed in
comparison to SVMs.

Empathi is composed of a set of binary classifiers (one per cate-
gory as defined in Fig. 1a). As a result, it was necessary to define a new
training and testing set for each functional category (Supplementary
Table 1). This ensures that each model is trained on positive and
negative data that is adapted to each category and that contains no
overlap and as little noise as possible. It also means that the classifier
for each category was both trained and tested independently from all
other categories. The unknown category is intrinsic to Empathi as it
corresponds to the case where all binary models return the
negative class.

The training and testing set for each category was created as
follows. Empathi is trained on the annotated portion of phage proteins
obtained from INPHARED. Only clusters containing proteins with no
contradictory annotations (not associated to both the positive and
negative set) were kept to train models. Proteins with unknown func-
tions, even if they are found in a cluster with other proteins with known
functions, were not considered when training models. To constitute
the positive class, all proteins assigned to this category were con-
sidered. Both to ensure a diverse selection of proteins in the negative
class and to make positive and negative classes as homogenous as
possible in size, only one protein per MMseqs2 cluster was incorpo-
rated in the negative class for general categories. For sub-categories,
only proteins from the parent category are considered, allowing the
model to focus on distinguishing the finer differences between similar
proteins. In these cases, less proteins are available to constitute the
negative set and therefore all proteins from the negative class (all
proteins per cluster) were considered when training these models. For
most functional categories, the negative class still contained 3-4 times
more proteins than the positive one (Supplementary Table 1). To

correct for this imbalance, weights on model per-class performance (1/
frequency of each class) were added during training. In some cases,
proteins with very general annotations were left out of both positive
and negative classes. For example, when training a model to predict
tail proteins, proteins only annotated as phage virion proteins, i.e., the
parent category, were excluded as these could correspond to tail or
non-tail proteins. In particular, even if they are part of a separate
category, some transcriptional regulators were included in the positive
set for the DNA-associated model if their annotation allowed for it,
while others were included in the negative set (some regulators acti-
vate or inhibit other proteins) or excluded from both the positive and
negative sets if their annotations were too general. Finally, to limit data
leakage between training and testing sets (i.e., similar proteins being
found in both datasets, leading to an over-estimation of model per-
formance), all proteins from one MMseqs2 cluster were either inclu-
ded in the training or in the testing set. For each category, the training
set is built by randomly sampling 80% of clusters, leaving the
remaining 20% to constitute the testing set.

Since models for sub-categories were trained using only the
proteins in the parent category, a protein must first be predicted as
being part of the parent category before being assigned to the sub-
category. For example, a protein must first be predicted as being a PVP
before it is assigned (or not) the tail annotation. As more data is used to
train the parent classes, this approach results in higher confidences
and sensitivity on general functions while allowing to assign specific
functions when possible. Furthermore, this approach reduces the
required computational resources as models of sub-categories are
only applied on proteins assigned to their parent category.

Precision, sensitivity and F1-score were computed to measure the
performance of each binary model and were reported as a function of
the confidence of predictions.

Evaluation of robustness

Next, we wanted to evaluate the robustness of our approach, in par-
ticular, to see how well our model can generalize to proteins that are
very different from those seen during training. To this end, proteins
from a given homologous group (a PHROG) and all proteins from
similar PHROGs were removed from the training set (similarities
between PHROGs being indicated in the PHROG database). Then, a
model was trained, excluding these proteins, and its performance was
evaluated on proteins corresponding to the holdout PHROGs. As a new
model needs to be retrained for every iteration, this procedure is
computationally intensive and was only performed ten times for six
chosen categories (lysis, cell wall depolymerase, DNA-associated, PVP,
transcriptional regulator and transferase).

Annotating new datasets with Empathi

Firstly, three metaviromes were obtained from Garmaeva et al.*’ (gut),
Bi et al.*® (sulfuric soil), and Ni et al.** (marine water). Complete gen-
omes were identified using CheckV*' and two genomes were randomly
chosen from each study. Proteins were predicted using Prodigal,
embedded using ProtTrans and Empathi was used to predict their
functions. Predictions were compared to the annotations obtained by
PHROG pHMMs (HH-suite; best hit with e-value <1e™), to the predic-
tions made by VPF-PLM using their calibrated thresholds (--efam_cali-
bration_threshold) and to predictions made using PHOLD*, a
structure-based annotation tool.

Secondly, the EnVhogDB* database composed of phage proteins
obtained from metagenomic experiments was downloaded (on June
20th 2024) and protein functions were predicted with Empathi. No
additional manipulations were required as protein embeddings for
representative sequences of each EnVhogDB cluster together with
their corresponding PHROG annotations were available. EnVhogDB
clusters are created as described in Pérez-Bucio et al.* by using the
pHMMs of sequence-level clusters at 30% identity.
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Lastly, the proteins in the EFAM database® were downloaded
along with their corresponding functional annotations obtained from
DRAM*. Annotations obtained using metaproteomic data of virion-
associated proteins were also downloaded from EFAM. Protein
embeddings for all proteins were computed using ProtTrans and
Empathi was used to predict their functions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data generated in this study have been deposited in the Zenodo
archive available at https://doi.org/10.5281/zenodo.14036011. The
EnVhog and EFAM databases are available at http://envhog.u-ga.fr/
envhog/ and https://doi.org/10.25739/9vze-4143, respectively.

Code availability

Empathi source code and code used for analyses can be found at
https://huggingface.co/AlexandreBoulay/EmPATHi. Empathi can also
be downloaded from https://pypi.org/project/empathi/ and as an
Apptainer image from https://cloud.sylabs.io/library/
alexandreboulay/empathi/empathi.
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