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DLFea4AMPGen de novo design of
antimicrobial peptides by integrating
features learned from deep learning models

Han Gao 1,2,7, Feifei Guan 3,7, Boyu Luo4,7, Dongdong Zhang5,7, Wei Liu6,7,
Yuying Shen3, Lingxi Fan3, Guoshun Xu1, Yuan Wang1, Tao Tu 1, Ningfeng Wu3,
Bin Yao1, Huiying Luo 1 , Yue Teng 4 , Jian Tian 1 &
Huoqing Huang 1

Deep learning models show promise in accelerating the design and optimi-
zation of antimicrobial peptides (AMPs), but currentmethods face challenges,
such as low success rates, or large virtual library scales. In this study, we
introduce DLFea4AMPGen, a bioactive peptide design strategy that leverages
deep learning models to identify and extract key features associated with
antimicrobial peptide activity. This approach enables the generation of pep-
tide sequences with potential bioactivities. Using the SHapley Additive exPla-
nations (SHAP) method, we quantify the contribution of each amino acid in
multifunctional peptides with potential antibacterial, antifungal, and anti-
oxidant activities. Key feature fragments (KFFs) with the highest average
contributions are extracted and classified into four subfamilies based on
amino acid frequency. These high-frequency amino acids are systematically
arranged to generate a plausible sequence subspace for candidate peptides,
from which 16 representative sequences were selected for experimental vali-
dation. The results show that 75% (12/16) of the sequences exhibited at least
two types of activity. Notably, D1 exhibits broad-spectrum antimicrobial
activity, including efficacy against multidrug-resistant clinical pathogenic
isolates both in vitro and in vivo. This proof-of-concept study underscores the
potential of the DLFea4AMPGen platform for efficient design and screening of
bioactive peptides, showcasing its value in AMP research.

AMPs have emerged as promising candidates for combating antibiotic-
resistant bacteria and have consequently received increasing research
attention1–5. Their unique mode of action, typically involving the phy-
sical disruption of bacterial membranes, offers a potential means for
circumventing existing mechanisms of resistance6–8. Historically, AMP

design has primarily focused on the discovery of existing natural
peptides9–12 or the modification of natural peptides to enhance their
bioactivity13,14.

Artificial intelligence is currently revolutionizing the field of
peptide drug design, especially through advances in large model
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technologies15–17. By leveraging deep learning models, it is now possi-
ble to rapidly design a multitude of AMPs that have not been found or
may not exist in nature18. Currently, de novo AMP design primarily
follows two approaches: First, an increasing number of generative
deep learning models have been developed to generate protein and
peptide sequences. Generative models, such as variational
autoencoders19,20, Chroma21, and ProGen22, are trained on unlabeled
data to suggest new protein sequences based on an understanding of
the natural protein sequence landscape. Second, considerable pro-
gress has beenmade in utilizing deep learningmodels to exploreAMPs
from the entire virtual library of peptides. By scanning a virtual library,
AMP prediction models can accurately identify sequences with the
strongest potential for antimicrobial activity23,24. Both approaches
have successfully generated potent AMPs for targeting drug-resistant
pathogens, thus broadening the spectrum of available bioactive pep-
tides and accelerating the discovery of functional peptides beyond
those in natural reservoirs.

Despite the considerable success of these current de novo design
methods, they are still accompanied by some obvious shortcomings
that limit their efficiency and require further improvement. In parti-
cular, there is a need for highly effective strategies to screen high-
quality active peptides from the large virtual libraries generated by
these generative deep learningmodels in order to improve the success
rate of validation19,20. By developing and combining different deep
learningmodels to explore the entire virtual library, the success rate of
de novo design has been significantly improved. However, existing
traversal design strategies require listing all possible peptide sequence
combinations, resulting in a large number of generated sequences23.
For example, the plausible sequence subspace of a 13-amino-acid (13-
AA) peptide fragment contains 2013 sequences, which incurs a sub-
stantial computational burden. Database filtering techniques can be
used to obtain a limited set of AAs, significantly reducing the scale of
the entire virtual library24,25, but result in AMP low sequence diversity.
Additionally, bacterial infections can induce oxidative stress in the
host, leading to host cell damage and worsening tissue damage26–28, a
factor that is often overlooked in early peptide drug screening.
Therefore, AMP design should also consider activities that mitigate
inflammation arising from oxidative stress, which has been demon-
strated in previous studies29–31.

In response to the challenges outlined above, we present
DLFea4AMPGen for the generation of de novo AMPs with high rates of
bioactivity. Peptides with potential antibacterial, antifungal, and anti-
oxidant properties were identified by each respectivemodel. KFFs that
played the most important roles in these peptides were extracted
through the SHAPmethodand categorized into four subfamilies based
on phylogenetic analysis, each displaying unique AA frequency pat-
terns. By rearranging the most common AAs at each position in each
subfamily, we generated four comprehensive sequence spaces from
which 16 representative candidate AMPs (c_AMPs) were selected for
experimental validation. Our results showed a 75% positive rate for
antimicrobial activity, with several peptides exhibiting all three
bioactivities. Notably, D1 and D2 demonstrated broad-spectrum anti-
bacterial activity against various bacterial strains, including drug-
resistant ones. Furthermore, in vivo studies revealed that D1 treatment
could reduce bacterial load and alleviate inflammatory response in
sepsis model mice. This study showcases how deep learning-based
bioactivity prediction can facilitate the precise design of peptides with
enhanced bioactivity.

Results
Design of a feature-based strategy for multifunctional AMP
generation
To establish a deep learning model framework for predicting the
potential antibacterial, antifungal, and antioxidant activities of pep-
tides, we used existing bioactive peptide datasets published in a

previous study32 to fine-tune the pre-trained Mindspore proteinBERT
(MP-BERT) model33 (Fig. 1a and Supplementary Fig. 1), resulting in
three bioactive peptide models, which were antibacterial peptides for
MP-BERT, antifungal peptides for MP-BERT, and antioxidant peptides
for MP-BERT (ABP-MPB, AFP-MPB, and AOP-MPB). What’s more, a
total of 20 bioactive peptide datasets with 18 distinct activities (Sup-
plementary Fig. 2 and Supplementary Table 1) in that previous study
were considered as a candidate peptide set with potential triple
activities.

In this strategy, the multi-stage pipeline was used to generate
peptides with antibacterial, antifungal, and antioxidant activities
(Fig. 1b). We first employed the ABP-MPB, AFP-MPB, and AOP-MPB
models to predict peptides in all 20 of the above-mentioned bioactive
peptides datasets, then selected only those peptides predicted to be
positive for bioactivity by all three models. Here, the SHAP method is
used to extract the features identified by these deep learning models,
with each amino acid assigned a different SHAP value. To eliminate
possible interference from background AAs, for each peptide
sequence, we only extracted one 13-AA fragment that had the highest
sum of average SHAP values for all three models, based on the prin-
ciple that these so-called KFFs had the greatest impact on peptide
bioactivity. We then constructed a phylogenetic tree to further classify
homologous KFFs into four subfamilies based on distinct amino acid
features. For each subfamily, a plausible sequence subspace was then
constructed by identifying the most frequently occurring residues at
each position, and then systematically organizing these high-
frequency AAs into every possible sequence combination. Finally, we
selected representative sequences from each plausible sequence
subspace for in vitro and in vivo experimental validation (Fig. 1c, d).

Developing deep learning models for bioactive peptide
identification
To construct an accurate prediction model for bioactive peptides, a
transfer learning approach was utilized to fine-tune the pre-trained
MP-BERT protein model, which was developed in our previous work33.
The architecture generally comprised multi-head attention mechan-
isms, as well as normalization and feed-forward networks imple-
mented in a repetitive manner across six encoding layers
(Supplementary Fig. 1). The progressive six hidden layers in each
model showed more and more pronounced differentiation between
positive and negative samples from layer 1 to layer 6 (Supplementary
Fig. 3), indicating the model’s capacity to extract informative features
for sample classification. As displayed in Fig. 2a, b, on aheld-out testing
set, it can be concluded that ABP-MPB, AFP-MPB, and AOP-MPB
models achieve the most superior results. Moreover, even when eval-
uated on entirely new datasets not used during fine-tuning, the model
maintains a prediction accuracy of over 84%, demonstrating strong
generalization capability (Supplementary Fig. 4). In termsof evaluation
metrics including accuracy, precision, recall, F1 score, and area under
the curve (AUC), the performance of ourmodel consistently surpasses
that of traditional machine learning models such as Support Vector
Machine (SVM) and eXtreme Gradient Boosting (XGBoost), as well as
deep learning models like Convolutional Neural Network (CNN) and
two other state-of-the-art (SOTA) approaches for AMP prediction32,34.
Furthermore, across all 20 bioactive peptide datasets, the model fine-
tuned based on MP-BERT outperformed UniDL4BioPep (Supplemen-
tary Fig. 5), which had previously shown superior performance over
other existing bioactive peptide prediction models.

To identifymultifunctional peptideswith antibacterial, antifungal,
and antioxidant properties, we utilized ABP-MPB, AFP-MPB, and AOP-
MPBmodels to predict bioactivity in a total of 23,346 peptides from20
different bioactive peptide datasets. Among them, 4760 were pre-
dicted to possess all three bioactivities (Fig. 2c). As expected, most of
these 4760 “triple activities” peptides were sourced from datasets
originally linked to some form of antimicrobial activity, such as ABP,

Article https://doi.org/10.1038/s41467-025-64378-y

Nature Communications |         (2025) 16:9134 2

www.nature.com/naturecommunications


AMP, ACP, and so on (Fig. 2d). Subsequently, we focused on these
4760 sequences with potential triple activities for further analysis.

Extractionof importantAAs andkey feature fragmentsbasedon
the SHAP method
To improve the interpretability of each model and potentially gain
insights into the molecular mechanisms of each predicted bioactivity,
we employed the SHAP method35 to quantify the contribution of each
AA at each position. Every AA is treated as an independent feature and
assigned a distinct SHAP value. AA features differ across peptides with
various activities, while antimicrobial-related AA features are similar
(Supplementary Fig. 6). According to statistics, Cys, Trp, Lys, Pro and
Arg inABP;Cys,Arg, Lys, Trp, andHis inAFP; andHis, Trp, Tyr, Cys, and
Pro in AOPwere themost likely tomake positive contributions to each
respective bioactivity (Supplementary Fig. 7). To integrate these fea-
tures into one sequence, we normalized and then averaged SHAP
values from the ABP-MPB, AFP-MPB and AOP-MPB models for every
AA. As shown in Fig. 3a, the 13-AA length is the most common length
that is predicted to exhibit all three activities. Therefore, for each
peptide sequence, we only extracted one fragment with the highest
cumulative average SHAP value using a 13-AA sliding window to elim-
inate possible interference from background AAs, and designated it as

KFF (Fig. 3b). Excluding peptides shorter than 13 AAs or KFF with a
negative sum, a total of 3400 KFFs were extracted. By analysis, the
proportion of Lys, Cys, Gly, Trp, Arg, Pro, Ala, His, and Leu was all
higher in the KFFs dataset than that in 20 bioactive peptide datasets,
with an improvement rate ranging from 0.14% to 4.11% (Fig. 3c), which
suggested that KFFs integrate and highlight AA features associated
with three bioactivities.

These 3400 KFFs were then clustered into a phylogenetic tree
based on sequence similarity, which revealed four distinct subfamilies,
each with unique AA distributions (Fig. 3d). After aligning all KFFs in
each subfamily, the top three AAs at each position, which together
accounted for 31.31% to 54.38%, were considered fundamental ele-
ments for each KFF subfamily and were assembled into different
combinations of the plausible sequence subspace (i.e., 313 combina-
tions per subfamily). As shown in Fig. 3e, the primary AAs in subfamily-
A were Gly, Ala, Leu, Cys, and Lys (with Ala and Cys each appearing at
only one position); Gly, Ala, Leu, and Lys in subfamily-B; Gly, Leu, Cys,
and Lys in subfamily-C (with Leu appearing at two positions); and Leu,
Ile, Trp, Pro, Lys, and Arg in subfamily-D (with Leu and Ile each
appearing at only one position). Leveraging SHAP values to define core
AA features thus yielded high-confidence sequence spaces of 313

sequences for each subfamily.
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Fig. 1 | Schematic of the study workflow. a We began with model construction,
using bioactive peptide datasets from a previous study. By fine-tuning the pre-
trainedMP-BERTmodel, wemainly developed threemodels, which were ABP-MPB,
AFP-MPB, and AOP-MPB, collectively referred to as BAP-MPB (Bioactive peptide for
MP-BERT). Furthermore, these three models were used to predict peptides with
potential triple activities. b Subsequently, based on the SHAP interpretation of
these three models, we applied a 13-AA sliding window to identify KFFs with the
highest average SHAP value for each peptide sequence that were predicted to be
positive for bioactivity by all three models. Next, with distinct AA features, these

KFFs were divided into four subfamilies, and the top three high-frequency AAs at
each position were systematically organized into every possible sequence combi-
nation to formplausible sequence subspaces. Representative sequences from each
plausible sequence subspace were selected as c_AMPs for chemical synthesis.
c, d Finally, we conducted further efficacy tests and mechanistic analyses for
antimicrobial and antioxidant activities in vitro (n = 3 biologically independent
replicates in the MIC assays, mean± s.d.), as well as in vivo experiments using a
mouse sepsis model.
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Formation of plausible sequence subspaces and identification of
representative AMPs
After generating a plausible sequence subspace of 313, or 1,594,323,
sequences for eachKFF subfamily, we screened c_AMPs by filtering out
relatively low-quality sequences, retaining only those with probability
>0.99 in all three models. Based on previous studies36, sequences with
less than two positive charges were excluded. Consequently, these
plausible sequence subspaces were reduced to 893,093, 273,615,
127,427, and 666,165 sequences for the subfamily-A, subfamily-B,
subfamily-C, and subfamily-D, respectively (Fig. 4a).

Given the limitations of traditional motif extraction methods for
handling short sequences (Supplementary Fig. 8), we employed an
improved strategy. In order to maximize diversity among the
remaining sequences, sequences with high similarity were grouped
together within each plausible sequence subspace, and the repre-
sentative sequences were selected from each group for further ana-
lysis. By applying the Elbow method in k-means clustering, each
plausible sequence subspace was divided into four clusters (Supple-
mentary Fig. 9), with the sequence nearest to the cluster center

designated as the representative sequence. As a result, c_AMPs from
subfamily-A (Fig. 4b) and subfamily-B (Fig. 4c) were predominantly
composed of α-helix, random coil peptides, and the mixture of these
two, while those from subfamily-C (Fig. 4d) primarily contained a β-
sheet and random coil peptides, and peptides in subfamily-D (Fig. 4e)
were generally random coil peptides. We generated 16 sequences
through de novo design, none of which are found in existing databases
(Supplementary Fig. 10). These sequences were further evaluated
through experimental validation.

Preliminary evaluation of 16 c_AMPs in vitro
To investigate their possible antibacterial, antifungal, and anti-
oxidant activities, these 16 c_AMPs were synthesized and validated
(Fig. 5a and Supplementary Table 2). Antibacterial assay was con-
ducted at a peptide concentration of 128 µM, testing three Gram-
negative bacterial strains (Escherichia coli O157:H7, Klebsiella pneu-
moniae ATCC700603, Salmonella typhimurium ATCC14028) and
three Gram-positive bacterial strains (Micrococcus luteus ATCC4698,
Bacillus subtilis WB600, Staphylococcus aureus ATCC6538). Among

Fig. 2 | Comparative performance of different models and activity prediction
with multifunctionality analysis. a The predicted performance on the test set,
based on results from 10-fold cross-validation (mean± s.d. over 10 folds, n = 10).
Accuracy, precision, recall, and F1 scores were obtained by the trained BAP-MPB
(which are ABP-MPB, AFP-MPB, and AOP-MPB) and the other models32,34, all of
which were trained and evaluated on the same dataset. For all four metrics, higher
scores indicate better performance. b ROC curves of six models on the ABP, AFP,
and AOP datasets, and the area under the curve is AUC. c Predictions made by the

ABP-MPB, AFP-MPB, and AOP-MPB models on all 20 datasets, retaining only
positively predicted samples. Finally, the intersection of positive predictions from
the three models is shown, with the number 4760 at the center representing
peptides predicted to be bioactive by all three models. d The number of positive
samples in each original bioactive peptide dataset, along with the number of
samples that predicted with antibacterial, antifungal, and antioxidant activities
(bar chart, left Y-axis), and the proportion of samples with triple activities in each
dataset (line chart, right Y-axis).
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Gram-negative bacteria, five treatment groups exhibited significant
inhibition, which were B4, D1, D2, D3, and D4, with D1, D2, and
D3 showing the highest inhibition rates (range: 75%–100%). For
Gram-positive bacteria, 10 c_AMPs showed inhibitory effects towards
at least one bacterial strain, and nine of which resulted in 100%
inhibition. More specifically, A1, A3, B2, C1, C2, and D1–D4 could
completely inhibit M. luteus ATCC4698 growth; C1, C2, and D1–D4
negatively impacted B. subtilis WB600; and D1 and D2 showed inhi-
bitory effects in S. aureus ATCC6538 cultures. In the treatment of the
fungal strain Candida albicans ATCC10231 with 128 µM peptides, B2,
C2, and D1–D4 all achieved complete inhibition of growth, reaching
100% inhibition. Additionally, ABTS+ free radical scavenging assays

with 1mg/mL c_AMPs showed that A3 and C1–C4 had ≥90% free
radical scavenging rates, while D1, D2, D3, and D4 had scavenging
rates of 72%, 54%, 62%, and 72%, respectively. These results suggested
that c_AMPs D1 andD2 had the strongest broad-spectrum effects and
exhibited all three bioactivities.

Furthermore, the growth curves demonstrated that certain pep-
tides exhibited no inhibitory effects on microorganism growth at 16 h,
but were able to inhibit bacterial or fungal growth during the earlier
logarithmic growth phases (Supplementary Fig. 11). For example, A3
and B2 effectively halted the growth of B. subtilisWB600 for up to 3 h
and 6 h post treatment, while C4 demonstrated the ability to inhibit
the growth of C. albicans ATCC10231 for up to 2 h post treatment.

Fig. 3 | Key AA features and key feature fragments. a The length distribution of
4760 samples with potential antibacterial, antifungal, and antioxidant activities,
with sequences of 13 AAs appearing most frequently. b Illustration of KFFs
extraction. A window of 13 AAs is set to slide across the entire sequence with a step
size of 1 AA. Fragments with the highest sum of average SHAP values and scores
greater than 0 are selected. 3400 fragments that meet all conditions are being
focused on as KFFs. c Comparison of the proportion of each AA in KFFs and in all

positive samples across 20 bioactive peptide datasets. d Distribution of 3400 KFFs
in four subfamilies observed across the phylogenetic tree, which were subfamily-A
(SF-A), subfamily-B (SF-B), subfamily-C (SF-C), and subfamily-D (SF-D). The colored
dots at the tips of the branches indicate the original bioactive peptides source of
each KFF. e AA distribution at the 13 positions in each KFF subfamily, and the
highlighted AAs at each position are the top three AAs that most frequently occur.
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Additionally, we assessed the safety profile of all these 16 candidate
peptides at a concentration of 128 µM by evaluating their hemolytic
activity against erythrocytes fromrabbits and cytotoxicity on 3T3 cells.
Notably, 15 peptides had hemolysis rates of less than 4%, indicating
their potential for safe clinical application. Only B2 exhibited a
hemolysis rate of 6.57%, and peptide B3 showed a cytotoxicity rate of
6.97% (Fig. 5b).

Further evaluation of D1 and D2 against drug-resistant strains
Given their broad-spectrum antimicrobial activity in vitro, the inhibi-
tory effects of D1 and D2 were subsequently evaluated against
antibiotic-resistant strains isolated from livestock or clinical environ-
ments. D1 exhibited aminimum inhibitory concentration (MIC) of 4 µM

against the antibiotic-resistant livestock strain E. coli z44, while D2 had
MIC values of 8 µM (Fig. 5c). Impressively, at a concentration of 2 µM,
D1 was able to inhibit bacterial growth for up to 4 h compared to
untreated control cultures. In the case of the clinical antibiotic-
resistant strain, S. aureus 09057, D1 showed an MIC of 16 µM and was
able to inhibit the growth of both strains for 11 h at 8 µM, while D2 had
an MIC of 32 µM (Fig. 5d). Additionally, further testing on other drug-
resistant bacteria strains (Supplementary Figs. 12 and 13) confirmed
the broad-spectrum antibacterial activity of D1 and D2. Among them,
D1 demonstrates a slightly superior inhibitory effect compared to D2.
Notably, after 100 generations of continuous treatment with D1, no
resistance could be detected in S. aureus 09057 (Supplemen-
tary Fig. 14).

Fig. 4 | Screening in plausible sequence subspaces. a The number of remaining
sequences in subfamily-A (SF-A), subfamily-B (SF-B), subfamily-C (SF-C), and
subfamily-D (SF-D) after one-by-one step of stringent selection criteria, respec-
tively. b–e Clustering within each subfamily and the selection of representative
sequences. In the PCAplot, different colored dots represent different clusters, with

the black-labeled dots indicating the position of the selected representative
sequence. The surrounding structural diagrams depict the three-dimensional
structure of each selected representative sequence: the inner part shows the
detailed three-dimensional structure, while the outer semi-transparent part illus-
trates the peptide’s hydrophobicity distribution.
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To further investigatewhetherD1 affected the cellular integrity,we
conducted scanning and transmission electron microscopy (SEM and
TEM) in S. aureus 09057 cells treated with 64 µMD1. SEM showed that,
as processing time increases, obviously ruptured cells with compro-
mised membrane integrity relative to the intact cells in the untreated
control group (Fig. 5e). Similarly, TEM also clearly depicted damage to
the cellular membranes and loss of cytoplasmic contents in D1-treated
cells but not the untreated controls (Fig. 5f and Supplementary Fig. 15).

Therapeutic efficacy in treating bacterial infection in vivo
Given the above in vitro results, we next examined whether D1 could
confer therapeutic effects in a mouse sepsis model in vivo (Fig. 6a).
Mice were infected with the high-risk, antibiotic-resistant clinical iso-
late S. aureus 09057. At 1 h post-infection, the infection model was
confirmed to be successfully established (Supplementary Fig. 16).Mice
were then systemically treated with 200 µL of D1 (20mg/kg, intraper-
itoneal injection). At 12 h post-infection, the mice were sacrificed,

Fig. 5 | Experimental validation and potency assays of c_AMPs. a Inhibition rates
of six bacterial and one fungal strain at 128 µM, and the scavenging rate of ABTS+

radicals at 1mg/mL. Larger circles indicate better activity. Statistical significance
was assessed using two-sided Dunnett’s test with correction for multiple compar-
isons: ‘*’means 0.01 <p <0.05; ‘**’means 0.001 <p ≤0.01; and ‘***’means p ≤0.001.
b The hemolytic and cytotoxic activities of 16 c_AMPs were evaluated at a con-
centration of 128 µM. Each group included three biologically independent repli-
cates (n = 3), with data presented as mean±s.d. Triton X-100 served as a positive
control, while PBSwas used as a negative control for hemolytic activity, and DMEM
was the control for cytotoxicity. The growth curvesof representative drug-resistant
bacteria, which were E. coli z44 (c) isolated from sick chickens in livestock and S.

aureus 09057 (d) from clinical environments. Each group included three biologi-
cally independent replicates (n = 3), with data presented asmean ± s.d. The control
group demonstrated normal bacterial growth. The concentration gradient of D1
and D2 was set from 128 µM to 1 µM in two-fold dilutions, with different colors
representing each concentration. The concentration indicated in each panel is the
MIC of the peptide against each bacterial strain. e SEM images of S. aureus 09057
treated with PBS and D1 (64μM) at low magnification (scale bar, 2μm). f TEM
images of S. aureus 09057 treated with PBS and D1 (64μM) at low magnification
(scale bar, 200 nm). Images shown are representative of at least three independent
experiments with similar results. Additional images and magnifications are pro-
vided in Supplementary Fig. 15, confirming the reproducibility of the observations.
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Fig. 6 | Therapeutic efficacy in vivo. a Schematic diagram of the experimental
setup for the mice systemic infection model using S. aureus 09057. b–e Bacterial
loads of S. aureus09057 in liver, spleen, lung, and kidneyof uninfectedmice, andof
infected mice after treatment with saline, vancomycin, and D1. f–h Serum levels of
TNF-α, IL-1β, and IL-6 in healthy mice and S. aureus-infected mice treated with
saline, vancomycin, and D1. i Schematic diagram of the experimental setup for the

mice systemic infectionmodel using E. coli z44. j–m Bacterial loads of E. coli z44 in
liver, spleen, lung, and kidney of uninfected mice, and of infected mice after
treatmentwith saline, kanamycin, andD1.n–p Serum levels of TNF-α, IL-1β, and IL-6
in healthy mice and E. coli-infected mice treated with saline, kanamycin, and D1.
Statistical analysis was conducted using a two-sided one-way ANOVA. Data repre-
sent mean ± s.d. of n = 6 biologically independent replicates.
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autopsied, and organs were collected for quantification of bacterial
load. Colony counts showed that bacterial loads were significantly
lower in the liver, kidney, spleen, and lungs of vancomycin-treated
mice compared to the corresponding organs of untreated sepsis
control mice, indicating the successful establishment of the infection
model. Compared to the saline treatment, bacterial loads in the liver,
kidney, spleen, and lungs were significantly reduced by an average of
0.44–1.15 log in CFU/g after treatment with D1 (Fig. 6b–e). Moreover,
compared with the saline treatment group, the levels of pro-
inflammatory factors tumor necrosis factor-alpha (TNF-α),
interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the serum of mice in
the D1-treatment group were significantly reduced (Fig. 6f–h), sug-
gesting that D1 could also alleviate inflammatory response in vivo.

In the sepsismodel induced by E. coli z44 infection (Fig. 6i), under
the same treatment conditions, D1 treatment significantly reduced the
bacterial load in the visceral organs of mice by an average of
0.47–0.67 log CFU/g (Fig. 6j–m). Moreover, compared to the
untreated group, D1 significantly decreased the levels of pro-
inflammatory cytokines in the mice (Fig. 6n–p), indicating that D1
can alleviate the inflammatory response in mice with E. coli z44-
induced sepsis.

Discussion
Deep learning models can be powerful tools for predicting protein
function, but the learned relationships or features that influence their
accuracy are often hard to interpret. Here, we developed
DLFea4AMPGen as a strategy for de novo AMP generation that utilizes
AA features learned from deep learning models. Based on SHAP esti-
mates of “black box” feature influence in deep learning models, our
strategy simultaneously considers antibacterial, antifungal, and anti-
oxidant activities within a comprehensive peptide feature space,
ensuring that the de novo AMPs incorporate features relevant to all of
these target activities, ultimately increasing the success rate. Experi-
mental validation showed that 12 of the 16 c_AMPs in our current study
exhibited bioactivity, resulting in a positive rate of 75%, thus providing
a proof-of-concept demonstration that DLFea4AMPGen has a robust
capacity for generating candidate AMPs.

Unlike previous studies that predict all sequences,we constructed
comprehensive peptide sequence spaces with a high positive rate
based on the model’s strong feature extraction capabilities, which
could reduce the screening scale while ensuring the accuracy of the
entire strategy. In our study, by extracting the AAs that have the
greatest influence on bioactivity to construct the plausible sequence
subspace, this strategy ensures that the generated AMPs indeed con-
tain the features essential for antimicrobial activity. Most importantly,
by focusing on the most significant features in SHAP analysis rather
than random combinations of 20 AAs, to some extent, it addresses the
global search problem for peptide exploration23. In addition, com-
pared to more common database filtering techniques that yield ran-
dom peptide combinations comprised of only a few (e.g., three)
AAs24,25,37, we conducted a systematic analysis of all sequences with
potential antibacterial activity and selected representative sequences
from among groups of similar sequences to maximize the diversity of
the de novo c_AMPs.

AMPs have garnered significant attention in recent research.
Multiple studies have highlighted the impact of factors like charge,
secondary structure, hydrophobicity, and amphiphilicity on the sub-
strate specificity and bioactivity of peptides in disrupting bacterial cell
membranes8,30,38–40. Obviously, these 16 de novo c_AMPs possess these
basic characteristics. Using the traditional motif extraction method
(MEME)41, we combined the three datasets of ABP, AFP, and AOP to
identify motifs. However, the extracted motifs did not exhibit clear
patterns. This discrepancymay be due to the fact that, unlike enzymes,
antimicrobial peptides are shorter in length and do not rely on an
active site for their function. Therefore, themotifs extracted byMEME

may not capture the general functional mechanisms of AMPs, which
limits their utility for de novo AMP design. In this study,
DLFea4AMPGen allowed us to consider more than one activity type in
our AMP design agenda by integrating multiple features into a single
sequence, resulting in peptides with strong antibacterial, antifungal,
and antioxidant activities. In addition to antibacterial activity,
increasing the prevalence of Trp, Cys, and Pro, which are crucial for
antioxidant activity42,43, could help reduce oxidative stress caused by
bacterial infections and effectively decrease host inflammatory
response26,44,45.

In this study, the unique mode of action mediated by D1, which
involves the destruction of cell membrane structures, resulted in
broad-spectrum antibacterial activity against 17 microorganisms,
including antibiotic-resistant S. aureus strains that do not respond to
clinical antibiotic treatments. Furthermore, we observed that D1 not
only eliminated bacteria but also lowered inflammatory factor levels,
which could help improve treatment outcomes and prevent some
complications46,47. However, despite the high efficacy of AMPs pro-
duced by our strategy in the current study, our predictive models
could be further optimized in future work. For instance, a regression
model for MIC prediction could facilitate quantitative evaluation of
AMP bioactivity23, rather than providing only a qualitative assessment.
As reported previously9, a pipeline composed of multiple models can
substantially improve prediction accuracy, reducing the cost of
experimental validation. In addition, incorporating an MIC prediction
model and empirical pre-screening23 could further refine the selection
process based on quantitative results, enabling a more precise nar-
rowing of the range and ultimately enhancing the accuracy of the final
experimental validation.

Here, we introduceDLFea4AMPGen, a deep learning approach for
AMP generation that learns features associated with peptide bioac-
tivity. DLFea4AMPGen can reduce computational costs, enhance
design success rates, and produce AMPs with more diverse activities
compared with other current methods for AMP design. Through SHAP
analysis, we identified the features and physical factors with the
strongest influence on prediction accuracy in the deep learning
models, then focused specifically on these features to construct a
plausible sequence subspace. Using this sequence space to design de
novo AMPs, we synthesized 16 AMPs for experimental validation, and
detected robust, broad-spectrum antimicrobial activity, including
antibiotic-resistant strains, by the candidate AMPs, D1 and D2. The
efficacy of D1 and D2 provides proof-of-concept evidence validating
our approach and supporting the further development of therapeutics
targeting drug-resistant pathogens. DLFea4AMPGen can streamline
AMP discovery and pave the way for future advances in peptide design
applications.

Methods
Ethics statement
All experimental procedures were conducted in accordance with the
guidelines of the Institute of Animal Science of the Chinese Academy
of Agricultural Sciences. The study protocol was approved by the
Institutional Animal Care and Ethics Committee (approval no.
IAS2024-116). This study adhered to ethical guidelines for animal
research.

Model establishment and evaluation
All 20 benchmark datasets used as predicted objects in this study are
listed in Supplementary Table 1, which were sourced from a previous
study32. Building on the theory of transfer learning, we fine-tuned all
the hidden layers of the pre-trainedMP-BERT33 using the ABP, AFP, and
AOPdatasets to construct themodels, resulting inABP-MPB, AFP-MPB,
and AOP-MPB. In the input layer, AAs were treated as individual text
units, separated by spaces, with sequences marked by “CLS” at the
start and “SEP” at the end. Sequence vectors were padded with 0 if the
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raw sequencewas shorter than 1,024 AAs. BAP-MPB incorporates a six-
layer hidden layer structure, with initialization weights for the hidden
layers derived from the pre-trained model. The final output layer is a
fully connected network that maps the learned peptide representa-
tions to class labels.

All positive peptides in the 20 datasets from the previous study
were used as predicted objects, with ABP, AFP, and AOP used to con-
struct the models for the strategy of DLFea4AMPGen. In order to
compare the performance with existing large language models, we
further built 20models for all 20bioactive peptide datasets separately.
To maintain consistency with the UniDL4Biopep32 structure, we
replaced the output layer of MP-BERT with the same CNN network as
UniDL4Biopep, rather than fine-tuning it. This model is named
BERT +CNN. Then, we trained threemodels (ESM+CNN, BERT +CNN,
and BAP-MPB) using the same dataset partitioning method in 20
bioactive datasets, respectively. Model performance was evaluated
using the area under the curve, accuracy, and Matthews correlation
coefficient, calculated with the Python package scikit-learn (version
1.0.2). To prevent overfitting, we employed an ‘early-stop’ strategy,
setting a maximum of 200 training epochs and an early stopping cri-
terion with a patience of 50 rounds. Training was stopped and the
model saved if there was no improvement in validation performance
within 50 consecutive epochs. Training was conducted using the
Mindspore framework (version 1.8).

To ensure fair and unbiased performance evaluation and com-
parison, we adopted the same dataset division method used in the
original research. In particular, the original test datasets fromprevious
work remained unchanged and were not included in model training.
Additionally, the original training datasets were categorized into 10
parts for 10-fold cross-validation. Each part was sequentially used as a
validation dataset, whereas the remaining nine parts served as the new
training dataset for each fold. The average predictive performance on
the test dataset during the 10-fold cross-validationwasused as thefinal
evaluation criterion. Further details about the benchmark datasets can
be found in the referenced previous study.

Analysis of amino acid feature attribution using SHAP
To design a bioactive peptide with antibacterial, antifungal, and anti-
oxidant activities, we calculate the SHAP values for each AA using the
ABP-MPB, AFP-MPB, and AOP-MPB models, respectively. Due to sig-
nificant threshold differences in SHAP values fromdifferentmodels, we
first normalized the SHAP values of all AAs in each sequence. This
normalization explains the relative contribution of each AA. Next, we
calculated the average normalized SHAP values from the three models
to serve as the final standard for evaluating the contribution of eachAA.
Thus, the average normalized SHAP value from the three models was a
crucial selection criterion, incorporating features of all three activities.

The SHAP method is an advanced machine learning tool used to
interpret the outputs of predictive models48. For the opaque opera-
tions of complex deep learningmodels, SHAPprovides a framework to
understand the specific contributions of each feature to model pre-
dictions. For a given sequence and its activity prediction, each AA is
associatedwith a SHAP value. SHAP can explain individual predictions,
demonstrating the influence of individual features on the final out-
come. By deep learning models, we applied the Python package SHAP
(version 0.41.0) to calculate the contribution of each AA in each
sequence. The predicted score for each sequence is the sum of the
base value and the SHAP values of each AA. By analyzing these SHAP
values, we can identify the potential positive or negative impacts of
AAs on the prediction score as well as the extent of these impacts.

Key feature fragments containing three activities
For all positive samples in the 20 bioactive peptide datasets, we
focused on those predicted as positive in 10-fold cross-validation by
the ABP-MPB, AFP-MPB, and AOP-MPBmodels simultaneously. Among

these peptides with potential triple activities, a length of 13 AAs was
found to be the most common. Consequently, a length of 13 AAs was
selected for KFF extraction and AMP design.

First, we set a sliding window of 13 AAs with a step size of 1 AA and
slid it across the entire sequence. In each sequence, the average SHAP
values of each AA served as the basic evaluation metric. In particular,
we retained only one window with the highest sum of average SHAP
values in each sequence, provided the sum was greater than 0,
ensuring the selection of the most distinctive features. Subsequently,
an evolutionary relationship analysis was conducted on all KFFs
obtained from the focused sequences. Multiple sequence alignment
was performed using the maximum likelihood method with
MEGA11 software. The JTT +CAT model from FastTree software (ver-
sion 2.0.0) was used to construct the phylogenetic tree, grouping KFFs
with similar AA features into the same subfamily. Finally, the phylo-
genetic tree was visualized using the Chiplot online website (https://
www.chiplot.online)49.

Constitution of the entire scanning space and de novo design
of AMPs
For each subfamily with significant features, we constructed a distinct
scanning space. To emphasize the most significant AA features and
reduce computational costs, we retained only the top three AAs with
the highest frequency at each of the 13 positions. In particular, after
aligning all KFFs of the same length within each subfamily, we calcu-
lated the frequency of each AA at each position. Then, the top three
most frequent AAs at each position were used to construct the plau-
sible sequence subspace. Consequently, each distinct scanning space
contained 313 (1,594,323) candidate sequences, each based on the
unique key features of its respective subfamily.

Subsequently, during the 10-fold cross-validation of the ABP-MPB,
AFP-MPB, and AOP-MPB models, the best-performing model in terms
of prediction accuracy was used to filter out sequences that are least
likely to be active. More stringent screening criteria were further
applied to enhance the overall success rate of the strategy: sequences
with model prediction scores below 99% were excluded, and sequen-
ces with fewer than two positive charges were disregarded based on
empirical rules36.

Among sequences that fulfilled all the aforementioned criteria,
representative sequences were selected for further validation. This
processwas primarily conducted simultaneously across all subfamilies
using iFeatureOmegaCLI50 in Python. First, Amphiphilic Pseudo AA
Composition (APAAC) was used to characterize the feature vectors of
sequences. By incorporating pseudo AA components, APAAC com-
bines AA properties (such as hydrophilicity and hydrophobicity) and
sequence order information to generate biologically meaningful fea-
ture descriptors. Next, principal component analysis was applied to
reduce the raw dimensional data generated by APAAC to two dimen-
sions, thereby reducingdata complexity. Then, K-means clusteringwas
applied, experimenting with different cluster numbers ranging from 2
to 9. The kelbow_visualizer function from the Yellowbrick packagewas
used to determine the optimal cluster number based on the elbow
method. Finally, sequences closest to each cluster centerwere selected
as the representative sequences and chemically synthesized for func-
tional validation. And all peptides with purity >95% were custom-
synthesized by GenScript Co., Ltd (Nanjing, China).

Structure prediction
The tertiary structures of representative peptides were predicted
using ColabFold, employing the alphafold2_ptm model by default to
generate five model variants. The confidence in these models is indi-
cated by the predicted local distance difference test (pLDDT) scores,
which range from 0 to 100. We selected the model with the highest
pLDDT score for further analysis and visualized it using PyMOL (ver-
sion 2.4).
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Sequence similarity estimation
We applied the Needleman-Wunsch algorithm in the function globa-
l_alignment from the Biopython library (version 1.76) to estimate the
similarity between our query peptide and protein sequences in the
dataset, which were ADAM, APD, CAMPR4, DBAASP, and BIOPEP. The
alignment was performed using default parameters, and the similarity
was calculated bydividing the alignment scoreby themaximum length
of the sequences being compared.

Bacterial strains and growth conditions
Bacterial strains utilized in this work are listed in Supplementary
Table 3. Briefly, six bacterial strains were preserved in the laboratory,
which were E. coli O157:H7, K. pneumoniae ATCC700603, S. typhi-
murium ATCC14028, M. luteus ATCC4698, B. subtilis WB600, and S.
aureus ATCC6538. Four drug-resistant bacterial strains were isolated
from diseased chickens on livestock, which were E. coli z44, E. coli z59,
S. typhi MJ1, and S. typhi XYJ1. Another six drug-resistant bacterial
strains were isolated clinically from patients with various infections in
the Chinese PLA General Hospital (301 Hospital), which were S. aureus
09057, S. aureus 11533, S. aureus 12513, S. aureus 12533, S. aureus 18437,
and S. aureus 23156.

Antibacterial activity assay
Antibacterial activity was assessed according to the Clinical and
Laboratory Standards Institute guidelines51. Initially, 16 c_AMPs were
screened at a concentration of 128 µM for their inhibitory activity
against three Gram-negative bacteria (E. coli O157:H7, K. pneumoniae
ATCC700603, and S. typhimurium ATCC14028) and three Gram-
positive bacteria (M. luteusATCC4698,B. subtilisWB600, and S. aureus
ATCC6538). Bacteria were inoculated in cation-adjusted Mueller-Hin-
ton broth (CaMHB; no. HB6231-1; Qingdao Hope Bio-Technology Co.,
Ltd., Shandong, China) and incubated at 37 °C overnight. Then, the
cultures were diluted (1:100) with fresh CaMHB and cultured to the
exponential phase (OD600 of 0.4–0.6). The cell concentration was
adjusted to approximately 5 × 105 c.f.u. per mL. Next, 100-µL aliquots
were transferred into 96-well plates containing 100 µL of different
c_AMP solutions. For MIC determination, the tested ranges of AMPs
were serially diluted two-fold from 128 µM to 1 µM. Bacterial growth
was monitored using the automated Bioscreen C microbiological
growthmonitoring system (Labsystems, Helsinki, Finland). The system
was incubated at 37°C for 16 h, with OD600 measurements obtained
every 10min. By plotting the growth curves, we observed the anti-
bacterial activities of the peptides on different bacteria. The bacter-
iostatic rate was calculated using the following equation52:

Inhibition rate %ð Þ= 1� As � As0

Ab � Ab0
× 100 ð1Þ

where As is the absorbance of the AMP treatment group, Ab is the
absorbance of the control group, As0 is the initial absorbance of
the AMP treatment group, and Ab0 is the initial absorbance of the
control group.

Antifungal activity assay
Similarly, at a concentration of 128 µM, 16 c_AMPs were initially
screened for their inhibitory activity against the fungus C. albicans
ATCC10231. The experimental procedure was similar to that for bac-
terial inhibition, with some differences: C. albicans ATCC10231 was
cultured in potato dextrose broth at an incubation temperature of
30 °C, with the duration of the reaction doubled compared to the
antibacterial activity assay.

Cell culture and cytotoxicity assays
NIH/3T3 cells (a murine fibroblast cell line) were obtained from
American Type Culture Collections (ATCC CRL-1658). For the

cytotoxicity test, 3T3 cells were seeded into 96-well plates, with a
volume of 100μL per well. The cells were incubated at 37°C with 5%
CO2 for approximately 18 h. Once the cells had adhered and reached
approximately 40% confluence, the culturemediumwas replaced with
100μL of fresh medium containing 128μM of the test compound
(n = 3). The cells were then cultured for an additional 24 h under the
same conditions. After the 24-h incubation, 10μLof CCK-8 reagentwas
added to eachwell, and the plateswere incubated for 1.5 h at 37 °C. The
absorbance at 450 nm was measured using a microplate reader. Each
experimental condition was performed in quintuplicate. Triton X-100
was used as the positive control. The percentage of cell inhibition was
calculated using the following formula:

%Inhibition =
absorbancenegative � absorbancesample

absorbancenegative � absorbanceblank
× 100 ð2Þ

Hemolysis test
Red blood cells (RBCs) from rabbits (no. S27562-100ml; Shanghai
Yuanye Bio-Technology Co., Ltd, Shanghai, China) were used to assess
thehemolytic activity of peptides. Peptide solutions (n = 3)weremixed
with RBCs to achieve a final concentration of 128 µM. The mixtures
were incubated at 37 °C for 4 h. RBCs in phosphate-buffered saline
(PBS) served as the negative control, whereas RBCs in H2O served as
the positive control. After incubation, the samples were centrifuged at
2500 × g for 10min, and the absorbance of the supernatant was mea-
sured at 540 nm using a microplate reader. The percentage of hemo-
lysis was calculated as:

%Hemolysis =
absorbancesample � absorbancenegative
absorbancepositive � absorbancenegative

× 100 ð3Þ

Drug resistance assay
Resistance development assays were performed following a previous
report23. Drug resistance was tested by repeatedly treating S. aureus
09057 with peptide D1 at the sub-MIC concentration (1/2 MIC). MIC
values were tested using the described method after every 10 gen-
erations. All experiments were performed with three independent
replicates.

Antioxidant activity assay
The antioxidant activity of c_AMPs was evaluated by measuring
their ability to scavenge ABTS+ free radicals at a concentration of
1 mg/mL. Glutathione at the same concentration was used as the
positive control, and double-distilled water served as the negative
control.

ABTS+ radical scavenging assay: We weighed 200mg ABTS and
34.4mg potassium persulfate, dissolved them in 50.0ml of double-
distilled water,mixed the solution thoroughly, and let it stand at room
temperature in the dark for 24 h. Then, the ABTS assay solution was
prepared by diluting an appropriate quantity of the ABTS stock solu-
tion with 95% ethanol until the absorbance value reached 0.70 ± 0.02
(OD734). Then, 180 µL aliquots of the assay solutionwere transferred to
96-well plates containing 20 µL of different c_AMP solutions. After
thoroughly mixing each sample, the reaction was allowed to proceed
at room temperature in the dark for 5min. The absorbance was mea-
sured at a wavelength of 734 nm, using the sample solvent for zero
calibration.

The free radical scavenging rate was calculated as follows:

%Scavenging rate =
Ab � As

Ab

� �
× 100 ð4Þ
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where Ab is the absorbance of the mixture of ABTS solution and the
sample solvent solution, As is the absorbance of themixture of the test
solution and ABTS solution.

SEM and TEM measurement
Membrane permeability induced by AMPs was measured using SEM
and TEM. S. aureus 09057 was grown overnight at 37 °C. Bacterial
suspensions (c.f.u. = 108ml−1) were treated with D1 at final con-
centrations of 64 µM at 37 °C for 2 h and 3 h, with untreated cells
serving as the control. Samples were washed with 0.1M PBS three
times and treated with glutaraldehyde for 4 h. A 10 µL sample
was added onto a silicon wafer and sequentially dehydrated with
20%, 40%, 60%, 80%, and 100% ethanol/water (10min each). The
specimens were observed using SEM (Hitachi SU3500, Japan). For
ultrathin sectioning, samples were sequentially treated with glutar-
aldehyde overnight and osmic acid (1 wt%) for 2 h. Then they were
dehydrated with 30%, 50%, 70%, 80%, 90%, and 100% ethanol/water
(30min each) and acetone (20min). Subsequently, the specimens
were infiltrated in a series of acetone and Spurr’s resin mixtures (1:1
for 1 h, 1:3 for 3 h) and finally embedded in Spurr’s resin overnight.
Ultrathin sections of about 70 nm thickness were stained with 2%
uranyl acetate and lead citrate (10min each). Images were taken with
a TEM (Hitachi HT7700, Japan).

In vivo experiments
We established the mouse sepsis model29 using S. aureus 09057 and E.
coli z44 under identical experimental conditions, respectively. Five-
week-old healthy female BALB/c mice (inbred, wild-type) were pur-
chased from SPF (Beijing) Biotechnology Co., Ltd. and randomly divi-
ded into four groups, with six mice per group. They were acclimated
for 7 days in a new environment with suitable conditions: a tempera-
ture range of 20–24 °C, humidity levels of 50–60%, and alternating
periods of light and darkness. Experiments were performed when the
mice reached 6 weeks of age, at which point their body weight was
approximately 20 g. Mice in both the negative control group and the
treatment group were intraperitoneally injected with bacterial sus-
pension at a dose of 108 CFU, whereas the blank group was injected
with 150 µLof physiological saline. After 1 h, the negative control group
was intraperitoneally injected with 200 µL physiological saline, the
treatment groupwas intraperitoneally injectedwith 200 µL D1 (20mg/
kg), and the blank group received no treatment. After 12 h, all mice
were euthanized using ether inhalation anesthesia. The liver, spleen,
lungs, and kidneys of each mouse were collected, weighed, and
homogenized. The homogenates were serially diluted in physiological
saline, plated onto solid LB, and the c.f.u. of bacteria per organ was
calculated by counting colonies on agar plates. Results were expressed
as CFU/g of tissue for each organ. On the other hand, blood was col-
lected from the orbital vein of the mice, and serum levels of cytokines
were analyzed using an enzyme-linked immunoassay, whichwere TNF-
α, IL-1β, and IL-6. The inflammatory factor kit was purchased from
Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China). Sta-
tistical analysis was conducted using one-way ANOVA.

Statistics and reproducibility
All experiments were independently repeated at least twice with
similar results to ensure reproducibility. Sample sizes for each
experiment were determined based on previous published studies in
the field, ensuring sufficient statistical power. For in vitro assays, three
biologically independent replicates were used per condition. For ani-
mal studies, six biologically independent mice were used per group.
Animals were randomly assigned to different treatment groups.
Blinding was not performed due to the nature of the treatment and
infection procedures. Nonetheless, no apparent sources of bias were
identified, and data collection was carried out using standardized
protocols and objective measurements to ensure reliability. No

statisticalmethodwas used to predetermine sample size. Nodatawere
excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 20 datasets used for model construction were obtained from the
previous study and are publicly available at GitHub: https://github.
com/dzjxzyd/UniDL4BioPep. The datasets used for sequence similar-
ity comparison were uploaded to GitHub and were derived from five
public databases: ADAM, APD3 (http://aps.unmc.edu/), CAMPR4
(http://camp.bicnirrh.res.in/), DBAASP, and BIOPEP. The curated
similarity datasets are available at: https://github.com/hgao12345/
DLFea4AMPGen/blob/main/Dataset/AMP_from_5databases.xlsx. The
trained model checkpoint is available on Zenodo (https://zenodo.org/
records/16545412). All source data supporting the findings of this
study are available within the main text, Supplementary Information,
or via the provided repositories. Source data are provided with
this paper.

Code availability
Themodels and source codes used for DLFea4AMPGen are available at
GitHub (https://github.com/hgao12345/DLFea4AMPGen) and archived
on Zenodo with the identifier [https://doi.org/10.5281/zenodo.
16681867]53. Moreover, Pre-trained MP-BERT can be accessed at
https://github.com/BRITian/MP-BERT.
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