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Allocentric flocking

Mohammad Salahshour 1,2,3 & Iain D. Couzin 1,2,3

Understanding how group-level dynamics arise from individual interactions
remains a core challenge in collective behavior research. Traditional models
assume animals follow simple behavioral rules, like explicitly aligning with
neighbors. We present here an alternative theoretical framework that con-
siders collective behavior to be grounded in neurobiological principles—par-
ticularly that animals employ ring attractor networks to encode bearings
towards objects in space in an allocentric (i.e., with respect to a fixed external
reference frame, such as a stable landmark) and/or egocentric (i.e., the angle
relative to the animal’s heading) neural coding. We find collective motion can
emerge spontaneously when individuals act as sensory inputs to each other’s
networks, but only if individuals employ allocentric bearings to neighbors.
Rapid switching between both representations can, however, enhance coor-
dination. Collective motion can, therefore, emerge directly from navigational
circuits, and thus may readily evolve, without requiring explicit alignment, or
additional rules of interaction.

How collective behavior arises from interactions among individuals
is central to multiple scientific disciplines1–4. A particularly notable
example is collective motion; beyond its esthetic appeal, collective
motion has been a testing ground for theories of collective behavior5.
This is because the emergent macroscopic patterns arise from
feedback between the individuals and the collective6,7. Traditionally,
models of collective movement were rooted in agents following
simple behavioral rules. Such studies have shown that emergent
patterns can arise among such cognitively minimalist agents, termed
‘self-propelled particles’. While the earliest such models included
explicit alignment—such as the influential Vicsek model8—other
models have shown that collective motion can arise from mechan-
isms like escape and pursuit9, inelastic collisions10,11, attractive and
repulsive radial forces12–18, active elastic forces19,20, and nematic
collisions21, all of which can induce local alignment.

While suitable for inanimate objects or simple organisms, these
modeling frameworks overlook the cognitive processes that shape
individuals’ perception of their physical and social environment22–28.
This realization has led to more recent models that incorporate
mechanisms like visual sensing of neighbors22,29–31, and the explicit
consideration of the sensory-motor interface, such asby incorporating
biologically plausible mechanisms by which individuals may modify
both their movements and their internal model of the world32–36.

However, the vastmajority ofmodels still rely on traditional rule-based
frameworks12–14,37, such as self-propelled particles that employ explicit
local alignment31–33, thus divorcing the model from neural principles
and experimental data38–40.

Further to this, irrespective of their differences, all previous
models of collective motion make a universal assumption: that vec-
torial information regarding conspecifics (the estimated directions/
bearings towards others) is considered exclusively from an egocentric
perspective. That is, it has always been assumed that, with respect to
conspecific bearings, the frame of reference for a focal individual is
with respect to its own, present, heading (for example, a neighbor
positioned directly to the right would be at +90°, whereas one at the
left would be considered −90°, with respect to the focal individual’s
heading, irrespective of its absolute heading (see Fig. 1). By contrast,
however, neurobiological data demonstrate that the bearing towards
external goals, even in simple animals such as the fruit fly (Drosophila
species), can also be encoded in an allocentric (i.e., world-centered,
such as north, south, east, west) frame of reference41–43, and that such a
representation is ubiquitous among animals41–53.

Here, we propose a shift towards a modeling framework that
accounts for the fact that animals are not rule-bound, self-propelled
particles. Rather, we consider that they form neural representations of
their environment and act on what they perceive. This perspective
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immediately opens the question of how animals’ egocentric and/or
allocentric representation of space affects collective behavior. We
develop generative models of animal movement and decision making
to address how both egocentric and allocentric representations may
impact the establishment of goal vectors (the direction towards which
the animal moves41,43,44,53), and thus movement decisions in individual
and collective contexts.

We begin by considering how the internal dynamics of a ring-
attractor network can give rise to spontaneous patterns of activity in
the absence of any sensory input (e.g., during exploration/search), and
the corresponding movement patterns that result. Following this, we
explore how the neural dynamics, and thusmovements, are influenced
by simple sensory inputs. Specifically, we examine target-seeking
behavior, both in response to static and moving targets in egocentric
and allocentric representations. This relates the collective dynamics of
the ring-attractor to information processing.

Finally, we consider the emergence of collective motion in such
cognitive agents; here, the individuals are themselves salient sensory
inputs to each other’s ring-attractor network. Thus, the sensory input
for each individual becomes much more complex, due to the geo-
metric input to the ring depending both on self-generatedmotion and
the movements of others. In doing so, we will demonstrate how col-
lective motion can emerge directly from sensory information being
integrated on a ring-attractor network. Notably, we find that an allo-
centric representation of space naturally results in the ability of ani-
mals to form coherent, mobile groups that exhibit a rich set of
patterns. Although a purely egocentric encoding fails to produce col-
lective motion, rapid alternations between allocentric and egocentric
frames can enhance global order. The rich behaviors evident in what
we term allocentric flocking, as well as the natural emergence of col-
lective motion from neurobiological principles, call for a shift in per-
spective and a new class of models in the study of collective motion.

Results
The modeling framework
Neurobiological motivations. While neurobiological details differ
among species, a ubiquitousmotif for encoding angular information in

both the invertebrate54,55 and vertebrate44,56–59 brain, are ring-attractor
networks.A ring-attractornetwork is a recurrent neural circuit inwhich
localized excitation and long-range inhibition maintain a bump of
electrical activity, with recurrent excitation maintaining the bump
even in the absence of sensory input. Ring attractors can havemultiple
inputs, often from other ring attractors and/or from sensory mod-
alities. Their functional ring-like topology (which in some cases, such
as the ellipsoid body of the fruit fly Drosophila, is literally also a mor-
phological ring54), makes them ideal structures for the integration and
representation of angular information.

Multiple interconnected and intercommunicating ring-attractor
networks coexist in the brain. Central to spatial navigation is animals’
neural compass, often termed their heading compass or head com-
pass, in which the cellular activity rotates as the animal changes
heading, allowing estimation of body/head orientation relative to
visual60 (and in some species alsomagnetic61–63) cues. Prominent visual
cues employed to tether the compass include polarized light64–66, the
sun60,61 and prominent distant, and therefore relatively stationary,
objects in the environment61,62. In this way, the animal canmaintain an
allocentric reference frame for its heading, i.e., its orientation with
respect to external cues43,48,55,67–72. While some species, such as fish56,
have rigid bodies, in others, such as mammals, animals can maintain
head direction in addition to heading57,58. We note that head and
heading directions have yet to be disambiguated in insects54,55.

Maintaining a compass does not imply that each individual knows
which way is north, or that different individuals share a common
allocentric frame of reference; indeed, animalsmust typically re-tether
their compass as they move through space and contemporaneous
salient cues, e.g., visual55 or magnetic cues61,62,73, change. It only means
that individuals can use available sensory information to maintain
egocentric bearings, such as towards objects, aswell as (thanks to their
compass) tohave the capacity to transformegocentric representations
to allocentric representations on their ring-attractor networks41,48,74.
Therefore, while all bearings we consider here are egocentric in terms
of their point of origin—centered on the animal—their bearings can be
encoded in an egocentric and/or an allocentric (polar) reference frame
in the brain48,55 (see Fig. 1). Importantly, this does not imply the

Fig. 1 | Ring-attractor networks with an allocentric and an egocentric repre-
sentation of space. A Individuals are equipped with a ring-attractor network in
which neurons are arranged on a ring. Each neuron receives sensory input from the
external world through a Gaussian receptive field centered on an angle αi (with
respect to the individual’s allocentric or egocentric reference frame) and encodes
for movement along the same direction, αi. Besides, neurons interact with other
neurons via excitatory or inhibitory synapses, depending on their distance along
the ring. B With an egocentric representation of space, the animal encodes direc-
tions with respect to a self-body coordinate (head direction), αego. Whereas, with an
allocentric representation, directions towards targets are encoded via an allo-
centric frame of reference, αallo= αr + αego, where αr is the direction of the

individual’s body axis. Thus, with an allocentric representation, directions are
independent of the agent’s body coordinate. C To model an allocentric repre-
sentation of space, we assume the neural network (represented by only four circles
for better visibility) encodes for directions in a world-centric reference frame,
which does not rotate with the individual’s movement in space (as if it is anchored
in the external world, using one or more external cues), such that, neuron i,
encodes for a direction, 2π(i−1)/Ns with respect to a world-centric axis. In the
egocentric case, the network’s reference frame is attached to the individual and
rotates with the individual as the individual moves in space, such that neuron i
encodes for a direction, 2π(i−1)/Ns, with respect to the animal’s body axis.
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existence of a cognitivemapor absolute knowledgeof object locations
in Cartesian space (e.g., knowing a tree’s coordinates as (X, Y) inde-
pendently of the individual’s location75,76). Rather, we refer to the
encoding of bearings in egocentric or allocentric terms48. Future work
could extend this framework to incorporate more complex spatial
representations, such as the Cartesian encoding observed in mam-
malian brains50,75,76, but here we focus on the simpler mechanisms that
may underpin the evolutionary origins of collective motion in inver-
tebrates and vertebrates.

In addition to their heading compass, animals have also been
found to encode their “goal direction” in a ring-attractor network.
Here, the bumpof activity represents the desireddirection of travel for
the animal at the presentmoment in time41,43,44,53. While it is known that
animals turn towards their goal vector during navigation, with the
neural circuitry responsible for converting allocentric goals into
appropriate egocentric steering controls having been dissected in
Drosophila41,53, relatively little work has been conducted into how the
goal vector is itself established when there are multiple alternatives77.

Here, we focus our attention on this less-explored aspect of
decision-making and make the reasonable assumption that animals
can turn towards their goals. Thus, we do not explicitly model how
animalsmaintain their allocentric heading, which they are known to be
able to do, but rather how sensory information—with a specific focus
on visual information—may be integrated to create time-varying goal
directions.

Our use of a ring-attractor network to explore decision-making
with respect to establishing a goal direction is motivated by its neu-
robiological plausibility43, and that we previously found that a ring-
attractor model could accurately predict the time-varying directional
movement decisions exhibited by individual fruit flies, locusts, and
zebrafish, in scenarios involving two or more discrete static (fruit flies
and locusts) and moving (fruit flies, locusts and zebrafish)
options40,78,79. In this work, we were, however, unable to account for
how collective motion emerges in animal groups. Importantly, similar
to all previous models of collective behavior, in our previous ring-
attractor models78,79, we had assumed that animals employ an ego-
centric representation of space.

Generative models of spatial decision-making. We develop a mod-
eling framework to mechanistically capture how individuals’ neural
coding of their goal bearing41,44,53, and hence their movement (see
above), is governed by both spontaneous neural dynamics, as well as
the neural processing of sensory cues. In our framework (see Meth-
ods), individuals’movement decisions are governed by a ring-attractor
network. The network receives sensory input from the outside world
and employs an internal collective dynamic to come to a consensus
regarding the directional goal of the animal for that moment in time.
We consider how goals can be established both in the absence and the
presence of sensory information.

The sensory input to the network is assumed to be topo-
graphically mapped (as, for example, are visual stimuli in Drosophila),
such that a perceived cue (e.g., visual target) excites the appropriate
position (angle) on the ring54,55,80. While the model is agnostic to the
modality, in many animal groups, vision is the primary modality.
Because here we are interested in modeling individual movement in
two-dimensional physical space (as an important starting point which
has been the focus of most past theoretical and empirical works8), we
assume a neuron at a position ði�1Þ

2π along the ring to receive excitatory
input from a Gaussian receptive field centered on an angle ði�1Þ

2π with
respect to the origin (zero) of the agent’s reference frame (see Fig. 1A).
This corresponds to the input to the ring-attractor being excitatory,
with the potential to induce bumps of activity corresponding to one or
more perceived targets. Much has been suggested occurs by the
mapping of the inputs from the optic lobe to the protocerebral bridge
in the fruitfly55,80–82, and computationally this can be thought of as each

object inducing an external field on the ring (Inflies for instance, visual
cues arrive via the anterior visual pathway, a strictly topographic chain
from the optic-lobe medulla through the anterior optic tubercle and
bulb into the ellipsoid body and protocerebral bridge, where ring
neurons then map those cues onto compass circuits80–82).

The interaction dynamics on the ring are mediated via local
excitation and long-range inhibition, which typically results in a single
bump, the consensus direction (the goal direction) being established.
This is then translated intomovement (i.e., we assume that individuals
canmove in their desireddirection of travel). Inspired by ring-attractor
networks observed in both invertebrates54,55 and vertebrates44,56–59, we
take the recurrent connections to be a (generalized) cosine-shaped
synaptic connectivity (preserving the ring structure of the network).
This recurrent connectivity facilitates local excitation and long-range
inhibition on the ring.

As the animal moves in space, the geometry of the inputs to the
ring changes (because the relative position to targets changes), which
changes the consensus goal, and so on. The movement of the animals
in this model thus arises via an embodied, recursive process78. If there
is no such sensory input, the goal is determined entirely by the internal
neural dynamics of the ring attractor. If there is, sensory input can
contribute to the collective neural dynamic on the ring and the
resulting desired direction of travel.

In addition to formulating adeliberately simplemodel framework,
which more easily allows us to identify which specific features of the
computation of interest contribute to movement decisions, we also
need to ensure that our findings are robust. To do so, we create two
variants of our model:

1) Spin system model. We employ a spin representation of neural
dynamics, originally proposed by Hopfield83 to model associative
memory and later used in diverse contexts, such as modeling animal
decision-making in the presence of conflicting preferences78,79,84. In
addition to its rich history, formulating neural interactions in this way
provides access to tools from statistical mechanics, and despite its
apparent abstracted nature, there exists a direct path from empirical
neural data to this formulation85. Besides, mathematical mappings
between spin system formulation and neural field formulation have
been argued78.

2)Neuralfieldmodel. In theneuralfieldmodel, we employAmari’s
classical approach86, originally proposed to model pattern formation
in neural fields and later employed to study awide range of continuous
attractors, from ring attractors in head direction systems87, to orien-
tation tuning in visual cortex88, workingmemory89,90, and grid cells91. In
these models, the stable bump of activity encodes a continuous vari-
able (e.g., head direction or stimulus orientation) that is maintained
over time in the absence of ongoing input. Beyond spatial orientation,
the Amari framework has been extended to explore various cognitive
processes. For instance, models of spatial working memory exploit
persistent bump attractors to explain how information can be main-
tained temporarily without external cues by sustaining localized
activity patterns89,90. Continuous attractor dynamics have also been
applied to grid cell networks in themedial entorhinal cortex, providing
a neural basis for path integration and spatial navigation (e.g., ref. 91).

Because we are interested in gaining insight into a wide range of
movement and decision-making scenarios, we investigate the depen-
dence of our results on noise in neural dynamics (resulting from
intrinsic, extrinsic, and network-level noise). Consequently, we para-
meterize both models with an inverse noise parameter, β, where small
β values represent noisier neural dynamics.

A central focus of our work is how the representation of space
impacts individual and collective behavior. Therefore, we consider
both egocentric and allocentric representations on the ring attractor.
When an agent possesses an allocentric representation of space,
neurons encode for an allocentric, world-centric direction indepen-
dent of the agent’s orientation (e.g., the agent’s head/heading).
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Biologically, this canbe achieved, for instance, by the animal’s ability to
form an allocentric representation of its own heading, and thus,
bearing towards an object via transformation of egocentric signals to
allocentric signals41,48. Thus, while the agent’s reference frame origi-
nates in the agent’s position (i.e., it is attached to its body), it is
anchored in the environmental cues and does not rotate as the agent
moves in space and changes orientation. With an egocentric repre-
sentation, on the other hand, objects are represented in an egocentric
frame of reference (attached to the agent’s body and rotating with its
orientation). Thus, as the agent moves in space, its reference frame
also rotates with the agent’s body axis. See Fig. 1B, C, and Methods for
details of model implementation.

We begin by presenting the results using our spin system model,
and then present the neural fieldmodel. While some differences exist,
suggesting that the two models can be complementary, both models
predict key similar phenomenology. Most notably, both models pre-
dict that coherent collective motion can arise directly from animals’
navigational circuits, with an allocentric, but not an egocentric repre-
sentation of space.

Individual motion and information acquisition in the spin
system model
Free individual motion. First, we consider the intrinsic internal
dynamics (i.e., spontaneous pattern formation on the ring structure) in
the spin system model. We find that the system exhibits an order-
disorder transition as a function of intrinsic (i.e., neural) noise, where
the β parameter is the inverse of noise; thus low β corresponds to high
noise, and vice versa; see the Supplementary Information S.1.

For values of β below the critical transition point, the system is in
the disordered phase, and there exists no correlated activity between
adjacent locations on the network. Above the critical point, as β
increases (and thus noise decreases), order increases and correlations

emerge, but there is no stable (persistent) single bump of activity. For
large values of β, however, we enter an ordered phase where adjacent
spins (i.e., neural activity) assume similar states and a persistent bump
of activity on the ring is observed. For details regarding thedegeneracy
of the ordered states and the dynamics at the critical point, see the
Supplementary Information, S.1.).

How these intrinsic dynamics translate to animal movement
depends on whether individuals maintain an egocentric or allocentric
representation of space. This difference is not immediately evident for
low values of β, such as below, or near, the critical point (Fig. 2A). This
is because, in this regime, a bump of activity is highly unstable,
resulting in agents’motion being slow and highly stochastic (similar to
a random walk) for both egocentric and allocentric representations.

However, as β increases, and the neural activity begins to exhibit a
more stable bump (Fig. 2B(i)), different patterns of movement asso-
ciated with each representation become evident at any spatial scale.
For large β, but not too large such that the agent movement is still
noisy, with an egocentric representation, the agent tends to often
spend long times exploring small regions, with intermittent large
jumps (Fig. 2B(ii)). Such a motion is not observed for an allocentric
representation of space (Fig. 2B(iii)).

As β increases further still (Fig. 2C(i)), the differences between the
agent’s motion with an egocentric and allocentric representation
become most evident. For an egocentric representation, agents’
motion tends to an imperfect circular trajectory (Fig. 2C(ii)), whereas
for an allocentric representation, it is an imperfect directed path
(Fig. 2C(iii)). Trajectories approach a perfect circular or directed path,
respectively, only for the noiseless infinite β limit. To make this com-
parison most directly, we illustrate how exactly the same neural
dynamics result in very different types of motion: if neural activity is
encoded in an egocentric way, a consistent bump position on the ring,
α (corresponding to a deviation α of the neural bump from straight

Fig. 2 | Individual motion. A–C The network activity as a function of time (i) and
the resulting trajectories for egocentric ii and allocentric iii representation of
space, for increasing values of β from the disordered phase (small β, A) to the
ordered phase (large β, C) are shown. In the disordered phase, the agent exhibits a
random walk, and no difference between an allocentric and an egocentric repre-
sentation of space is observed (A). As β increases, differences become apparent. An

egocentric representationof space results in amoremeanderingmotion (ii), and an
allocentric representation leads to amore directedmotion (iii). For larger values of
β, corresponding to the highly ordered network activity (C), motion patterns with
an egocentric representation of space correspond to circular orbits (ii), and for an
allocentric representation, correspond to a straight line (iii). Parameter values:
v0 = 10, σ = 2π/Ns, h0 = 0, hb = 0, L = 1000, and Ns = 100.
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ahead), requires the agent to constantly turn with respect to its
direction, leading to a circular trajectory with radius R = v0/α (if α =0,
however, the agent will move in a straight path in its heading direc-
tion). By contrast, if the ring-attractor encodes angular information in
an allocentric frame of reference, the position of the neural bump is
independent ofheading, leading to adirected trajectoryalong anangle
α with respect to the agent’s world coordinate system (e.g., an allo-
centric environmental cue).

Response to an external sensory input—a target. Now that we have
an understanding of how the internal dynamics result in motion, we
can investigate how an external sensory input to the ring-attractor
network influences movement. We first consider the simplest case of a
single, attractive, static, spatial ‘target’ (below, we extend this to con-
sider the response to a mobile target). Even if the target itself is static,
we can nonetheless consider this to be an information acquisition
problem in a fluctuating environment because the agent’s movement
has the potential to continuously change the angular direction of
sensory input, and thus the angular representation of the target. Thus,
even the simplest form of target-seeking is an embodied process,
where the motion of the individual may impact the geometric repre-
sentationof the target, which, in turn, impacts the network activity and
thus the resulting individualmotion, and soon. This is compoundedby
the dynamics induced by the motion of the target with respect to the
individual in the mobile target case.

We are interested in two aspects of target-seeking; (1) how quickly
a target is found (i.e., how quickly an individual comes into close
proximity to a target, following which it may employ a ‘stopping
rule’92,93), and (2) how well an individual can maintain close proximity
over time (i.e., how well it can track a target). For both egocentric and
allocentric representations, individuals move towards the targets.
However, the representation employed results in differences between
the types of trajectories exhibited. We begin by presenting movement
patterns for a fixed target.

Finding and staying close to a static target. The network dynamics
and the trajectory resulting from those dynamics for β values ranging
from the disordered phase to the ordered phase, when the agent faces
a fixed target, are presented in Fig. 3. For high noise (small β), below
the critical point, agents’ movement is predominantly random. How-
ever, the external input on the network can induce weak selective
movement towards the target. Consequently, agents tend to move
slowly toward the target, with speed increasing as β increases. In this
regime, we do not observe differences between egocentric (Fig. 3A)
and allocentric (Fig. 3B) representations since each agent’s movement
is predominantly random. See S.3 for details.

As β exceeds the critical point, we begin to observe clear differ-
ences in the trajectories exhibited by egocentric and allocentric
agents, with these differences becoming increasingly visible as we
move towards the relatively high values of β that characterize the
ordered regime. Notably, if employing an egocentric representation,
the neural input corresponding to the detection of the target tends to
stabilize the bump, and individuals employ a meandering, but rela-
tively direct, path toward the target, and stay confined to a small
region when reaching a target (Fig. 3C for moderate and Fig. 3E for
large values of β).

If employing an allocentric representation, by contrast, a bump of
activity represents a specific bearing in the world. The presence of a
target can destabilize this bump. Such a destabilizing effect is not
observed for moderate values of β (compare Fig. 3C and D). For larger
values of β, due to the destabilization of the bump, instead of the
smooth transitions in the network state that we observed in the
absence of an external stimulus, we now find that the network
dynamics show sudden transitions between different bumps. This
results in a rich set of patterns of motion, such as inward spiraling

motion towards the target, corresponding to damped traveling waves
of the bump on the ring-attractor network (Fig. 3F).

In addition to quantifying the trajectories, we can also ask how
individuals may be able to optimize their ability to locate a target. For
the fixed target scenario, the agent faces an easy task. In such a simple
environment, successful information acquisition can be achieved by
simply finding the target and then remaining close to it. We find that
target seeking is optimizedwhen the neural network is near the critical
point (see S.3). While allocentric and egocentric representations of
space perform equally well in such a simple task, if close to criticality,
egocentric agents outperform allocentric ones in the ordered phase
(see the S.3). This is due to the fact that agents with egocentric
representation, once find the target, can stay close to the target by
slowing down and/or settling on an attractor with a small radius. On
the other hand, an allocentric representation of space canmake such a
simple task unnecessarily difficult, as allocentric agents need to con-
stantly transition between their attractors (bump of activity) to main-
tain a bump of activity which accurately encodes the relative position
of the target. This can lead to reduced performance.

While finding and remaining close to a target can be of impor-
tance in many contexts, in others, successful decision-making may
require the agent to only find a target. For example, an animal may
consume the target, or the animal may have a stopping rule that they
employ once they reach the target92,93. Thus, it is important to address
how fast the agent can find a target. To address how allocentric and
egocentric perceptions of space affect decision-making time, in
Fig. 3G, we present the decision time required for the agent to reach a
static target. The results indicate that the decision-making time is
optimized in the ordered phase. Furthermore, the agent’s decision-
making speed is higher (i.e., time taken is lower) with an allocentric
representation of space. In the Supplementary Information we show
that when higher accuracy in finding the target is required, that is,
when successful decision-making requires the agent to reach a closer
proximity of a target, an egocentric representation of space can
become more advantageous for large values of β (S.3).

Tracking a moving target. We move on to the problem of tracking a
moving target.When the target speed is sufficiently small compared to
the agent’s average speed, the situation is similar to a fixed target. This
is illustrated in Fig. 3H, where the average distance of the agent to the
target is plotted. However, the situation changes in a fast-changing
environment, where the agent needs to track a target with an appre-
ciable speed relative to the agent’s average speed. In Fig. 3I, wepresent
the distance of the agent to a moving target with a high speed. While
for a slowly moving target, egocentric agents can outperform allo-
centric ones, with a high target speed, the existence of an allocentric
representation provides a benefit because, when employing an ego-
centric representation, the agent’s movement can lead to dramatic
fictitious changes in the external world, brought about by the shifting
agent’s position (we note that, this is not a problem when seeking a
fixed target, because in such cases, the agent can use a simple strategy
of standing still once finding the target). Accounting for these changes
requires large changes in the network activity to constantly encode a
mobile target’s position. On the other hand, the environmental change
resulting from the agent’s movement is not dramatic from an allo-
centric perspective. Consequently, allocentric agents can easilymodify
their movement trajectory by small shifts in their bumps of activity.

We also find that, while higher values of β decreases time to reach
the target (which can be considered decision-making speed), the
ability of the agent to stay in close proximity to the target (which can
be considered decision-making accuracy) is higher for lower values of
β. This trade-off is effectively solved not at the critical point, but in the
ordered phase. This is due to the fact that following a moving target
requires a more coherent movement of the agent, which can only be
achieved in the ordered phase. Furthermore, the distance of the
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effective decision-making region to criticality increases as the target’s
speed increases.

Individual motion and information acquisition in the neural
field model
While the phenomenology of the neuralfieldmodel is generally similar
to the spin system model, differences are nonetheless observed in
their dynamics. The network in the neural fieldmodel does not exhibit
an order-disorder (critical) transition, which is a characteristic of spin
systems in statistical physics94. Rather, as β increases, the network
transitions from a state where the membrane potential of all the neu-
rons is close to zero to a state where a bump of activity is sustained in

the network (see S.10). Consequently, the agent transitions from an
immobile state to exhibiting directed movement, and a random walk-
like behavior is not observed for any value of β. Both models are,
however, comparable in the regimewhere a single bump ismaintained
(high β). Namely, with an allocentric representation of space, directed
trajectories are observed, and an egocentric representation of space
leads to circular trajectories with varying radii, including a directed
trajectory (i.e., infinite radii). See S.10 for details.

When considering tracking a moving or stationary target, we
observe a generally similar phenomenology to the spin systemmodel.
Namely, the information acquisition capacity of the agent is max-
imized for intermediate values of β, where the agent exhibits more

Fig. 3 | Individual information acquisition. A–FThe network activity as a function
of time (i) and the resulting trajectories (ii) for egocentric and allocentric repre-
sentations for increasing values of β is shown. For too small β, for both egocentric
and allocentric representations of space, the agent only exhibits random and slow
movement. Above the order-disorder transition, the agent moves towards the
target. For smaller values of β, noise drives transitions between states, which
facilitate information acquisition by endowing the agent with flexibility. In the
ordered phase, external stimuli elicit distinct network activities for allocentric and
egocentric representations of space. With an allocentric representation, external
stimuli can lead to the formation of damped traveling waves corresponding to
spiral motion toward the target (with more stability for larger values of β). For too
large β, trajectories intermittently veer away from the target. With an egocentric
representation, external stimuli help stabilize a bumpof activity, allowing agents to
remain stationary once it has found the target.G The agent’s decision-making time

in finding a stationary target, defined as the time needed for the agent to reach
close proximity of the target (5 dimensionless units), is plotted as a function of β.
Decision-making time is minimized in the ordered phase. An allocentric repre-
sentation can improve the decision-making speed in the effective decision-making
region.H, I The time average distance of the agent to the target, normalized by the
arena size L = 1000, d/L, as a function of β for both allocentric and egocentric
representations and fordifferent target speeds, is plotted. For a stationary or slowly
moving target, an egocentric representation is beneficial by allowing the agent to
stay stationary once it finds the target. However, for larger target speeds, an allo-
centric representation improves information acquisition by facilitating the tracking
of a rapidly moving target. In both cases, the information acquisition optimizes in
the ordered phase but is close to the critical point. Parameter values: v0 = 10,
σ = 2π/Ns, L = 1000, h0 = 0.0025, and hb = 0. A–F Ns = 100, and in G–I Ns = 400.
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flexible decision-making. For too small values of β, the agent does not
move or moves too slowly. For too large values of β, the agent lacks
flexibility and performs poorly in finding or tracking a target. An
allocentric agent performs better than an egocentric agent in tracking
a moving target in the neural field model. In finding and staying close
to a fixed target, allocentric and egocentric agents perform equally
well for small β (this contrasts with the spin system model, in which
egocentric agents performbetter than allocentric ones for such values
of β), but allocentric agents outperform an egocentric one for large β
(similarly to the spin system model). See S.10 for details.

In the presence of a target, the neural field model also differs in
several ways from the spin system model. For example, a stationary
agent in the absence of a target can start to move (or a moving agent
can increase its speed) towards the target, when the target is intro-
duced. In addition, the threshold β value above which the agent starts
to move is shifted to lower values in the presence of target(s) in the
neural field model. Furthermore, in the egocentric neural field model
(unlike the spin system model), we observe spiral-like trajectories
during which the agent slowly moves towards, or away from, the tar-
get. See S.10 for details.

Collective motion in the spin system model
Above, we demonstrated that even for simple sensory inputs, having
either an egocentric or allocentric neural representation in the ring-
attractor network can greatly impactmovement. Nowwe consider the
far more complex sensory environment experienced by individuals in
social groups and ask how egocentric and allocentric representations
of bearings towards others impact collective movement. Here, the
individuals themselves become static, or mobile, targets from the
perspective of others. Thus, the neural ring-attractor dynamics of each
individual both influences and is influenced by that of others, as a
recursive (recurrent) feedback loop.

Themodel of collective movement straightforwardly results from
the individual movement model by having a population of N agents,
each of which is a target for others, with an amplitude of the receptive
field, hs

0. Collective movement can thus be studied using a single
parameter, a social attraction parameter, hs

0, which parametrizes the
strength of social attraction (see Methods). As the control parameter
of the model, we consider the total social attraction, hs

t , defined as the
social attraction of an individual towards another individual, hs

0, times
the population size, N. As we will see, multiplying social attraction
acting on an individual due to each other individual, hs

0, by the
population size results in a similar phase diagram for different popu-
lation sizes. This is implementedby taking the control parameter of the
model to be hs

t .
In the main text, we focus on the global order and local order of

the system. Global order (GO) is calculated as the sum of the normal-
ized velocity vectors of all individuals (equivalent to the order para-
meter of the Vicsek model8, and the alignment/polarization of the
systemas employed in collective behavior studies5). Local order (LO) is
the average normalized velocity, not of the whole system, but of each
individual’s local topological neighborhood. This allows us to differ-
entiate, for example, between disordered dynamics at all scales, such
as when there is disorder, and thus low local or global alignment, and
states where there is low global order, but high local order, such as
when populations are composed of multiple small, coherently moving
groups, but each tends to move in a different direction. See Methods
for details and Supplementary Information, S.4–S.6 for the supple-
mentary analysis (e.g., using measures of distance between agents).

Egocentric representation of space. We begin by considering the
emergence of collective motion for individuals that employ an ego-
centric representation. In Fig. 4A, B, we plot the global and local order
parameters in the plane defined by β and hs

t . As the strength of social
attraction among individuals increases, we see that populations

cannot achieve global order (Fig. 4A), and thus, large-scale collective
motion is never observed. However, we find that local order tends to
bemoderate to high (Fig. 4B). Thus, agents’directionof travel is similar
to their close neighbors, but this emergent alignment is highly loca-
lized. At the scale of the population, increasing social attraction results
in the formation of aggregation (but not collective motion), where
agents coalesce in a dense group with lowmean nearest neighbor and
all pair distance (see S.5).

The distribution of GO and LO is presented in Fig. 5A, B. While the
lack of global order is manifest in the insensitivity of GO to variation of
social attraction (Fig. 5A), LO shows bimodality close to the phase
transition (Fig. 5B). This shows that this phase transition is dis-
continuous (see S.5 for details). A high value of local order in the
ordered phase indicates that agents’ heading points in a similar
direction compared to their neighbors. However, this local order does
not induce collectivemotion. Instead, agents form a compact group. A
snapshot of the agents in this phase is presented in Fig. 5C. For smaller
values of β, presented in Fig. 5D, a similar situation is observed, how-
ever, in this case, noise in individual agents’ movement drives a ran-
dom walk-like motion within the cohesive aggregation of agents.

Allocentric representation of space. The situation changes dramati-
cally if agents possess an allocentric representation. Now three distinct
regimes are observed. This can be seen in Fig. 4C, D, where the GO and
LO as a function of β and hs

t are plotted. As social attraction increases,
the system shows a phase transition from a disordered phase to a
phase where both local and global order are high, indicating the
emergence of large-scale collectivemotion out of agents’ inclination to
staywith the group. Further increasing hs

t , yet another phase transition
from the collective motion phase to an aggregation phase where
agents form a relatively immobile aggregation with high LO and low
GO is observed.

For relatively high neural noise (low β), large-scale collective
motion is never observed, as we only see a cross-over from the dis-
ordered phase to the aggregation phasewhere agents form a compact
pack in which local order is observed, but no collective motion
emerges (Fig. 4C). This is because, in our model, collective motion is a
collective information acquisition problem and emerges due to agents
coming to a consensus regarding their direction of travel. Thus,
coherent large-scale collective motion requires agents to be able to
keep a spatially-consistent bump of neural activity over time, which
can only occur if neural dynamics are not too noisy (i.e., are in the
ordered phase, Fig. 2F). We term this allocentric flocking.

Allocentric flocking and population (system) size. By studying the
statistical properties of the different regimes of allocentricflocking,we
find that the motion patterns observed are sensitive to system size.

For very small system sizes, such as N = 10, the order-disorder
transition (the transition fromdisorderedmotion to collectivemotion)
exhibits bistability. This can be seen in Fig. 6A, where the distribution
of global order close to the disorder-order transition shows twopeaks,
one at low and the other at high, GO (representing the disordered and
ordered phase, respectively). This indicates intermittency between
disordered motion and ordered motion. We find that agents show a
wide range of collective motion patterns including swirling, sudden
expansions (similar to flash expansions exhibited by animal
groups95–97), fission-fusion dynamics, as well as coherent, directed
motion. Figure 6E presents a snapshot of motion patterns during
swirling when the group rotates around a common origin, and Fig. 6F
for a swirling, resulting in a coil-shaped trajectory. See the Supple-
mentary Videos 1 and 2. In this regime, global order is low, but local
order is high, and the distance between agents exhibits strong fluc-
tuations over time. This can be seen in the blue line in Fig. 6C, D, where
GO and the mean distance between all pairs for different values of hs

t

are plotted.
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In Fig. 6G, we present a snapshot of the motion patterns for
directed motion in relatively small groups (N = 10, see Supplementary
Video SV.3). In this example, agents form a coherent, mobile group (as
exemplified in Fig. 6C, D, red line). This trajectory also shows an
example of intermittency between such directed motion and the for-
mation of a stationary aggregation (where global order transiently
decreases (orange line in Fig. 6C, D), resulting in a (probabilistically
likely) reorientation once the group transitions back to coherent
motion. This aspect of collective behavior is reflected in the bimodal
distribution of local and global order parameters, as shown in Fig. 6B
(see the S.4 for details).

As population size increases, however, the situation changes.
While transitions in collective state appear discontinuously in small
system sizes, they become more continuous for larger system sizes.
This is shown in Fig. 7A, B for the disordered-collective motion, and
collective motion to aggregation phase transitions, respectively (Here
N = 320. See S.5 for other system sizes). In larger populations, inter-
mittency between different motion patterns is more frequent (Fig. 7C,
D). Furthermore, due to the prominent fission-fusion dynamics, the
population is more likely to be decomposed into different groups
exhibiting different collective motion patterns, such as collective
motion, swirling, explosive movement, or sudden direction changes.
This results in global order being a less effective means of character-
izing the collective behaviors exhibited by agents. Examples of some
motion patterns, including collective motion and fission-fusion

dynamics, are presented in Fig. 7E, F. See the Supplementary
Videos 4, 5, 6 and 7. Notably, to reach different motion patterns, it is
not necessary to tune the parameters of the model; Rather, diverse
motion patterns occur for the same parameter values and are exhib-
ited by the same population of individuals over time.

By increasing the social attraction, the system shows a continuous
phase transition to an aggregation phasewhere the population forms a
dense group of agents lacking directed motion. However, near the
transition, frequent explosive and implosive movements of the
population are observed (this results in a decline in local order in the
phase transition region, as observed in Fig. 4D). A snapshot of the
motion pattern in this phase is plotted in Fig. 7G. See the Supple-
mentary Video 8.

Cognitive representation during collective movement. In our
model, collective motion results from simple feedback between the
ring-attractor networks employed for spatial navigation by animals.
Key to the patterns observed in the collective context, such as sudden
and coordinated changes in direction of mobile groups, is the syn-
chronization of the neural dynamics of the agents. In Fig. 8, we present
a snapshot of collective motion in a population of 80 agents. The
population can be decomposed into subgroups of coherently moving
agents whose neural dynamics exhibit synchronization. Evaluating the
spatio-temporal dynamics of the neural representation in the brain of
each agent, we see there exist emergent leader-follower dynamics, as

Fig. 4 | Collective behavior of agents with egocentric and allocentric repre-
sentation of space. A, B Global order (GO in A), defined as the angular order
parameter (AOP), and Local Order (LO in B), defined as the topological vectorial
order parameter (VOP), in groupsof 80agentswith an egocentric representationof
space are color plotted as a function of the network inverse temperature, β, and
total social attraction, hs

t . For a too small social attraction, the agents move inde-
pendently. As the social attraction increases, local order increases but not global
order, indicating the onset of an aggregation phase where agents aggregate in a
stationary dense group. C, D The global (C) and local (D) order in groups of 80

agents with allocentric representation of space as a function of the network inverse
temperature, β, and total social attraction, hs

t , are color plotted. The system shows
three distinct phases: disordered motion for small hs

t , collective motion with high
local and global order, and aggregation phase with low global but high local order.
Local order is minimized close to the phase transition between collective motion
and aggregation due to the strong fission-fusion dynamics leading to explosive
movement of the densely packed group. Parameter values: Ns = 100, v0 = 10,
σ = 2π/Ns, hb = 0, N = 80, and L = 1000.
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evident by directionchanges of an individual (change in thepositionof
the neural activity bump on their ring-attractor network) being fol-
lowed by similar changes in others (Fig. 8B–C) or fission-fusion
dynamics, whereby an individual (or subgroups) desynchronize
(resulting in fission) or synchronize (resulting in fusion) with others
(Fig. 8D, E). See S.7 for more details.

Collective motion in the neural field model
Because the spin system model and the neural field model have dif-
ferent formulations, including in the implementation of neural
dynamics, and coupling of the neural dynamics and spatial decisions, a
direct comparison of the two models is not straightforward. For
instance, while we use the same label for β as an inverse noise para-
meter, the implementation of noise in the two models is different.
Nevertheless, in the context of collective behavior, we observe key
similarities, but also some differences. In Fig. 9 we present global and
local order in a population of 80 agents, whose decision-making is
governed by the neural field model. Collective motion is not observed
with an egocentric representation of space. In this case, as the social
attraction increases, the collective forms an aggregation. In contrast to
the spin system model, however, in the aggregation phase, high local
order is not observed, indicating that the group remains in a dis-
ordered state in this case (see S.11 for details). With an allocentric
representation of bearings, on the other hand, as social attraction
increases, a phase transition to collective motion with relatively high
global and local order is observed (see S.11). Further increasing social
attraction leads to a second phase transition where the population
collapses into a nearly stationary aggregation, with a relatively high
local order but a low global order (see S.11).

Differences between the two models are also observed in the
collective movement patterns. While some of the motion patterns
exhibited by the neural field model are similar to those exhibited by
the spin system model (see SV.9 for N = 80 and SV.13 for N = 320),
additional patterns that are not, or only weakly, observed in the spin
systemmodel emerge in the neural fieldmodel. An example ofmotion

patterns, where the collective, exhibit milling (SV.11), or transitions
between the milling and directed motion can be observed in SV.10. In
addition, close to the aggregation phase, the neural field model can
also exhibit patterns of subgroups of aggregated, yet collectively
moving individuals in relatively large groups (SV. 12 for N = 80 and
SV.14 for N = 320).

Switch between allocentric and egocentric representations
of space
So far, we have considered an allocentric and an egocentric repre-
sentation of space as separate cases.While such a scenario allows us to
study what phenomena are associated with each mode of perception
and decision-making, animals can maintain41,45,46,48,49,98, or switch99,100

between, allocentric and egocentric representations of bearings
towards objects in space. To address how such a coexistence or
switching between the two representations affects individuals and
collective behavior, here we consider a simple scenario where agents
can switch between an allocentric and an egocentric representation at
random, such that, in each timestep, with probability ω, the agent
employs an egocentric representation and with probability 1−ω it
employs an allocentric representation of space.We assume that agents
have the capacity to continuouslymap their allocentric and egocentric
reference frames. This capacity is implemented in ourmodel by taking
the goal direction of the agent as the zero of the agent’s reference
frame, following a switch from egocentric to allocentric (or from
allocentric to egocentric) representations. This re-anchoring ensures
that switching between reference frames does not lead to the animal
getting lost following a switch. The fact that allocentric and egocentric
neural processing coexists in animals, suggests that animals have such
a capacity, for instance, via information processing in different levels
(brain regions)45,47, path integration48,50,52, or flexible use of allocentric
and egocentric spatial memories46. See Methods for details.

In Fig. 10, we plot the global and local order in the hs
t � ω plane.

When switching between allocentric and egocentric representations of
space is slow, the agent effectively uses either allocentric (small ω) or

Fig. 5 | Phase transitions in collectives with an egocentric representation
of space. A,B The distributions of global order (GO) and local order (LO) in groups
of various sizes of agents with egocentric representation of space for different
values of total social attraction,hs

t , are plotted. By increasingh
s
t , the system shows a

phase transition from a disordered phase, where individuals move independently,
to an aggregation phase, where individuals form aggregates, and no collective
motion is observed. While GO takes a small value and does not show sensitivity to
social attraction (indicating no collectivemotionexists), LO showsbimodality close
to the order-disorder transition, indicating a discontinuous transition from the

disordered phase with low LO to the aggregation phase with high LO.
C,D Snapshots of the collective behavior in the ordered phase are shown. For large
β (low network noise), in the ordered phase, agents form an almost stationary
circular pack of densely aggregated agents. For smaller β, the pack’s radius
increases, and agents perform a random walk-like movement within the pack.
C shows a snapshot of a dense pack for large β and D shows trajectories of the
individuals within a pack for smaller values of β. Local order is high in both cases.
Parameter values: Ns = 100, v0 = 10, σ = 2π/Ns, hb = 0, β = 400, N = 80, and L = 1000.
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egocentric (largeω) navigational strategies at each time. In these cases,
we do not observe differences inmotion patterns with cases where the
agent employs purely allocentric or purely egocentric representations
of space. That is, for small ω, collective motion with high global and
local order, similar to those observed for a purely allocentric naviga-
tional strategy, is observed, and for large ω, collective motion is not
observed.

On the other hand, when such switches are fast compared to the
spatio-temporal scales of the agent’s movement, such that the vec-
torial representation of bearings towards conspecifics does not
undergo dramatic changes between switches, the random switch can

effectively lead to the coexistence of the two reference frames, such
that the agent’s movement is the result of (temporal) integration of
both allocentric and egocentric representations. In this region, we
observe differences in motion patterns, manifested in two maximal
regions for global order in Fig. 10, which occur close to the order-
disorder (small hs

t ) and collective motion-aggregation (large hs
t ) phase

transitions.
To gain insight into why this happens, in Fig. 10, we present the

snapshots of motion patterns when the agent does not switch and
employs a purely allocentric representation of space (ω = 0) and when
it switches at a rate which maximizes global order (compare SV.9 for

Fig. 6 | Collective behavior in small groups of agents with an allocentric
representation of space. A, B The distribution of GO and LO in groups of various
sizes of agents with allocentric representation of space close to the order-disorder
transition (A) and close to the collective motion-aggregation phase transition (B).
In both cases, the distribution shows bimodality, signaling a discontinuous pseudo-
phase transition in small system sizes. C,DGO andmean distance between all pairs
normalized by space size, L, as a function of time for different values of total social
attraction are plotted. For small social attraction, the system shows intermittency

betweenhigh and loworder, and for larger social attraction, intermittencybetween
ordered motion and aggregation is observed. E–G Example snapshots of motion
patterns from the Supplementary Videos for some values of hs

t shown in (A, B). In
the collective motion phase, the system shows a rich set of motion patterns,
including swirling in circular orbits (E), or in coil-shaped orbits (F), fission-fusion
dynamics, and intermittency between highly ordered motion and aggregation (G).
Parameter values: Ns = 100, v0 = 10, σ = 2π/Ns, hb = 0, β = 400, N = 10, and L = 1000.
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purely allocentric and SV.16 for the switching rate which maximizes
global order with otherwise the same parameter values). These snap-
shots correspond to the maximal region at small hs

t , near the order-
disorder phase transition. As can be seen in SV.9 (see S.11 for the time
series of collective motion metrics), employing an allocentric repre-
sentation of space can decrease the stability of the flock, especially
when individuals are too close to each other. While endowing the
group with some of its esthetic characteristics observed in biological
systems (such as sudden, coordinated direction changes, leading to
relatively highfluctuations in collectivemotionmetrics as a function of
time, see S.11), this can be detrimental to global order. On the other
hand, a random, fast switch between allocentric and egocentric per-
ceptions of space simplifies the task of staying close, and moving
together, and leads to highly ordered motion (see S.12). This is con-
sistent with our previous finding that an egocentric representation of
space simplifies the task of staying close to a stationary target (as in a
coherently moving flock vectorial representation of conspecifics is
subject to only relatively small or no temporal changes).

Switching between an allocentric and egocentric representation
of bearings, at a ratemaximizing global order, endows a similar benefit
close to the collective motion-aggregation phase transition (the max-
imal GO region for large hs

t in Fig. 10), by stabilizingmoving subgroups
of aggregated individuals (see SV.16).We note that in both cases (both
maximal GO regions in Fig. 10), similar patterns of highly ordered
collectivemotion are also observed in a purely allocentric flock (as can
be seen in SV.9 and SV.12). However, while such a simplified form of
collective motion is often intermittently observed and can become
unstable in purely allocentric flocks, it becomes highly stable, when
collectives combine allocentric and egocentric navigational cues,
leading to more stable bumps of activity in their ring-attractor
network.

Parameter dependence
In the Supplementary Information, using both spin system and neural
field models, we confirm that the phenomenology of the model holds
for other parameter values, such as the complexity of the agents (the

Fig. 7 | Collective behavior in large groups of agents with allocentric repre-
sentation of space. A, B The distribution of GO (AOP) and LO (normalized topo-
logical VOP) in groups of various sizes of agents with an allocentric representation
of space close to the order-disorder transition (A) and close to the collective
motion-aggregation phase transition (B). Both phase transitions tend to a con-
tinuous phase transition, indicatedby large fluctuations and a broaddistribution of
the order parameter, as group size increases. C, D Global order (GO) and mean
distance between all pairs normalized by space size, L, as a function of time for
different values of total social attraction are plotted. The system shows

intermittency between high and low orders resulting from transitions between
different motion patterns and strong fission-fusion dynamics. E–G Example snap-
shots of motion patterns from the Supplementary Videos for some values of hs

t

shown inA,B. In the collectivemotion phase, the system shows a rich set ofmotion
patterns, including flocking (E), sudden direction change and fission-fusion
dynamics (F), and intermittency between highly ordered motion and aggregation
leading toexplosivemovementwith low local order (G). Parameter values:Ns = 100,
v0 = 10, hb = 0, σ = 2π/Ns, β = 400, N = 320, and L = 1000.
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number of neurons), speed constant, v0, and thewidth of the receptive
field of the agents (S.6 and S.11). For instance, when considering the
effect of density, by increasing the size of the arena or decreasing the
number of agents, we observe that in contrast to classical models
based only on local alignment8, density does not affect the phase
transitions. Rather, similar phase transitions are observed at both low
and high population densities, indicating a lack of density-dependent
phase transitions. In contrast to classical self-propelled-particle mod-
els, which include only local alignment and therefore predict a density-
dependent order-disorder phase transition, our model reproduces
recent empirical evidence showing that no such transition occurs in
locust swarms40.

Besides, we show that our findings are robust when short-range
repulsion is introduced to the model (S.8), or when social attraction
decays with distance (S.9). Moreover, we consider a modification of
the neural field model where agents move with constant speed. Their
direction of motion, however, is determined by their neural network.
We show that this modified model gives rise to similar phenomenol-
ogy. In addition, we show that when recurrent connections are
removed (by taking the synaptic connectivities between all neurons to
be zero, Jij =0), agents show a rather trivial form of motion by collap-
sing into a relatively stationary aggregate (S.14). An example of such
dynamics is provided in SV.17.

Discussion
At the level of individual navigation, our models suggest that an ego-
centric representation of space may provide advantages in navigating
in relatively stationary environments and towards nearby objects.
These findings are consistent with empirical observations that some
organisms tend to represent nearby objectsmore in an egocentric, and
those far away more in an allocentric way100. On the other hand, our
models predict that allocentric representations facilitate the pursuit of
moving targets. This seems to be consistent with empirical findings in
both insects41 and mammals44.

Our main finding, however, is that a rich suite of collective beha-
viors, including the formation of coherent, mobile groups, emerges
naturally from the types of neural circuits—ring-attractor neural net-
works—employed by animals during spatial navigation. By contrast to
classical models of collective motion that use hypothetical rule-based
interactions, such as repulsion, alignment, and attraction, our model-
ling framework is grounded in cognitive principles of spatial infor-
mation processing in the (invertebrate and vertebrate) brain. We show
that collective motion can emerge directly from navigational circuits,
without requiring explicit alignment, or additional rules of interaction
—if individuals employ an allocentric (but not an egocentric) repre-
sentation of space. While not previously considered in the study of
collective behavior, this spatial representation is known to be

Fig. 8 | Cognitive representation of collective motion. A A snapshot of the col-
lective motion in a population of 80 agents is shown. The population can be
decomposed into subgroups of synchronized agents. B and C The motion pattern
(B) and the neural activity (C) of a subgroups of three coherently moving agents
among the 80 agents presented in (A) are shown. The coordinated movement of
the agents results from the synchronization of their neural dynamics. D, E An
example of fission-fusion and leader-follower dynamics is shown. In the beginning,

agents 4–6 are synchronized and move together, and agents 7 and 8 move toge-
ther. When these two groups come into close proximity, at around timestep 1000,
agent 6 changes its mind and joins agents 6 and 7. Consequently, its neural activity
becomes synchronized with agents 7 and 8. Around time 1050, a sudden direction
changebyagent 6drives a suddendirection change inagent 8, followedby a similar
behavior of agent 7. Parameter values: Ns = 100, v0 = 10, σ = 2π/Ns, hb = 0, β = 400,
N = 80, and L = 1000.
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ubiquitous, employedby fruitflies41, andhumans47, alike. Following the
historical use of the term flocking to broadly describe the collective
dynamics of diverse systems—whether physical particles, animals, or
robots5—we term this mechanism allocentric flocking.

While alignment is observed in many species—such as
starlings101,102 and shoaling fish38,39,103—our work suggests it may be an
emergent by-product of allocentric (or coexistence of allocentric and
egocentric) representation of space by animals– a view supported by
studies that failed to find empirical evidence for explicit alignment
among fish38,39 or swarm-forming locusts40. Our work shows that local
alignment can arise as a form of consensus dynamic (not dissimilar,
conceptually, to models of collective information acquisition104) for
agents who have an allocentric representation of bearings (their own
heading direction, and the bearings towards others, arewithin aworld-
centred frame). We show that, by contrast, if individuals exhibit an
egocentric representation (whereby bearings are body-centred, but
directional bearings are only encoded with reference to the present
heading), social attraction can only result in the formation of relatively
immobile aggregations. Here, the additive nature of attraction is ana-
logous to gravitational collapse105.

Allocentric flocking results from interactions among cognitive
agents with an allocentric representation of space, where individuals
themselves act as sensory inputs to each other’s ring-attractor net-
works. While at an individual level, we find that an allocentric repre-
sentation of space can be beneficial for effective target-seeking in a

rapidly changing environment, it is shown to be essential to achieve
coherent collective motion. We also considered the fact that animals
can employ both egocentric and allocentric representations of space,
with the ability to integrate and/or transition between them (e.g. rapid
resets to landmarks46,48,50, temporal switching99,100, or coexistence of
both via parallel information processing in different brain regions45,47).
Using a minimal random switching scheme, we find that rapid, inter-
mittent flips between frames (with their attendant re-anchorings) can
enhance global alignment beyond the pure-allocentric case. Whether,
and if so, how animals schedule their frame switches, as well as
implementing more sophisticated context-dependent switching and/
or integration of such representations, is a promising avenue for
future work.

Despite the differences in their mathematical formulations, both
the spin system and neural field models arrive at the same core pre-
diction: an allocentric encoding of bearings is essential for the emer-
gence of coordinated motion. However, they also exhibit differences
that suggest avenues for empirical testing. For instance, the spin sys-
tem model predicts random walk-like motion for high neural noise
(low β), a pattern not observed in the neural field model. Conversely,
the neural field model predicts speed changes in the presence of tar-
gets when β is small, with higher speeds occurring in response tomore
attractive stimuli. Furthermore, in the presence of a target, the ego-
centric neural fieldmodel can exhibit trajectory patterns distinct from
those of the spin system model, such as spiral-like paths or slow

Fig. 9 | Collective behavior in the neuralfieldmodel. A,BGlobal order (GO inA),
defined as the angular order parameter (AOP), and Local Order (LO inB), defined as
the topological vectorial order parameter (VOP), in groups of 80 agents with an
egocentric representation of space are color plotted as a function of the network
inverse temperature, β, and total social attraction, hs

t . Both local and global order
remain small, indicating collective movement is not observed with an egocentric

representation of space. C,D The same quantities for an allocentric representation
of space are plotted. Similarly to the spin system model, the system shows dis-
orderedmotion for smallhs

t , collectivemotionwith high local and global order, and
aggregation phase with low global but high local order. Parameter values: Ns = 100,
ν =0.5, v0 =0.05, σ =0.4, hb = 0, N = 80, Δt =0.3, and L = 1000.
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movement away from an attractive stimulus when in very close
proximity. Considering population-level properties, while the spin
systemmodel predicts there can be local, but not global, alignment of
headings with an egocentric representation, no local order emerges in
the neural field model. In addition, while similarities in collective pat-
terns exist, our results suggest thatmilling behavior canbeobserved in
some parameter ranges in the neural field model. We have not
observed this pattern in the spin system model.

Here, we have shown that collective motion, along with a diverse
set of patterns observed in animal groups, can arise directly from
animals’ navigational circuits. While this provides a mechanistic
explanation, it is important to note that collective motion106,107 and its
distinct patterns106—such as fission-fusion dynamics108,109, swirling/
milling110, and flash expansion95–97—may offer functional advantages
and, therefore, be favored and shaped by evolution under different
ecological contexts. In this regard, our model suggests that, although
these patterns may also serve functional and evolutionary purposes,
they can equally have proximate causes (rather than, or in addition to,
evolutionary ones). Incorporating evolutionary perspectives into our
framework—for example, by allowing our cognitive agents to evolve
under different ecological scenarios—could help address howdifferent
motion patterns evolve, potentially by driving the system into specific
parameter regimes and shaping the agents’ sensory-motor integration
in different ecological contexts. Such functional considerations could
clarify how evolution shapes animal navigational circuits and their
perception of the environment to better meet ecological and envir-
onmental demands. Ultimately, this approach may help explain—both
mechanistically and functionally—why and how collective motion and
its diversity emerge in a wide range of biological populations.

In conclusion, allocentric flocking provides a contrasting, but
empirically grounded, explanation as to how collective behavior may
arise in many animal species. It demonstrates how easily collective
behavior can emerge from known neurobiological principles and thus
may readily evolve from an asocial ancestral state. This parsimonious
framework can also be readily modified to be adapted to specific
systems to incorporate further features, such as individual and col-
lective learning, or to address different ecological questions, such as
collective sensing, navigation, and decision-making. Besides, while our
work is inspired by biological neural networks, it can potentially inte-
grate biological and artificial neural networks and motivate new areas
of research in artificial neural networks, such as swarm robotics. By
introducing allocentric flocking as a general mechanism for the
emergence of collective behavior, we hope to encourage further
research into the feedback loop between neural dynamics and orga-
nismal collective behaviors.

Methods
The modeling framework
We employ two formulations of neural dynamics to provide parsimo-
nious generative models of animal movement and perceptual
decision-making. In both formulations, we provide simple models
where a neural network is equipped with sensory input and provides
motor output. We use spin system formulation of neural dynamics
based on spin variables originally proposed by Hopfield83, and Amari’s
neural field model86, which formulates neural dynamics based on
membrane potential, to formulate our models. In the Supplementary
Information S.17, we generalize our neural field model by providing a
conceptual framework based on a general m-layer network.

Fig. 10 | Switching between allocentric and egocentric reference frames.Global
order (A) and local order (B) in the neural fieldmodel, where individuals randomly
switch between allocentric and egocentric representations of space, are color
plotted as a function of hs

t and the probability of being in the egocentric state, ω. A
certain rate of random switch between allocentric and egocentric representations
can increase global and local order by stabilizing highly ordered collective motion

at the expense of reduced complexity of themotion patterns. C,D show snapshots
of collective motion close to the maximal order region when individuals possess a
purely allocentric representation of space (C) and when they switch at a rate close
to the rate leading to maximal order (D). Parameter values: Ns = 100, ν =0.5,
v0 =0.05, σ =0.4, hb = 0, N = 80, Δt =0.3, β = 1000, and L = 1000.
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The Spin System Model. We consider cognitive agents capable of
sensing and decision-making. The agent’s decisions are governed by a
ring-attractor neural network with Ns neural groups (to which we
sometimes refer as neurons or spins) and endowed with a ring struc-
ture. In the spin system model, neural groups are modeled as spin
variables, following Hopfield formation of neural dynamics83, and can
take two states, active, + 1, and inactive, −1. The activity of each neural
group, i, is determined by an input from other neurons, ∑j Jijσj, and an
external field, hi, indicating the sensory input on the ring.

We parametrize neural groups by a discrete variable, αi =
2πði�1Þ

Ns
,

indicating their position on the ring. Without loss of generality, the
angle αi is measured with respect to the zero of the agent’s reference
frame, O, e.g., the agent’s head. The external field on each neural
group, hi, is determined based on the sensory input the neural group
receives. Eachneural group, i, has a receptivefield centered around the
angle α̂i. A neural group responds to external stimuli based on the
angular deviation of the stimuli from its receptive field center. We will
work with a Gaussian response function given by the following equa-
tion:

hi =
h0ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � jα̂i � θtargetj2
2σ2

" #
ð1Þ

The key question, where the agent’s representation of space plays
a role, is how to specify the angles, α̂i. With an egocentric repre-
sentation of space, the angles α̂i encode for a polar direction in the
body-centered coordinate of the animal. Thus, we can take, α̂i =αi.
This is implemented by indexing neuron with respect to an arbitrary
position of the animal, e.g., head, such that neuron i = 1 with angle
α1 = 0 represents the heading direction of the animal (assuming the
animal’s head is aligned with the direction that it is heading to), and
neuron i receives input from an angle centered on αi =

2πði�1Þ
Ns

with
respect to the animal’s heading. We can think of the animal as always
turning towards the direction that it is moving to (heading direction),
such that the animal instantaneously updates its head to coincide with
its heading direction (see Fig. 1C). We note that this assumption ori-
ginates from the parsimony of our model and its focus on addressing
how animals establish a goal direction (rather than, e.g., focusing on
how animals maintain an allocentric head direction with respect to
landmarks87), making the reasonable assumption that they can steer
towards their goal41,44,53,77. Furthermore, biologically, this intuition is
supported by empirical data based on which head and heading
direction coincide (in animals with rigid bodies such as fish56) or are
strongly correlated41,54,55,55,68,69).

In the allocentric version of our model, instead, the direction for
which neurons code is independent of the agent’s heading direction
(where it is moving to) or bodily coordinate (how it is posed or which
direction it is facing). Rather, the neurons code for a direction in a
world-centric polar coordinate. Thus, the centre of the receptive field
of neuron i is an angle αi =

i�1
Ns

2π with respect to an absolute reference
frame independent of animal’s orientation, e.g., a world-centric east
(positive x-axis). This can be achieved, for instance, by anchoring to
one or more external cues, such that, as the agent moves in space, the
ring-attractor network does not rotate with the agents’ body axis (see
Fig. 1C). Clearly, this does notmean that all the agents necessarily share
common allocentric reference frames; how the agents define the zero
of their coordinate (and thus how they define, e.g., north) is amatter of
indexing the neurons and is inconsequential for their neural dynamics
and its resulting movement pattern. Thus, anchoring to different
external cues (or not having a consensus on which direction is north)
does not affect the collective movement of the agents.

To further clarify how an allocentric representation of space can
be achieved, we can write, α̂allo = α̂ego +Hallo, where Hallo is the agent’s
heading direction in an external (allocentric) reference frame (an
external polar reference frame not to be confused with the agent’s

allocentric reference frame). It is known that animals can maintain
such an allocentric representation of their heading or head direction
using ring-attractor networks (for instance, via path integration com-
bined with the utilization of environmental cues), which they utilize to
maintain an allocentric representation of space48,55–58,70. To do so, in
our allocentric model, we have assumed the agent has such a capacity
and encodes polar directions in an allocentric way.

We take the synaptic connectivity of the network, Jij, to be a
modified cosine function, as follows:

Jij = cos π jαi � αj j=π
� �ν� �

ð2Þ

Here, αi and αj refer to the position of neural groups on the ring. Eq. (2)
implies that neurons in the network have periodic connectivity and
endow the network with a ring structure. With ν = 1, positive and
negative synapses are found in roughly equal numbers, and for ν < 1,
the network connectivity is locally more excitatory and globally more
inhibitory, which requires more inhibitory synapses to exist in the
system.

We assume the network dynamic is governed by a Hamiltonian, as
follows:

H = � 1
Ns

X
i, j

Jijσiσj +
X
i

ðhiσi � hbσiÞ
" #

: ð3Þ

Here, hb is a constant term that promotes inhibition of the network
activity. Assuming neurons favor a state with the lowest energy, this
Hamiltonian implies that each neural group tends to assume a state
favored by its input. We use the Glauber dynamics to simulate the net-
work’s dynamics94. At each step, a neuron is chosen at random, and the
energy difference resulting from updating the neuron’s state is calcu-
lated. The neuron’s state is flippedwith certainty if the energy difference
becomes negative, and it is flipped with probability expð�βΔHÞ if the
energy difference is positive. We repeat the Glauber dynamics for T0Ns

steps for the network to equilibrate. After this, we update the agents’
position according to the equilibrium activities of the neurons. In this
stage, the agentmoves with a speed vector v determined by the activity
of its neural network according to the following equation:

v= v0=Ns

X
i2 active spins

α̂i: ð4Þ

Where α̂i is the egocentric or allocentric goal vector pointing toward
direction αi (and is the same as the center of the receptive field of the
neural group).

The extension of the model of individual movement and infor-
mation acquisition to a model of collective movement is rather
straightforward and only requires a change of perspective: it is enough
to allow several such agents to perceive each other as possible targets
and interact. We consider three variants of such a model of collective
motion, based on the regulation of social interaction.

In the baseline model, we consider the simplest case, where each
agent is a target to other agents, with amagnitude of external field, hs

0.
We usually report total social attraction, defined as hs

t =Nh
s
0. We also

consider two variants of this baseline model. In the model with short-
range repulsion, the amplitude of the receptive field is a step function
of the distanceof the focal agent to the target. Below a collision radius,
the amplitude of the external field is taken to be a negative value,
ensuring conspecifics act as a repelling stimulus, rather than an
attracting one. We note that this is consistent with the recent finding
that flies maintain a neural representation of their anti-goal (goal
direction +180°)41. Taking the magnitude of social repulsion large
enoughensures agents avoid a collision. Above the collision radius, the
external field is taken to be positive, ensuring conspecifics are
attracting stimuli.
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In the second variant of the model, we study the distance
dependence of social attraction. In this variant, the amplitude of the
receptive field is taken to decay with the distance between the focal
agent and its target, d, according to an exponential, hs

0 expð�d=ζLÞ,
where L is the linear size of the space. With this choice, for d < ζL, the
exponential term is approximately a constant and equal to 1. ζL is thus
the characteristic length of social attraction, above which the strength
of social attraction decays exponentially fast.

The neural field model. Our neural field model is based on Amari’s
classical formulation86. We consider a neural network with a ring
structure in which neurons are arranged on a ring with a modified
cosine-shaped synaptic connectivity, given by Eq. (2). The dynamics of
the network are governed by the following adaptation of Amari’s
neural field dynamics to a discretized one-dimensional network:

duiðtÞ
dt

= � uiðtÞ +
1
Ns

XNs

j = 1

Jij F ujðtÞ
� �

� hb + hiðtÞ, ð5Þ

Here, ui(t) denotes the membrane potential of neuron i at time t. hb is
the global inhibitionon the network, andhi(t) is the external current on
neuron i, originating from sensory input. We have taken the output
functionofneurons tobe ahyperbolic tangent functionparameterized
by a slope parameter β, FðujðtÞÞ= tanhðβujðtÞÞ. β can be thought of as
an inverse noise parameter: For large β, the output becomes steeper
and more sensitive to input, while for small β, it represents noisier
dynamics where small differences in the input do not build up large
output differences.

We note that the intensity of connections between neuron i and j
(synaptic connectivity) can in general depend on time lag, Jijðt � t0Þ.
Such a time-dependence can allow us to take pulse conduction or
synaptic delay into account86. While incorporating such a memory-
based representation of neural dynamics may provide additional
insights, herewedonot investigate the consequences of synaptic delay.

The sensory input on neuron i originates from a Gaussian,

hi =h0 exp½�
jα̂i�θtarget j2

2σ2 �. We consider both egocentric and allocentric
representations of space as explained before. With an allocentric
representation, the direction vector, α̂i, refers to an allocentric direc-
tion in a reference frame independent of the agent’s heading direction
or orientation. On the other hand, with an egocentric reference frame,
the reference frame rotates with the individual’s heading direction.

Finally, each neuron encodes for movement along the same direc-
tion that it receives sensory input from, such that the agent’s speed (goal
vector) is determined based on positive neuron activities, according to:

v=
v0
Ns

X
i

max 0, tanhðβuiÞ
� �

α̂i: ð6Þ

Thus, both the direction of the movement and the magnitude of
the agent’s speed are shaped by the collective activity of the neurons.

The extension of the model to a model of collective motion is
straightforward and is done as before, by making each agent a target
for each others’ ring-attractor network.

Switching between reference frames. In the extension of our
model to consider switching between reference frames, we assume the
agent can continuously switchbetween the two reference frames, such
that it does not temporarily lose its sense of orientation when
switching. We term this switching scenario continuous switching
between reference frames. Explicitly, we assume that when the agent
switches from the allocentric to the egocentric reference frame, its
current heading becomes the zero of its egocentric reference frame:

Switch fromallo to ego at time t : Oego, ðaÞðtÞ=HðaÞðt � 1Þ ð7Þ

Here, H(a) refers to the agent a’s heading direction in an external,
allocentric reference frame (which, in terms of its origin (zero), can be
different from the agent’s allocentric reference frame), and O(a) refers
to the zeroof the agent’s reference frame. This is a realistic assumption
following naturally from the very definition of an egocentric frame,
according to which, the frame can only depend on the agent’s body
axis. Similarly, when the agent switches from an egocentric to an
allocentric reference frame, its current heading is defined to be the
(new) origin (zero) of its allocentric reference frame:

Switch fromego to allo at time t : Oallo, ðaÞðtÞ=HðaÞðt � 1Þ ð8Þ

This assumption ensures that the same bump of activity along the ring
does not lead to a motion along different directions before and after a
switch. Intuitively, this means that the agent does not lose its sense of
orientation while switching and can effectively relate egocentric and
allocentric perceptions of space, without getting lost. Biologically,
such an ability to change the allocentric reference frame, which we
refer to as re-anchoring, can result from maintaining a sense of
orientation via exploiting external cues48, path integration48,50, or
memory-based cues46.

A minimally modified model based on only direction coding. In
the Supplementary Information (S.13), we also present results for a
model in which the agent always moves with a constant speed, but its
goal direction, and thus, heading direction, is determined by the ring-
attractor network, and show that thismodel gives rise to similar results
regarding the emergence of collective motion.

In this modified model, at each time step t, the agent’s heading
H(t) is computed from the positive neuron activities. Defining:

CxðtÞ =
XNs

i = 1

max 0, tanh β uiðtÞ
� �� �

cos αi

� �
, ð9Þ

CyðtÞ =
XNs

i = 1

max 0, tanh βuiðtÞ
� �� �

sin αi

� �
, ð10Þ

the agent, a’s heading is:

HaðtÞ = atan2 Cy, Cx

� �
, ð11Þ

wrapped to [0, 2π). Here, as before, in the allocentric case, αi is defined
in a world-centric reference frame (so the ring-attractor network, being
anchored to external cues, does not rotate as the agentmoves in space).
In the egocentric case, αi is defined with respect to the agent’s current
heading so that the network rotates with the agent’s heading direction.

Statistics and reproducibility
Simulations. The base parameter values used for the individual
motion patterns are as follows: Ns = 100, v0 = 10, σ = 2π/Ns (unless
otherwise specified). All the simulations are performed in a space with
periodic boundaries. Unless otherwise stated, the linear size of the
space is equal to L = 1000. For collective movement, agents see each
other, such that each agent is a target to every other agent’s ring-
attractor network with an amplitude of external field equal to hs

0. We
report the total external field defined as hs

t =h
s
0N, where N is the

population size. In Fig. 3G, H, and I Ns = 400 and other parameter
values remain the same. The averages and error bars in Fig. 3H and I are
calculated based on the stationary state of a sample of 5 runs for
10,000 timesteps. The target’s speed along the x- and y- axis obeys a
random walk with speed vt, shown on the panels. In Fig. 3G, we have
used 80 simulations, and the simulations stop when the agent reaches
a close proximity of the target (5 units). Here, the target is stationary.
The use of a larger sample is due to the fact that in such a speed
decision-making task, it is not possible to rely on long-time stationary
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trajectories to provide stronger statistics. The amplitude of the
external field in all the cases is equal to h0 = 0.0025. Error bars repre-
sent the standard deviation over the sample. Large error bars for large
values of β in Fig. 3G are because the agent’s decision-making accuracy
decreases for too large values of β, while its speed increases. Thus,
while in some trials the agent reaches the target rapidly by moving
directly toward the target, in other trials it starts by moving in the
wrong direction.

In Fig. 4, a sampleof three simulations run for 10,000 timesteps in
a population of N = 80 agents moving in a space with periodic
boundaries and linear size L = 1000 is used. In Fig. 5, simulations are
performed for 15,000 timesteps. A sample of 10 simulations is used to
calculate the distribution. The distributions are calculated based on
the last 10,000 timesteps of the simulations to ensure stationarity.
Here, N = 80 and L = 1000.

In Figs. 6 and 7, simulations are performed for 15,000 timesteps. A
sample of 5 simulations is used to calculate the distribution. The dis-
tributions are calculated based on the last 13,500 timesteps of the
simulations to ensure stationarity. Here, L = 1000, and N = 10 and
N = 320 respectively.

The base parameter values used in the neural field model
(Figs. 9 and 10) are: Ns = 100, ν = 0.5, v0 = 0.05, σ = 0.4, hb = 0, N = 80,
Δt =0.3, β = 1000, and L = 1000. To simulate these dynamics, we
implement Euler integration, by discretizing time according to:

uðaÞ
i ðt +ΔtÞ = uðaÞ

i ðtÞ + Δt �uðaÞ
i ðtÞ+ 1

Ns

XNs

j = 1

Jij tanh βuðaÞ
j ðtÞ

� �
� hb +h

ðaÞ
i ðtÞ

" #
:

ð12Þ

Here, a refers to agent a. Using this discretization, at each simulation
step, the agents’ neural networks are updated, and they move syn-
chronously. In Fig. 9, the results show a time average and ensemble
average over a sample of 5 simulations run for 30,000 timesteps
timesteps (time-averagedover the last 5000 timesteps). In Fig. 10Aand
B, a sample of 5 simulations run for 20,000 timesteps is used. A time
average over the last 5000 timesteps is taken.

Measures of collective movement. In this section, we define the
measures used to analyze simulationdata in our study. Further analysis
is performed in the Supplementary Information and a more complete
list of themeasures used in the study is provided in the Supplementary
Information (S.15).

• Global Order: As a measure of global order, we have used the
angular order parameter. This is calculated as the sum of the normal-
ized velocity vectors of the individuals. To do so, we have normalized
direction vectors to 1 and then summed over all individuals’ normal-
ized vectors. Namely,

GOðtÞ= 1
N

XN

i= 1
v̂iðtÞ

����
����=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i

vx, iðtÞ
k viðtÞ k

� 	2

+
1
N

X
i

vy, iðtÞ
k viðtÞ k

� 	2
s

:

ð13Þ

Here, vi(t) is the velocity vector of individual i at time t, and

k viðtÞ k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx, iðtÞ2 + vy, iðtÞ2

q
. The unit velocity vector is defined as

v̂iðtÞ=
viðtÞ
kviðtÞk , k viðtÞ k >0,

0, k viðtÞ k =0:

(
ð14Þ

Values of GO close to 1 indicate strong alignment, and values close to 0
indicate weak alignment. We note that, in practice, the minimum of
this quantity approaches zero only in the limit of infinite
population size.

• Local Order: As a measure of local order, we have used the
topological vectorial order parameter. This is ameasure of the average
direction of the velocity vectors of individuals within a local neigh-
borhood defined based on topological distance. Namely, letN ðkÞ

i ðtÞ be
the set of the k +1 nearest agents (including i) to agent i. Then

LOðtÞ= 1
N

XN
i= 1

X
j2N ðkÞ

i ðtÞ
v̂jðtÞ

�������
�������: ð15Þ

This quantity takes a value up to k + 1. To achieve a normalized local
order parameter we have divided this value by (1 + k) so that the
maximum local order is 1. Besides, the minimum of this value is always
larger than 0 and approaches zero as k increases (because the sumof k
random vectors becomes small only in the limit of k→∞). We have set
k = 5. The results are valid for other reasonable choices. A high value
indicates strong alignment (coordinated movement in a common
direction), while a low value indicates weak alignment.

• Mean distance between all pairs: This is the average distance
between all the pairs in the population, ∑i, jdi, j/(N(N−1)), where di, j is
the distance between individuals i and j, and N is the number of agents
in the population.

Supplementary videos
Supplementary videos (SV) 1 to 8 show examples of collective motion
patterns using the spin system model. Parameter values used in these
videos are as follows: Ns = 100, v0 = 10, σ = 2π/Ns, hb = 0, β = 400,
and L = 1000.

Supplementary videos SV.1 to SV.6 present the dynamics of col-
lective motion over time. Snapshots of the Videos are presented in
Figs. 6 and 7. In SV. 1 to SV. 3N = 10 agents interact, and in SV. 4 to
SV. 6N = 320 agents are considered. Total social attraction in these
videos is equal to hs

t = 0:024, h
s
t = 0:16, and hs

t = 0:28, respectively.
These videos correspond to snapshots presented in Fig. 6E–G,
respectively. In Both SV.1 and SV.2 a variety of motion patterns
including intermittent swirling, sudden direction change, and fission-
fusion dynamics can be observed. SV.3 is chosen close to the phase
transition between the collective motion-aggregation phase, and the
intermittency between these two modes of motion can be observed.

SV.4 to SV.8 show examples of collective motion in large groups.
The total social attraction is set equal to hs

t = 0:02, hs
t = 0:032,

hs
t = 0:08, h

s
t = 0:12, and hs

t = 0:16, respectively. SV.5, SV.7, and SV.8
correspond to snapshots in Fig. 7E–G, respectively. Both SV.4 and SV.5
show strong collective motion. However, intermittency and coex-
istence of different modes of motion, such as fission-fusion dynamics,
swirling, startling, and sudden direction changes, can be observed.
Similarly, in SV.6 and SV.7 a variety of collective motions can be
observed. Explosive and implosivemotion of the group leads to highly
coordinated state changes between different motion patterns. The
explosive and implosive motion is stronger in SV. 8 chosen at the
transition between collective motion-aggregation.

Supplementary videos SV.9 to SV.16 show examples of collective
motion in the neural field model. SV.9 to SV.12 show the collective
movement patterns in a community of N = 80 agents with an allo-
centric representation of space. In SV.9 to SV.12, total social attraction
is set to, hs

t = 0:08, h
s
t = 0:24, h

s
t = 0:28, h

s
t = 0:32, respectively. Other

parameter values are: Ns = 100, v0 = 0.05, σ =0.4, hb = 0, β = 1000,
L = 1000, and Δt =0.3.

SV.9 shows an example of collectivemotion patterns in the neural
field model in the collective motion phase for small hs

t , characterized
by unstable dynamics and intermittency between different movement
patterns, such as directed motion, flash expansion, sudden direction
change, andfission-fusion dynamics. SV.10 and SV.11 showexamples of
collective motion patterns in the collective motion phase for larger
values of hs

t . The population shows transient motion between a variety
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of patterns, such as milling, moving bands, and fission-fusion dynam-
ics. SV.12 shows collective motion patterns close to the collective
motion-aggregation phase transition. The system spendsmore time in
a state where the population is composed of subgroups of coherently
moving individuals, with high alignment, exhibiting directed motion.

In SV.13 and SV.14 we show collective motion patterns in larger
groups of N = 320 individuals. Here, hs

t = 0:24, h
s
t = 0:28, respectively.

In SV.13, intermittency between a variety of collectivemotionpatterns,
from milling to fission-fusion, flash expansion, sudden direction
change, and highly orderedmotion is observed. SV.14 is chosen closer
to the collective motion-aggregation phase transition. Hereafter, an
initial period of mostly milling, the population forms subgroups of
mobile aggregates moving with high order.

SV.15 shows an example of collective motion when individuals
randomly employ an allocentric and an egocentric representation of
space. Here hs

t = 0:08, corresponding to SV.9, where the same para-
meter values, but for a purely allocentric representation of space are
used. Here, at each timestep, individuals randomly employ an allo-
centric or egocentric representation of space. The probability of
being in the egocentric state is ω = 0.8, corresponding to the max-
imal global order region for small hs

t in Fig. 10. An example snapshot
of this regime is shown in Fig. 10D. Switching between the two states
stabilizes highly ordered collective motion. Although such move-
ment patterns are also observed when individuals employ a purely
allocentric representation of space, these patterns are not stable in
the absence of a switch to egocentric. This, in turn, leads to the
esthetic appeal and complexity of collective motion patterns in
purely allocentric flocks, due to intermittency between different
movement patterns.

SV.16 shows collective motion patterns for hs
t = 0:4 and

ω = 0.2. With a purely allocentric representation of space, in this
regime, often milling is observed (for slightly smaller hs

t , as in
SV.12, transitions between milling and moving aggregates are
observed). Such a milling pattern can be seen in the initial times
in the video. However, a small probability of being in the ego-
centric state destabilizes milling and leads to highly ordered
motion of moving aggregates.

SV.17 shows the dynamics of the model in the absence of recur-
rent connections andwith an allocentric representation of space.Here,
the same parameter values as in SV.9 to SV.16 are used. However,
β = 100 and hs

t = 0:36, and L = 100. In this Video, we have decreased the
arena size due to the fact that in the absence of recurrent connections,
the agents move too slowly. To remove the recurrent connections,
using the neural field model, we have set Jij= 0 for all i and j. This
ensures all other aspects of the model are preserved. However, the
dynamics of the system are the result of feedforward connections. As
can be seen in the Video, starting from random initial positions, agents
move toward each other in an accelerating fashion and coalesce in the
same positionwith slow, randomwalk-likemovement. This shows that
recurrent connections are essential for the rich dynamical patterns
observed in the model.

Data availability
The rawMATLAB data generated in this study have been deposited in
Figshare under accession code https://doi.org/10.6084/m9.figshare.
28925888111. The processed data generated in this study are provided
in the Manuscript and its Supplementary Information.

Code availability
MATLAB codes used in the manuscript can be accessed via Code
Ocean and the Supplementary Data 1.
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