Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
In situ structures of the portal-neck-tail complex of bacteriophage T4 inform a viral genome positioning mechanism
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

In situ structures of the portal-neck-tail complex of bacteriophage T4 inform a viral genome positioning mechanism

  • Andrei Fokine  ORCID: orcid.org/0000-0001-9349-16191,2,
  • Jingen Zhu2,
  • Thomas Klose  ORCID: orcid.org/0000-0002-2150-97921,
  • Frank Vago1,
  • Charles-Adrien Arnaud1,
  • Zhiqing Wang1,
  • Baldeep Khare  ORCID: orcid.org/0000-0002-7415-00581,
  • Michael G. Rossmann1,
  • Zhenguo Chen  ORCID: orcid.org/0000-0003-4748-92993,
  • Lei Sun  ORCID: orcid.org/0000-0001-8741-02023,
  • Qianglin Fang  ORCID: orcid.org/0000-0003-1844-73134,
  • Richard J. Kuhn  ORCID: orcid.org/0000-0003-4148-10261 &
  • …
  • Venigalla B. Rao  ORCID: orcid.org/0000-0002-0777-65872 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteriophages
  • Cryoelectron microscopy
  • Supramolecular assembly

Abstract

The post-genome packaging mechanisms that govern the assembly of an infectious virion are poorly understood in bacteriophages and other viruses. Here, our near-atomic resolution cryo-EM structural analyses uncovered an assembly- and conformation-driven genome positioning mechanism in the tailed bacteriophage T4. We show that following headful packaging, which generates a pressurized head, a global conformational change occurs in the portal structure, probably triggering packaging termination and ejection of the packaging motor. Our high-resolution structures of the neck of the virion further show that the neck undergoes conformational changes upon docking of a pre-assembled tail onto the sealed neck, which then opens a genome-gate. Driven by the pressure of the packaged DNA, the genome travels through open neck channels, binds and compresses the resident tape-measure protein, and halts at the bottom of the second topmost disk of the tail tube. Pressure-suspended within the virion’s innermost tunnel and secured by a baseplate plug, the genome remains poised to flow through the tunnel into a host cell upon receiving the host receptor recognition signal.

Similar content being viewed by others

Cryo-EM structures of bacteriophage T4 portal-neck assembly intermediates reveal a viral genome retention mechanism

Article Open access 07 February 2026

CryoEM structure and assembly mechanism of a bacterial virus genome gatekeeper

Article Open access 26 November 2022

Genome anchoring, retention, and release by neck proteins of Staphylococcus phage 812

Article Open access 08 January 2026

Data availability

The C1 and C6 symmetric cryo-EM reconstructions focused on the phage neck region have been deposited in the EM Data Bank with the accession codes EMD-48458 and EMD-48462, respectively. The C3 and C6 symmetric reconstructions of the middle part of the tail have been deposited with the accession codes EMD-48460 and EMD-48463, respectively; and the C3 and C6 symmetric reconstructions of the distal part of the tail have been deposited with the accession codes EMD-48459 and EMD-48464, respectively. The composite map of the whole portal-neck-tail complex has been deposited with the accession code EMD-48324. The asymmetric atomic structure of the neck has been deposited in the Protein Data Bank (PDB) with the accession code 9MOF. The three-fold-symmetric structures of the middle and distal parts of the tail have been deposited with the PDB accession codes 9MOH and 9MOG, respectively. The composite structure of the whole portal-neck-tail complex has been deposited with the PDB accession code 9MKB.

References

  1. Earnshaw, W. C. & Casjens, S. R. DNA packaging by the double-stranded DNA bacteriophages. Cell 21, 319–331 (1980).

    Google Scholar 

  2. Han, L. et al. Cryo-EM structures of bacteriophage T4 portal-neck assembly intermediates reveal a viral genome retention mechanism. Nat. Commun. https://doi.org/10.1038/s41467-026-69107-7 (2026). Epub ahead of print.

  3. Leiman, P. G., Kanamaru, S., Mesyanzhinov, V. V., Arisaka, F. & Rossmann, M. G. Structure and morphogenesis of bacteriophage T4. Cell Mol. Life Sci. 60, 2356–2370 (2003).

    Google Scholar 

  4. Leiman, P. G. et al. Morphogenesis of the T4 tail and tail fibers. Virol. J. 7, 355 (2010).

    Google Scholar 

  5. Leiman, P. G. & Shneider, M. M. Contractile tail machines of bacteriophages. Adv. Exp. Med. Biol. 726, 93–114 (2012).

    Google Scholar 

  6. Fokine, A. & Rossmann, M. G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 4, e28281 (2014).

    Google Scholar 

  7. Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429 (2004).

    Google Scholar 

  8. Taylor, N. M. et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533, 346–352 (2016).

    Google Scholar 

  9. Yap, M. L. et al. Role of bacteriophage T4 baseplate in regulating assembly and infection. Proc. Natl. Acad. Sci. USA. 113, 2654–2659 (2016).

    Google Scholar 

  10. Fang, Q. et al. Structural morphing in a symmetry-mismatched viral vertex. Nat. Commun. 11, 1713 (2020).

    Google Scholar 

  11. Rao, V. B., Fokine, A., Fang, Q. & Shao, Q. Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses 15, 10.3390/v15020527 (2023).

  12. Black, L. W. & Rao, V. B. Structure, assembly, and DNA packaging of the bacteriophage T4 head. Adv. Virus Res. 82, 119–153 (2012).

    Google Scholar 

  13. Rao, V. B. & Feiss, M. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu Rev. Virol. 2, 351–378 (2015).

    Google Scholar 

  14. Black, L. W. & Thomas, J. A. Condensed genome structure. Adv. Exp. Med Biol. 726, 469–487 (2012).

    Google Scholar 

  15. Liu, S. et al. A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157, 702–713 (2014).

    Google Scholar 

  16. Berndsen, Z. T., Keller, N. & Smith, D. E. Continuous allosteric regulation of a viral packaging motor by a sensor that detects the density and conformation of packaged DNA. Biophys. J. 108, 315–324 (2015).

    Google Scholar 

  17. Villanueva Valencia, J. R., Li, D., Casjens, S. R. & Evilevitch, A. SAXS-osmometer’ method provides measurement of DNA pressure in viral capsids and delivers an empirical equation of state. Nucleic Acids Res. 51, 11415–11427 (2023).

    Google Scholar 

  18. Sun, L. et al. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat. Commun. 6, 7548 (2015).

    Google Scholar 

  19. Rao, V. B., Fokine, A. & Fang, Q. The remarkable viral portal vertex: structure and a plausible model for mechanism. Curr. Opin. Virol. 51, 65–73 (2021).

    Google Scholar 

  20. Padilla-Sanchez, V. et al. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine. J. Mol. Biol. 426, 1019–1038 (2014).

    Google Scholar 

  21. Grimes, S., Ma, S., Gao, J., Atz, R. & Jardine, P. J. Role of φ29 connector channel loops in late-stage DNA packaging. J. Mol. Biol. 410, 50–59 (2011).

    Google Scholar 

  22. Zhang, Z. et al. A promiscuous DNA packaging machine from bacteriophage T4. PLoS Biol. 9, e1000592 (2011).

    Google Scholar 

  23. Prevo, B. & Earnshaw, W. C. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat. Rev. Genet. 25, 785–802 (2024).

    Google Scholar 

  24. Ivanovska, I., Wuite, G., Jönsson, B. & Evilevitch, A. Internal DNA pressure modifies stability of WT phage. Proc. Natl. Acad. Sci. USA. 104, 9603–9608 (2007).

    Google Scholar 

  25. Lhuillier, S. et al. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc. Natl. Acad. Sci. USA. 106, 8507–8512 (2009).

    Google Scholar 

  26. Orlov, I. et al. CryoEM structure and assembly mechanism of a bacterial virus genome gatekeeper. Nat. Commun. 13, 7283 (2022).

    Google Scholar 

  27. Cardarelli, L. et al. The crystal structure of bacteriophage HK97 gp6: defining a large family of head-tail connector proteins. J. Mol. Biol. 395, 754–768 (2010).

    Google Scholar 

  28. Wang, Z. et al. Structure of vibrio phage XM1, a simple contractile DNA injection machine. Viruses 15, 10.3390/v15081673 (2023).

  29. Olia, A. S., Prevelige, P. E., Johnson, J. E. & Cingolani, G. Three-dimensional structure of a viral genome-delivery portal vertex. Nat. Struct. Mol. Biol. 18, 597–603 (2011).

    Google Scholar 

  30. Fokine, A. et al. The molecular architecture of the bacteriophage T4 neck. J. Mol. Biol. 425, 1731–1744 (2013).

    Google Scholar 

  31. Akhter, T. et al. The neck of bacteriophage T4 is a ring-like structure formed by a hetero-oligomer of gp13 and gp14. Biochim Biophys. Acta 1774, 1036–1043 (2007).

    Google Scholar 

  32. Aksyuk, A. A. et al. The tail sheath structure of bacteriophage T4: A molecular machine for infecting bacteria. EMBO J. 28, 821–829 (2009).

    Google Scholar 

  33. Taylor, N. M. I., van Raaij, M. J. & Leiman, P. G. Contractile injection systems of bacteriophages and related systems. Mol. Microbiol 108, 6–15 (2018).

    Google Scholar 

  34. Zhao, L., Kanamaru, S., Chaidirek, C. & Arisaka, F. P15 and P3, the tail completion proteins of bacteriophage T4, both form hexameric rings. J. Bacteriol. 185, 1693–1700 (2003).

    Google Scholar 

  35. Sonani, R. R. et al. Neck and capsid architecture of the robust agrobacterium phage milano. Commun. Biol. 6, 921 (2023).

    Google Scholar 

  36. Li, F. et al. High-resolution cryo-EM structure of the pseudomonas bacteriophage E217. Nat. Commun. 14, 4052 (2023).

    Google Scholar 

  37. Yang, F., Wang, L., Zhou, J., Xiao, H. & Liu, H. In situ structures of the ultra-long extended and contracted tail of myoviridae phage P1.Viruses 15, 10.3390/v15061267 (2023).

  38. Abuladze, N. K., Gingery, M., Tsai, J. & Eiserling, F. A. Tail length determination in bacteriophage T4. Virology 199, 301–310 (1994).

    Google Scholar 

  39. Duda, R. L., Gingery, M., Ishimoto, L. K. & Eiserling, F. A. Expression of plasmid-encoded structural proteins permits engineering of bacteriophage T4 assembly. Virology 179, 728–737 (1990).

    Google Scholar 

  40. Arisaka, F., Yap, M. L., Kanamaru, S. & Rossmann, M. G. Molecular assembly and structure of the bacteriophage T4 tail. Biophys. Rev. 8, 385–396 (2016).

    Google Scholar 

  41. Mahony, J. et al. Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Sci. Rep. 6, 36667 (2016).

    Google Scholar 

  42. Katsura, I. & Hendrix, R. W. Length determination in bacteriophage lambda tails. Cell 39, 691–698 (1984).

    Google Scholar 

  43. Kizziah, J. L., Mukherjee, A., Parker, L. K. & Dokland, T. Structure of the Staphylococcus aureus bacteriophage 80α neck shows details of the DNA, tail completion protein, and tape measure protein. Structure 33, 1063–1073 (2025).

  44. Xiao, H. et al. Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly. PLoS Biol. 21, e3002441 (2023).

    Google Scholar 

  45. Linares, R. & Breyton, C. About bacteriophage tail terminator and tail completion proteins: structure of the proximal extremity of siphophage T5 tail. J. Virol. 99, e0137624 (2025).

    Google Scholar 

  46. Shao, Q. et al. Cryo-EM structures of phage T4 infection intermediate uncover a genome piloting mechanism. Submitted.

  47. Duda, R. L., Wall, J. S., Hainfeld, J. F., Sweet, R. M. & Eiserling, F. A. Mass distribution of a probable tail-length-determining protein in bacteriophage T4. Proc. Natl. Acad. Sci. USA. 82, 5550–5554 (1985).

    Google Scholar 

  48. Rao, V. B. A virus DNA gate: zipping and unzipping the packed viral genome. Proc. Natl. Acad. Sci. USA. 106, 8403–8404 (2009).

    Google Scholar 

  49. Oliveira, L., Tavares, P. & Alonso, J. C. Headful DNA packaging: bacteriophage SPP1 as a model system. Virus Res. 173, 247–259 (2013).

    Google Scholar 

  50. Bayfield, O. W., Steven, A. C. & Antson, A. A. Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss. eLife 9, e55517 (2020).

    Google Scholar 

  51. Hu, B., Margolin, W., Molineux, I. J. & Liu, J. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc. Natl. Acad. Sci. USA. 112, E4919–E4928 (2015).

    Google Scholar 

  52. Tao, P., Mahalingam, M. & Rao, V. B. Highly effective soluble and bacteriophage t4 nanoparticle plague vaccines against yersinia pestis. Methods Mol. Biol. 1403, 499–518 (2016).

    Google Scholar 

  53. Tao, P., Li, Q., Shivachandra, S. B. & Rao, V. B. Bacteriophage T4 as a nanoparticle platform to display and deliver pathogen antigens: Construction of an effective anthrax vaccine. Methods Mol. Biol. 1581, 255–267 (2017).

    Google Scholar 

  54. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  55. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Google Scholar 

  56. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Google Scholar 

  57. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J. 478, 4169–4185 (2021).

    Google Scholar 

  58. Fokine, A. et al. Molecular architecture of the prolate head of bacteriophage T4. Proc. Natl. Acad. Sci. USA. 101, 6003–6008 (2004).

    Google Scholar 

  59. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    Google Scholar 

  60. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).

    Google Scholar 

  61. Boudko, S. P., Strelkov, S. V., Engel, J. & Stetefeld, J. Design and crystal structure of bacteriophage T4 mini-fibritin NCCF. J. Mol. Biol. 339, 927–935 (2004).

    Google Scholar 

  62. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D. Struct. Biol. 74, 531–544 (2018).

    Google Scholar 

  63. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  64. Goddard, T. D. et al. UCSF chimerax: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Google Scholar 

  65. Pettersen, E. F. et al. UCSF chimerax: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIAID, NIH grant 1R01AI175340 to V.B.R. and A.F. and in part by NIDA, NIH Avant Garde Award 1DP1DA060580 and National Science Foundation grant MCB-0923873 to V.B.R. Research in Q.F.’s laboratory was supported by the National Natural Science Foundation of China (32371285).

Author information

Authors and Affiliations

  1. Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

    Andrei Fokine, Thomas Klose, Frank Vago, Charles-Adrien Arnaud, Zhiqing Wang, Baldeep Khare, Michael G. Rossmann & Richard J. Kuhn

  2. Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA

    Andrei Fokine, Jingen Zhu & Venigalla B. Rao

  3. Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China

    Zhenguo Chen & Lei Sun

  4. School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China

    Qianglin Fang

Authors
  1. Andrei Fokine
    View author publications

    Search author on:PubMed Google Scholar

  2. Jingen Zhu
    View author publications

    Search author on:PubMed Google Scholar

  3. Thomas Klose
    View author publications

    Search author on:PubMed Google Scholar

  4. Frank Vago
    View author publications

    Search author on:PubMed Google Scholar

  5. Charles-Adrien Arnaud
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhiqing Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Baldeep Khare
    View author publications

    Search author on:PubMed Google Scholar

  8. Michael G. Rossmann
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhenguo Chen
    View author publications

    Search author on:PubMed Google Scholar

  10. Lei Sun
    View author publications

    Search author on:PubMed Google Scholar

  11. Qianglin Fang
    View author publications

    Search author on:PubMed Google Scholar

  12. Richard J. Kuhn
    View author publications

    Search author on:PubMed Google Scholar

  13. Venigalla B. Rao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

V.B.R., M.G.R., and A.F. conceived the project. A.F., J.Z., T.K., F.V., C-A.A., Z.W., B.K., and V.B.R. performed research. A.F., J.Z., C-A.A., M.G.R., Z.C., L.S., Q.F., R.J.K. and V.B.R. analyzed data. V.B.R., R.J.K., and M.G.R. supervised the project. A.F. and V.B.R. prepared the manuscript, with additional edits from all authors. V.B.R. provided overall direction and coordination for this and the accompanying genome retention project.

Corresponding authors

Correspondence to Andrei Fokine or Venigalla B. Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Alfred Antson who co-reviewed with Brianna Woodbury, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokine, A., Zhu, J., Klose, T. et al. In situ structures of the portal-neck-tail complex of bacteriophage T4 inform a viral genome positioning mechanism. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69106-8

Download citation

  • Received: 14 June 2025

  • Accepted: 18 December 2025

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69106-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Cryo-EM structures of bacteriophage T4 portal-neck assembly intermediates reveal a viral genome retention mechanism

  • Lin Han
  • Qiyu Mao
  • Lei Sun
Nature Communications Article Open Access 07 Feb 2026

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology