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Decodability, sensitivity, and criticality measured through single-neuron perturbations

by

Matthew Farrell'” & Taro Toyoizumi'-

Abstract

This comment highlights a new study by Ribeiro ef al. [1] which investigates how single-
neuron spikes influence the surrounding cortical network in vivo. By comparing induced
and background spikes through the lenses of decodability, sensitivity, and criticality, this
work highlights how local perturbations interact with ongoing network dynamics to reveal
multi-faceted signatures of critical neural computation.

Neural decodability, sensitivity, and criticality

Neural network behavior can be decomposed along at least two dimensions: spatially (across the
population) and temporally. The most local event in both senses is the activity of a particular
neuron at a particular point in time. How such an atomic event influences the global state of the
network is a question of fundamental interest across many fields, including neuroscience,
physics, and machine learning. The activity of a given neuron is naturally shaped by ongoing
network dynamics (cf. [2]); however, additional insight may be gained by experimentally driving
neurons in controlled ways while observing the resulting impact on the surrounding network.
This level of perturbative and observational control approaches that of model systems such as
spin glasses and artificial neural networks, which may encourage a confluence of perspectives
and techniques used for interpreting biological and artificial systems. We believe that the work
highlighted in this comment [1] is a compelling example of this confluence.

Understanding the basics of network dynamical properties can lay a foundation for helping us
understand how network activity impacts downstream circuits and, ultimately, behavior.
Perturbations play an important role both in understanding basic dynamical properties of a neural
network as well as their downstream computational impacts. "Atypical" perturbations from
"typical" dynamics are often key for teasing out the behavioral role for a neural circuit; for
instance, lesions of a brain area and the resulting impact on other neural systems and behavior
have historically been powerful means to understand the roles of these brain areas. Perturbation
at the level of single neurons is a technologically remarkable refinement of this basic principle
which is being used to explore the fine structure of network dynamics and the behaviorally
relevant features of these dynamics.

Theoretical work has laid important conceptual groundwork for linking local events to the global
network responses they elicit. The featured work [1] explores three related ideas: decodability,
sensitivity of network dynamics to perturbations, and criticality [3—5]. Neural decodability

! Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan

* email: matthew.farrell@riken.jp

2 Department of Mathematical Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan



generally refers to the ability to extract meaningful information from the neural population about
what is going on in the real world, such as a sensory stimulus, a behavior, or in this case a direct
perturbation of a neuron, based on spatial-temporal patterns of neuronal spiking [6, 7].

In [1] spike decodability specifically tests the ability of a decoder to recover the identity of the
neuron that emitted a spike by detecting the ongoing behavior of the surrounding network. Sensi-
tivity measures how a small change (such as a spike caused by a perturbation) evolves through
time, comparing the changed and unchanged network dynamics. Criticality places specific con-
straints on how activity propagates through a network and has been argued to achieve reliable in-
formation coding, propagation, and retention (a variety of formal definitions exist; below we
touch on a more concrete treatment). Experimentalists have increasingly drawn on these three
theoretical frameworks to probe brain function. Early approaches to measuring sensitivity to in-
put perturbations used patch-clamp stimulation of single neurons to quantify the sensitivity of
network states to single-spike perturbations [8]. Other studies used multi-electrode recordings to
observe population activity during sensory stimulation, such as whisker deflection in rodents [9].
In vitro experiments have enabled more fine-grained investigations of these ideas, albeit at the
cost of natural ongoing dynamics [10]. Other studies have sought to characterize criticality with
ongoing neural dynamics by measuring the size and duration distributions of neural “avalanches’
[11,12].

b

Probing decodability, sensitivity, and criticality

The authors of [1] extend this line of research by optogenetically stimulating individual neurons
while recording surrounding network activity in vivo, enabling a more direct assessment of how
individual spikes influence global network dynamics. The primary novelty lies in comparing
signatures of decodability, sensitivity, and criticality between optogenetically induced spikes and
spikes arising from ongoing “background” activity. This distinction is of interest to researchers
across a broad spectrum, from applied fields such as brain—computer interfaces (BCls) to
theoretical studies of neural networks and criticality in physics-inspired systems. As such, we
expect the results presented here to stimulate new perspectives across many domains. Below, we
briefly summarize the main findings and consider some of their possible implications.

The authors of [1] find that the identity of an optogenetically driven neuron is, on average, much
easier to decode than that of a neuron that spikes as part of ongoing dynamics. They also
reproduce previously observed power-law statistics of spike avalanches, in which the sizes and
durations of contiguous spiking events over the population follow power-law distributions. They
then characterize network sensitivity by measuring how the mean size of a spike avalanche
depends on the number of initial spikes of a selected neuron. The authors link these two
measures—classical avalanche statistics and mean avalanche size as a function of number of
initial spikes—conceptually by pointing to existing models of percolation and by simulation
studies of a spiking neural network model. Interestingly, the mean avalanche scaling exponent
differs between induced and background spikes: both exhibit power-law scaling, but with
significantly different scaling exponents. The mechanisms underlying this phenomenon of
distinct avalanche responses to induced versus background spiking are still mysterious and our
understanding would benefit from future exploration. Against this backdrop, the difference in
decodability highlights the multi-faceted nature of criticality.

As previously mentioned, the authors of [ 1] reproduce experimental observations in a spiking
neural network model, which is a helpful theoretical framework for thinking about these



observations and why they occur. This elegant model does much to shed light on the
experimental findings, while also leaving open interesting opportunities for further studies. For
instance, the model here is tuned to reproduce the particular power-law scaling exponents as
observed in experiments; we believe that it would be interesting to investigate mechanisms of
self-tuning to criticality [3] in the context of the observations made in this work. Another
interesting point is that the model shows different mean avalanche scaling exponents in the high-
baseline firing rate regime compared to the low-firing rate regime, unlike in the experimental
observations (Supplementary Fig. 12 of [1]). Finally, due to efforts by the authors to match
experimentally observed firing rates, excitatory external drive becomes vanishingly small when
the network crosses into the supercritical regime, resulting in the network activity randomly
dying out. An adjusted model may allow passing into the supercritical regime in a way that is
more faithful to neural activity. We believe these aspects would be interesting to investigate in
follow-up modeling studies.
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Figure 1:

Ilustration of neural trajectories during perturbation experiments. Depiction includes the
following elements: an unperturbed intrinsic neural trajectory (black curve) alongside an
ensemble of other non-perturbed trajectories (grey curves), mostly contained within a region of
high probability (grey shaded region); externally induced spikes (red) that are both on-dynamics
(within typical dynamics) and off-dynamics (away from typical dynamics), and which can be one
or more spikes; deriving scaling laws for the average avalanche size in response to these induced
spikes, as a function of number of induced spikes (offset panel); and an intrinsic off-dynamics
period, which represents a time period in which the black neural trajectory naturally deviated
from the region of high probability without external perturbation.

Advancing conceptual understanding of neural circuits

These findings may provide fodder for conceptual advances in how we think of neural network



behavior. For instance, a popular framework for organizing neural activity is in terms of an
"intrinsic manifold", typically defined as a low-dimensional subspace that in some sense best
contains the neural activity. When a neural population is driven within this intrinsic manifold,
such as through BCI methods, animals appear to have a much easier time learning based on these
perturbations [13]. Traditionally the dimensions of the intrinsic subspace are estimated from the
correlation structure of the neural data, which discards some temporal information. In reality,
neural dynamics are characterized by specific trajectories with directionality on a manifold.
Using the featured work [1] as a starting point, it may be possible to define a notion of "on-
dynamics" versus "off-dynamics" perturbations (Fig. 1). From this view, the induced spikes
considered in this work would typically be off-dynamics, while background spikes would
typically be on-dynamics; however, it may be possible to induce spikes in an on-dynamics
fashion, and some background spikes may by chance be atypical enough to be considered off-
dynamics. We believe that this would be an intriguing direction to look in.

Mathematically speaking, decomposing a complex phenomenon in terms of local events and
rules for how these events propagate is a powerful and important approach. However, how
precisely to leverage perturbations to tease out information about neural circuits is an evolving
theory. The work featured here [1] takes an important conceptual step by comparing
perturbations (induced spikes) to analogous non-perturbed events (background spikes). Follow-
up studies could connect to other types of perturbations, such as on the basis of neuron type, or
perturbations via ongoing spike train inputs [14-16]. Theory and experiment will continue to
guide our exploration of what aspects of network dynamics are salient to downstream circuits
and ultimately behavior [17], and in turn our exploration of what kind of perturbations are
meaningfully impactful.
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