Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Quantitative analysis of small RNA pseudouridylation reveals interplay of PUS enzymes in tRNA anticodon stem-loop
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Quantitative analysis of small RNA pseudouridylation reveals interplay of PUS enzymes in tRNA anticodon stem-loop

  • Wenqing Liu1 na1,
  • Yichen Ma1 na1,
  • Liping Wang2,
  • Bo Lu3,
  • Yuyang Dong3,
  • Yuan Zhuang3,
  • Bo He1,4,
  • Meiling Zhang  ORCID: orcid.org/0000-0002-8882-25642 &
  • …
  • Chengqi Yi  ORCID: orcid.org/0000-0003-2540-97291,3,5,6 

Nature Communications , Article number:  (2026) Cite this article

  • 1548 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • RNA modification
  • RNA sequencing
  • Small RNAs

Abstract

Pseudouridine (Ψ) is an abundant modification in small RNA catalyzed by multiple pseudouridine synthases (PUSs). However, the substrate specificity of human PUSs remains elusive. Here, we adopted PRAISE, a quantitative Ψ detection method, to profile pseudouridylation in small RNA, including cytosolic and mitochondrial tRNAs, snRNA, and snoRNA. We found that snoRNA pseudouridylation is mediated not only by RNA-guided DKC1, but also by the stand-alone enzyme PUS7 at a specific site. Interestingly, several PUS enzymes, including PUS1, RPUSD1, and PUS7, which install nearby Ψ sites within tRNA anticodon stem-loop, can influence pseudouridylation catalyzed by other PUSs, revealing an unrecognized interplay during Ψ formation. For the three RluA family enzymes, RPUSD1 catalyzes the canonical Ψ30 in tRNA-Ile and Ψ72 in tRNA-Arg isoacceptors. RPUSD2 pseudouridylates Ψ31 of mt-tRNALeu(CUN), Ψ32 of mt-tRNAPro and mt-tRNACys, whereas RPUSD3 lacks tRNA activity. Together, our quantitative Ψ profiling characterized PUS tRNA substrates and revealed unexpected PUS interplay.

Similar content being viewed by others

Quantitative profiling of pseudouridylation landscape in the human transcriptome

Article 30 March 2023

A comprehensive tRNA pseudouridine map uncovers targets dependent on human stand-alone pseudouridine synthases

Article Open access 24 October 2025

Quantitative RNA pseudouridine maps reveal multilayered translation control through plant rRNA, tRNA and mRNA pseudouridylation

Article 09 January 2025

Data availability

The sequencing data supporting the results of this study are available in public repositories. The main raw and processed sequencing data have been deposited into the NCBI Gene Expression Omnibus (GEO) under the accession number GSE299274. Additional sequencing data have been deposited in the Genome Sequence Archive (GSA) at the CNCB-NGDC under PRJCA050602. Source data are provided with this paper.

Code availability

The analysis scripts in this study are publicly available in the GitHub repository at https://github.com/LiuWenQing657/PsiUInterplayAnalysis, which is also cited here71.

References

  1. Li, X., Ma, S. & Yi, C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 33, 108–116 (2016).

    Google Scholar 

  2. Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).

    Google Scholar 

  3. Charette, M. & Gray, M. W. Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49, 341–351 (2000).

    Google Scholar 

  4. Luo, N., Huang, Q., Zhang, M. & Yi, C. Functions and therapeutic applications of pseudouridylation. Nat. Rev. Mol. Cell Biol. 26, 691–705 (2025).

  5. Cerneckis, J., Cui, Q., He, C., Yi, C. & Shi, Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol. Sci. 43, 522–535 (2022).

    Google Scholar 

  6. Ge, J. & Yu, Y. T. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 38, 210–218 (2013).

    Google Scholar 

  7. Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

    Google Scholar 

  8. Spenkuch, F., Motorin, Y. & Helm, M. Pseudouridine: still mysterious, but never a fake (uridine)!. RNA Biol. 11, 1540–1554 (2014).

    Google Scholar 

  9. Patton, J. R., Bykhovskaya, Y., Mengesha, E., Bertolotto, C. & Fischel-Ghodsian, N. Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J. Biol. Chem. 280, 19823–19828 (2005).

    Google Scholar 

  10. Fernandez-Vizarra, E., Berardinelli, A., Valente, L., Tiranti, V. & Zeviani, M. Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J. Med. Genet. 44, 173–180 (2007).

    Google Scholar 

  11. Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A. & Fischel-Ghodsian, N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet. 74, 1303–1308 (2004).

    Google Scholar 

  12. Wang, B. et al. Mitochondrial tRNA pseudouridylation governs erythropoiesis. Blood 144, 657–671 (2024).

    Google Scholar 

  13. Shaheen, R. et al. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum. Genet. 138, 231–239 (2019).

    Google Scholar 

  14. Guzzi, N. et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204–1216 e1226 (2018).

    Google Scholar 

  15. Cui, Q. et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat. Cancer 2, 932–949 (2021).

    Google Scholar 

  16. Bakin, A. & Ofengand, J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32, 9754–9762 (1993).

    Google Scholar 

  17. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    Google Scholar 

  18. Lovejoy, A. F., Riordan, D. P. & Brown, P. O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9, e110799 (2014).

    Google Scholar 

  19. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Google Scholar 

  20. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Google Scholar 

  21. Song, J. et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat. Chem. Biol. 16, 160–169 (2020).

    Google Scholar 

  22. Lucas, M. C. et al. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat. Biotechnol. 42, 72–86 (2024).

    Google Scholar 

  23. Zhang, M. et al. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat. Chem. Biol. 19, 1185–1195 (2023).

  24. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    Google Scholar 

  25. Xu, H. et al. Absolute quantitative and base-resolution sequencing reveals comprehensive landscape of pseudouridine across the human transcriptome. Nat. Methods 21, 2024–2033 (2024).

    Google Scholar 

  26. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Google Scholar 

  27. Suzuki, T. et al. Complete chemical structures of human mitochondrial tRNAs. Nat. Commun. 11, 4269 (2020).

    Google Scholar 

  28. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Google Scholar 

  29. Blanchet, S. et al. Deciphering the reading of the genetic code by near-cognate tRNA. Proc. Natl. Acad. Sci. USA 115, 3018–3023 (2018).

    Google Scholar 

  30. Morais, P., Adachi, H. & Yu, Y. T. Spliceosomal snRNA Epitranscriptomics. Front. Genet. 12, 652129 (2021).

    Google Scholar 

  31. Ganot, P., Bortolin, M. L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997).

    Google Scholar 

  32. Ni, J., Tien, A. L. & Fournier, M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    Google Scholar 

  33. Karijolich, J. & Yu, Y. T. Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192–204 (2010).

    Google Scholar 

  34. Nagpal, N., Tai, A. K., Nandakumar, J. & Agarwal, S. Domain specific mutations in dyskerin disrupt 3’ end processing of scaRNA13. Nucleic Acids Res. 50, 9413–9425 (2022).

    Google Scholar 

  35. Jorjani, H. et al. An updated human snoRNAome. Nucleic Acids Res. 44, 5068–5082 (2016).

    Google Scholar 

  36. Lestrade, L. & Weber, M. J. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res. 34, D158–D162 (2006).

    Google Scholar 

  37. Wu, G., Xiao, M., Yang, C. & Yu, Y. T. U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J. 30, 79–89 (2011).

    Google Scholar 

  38. Chen, J. et al. m(6)A Regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics 17, 154–168 (2019).

    Google Scholar 

  39. Maldonado Lopez, A. M. et al. Mettl3-catalyzed m(6)A regulates histone modifier and modification expression in self-renewing somatic tissue. Sci. Adv. 9, eadg5234 (2023).

    Google Scholar 

  40. Behm-Ansmant, I., Grosjean, H., Massenet, S., Motorin, Y. & Branlant, C. Pseudouridylation at position 32 of mitochondrial and cytoplasmic tRNAs requires two distinct enzymes in Saccharomyces cerevisiae. J. Biol. Chem. 279, 52998–53006 (2004).

    Google Scholar 

  41. Levi, O. & Arava, Y. S. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res. 49, 432–443 (2021).

    Google Scholar 

  42. Zaganelli, S. et al. The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules. J. Biol. Chem. 292, 4519–4532 (2017).

    Google Scholar 

  43. Fukasawa, Y. et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell Proteomics 14, 1113–1126 (2015).

    Google Scholar 

  44. Behm-Ansmant, I. et al. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Psi-synthase also acting on tRNAs. RNA 9, 1371–1382 (2003).

    Google Scholar 

  45. Lin, T. Y. et al. The molecular basis of tRNA selectivity by human pseudouridine synthase 3. Mol. Cell 84, 2472–2489.e2478 (2024).

    Google Scholar 

  46. Deogharia, M., Mukhopadhyay, S., Joardar, A. & Gupta, R. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue. RNA 25, 336–351 (2019).

    Google Scholar 

  47. Mukhopadhyay, S., Deogharia, M. & Gupta, R. Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA. RNA 27, 66–79 (2021).

    Google Scholar 

  48. Antonicka, H. et al. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. Embo Rep. 18, 28–38 (2017).

    Google Scholar 

  49. Xu, H. et al. A comprehensive tRNA pseudouridine map uncovers targets dependent on human stand-alone pseudouridine synthases. Nat. Cell Biol. 27, 2186–2197 (2025).

  50. Wu, G. et al. The TOR signaling pathway regulates starvation-induced pseudouridylation of yeast U2 snRNA. RNA 22, 1146–1152 (2016).

    Google Scholar 

  51. Li, J., Zhu, W. Y., Yang, W. Q., Li, C. T. & Liu, R. J. The occurrence order and cross-talk of different tRNA modifications. Sci. China Life Sci. 64, 1423–1436 (2021).

    Google Scholar 

  52. Ishida, K. et al. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 39, 2304–2318 (2011).

    Google Scholar 

  53. Yared, M. J., Marcelot, A. & Barraud, P. Beyond the anticodon: tRNA core modifications and their impact on structure, translation and stress adaptation. Genes 15, 374 (2024).

  54. Porat, J. Circuit logic: interdependent RNA modifications shape mRNA and noncoding RNA structure and function. RNA 31, 613–622 (2025).

    Google Scholar 

  55. Guegueniat, J. et al. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res. 49, 11810–11822 (2021).

    Google Scholar 

  56. Czudnochowski, N., Wang, A. L., Finer-Moore, J. & Stroud, R. M. In human pseudouridine synthase 1 (hPus1), a C-terminal helical insert blocks tRNA from binding in the same orientation as in the Pus1 bacterial homologue TruA, consistent with their different target selectivities. J. Mol. Biol. 425, 3875–3887 (2013).

    Google Scholar 

  57. Hoang, C. & Ferre-D’Amare, A. R. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Google Scholar 

  58. Yarian, C. S. et al. Structural and functional roles of the N1- and N3-protons of psi at tRNA’s position 39. Nucleic Acids Res. 27, 3543–3549 (1999).

    Google Scholar 

  59. Rintala-Dempsey, A. C. & Kothe, U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression?. RNA Biol. 14, 1185–1196 (2017).

    Google Scholar 

  60. Agris, P. F. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. Embo Rep 9, 629–635 (2008).

    Google Scholar 

  61. Lei, Z. & Yi, C. A Radiolabeling-free, qPCR-based method for locus-specific pseudouridine detection. Angew. Chem. Int. Ed. Engl. 56, 14878–14882 (2017).

    Google Scholar 

  62. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Google Scholar 

  63. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Google Scholar 

  64. Martin, M. Cutadapt removes adapter sequences from high-through sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  65. Shen, W., Sipos, B. & Zhao, L. SeqKit2: a Swiss army knife for sequence and alignment processing. Imeta 3, e191 (2024).

    Google Scholar 

  66. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Google Scholar 

  67. Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Google Scholar 

  68. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

  69. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Google Scholar 

  70. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Google Scholar 

  71. Wenqing, L. PsiUInterplayAnalysis. Zenodo https://doi.org/10.5281/zenodo.18205172 (2026).

Download references

Acknowledgements

The authors would like to thank Dr. Xiaoting Zhang, Dr. Hanxiao Sun, Dr. Jinmin Yang, and Jinghan Zhou for discussions, and Dr. Hongxia Chen for providing the PUS7L knockout cell line. This work was supported by the National Key R&D Program of China (2021YFC2302400 to M.Z. and 2023YFC3402200 to C.Y.), the National Natural Science Foundation of China (22425071 to C.Y. and 61575008 to M.Z.), the Beijing National Science Foundation of China (Z231100002723005 to C.Y.), and the Natural Science Foundation of Sichuan Province of China (2026NSFSC0869 to B.H.). This work was supported by the New Cornerstone Science Foundation through the XPLORER PRIZE. This work was supported by the Open Research Fund of the National Center for Protein Sciences at Peking University and the Chinese Universities Scientific Fund 2025TC012.

Author information

Author notes
  1. These authors contributed equally: Wenqing Liu, Yichen Ma.

Authors and Affiliations

  1. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

    Wenqing Liu, Yichen Ma, Bo He & Chengqi Yi

  2. State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China

    Liping Wang & Meiling Zhang

  3. The State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China

    Bo Lu, Yuyang Dong, Yuan Zhuang & Chengqi Yi

  4. Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China

    Bo He

  5. Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China

    Chengqi Yi

  6. Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China

    Chengqi Yi

Authors
  1. Wenqing Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Yichen Ma
    View author publications

    Search author on:PubMed Google Scholar

  3. Liping Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Bo Lu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yuyang Dong
    View author publications

    Search author on:PubMed Google Scholar

  6. Yuan Zhuang
    View author publications

    Search author on:PubMed Google Scholar

  7. Bo He
    View author publications

    Search author on:PubMed Google Scholar

  8. Meiling Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Chengqi Yi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.Y. and M.Z. conceived the project and designed the experiments; M.Z., C.Y., and W.L. wrote the manuscript; M.Z. performed the experiments with the help of L.W. and Y.D.; W.L. and Y.M. designed and performed the bioinformatics analysis for NGS samples with the help of B.H. B.L. constructed the PUS1L and three RPUSD knockout cell lines. Y.Z. performed the immunofluorescence assays.

Corresponding authors

Correspondence to Meiling Zhang or Chengqi Yi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tsutomu (Tom) Suzuki, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ma, Y., Wang, L. et al. Quantitative analysis of small RNA pseudouridylation reveals interplay of PUS enzymes in tRNA anticodon stem-loop. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69177-7

Download citation

  • Received: 10 June 2025

  • Accepted: 24 January 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69177-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing