Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Reducing methylation of histone 3.3 lysine 4 in the medial ganglionic eminence and hypothalamus recapitulates neurodevelopmental disorder phenotypes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Reducing methylation of histone 3.3 lysine 4 in the medial ganglionic eminence and hypothalamus recapitulates neurodevelopmental disorder phenotypes

  • Jianing Li  ORCID: orcid.org/0009-0008-0417-77231,
  • Anthony F. Tanzillo1,
  • Giusy Pizzirusso  ORCID: orcid.org/0000-0001-7704-12392,3,
  • Adam Caccavano  ORCID: orcid.org/0000-0002-6819-533X2,
  • Ramesh Chittajallu2,
  • Mira Sohn  ORCID: orcid.org/0009-0000-1929-98564,
  • Daniel Abebe2,
  • Yajun Zhang1,
  • Kenneth A. Pelkey  ORCID: orcid.org/0000-0002-9731-13362,
  • Ryan K. Dale  ORCID: orcid.org/0000-0003-2664-37444,
  • Chris J. McBain  ORCID: orcid.org/0000-0002-5909-01572 &
  • …
  • Timothy J. Petros  ORCID: orcid.org/0000-0002-8943-546X1 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell fate and cell lineage
  • Cellular neuroscience
  • Epigenetics and behaviour
  • Genetics of the nervous system
  • Neuronal development

Abstract

Methylation of lysine 4 on histone H3 (H3K4) is enriched on active promoters and enhancers where it promotes gene activation. Disruption of H3K4 methylation is associated with numerous neurodevelopmental diseases (NDDs) that display intellectual disability and abnormal body growth. Here, we perturb H3K4 methylation in the medial ganglionic eminence (MGE) and hypothalamus, two brain regions associated with these disease phenotypes. These mutant mice have fewer forebrain interneurons, deficient network rhythmogenesis, and increased spontaneous seizures and seizure susceptibility. Mutant mice are significantly smaller than control littermates, but they eventually became obese due to striking changes in the genetic and cellular hypothalamus environment in these mice. Perturbation of H3K4 methylation in these cells produces deficits in numerous NDD-associated behaviors, with a bias for more severe phenotypes in female mice. Single nuclei sequencing reveals transcriptional changes in the embryonic and adult brain that underlie many of these phenotypes. In sum, our findings highlight the critical role of H3K4 methylation in regulating survival and cell-specific gene regulatory mechanisms in forebrain GABAergic and hypothalamic cells during neurodevelopment to control network excitability and body size homoeostasis.

Similar content being viewed by others

A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain

Article 15 July 2021

Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a

Article Open access 06 July 2024

Inverse and dynamic levels of H3K4me3 and H3K27me3 regulate mouse postnatal dental gyrus development

Article 22 August 2025

Data availability

The single-cell sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) repository under Superseries accession code GSE293881, which includes our single-cell ATAC-seq (GSE293655) and single-cell RNA-seq (GSE293751) datasets, all of which are publicly available. Details on cell counts, number of animals used per experiment, and analyses of differentially expressed genes for all comparisons described in the manuscript are provided in the Supplementary Data files. Additional data & information used in this study are available at Synapse.org. For any additional inquiries about data accessibility and analysis, please email tim.petros@nih.gov.

References

  1. Boukas, L. et al. Coexpression patterns define epigenetic regulators associated with neurological dysfunction. Genome Res. 29, 532–542 (2019).

    Google Scholar 

  2. Bjornsson, H. T. The Mendelian disorders of the epigenetic machinery. Genome Res. 25, 1473–1481 (2015).

    Google Scholar 

  3. Tatton-Brown, K. et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am. J. Hum. Genet. 100, 725–736 (2017).

    Google Scholar 

  4. Fahrner, J. A. & Bjornsson, H. T. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum. Mol. Genet. 28, R254–R264 (2019).

    Google Scholar 

  5. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Google Scholar 

  6. Ritchie, F. D. & Lizarraga, S. B. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front. Neurosci. 17, 989109 (2023).

    Google Scholar 

  7. Shen, E., Shulha, H., Weng, Z. & Akbarian, S. Regulation of histone H3K4 methylation in brain development and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130514 (2014).

  8. Collins, B. E., Greer, C. B., Coleman, B. C. & Sweatt, J. D. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 12, 7 (2019).

    Google Scholar 

  9. Vallianatos, C. N. & Iwase, S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics 7, 503–519 (2015).

    Google Scholar 

  10. Maze, I. et al. Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron 87, 77–94 (2015).

    Google Scholar 

  11. Xia, W. & Jiao, J. Histone variant H3.3 orchestrates neural stem cell differentiation in the developing brain. Cell Death Differ. 24, 1548–1563 (2017).

    Google Scholar 

  12. Funk, O. H., Qalieh, Y., Doyle, D. Z., Lam, M. M. & Kwan, K. Y. Postmitotic accumulation of histone variant H3.3 in new cortical neurons establishes neuronal chromatin, transcriptome, and identity. Proc. Natl. Acad. Sci. USA 119, e2116956119 (2022).

    Google Scholar 

  13. Klein, R. H. & Knoepfler, P. S. Knockout tales: the versatile roles of histone H3.3 in development and disease. Epigenetics Chromatin 16, 38 (2023).

    Google Scholar 

  14. Van, H. T., Xie, G., Dong, P., Liu, Z. & Ge, K. KMT2 Family of H3K4 methyltransferases: enzymatic activity-dependent and -independent functions. J. Mol. Biol. 436, 168453 (2024).

    Google Scholar 

  15. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    Google Scholar 

  16. Jones, W. D. et al. De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am. J. Hum. Genet. 91, 358–364 (2012).

    Google Scholar 

  17. Strom, S. P. et al. De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing. BMC Med. Genet. 15, 49 (2014).

    Google Scholar 

  18. Siano, M. A. et al. De novo mutation in KMT2C manifesting as Kleefstra syndrome 2: case report and literature review. Pediatr. Rep. 14, 131–139 (2022).

    Google Scholar 

  19. Lim, D. A. et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    Google Scholar 

  20. Kerimoglu, C. et al. KMT2A and KMT2B Mediate memory function by affecting distinct genomic regions. Cell Rep. 20, 538–548 (2017).

    Google Scholar 

  21. Michurina, A. et al. Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuron-enriched genes. EMBO J. 41, e106459 (2022).

    Google Scholar 

  22. Nagahama, K. et al. Setd1a insufficiency in mice attenuates excitatory synaptic function and recapitulates schizophrenia-related behavioral abnormalities. Cell Rep. 32, 108126 (2020).

    Google Scholar 

  23. Qin, L. et al. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat. Commun. 12, 6589 (2021).

    Google Scholar 

  24. Bandler, R. C., Mayer, C. & Fishell, G. Cortical interneuron specification: the juncture of genes, time and geometry. Curr. Opin. Neurobiol. 42, 17–24 (2017).

    Google Scholar 

  25. Williams, R. H. & Riedemann, T. Development, diversity, and death of MGE-derived cortical interneurons. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22179297 (2021).

  26. Ferrer, C. & De Marco Garcia, N. V. The role of inhibitory interneurons in circuit assembly and refinement across sensory cortices. Front. Neural Circuits 16, 866999 (2022).

    Google Scholar 

  27. Bozzi, Y., Casarosa, S. & Caleo, M. Epilepsy as a neurodevelopmental disorder. Front. Psychiatry 3, 19 (2012).

    Google Scholar 

  28. Inan, M., Petros, T. J. & Anderson, S. A. Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia. Neurobiol. Dis. 53, 36–48 (2013).

    Google Scholar 

  29. Takano, T. Interneuron dysfunction in syndromic autism: recent advances. Dev. Neurosci. 37, 467–475 (2015).

  30. Katsarou, A. M., Moshe, S. L. & Galanopoulou, A. S. Interneuronopathies and their role in early life epilepsies and neurodevelopmental disorders. Epilepsia Open 2, 284–306 (2017).

    Google Scholar 

  31. Batista-Brito, R., Machold, R., Klein, C. & Fishell, G. Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex 18, 2306–2317 (2008).

    Google Scholar 

  32. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

    Google Scholar 

  33. Schork, A. J. et al. A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment. Nat. Neurosci. 22, 353–361 (2019).

    Google Scholar 

  34. Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, https://doi.org/10.1126/science.aay1645 (2020).

  35. Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268–273 (2022).

    Google Scholar 

  36. Villa, C. E. et al. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Rep. 39, 110615 (2022).

    Google Scholar 

  37. Liu, D. et al. Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Mol. Psychiatry 27, 4218–4233 (2022).

    Google Scholar 

  38. Jang, Y. et al. H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Res. 47, 607–620 (2019).

    Google Scholar 

  39. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    Google Scholar 

  40. Sandberg, M. et al. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons. Neuron 91, 1260–1275 (2016).

    Google Scholar 

  41. Xu, Q., Tam, M. & Anderson, S. A. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J. Comp. Neurol. 506, 16–29 (2008).

    Google Scholar 

  42. Orquera, D. P. et al. The homeodomain transcription factor NKX2.1 is essential for the early specification of melanocortin neuron identity and activates Pomc expression in the developing hypothalamus. J. Neurosci. 39, 4023–4035 (2019).

    Google Scholar 

  43. Ma, T., Wong, S. Z. H., Lee, B., Ming, G. L. & Song, H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 109, 1150–1167 (2021).

    Google Scholar 

  44. Herrera Moro Chao, D. et al. Hypothalamic astrocytes control systemic glucose metabolism and energy balance. Cell Metab. 34, 1532–1547 (2022).

    Google Scholar 

  45. Zhang, Y. H. et al. Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell 28, 1483–1499 (2021).

    Google Scholar 

  46. Commerford, S. L., Carsten, A. L. & Cronkite, E. P. Histone turnover within nonproliferating cells. Proc. Natl. Acad. Sci. USA 79, 1163–1165 (1982).

    Google Scholar 

  47. Wenderski, W. & Maze, I. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. Bioessays 38, 410–419 (2016).

    Google Scholar 

  48. Rhodes, C. T. et al. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front. Cell Neurosci. 18, 1334244 (2024).

    Google Scholar 

  49. Liodis, P. et al. Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J. Neurosci. 27, 3078–3089 (2007).

    Google Scholar 

  50. Van Erum, J., Van Dam, D. & De Deyn, P. P. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 95, 51–55 (2019).

    Google Scholar 

  51. Medina, A. E., Manhaes, A. C. & Schmidt, S. L. Sex differences in sensitivity to seizures elicited by pentylenetetrazol in mice. Pharmacol. Biochem. Behav. 68, 591–596 (2001).

    Google Scholar 

  52. Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998).

    Google Scholar 

  53. Mann, E. O., Suckling, J. M., Hajos, N., Greenfield, S. A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005).

    Google Scholar 

  54. Colgin, L. L. & Moser, E. I. Gamma oscillations in the hippocampus. Physiology 25, 319–329 (2010).

    Google Scholar 

  55. Duzel, E., Penny, W. D. & Burgess, N. Brain oscillations and memory. Curr. Opin. Neurobiol. 20, 143–149 (2010).

    Google Scholar 

  56. Buzsaki, G. & Silva, F. L. High frequency oscillations in the intact brain. Prog. Neurobiol. 98, 241–249 (2012).

    Google Scholar 

  57. Drexel, M. et al. Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice. J. Neurosci. 37, 8166–8179 (2017).

    Google Scholar 

  58. Andrioli, A., Alonso-Nanclares, L., Arellano, J. I. & DeFelipe, J. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience 149, 131–143 (2007).

    Google Scholar 

  59. Andre, V., Marescaux, C., Nehlig, A. & Fritschy, J. M. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 11, 452–468 (2001).

    Google Scholar 

  60. Honey, C. J. & Valiante, T. Neuroscience: when a single image can cause a seizure. Curr. Biol. 27, R394–R397 (2017).

    Google Scholar 

  61. Southwell, D. G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

    Google Scholar 

  62. Denaxa, M. et al. Modulation of apoptosis controls inhibitory interneuron number in the cortex. Cell Rep. 22, 1710–1721 (2018).

    Google Scholar 

  63. Priya, R. et al. Activity regulates cell death within cortical interneurons through a calcineurin-dependent mechanism. Cell Rep. 22, 1695–1709 (2018).

    Google Scholar 

  64. Winstanley, C. A., Eagle, D. M. & Robbins, T. W. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin. Psychol. Rev. 26, 379–395 (2006).

    Google Scholar 

  65. Gao, Y., Aljazi, M. B. & He, J. Kdm6b Haploinsufficiency causes ASD/ADHD-like behavioral deficits in mice. Front. Behav. Neurosci. 16, 905783 (2022).

    Google Scholar 

  66. Ioannidou, C., Marsicano, G. & Busquets-Garcia, A. Assessing prepulse inhibition of startle in mice. Bio. Protoc. 8, e2789 (2018).

    Google Scholar 

  67. Heller, H. C. et al. Nest building is impaired in the Ts65Dn mouse model of Down syndrome and rescued by blocking 5HT2a receptors. Neurobiol. Learn Mem. 116, 162–171 (2014).

    Google Scholar 

  68. Jirkof, P. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 234, 139–146 (2014).

    Google Scholar 

  69. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Google Scholar 

  70. Pai, E. L. et al. Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. Elife 9, https://doi.org/10.7554/elife.54903 (2020).

  71. Wu, S. J. et al. Pyramidal neurons proportionately alter the identity and survival of specific cortical interneuron subtypes. Nature https://doi.org/10.1038/s41586-025-09996-8 (2026).

  72. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Google Scholar 

  73. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

    Google Scholar 

  74. Du, J., Zhang, L., Weiser, M., Rudy, B. & McBain, C. J. Developmental expression and functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus. J. Neurosci. 16, 506–518 (1996).

    Google Scholar 

  75. Lau, D. et al. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J. Neurosci. 20, 9071–9085 (2000).

    Google Scholar 

  76. Wu, S. J. et al. Cortical somatostatin interneuron subtypes form cell-type-specific circuits. Neuron 111, 2675–2692.e9 (2023).

    Google Scholar 

  77. Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010).

    Google Scholar 

  78. Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020).

    Google Scholar 

  79. Zhou, X. et al. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat. Commun. 11, 4063 (2020).

    Google Scholar 

  80. Kim, D. W. et al. Decoding gene networks controlling hypothalamic and prethalamic neuron development. Cell Rep. 44, 115858 (2025).

    Google Scholar 

  81. van Velthoven, C. T. J. et al. Transcriptomic and spatial organization of telencephalic GABAergic neurons. Nature 647, 143–156 (2025).

  82. Jais, A. & Bruning, J. C. Arcuate nucleus-dependent rRegulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).

    Google Scholar 

  83. Khodai, T. & Luckman, S. M. Ventromedial nucleus of the hypothalamus neurons under the magnifying glass. Endocrinology 162, https://doi.org/10.1210/endocr/bqab141 (2021).

  84. Steuernagel, L. et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).

    Google Scholar 

  85. Horvath, T. L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl. Acad. Sci. USA 107, 14875–14880 (2010).

    Google Scholar 

  86. Chowen, J. A. et al. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog. Neurobiol. 144, 68–87 (2016).

    Google Scholar 

  87. Gonzalez-Garcia, I. & Garcia-Caceres, C. Hypothalamic astrocytes as a specialized and responsive cell population in obesity. Int. J. Mol. Sci. 22, (2021).

  88. Verkhratsky, A. & Nedergaard, M. Physiology of astroglia. Physiol. Rev. 98, 239–389 (2018).

    Google Scholar 

  89. Lyon, K. A. & Allen, N. J. From Synapses to Circuits, Astrocytes Regulate Behavior. Front. Neural Circuits 15, 786293 (2021).

    Google Scholar 

  90. Goodman, T. & Hajihosseini, M. K. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front. Neurosci. 9, 387 (2015).

    Google Scholar 

  91. Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Google Scholar 

  92. Robins, S. C. et al. alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 4, 2049 (2013).

    Google Scholar 

  93. Buller, S. et al. Median eminence myelin continuously turns over in adult mice. Mol. Metab. 69, 101690 (2023).

    Google Scholar 

  94. Stengel, A. & Tache, Y. Central somatostatin signaling and regulation of food intake. Ann. N. Y. Acad. Sci. 1455, 98–104 (2019).

    Google Scholar 

  95. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

    Google Scholar 

  96. Esteve, N. A. et al. Tanycyte radial morphology and proliferation are influenced by fibroblast growth factor receptor 1 and high-fat diet. Eur. J. Neurosci. 60, 5000–5018 (2024).

    Google Scholar 

  97. Geller, S. et al. Tanycytes regulate Lipid Homeostasis by sensing free fatty acids and signaling to key hypothalamic neuronal populations via FGF21 secretion. Cell Metab. 30, 833–844.e7 (2019).

    Google Scholar 

  98. Kaminskas, B. et al. Characterisation of endogenous players in fibroblast growth factor-regulated functions of hypothalamic tanycytes and energy-balance nuclei. J. Neuroendocrinol. 31, e12750 (2019).

    Google Scholar 

  99. Bentsen, M. A. et al. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat. Commun. 11, 4458 (2020).

    Google Scholar 

  100. Serdyukova, K. et al. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 150, https://doi.org/10.1242/dev.202169 (2023).

  101. Vilchez-Acosta, A. et al. Specific contribution of Reelin expressed by Cajal-Retzius cells or GABAergic interneurons to cortical lamination. Proc. Natl. Acad. Sci. USA 119, e2120079119 (2022).

    Google Scholar 

  102. Reichard, J. et al. DNMT1-mediated regulation of somatostatin-positive interneuron migration impacts cortical architecture and function. Nat. Commun. 16, 6834 (2025).

    Google Scholar 

  103. Doischer, D. et al. Postnatal differentiation of basket cells from slow to fast signaling devices. J. Neurosci. 28, 12956–12968 (2008).

    Google Scholar 

  104. Caccavano, A. P. et al. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. Neuron 113, 1805–1822.e7 (2025).

    Google Scholar 

  105. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Google Scholar 

  106. Cammarota, M., Losi, G., Chiavegato, A., Zonta, M. & Carmignoto, G. Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. J. Physiol. 591, 807–822 (2013).

    Google Scholar 

  107. Zheng, Y. & Chen, J. Voltage-gated potassium channels and genetic epilepsy. Front. Neurol. 15, 1466075 (2024).

    Google Scholar 

  108. van Luijtelaar, G. & Sitnikova, E. Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci. Biobehav. Rev. 30, 983–1003 (2006).

    Google Scholar 

  109. Harvey, M., Lau, D., Civillico, E., Rudy, B. & Contreras, D. Impaired long-range synchronization of gamma oscillations in the neocortex of a mouse lacking Kv3.2 potassium channels. J. Neurophysiol. 108, 827–833 (2012).

  110. Andrade-Talavera, Y., Arroyo-Garcia, L. E., Chen, G., Johansson, J. & Fisahn, A. Modulation of Kv3.1/Kv3.2 promotes gamma oscillations by rescuing Abeta-induced desynchronization of fast-spiking interneuron firing in an AD mouse model in vitro. J. Physiol. 598, 3711–3725 (2020).

    Google Scholar 

  111. Khazaei, S. et al. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell 186, 1162–1178.e20 (2023).

    Google Scholar 

  112. Mohammad, F. & Helin, K. Oncohistones: drivers of pediatric cancers. Genes Dev. 31, 2313–2324 (2017).

    Google Scholar 

  113. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Google Scholar 

  114. Kundakovic, M. & Tickerhoof, M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci. 47, 18–35 (2024).

    Google Scholar 

  115. Forneris, F., Binda, C., Adamo, A., Battaglioli, E. & Mattevi, A. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J. Biol. Chem. 282, 20070–20074 (2007).

    Google Scholar 

  116. Yagi, M. et al. Bivalent chromatin instructs lineage specification during hematopoiesis. Cell 188, 4314–4331.e29 (2025).

    Google Scholar 

  117. Adam, M. P. et al. Kabuki syndrome: international consensus diagnostic criteria. J. Med. Genet. 56, 89–95 (2019).

    Google Scholar 

  118. Jung, Y. L., Hung, C., Choi, J., Lee, E. A. & Bodamer, O. Characterizing the molecular impact of KMT2D variants on the epigenetic and transcriptional landscapes in Kabuki syndrome. Hum. Mol. Genet. 32, 2251–2261 (2023).

    Google Scholar 

  119. Huisman, C. et al. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat. Commun. 10, 3696 (2019).

    Google Scholar 

  120. Timper, K. & Bruning, J. C. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis. Model Mech. 10, 679–689 (2017).

    Google Scholar 

  121. Pasquettaz, R. et al. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. J. Comp .Neurol. 529, 553–575 (2021).

    Google Scholar 

  122. Dali, R., Estrada-Meza, J. & Langlet, F. Tanycyte, the neuron whisperer. Physiol. Behav. 263, 114108 (2023).

    Google Scholar 

  123. Qin, C., Li, J. & Tang, K. The paraventricular nucleus of the hypothalamus: development, function, and human diseases. Endocrinology 159, 3458–3472 (2018).

    Google Scholar 

  124. Mendoza-Herrera, K. et al. The Leptin system and diet: a mini review of the current evidence. Front. Endocrinol. 12, 749050 (2021).

    Google Scholar 

  125. Frederich, R. C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

    Google Scholar 

  126. Garcia-Caceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

    Google Scholar 

  127. Mukai, J. et al. Recapitulation and reversal of schizophrenia-related phenotypes in setd1a-deficient mice. Neuron 104, 471–487 (2019).

    Google Scholar 

  128. Bolte, S. et al. Sex and gender in neurodevelopmental conditions. Nat. Rev. Neurol. 19, 136–159 (2023).

    Google Scholar 

  129. Seeman, M. V. Psychopathology in women and men: focus on female hormones. Am. J. Psychiatry 154, 1641–1647 (1997).

    Google Scholar 

  130. Zahn-Waxler, C., Shirtcliff, E. A. & Marceau, K. Disorders of childhood and adolescence: gender and psychopathology. Annu. Rev. Clin. Psychol. 4, 275–303 (2008).

    Google Scholar 

  131. Shen, E. Y. et al. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Exp. Neurol. 268, 21–29 (2015).

    Google Scholar 

  132. Hophing, L., Kyriakopoulos, P. & Bui, E. Sex and gender differences in epilepsy. Int. Rev. Neurobiol. 164, 235–276 (2022).

    Google Scholar 

  133. Akman, O., Moshe, S. L. & Galanopoulou, A. S. Sex-specific consequences of early life seizures. Neurobiol. Dis. 72, 153–166 (2014).

    Google Scholar 

  134. Clemens, A. M. et al. Estrus-Cycle Regulation of Cortical Inhibition. Curr. Biol. 29, 605–615.e6 (2019).

    Google Scholar 

  135. Aleman, A., Kahn, R. S. & Selten, J. P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatry 60, 565–571 (2003).

    Google Scholar 

  136. Santangelo, S. L. et al. Tourette’s syndrome: what are the influences of gender and comorbid obsessive-compulsive disorder? J. Am. Acad. Child Adolesc. Psychiatry 33, 795–804 (1994).

    Google Scholar 

  137. Solberg, B. S. et al. Gender differences in psychiatric comorbidity: a population-based study of 40 000 adults with attention deficit hyperactivity disorder. Acta Psychiatr. Scand. 137, 176–186 (2018).

    Google Scholar 

  138. Correa, S. M. et al. An estrogen-responsive module in the ventromedial hypothalamus selectively drives sex-specific activity in females. Cell Rep. 10, 62–74 (2015).

    Google Scholar 

  139. Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C. & Rapoport, J. L. Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol. Biol. Psychiatry 21, 1185–1201 (1997).

    Google Scholar 

  140. Rijpkema, M. et al. Normal sexual dimorphism in the human basal ganglia. Hum. Brain Mapp. 33, 1246–1252 (2012).

    Google Scholar 

  141. Van Zandt, M. & Pittenger, C. Sex differences in histamine regulation of striatal dopamine. J. Neurosci. 45, e2182242025 (2025).

  142. Shah, N. M. et al. Visualizing sexual dimorphism in the brain. Neuron 43, 313–319 (2004).

    Google Scholar 

  143. Brinkman, A. B. et al. Histone modification patterns associated with the human X chromosome. EMBO Rep. 7, 628–634 (2006).

    Google Scholar 

  144. Mo, R., Rao, S. M. & Zhu, Y. J. Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J. Biol. Chem. 281, 15714–15720 (2006).

    Google Scholar 

  145. Yevoo, P. E., Fontanini, A. & Maffei, A. Modulation of sweet preference by neurosteroid-sensitive, delta-GABA(A) receptors in adult mouse gustatory insular cortex. Curr. Biol. 35, 1047–1060 (2025).

    Google Scholar 

  146. Fogarty, M. et al. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J. Neurosci. 27, 10935–10946 (2007).

    Google Scholar 

  147. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Google Scholar 

  148. Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

    Google Scholar 

  149. Arroyo-Garcia, L. E. et al. Impaired spike-gamma coupling of area CA3 fast-spiking interneurons as the earliest functional impairment in the App(NL-G-F) mouse model of Alzheimer’s disease. Mol. Psychiatry 26, 5557–5567 (2021).

    Google Scholar 

  150. Pizzirusso, G., Sundstrom, S. & Arroyo-Garcia, L. E. Efficient, automatic, and reproducible patch clamp data analysis with “Auto ANT”, a user-friendly interface for batch analysis of patch clamp recordings. Neuroinformatics 23, 24 (2025).

    Google Scholar 

  151. Shimada, T. & Yamagata, K. Pentylenetetrazole-Induced Kindling Mouse Model. J. Vis. Exp. 136, https://doi.org/10.3791/56573 (2018).

  152. Lee, D. R., Zhang, Y., Rhodes, C. T. & Petros, T. J. Generation of single-cell and single-nuclei suspensions from embryonic and adult mouse brains. STAR Protoc. 4, 101944 (2023).

    Google Scholar 

  153. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Google Scholar 

  154. Germain, P. L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 10, 979 (2021).

    Google Scholar 

  155. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Google Scholar 

  156. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Google Scholar 

  157. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).

    Google Scholar 

  158. Xu, S. et al. Using clusterProfiler to characterize multiomics data. Nat. Protoc. 19, 3292–3320 (2024).

    Google Scholar 

  159. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank all members of the Section on Cellular and Molecular Neurodevelopment, as well as Pedro Rocha, Ariel Levine and Kai Ge for discussion and comments on this project and manuscript. We thank Kai Ge (NIDDK) for the LSL-K4M mice. We thank the NICHD Molecular Genomics Core, specifically Fabio Faucz, Vivek Mahadevan, Tianwei Li and James Iben; the NIDDK Mouse Metabolism Core, particularly Oksana Gavrilova and Naili Liu, for assistance with measuring body composition; the NINDS and NICHD animal facility for mouse husbandry assistance. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). This work was supported, in part, by the NIMH IRP Rodent Behavioral Core (MH002952). This project was funded by NICHD intramural projects HD008962 (T.J.P.), HD008986 (R.K.D.), HD001205 (C.J.M.); NICHD Scientific Director’s Award (T.J.P); NICHD Intramural Research Fellowship (J.L.); NICHD Career Development Award (J.L.). This research was supported by the Intramural Research Program of the National Institutes of Health (NIH). The contributions of the NIH author(s) are considered Works of the United States Government. The findings and conclusions presented in this paper are those of the author(s) and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services.

Funding

Open access funding provided by the National Institutes of Health.

Author information

Authors and Affiliations

  1. Section on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA

    Jianing Li, Anthony F. Tanzillo, Yajun Zhang & Timothy J. Petros

  2. Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA

    Giusy Pizzirusso, Adam Caccavano, Ramesh Chittajallu, Daniel Abebe, Kenneth A. Pelkey & Chris J. McBain

  3. Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, & Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden

    Giusy Pizzirusso

  4. Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA

    Mira Sohn & Ryan K. Dale

Authors
  1. Jianing Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Anthony F. Tanzillo
    View author publications

    Search author on:PubMed Google Scholar

  3. Giusy Pizzirusso
    View author publications

    Search author on:PubMed Google Scholar

  4. Adam Caccavano
    View author publications

    Search author on:PubMed Google Scholar

  5. Ramesh Chittajallu
    View author publications

    Search author on:PubMed Google Scholar

  6. Mira Sohn
    View author publications

    Search author on:PubMed Google Scholar

  7. Daniel Abebe
    View author publications

    Search author on:PubMed Google Scholar

  8. Yajun Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Kenneth A. Pelkey
    View author publications

    Search author on:PubMed Google Scholar

  10. Ryan K. Dale
    View author publications

    Search author on:PubMed Google Scholar

  11. Chris J. McBain
    View author publications

    Search author on:PubMed Google Scholar

  12. Timothy J. Petros
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization – J.L. and T.J.P.; Investigation – J.L., A.F.T., G.P., A.C., R.C., D.A., Y.Z., and K.A.P.; Formal analysis – J.L., G.P., K.A.P., and M.S.; Software – M.S.; Supervision – R.K.D., C.J.M., and T.J.P.; Funding acquisition – J.L., R.K.D., C.J.M., and T.J.P.; Writing, original draft – J.L. and T.J.P.; Writing, review & editing – all authors.

Corresponding author

Correspondence to Timothy J. Petros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Daniel Vogt and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Video 1

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tanzillo, A.F., Pizzirusso, G. et al. Reducing methylation of histone 3.3 lysine 4 in the medial ganglionic eminence and hypothalamus recapitulates neurodevelopmental disorder phenotypes. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69248-9

Download citation

  • Received: 22 May 2025

  • Accepted: 28 January 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69248-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing